Dark production of reactive oxygen species in photosystem II membrane particles at elevated temperature: EPR spin-trapping study

Pavel Pospíšil*, Iva Šnyrychová, Jan Nauš

Laboratory of Biophysics, Department of Experimental Physics, Faculty of Science, Palacký University, tř. Svobody 26, 771 46 Olomouc, Czech Republic

Received 27 September 2006; received in revised form 16 January 2007; accepted 15 February 2007

Available online 24 February 2007

Abstract

In our study, EPR spin-trapping technique was employed to study dark production of two reactive oxygen species, hydroxyl radicals (OH•) and singlet oxygen (1O2), in spinach photosystem II (PSII) membrane particles exposed to elevated temperature (47 °C). Production of OH•, evaluated as EMPO-OH adduct EPR signal, was suppressed by the enzymatic removal of hydrogen peroxide and by the addition of iron chelator desferal, whereas externally added hydrogen peroxide enhanced OH• production. These observations reveal that OH• is presumably produced by metal-mediated reduction of hydrogen peroxide in a Fenton-type reaction. Increase in pH above physiological values significantly stimulated the formation of OH•, whereas the presence of chloride and calcium ions had the opposite effect. Based on our results it is proposed that the formation of OH• is linked to the thermal disassembly of water-splitting manganese complex on PSII donor side. Singlet oxygen production, followed as the formation of nitroxyl radical TEMPO, was not affected by OH• scavengers. This finding indicates that the production of these two species was independent and that the production of 1O2 is not closely linked to PSII donor side.

© 2007 Elsevier B.V. All rights reserved.

Keywords: EMPO; EPR spin-trapping; Heat; Hydroxyl radical; Singlet oxygen; Photosystem II

1. Introduction

Molecular oxygen, even though essential for most of living organisms, serves as a precursor of reactive oxygen species (ROS) [1,2]. At low concentrations ROS play important role in cell signaling processes, but when formed in excess, they damage cellular macromolecules such as proteins, lipids and nucleic acids [3]. In thylakoid membrane, ROS are formed when absorption of light by chlorophylls exceeds the capacity for energy utilization by photosynthetic apparatus [4,5]. Besides this, evidence was given that ROS can be also produced under special conditions in the dark. Using EPR spin-trapping spectroscopy, Hideg and Vass [6] have demonstrated that singlet oxygen is produced in the dark in thylakoid membrane exposed to high temperature. However, the mechanism of ROS generation in the dark is still to the great extent a matter of debate.

The most thermally labile component of the thylakoid membrane is photosystem II (PSII) [7], namely its donor side, and the effect of heat treatment on Mn-complex has been extensively studied [8–10]. It has been shown that the heat inactivation of water-splitting complex involves the release of 18 kDa, 23 kDa and 33 kDa extrinsic proteins from the lumenal surface of thylakoid membrane [9,11], followed by stepwise release of Mn atoms [10]. It has been suggested that heat treatment affects chloride-binding site within Mn-complex [12], whereas EXAFS study showed that the early phase of stepwise disassembly of Mn-complex is coupled to the release of Ca2+ [10,11,13]. From these evidences it can be concluded that inorganic cofactors of water-splitting complex play important role in the process of heat inactivation of oxygen evolution. Thompson et al. [14] proposed that the heat-induced release of extrinsic proteins results in uncontrolled accessibility of water...
to Mn-complex and subsequent divalent oxidation of water to hydrogen peroxide (H$_2$O$_2$). To our best knowledge, no direct evidence has been given on the generation of ROS linked to PSII donor side inactivation in the dark.

In this work we used EPR spin-trapping technique to study the dark production of OH$^-$ in PSII membrane particles exposed to heat stress (47 °C). For the first time we have shown that heating of PSII membrane particles in the dark results in the production of OH$^-$ and we suggest that this process is connected to heat-induced changes of PSII donor side. Further, we have shown that OH$^-$ is unlikely related to the generation of 1O$_2$, which has also been observed in heated PSII membrane particles.

2. Materials and methods

2.1. Sample preparation

PSII membrane particles from spinach (Spinacia oleracea) were prepared using Triton X-100 purification according to the method of Berthold et al. [15] with modifications described in Ford and Evans [16]. PSII membrane particles were resuspended in medium containing 400 mM sucrose, 15 mM NaCl, 5 mM MgCl$_2$, and 40 mM Mes (pH 6.5) and stored at −80 °C.

2.2. EPR spin-trapping spectroscopy

EMPO (5-(ethoxycarbonyl)-5-methyl-1-pyrroline N-oxide, Alexis Biochemicals, Lausen, Switzerland) spin trap compound was used for the detection of OH$^-$, whereas spin-trapping of 1O$_2$ was accomplished by TEMP (2,2,6,6-tetramethylpiperidine, Sigma-Aldrich). PSII membrane particles (500 μg Chl ml$^{-1}$) in 40 mM Mes (pH 6.5) were incubated in Eppendorf tubes immersed in water bath (47 °C) in the presence of 75 mM EMPO (OH$^-$ trapping) or 50 mM TEMP (1O$_2$ trapping). In the case of TEMP, 5% ethanol was present to avoid spin trap precipitation. Samples were heated at 47 °C in digitally controlled heater in complete darkness for time periods indicated in figures. After treatment, sample was transferred into a glass capillary tube (Blaubrand® intraMARK, Brand, Germany) and room temperature EPR spectra were recorded using EPR spectrometer MiniScope MS200 (Magnettech GmbH, Germany). Signal intensity was evaluated as a relative height of the central doublet (EMPO-OH) or the central peak (TEMPO) of EPR spectrum obtained as a first derivative of the EPR absorption signal. EPR conditions were as follows: microwave power, 10 mW; modulation amplitude, 1 G; modulation frequency, 100 kHz; sweep width, 100 G; scan rate, 1.62 G s$^{-1}$.

2.3. 77K EPR spectroscopy

PSII membrane particles (1 mg Chl ml$^{-1}$) in 40 mM Mes (pH 6.5) were heated in Eppendorf tubes immersed in water bath (47 °C) under the same conditions as used for spin-trapping EPR measurements. After heating, the sample was transferred into EPR tube and TyrDox EPR spectra were recorded at 77 K using EPR spectrometer MiniScope MS200 (Magnettech GmbH, Germany). EPR conditions were as follows: microwave power, 3 mW; modulation amplitude, 2.6 G; modulation frequency, 100 kHz; sweep width, 100 G; scan rate, 1.62 G s$^{-1}$.

3. Results

3.1. Dark production of ROS at elevated temperature

Dark production of ROS at elevated temperature in spinach PSII membrane particles was followed using EMPO and TEMP spin traps. EMPO is known to react with both OH$^-$ and O$_2^-$, forming paramagnetic EMPO-OH and EMPO-OOH adducts, respectively [17,18]. TEMP is considered to react with 1O$_2$ to form nitroxyl radical TEMPO [19].

The EPR spectrum obtained after exposure of PSII membrane particles to 47 °C in the presence of EMPO can be solely ascribed to the EMPO-OH adduct (Fig. 1A). For comparison, EPR spectrum of the EMPO-OH adduct obtained using model Fenton system and EMPO-OOH spectrum obtained in xanthine/xanthine oxidase system are shown in Fig. 1A (two most upper traces). The finding that no EMPO-OOH adduct was detected may either indicate that no superoxide is produced or that the superoxide adduct is unstable at higher temperatures. No EMPO-OH EPR signal was observed after heating the buffered solution of pure spin trap, which indicates that PSII membrane particles are required for the appearance of this adduct (data not shown). Due to very high sensitivity of EMPO, the first detectable EMPO-OH adduct...
EPR signal was observed as fast as after first 15 s of heating (data not shown) and this gave us the possibility to detect OH· in PSII membrane particles after a very short period of heat treatment (Fig. 1A). On the other hand, due to instability of EMPO-OH adduct, the corresponding EPR signal decreased during prolonged heating (data not shown).

Exposure of PSII membrane particles to 47 °C in the presence of TEMP spin trap results in the formation of TEMPO (Fig. 1B), whereas no TEMPO EPR signal was observed in the absence of PSII membrane particles (data not shown). No reduction of TEMPO radical occurred in the dark and therefore it was not necessary to perform any extraction and reoxidation that is unavoidable for experiments involving light [20]. Model spectrum obtained using pure TEMPO radical is shown in Fig. 1B (most upper trace).

3.2. Effect of ¹O₂ and OH· scavengers on EMPO-OH adduct

It is well known that DMPO spin-trapping experiments can be easily misinterpreted due to the fact that DMPO-OH adduct can be formed not only as a result of OH· trapping, but also by different mechanisms. We have performed a set of experiments verifying that under our experimental conditions EMPO-OH adduct is formed by interaction of EMPO with OH· and that it indeed reflects the production of OH·.

To exclude the possibility that EMPO-OH adduct is formed by the decomposition of EMPO-OOH, the effect of OH· scavenger mannitol was tested. Our finding that heating of PSII membrane particles in the presence of mannitol completely prevented the formation of EMPO-OH adduct (Fig. 2) indicates that EMPO-OH is formed by direct trapping of OH· and that the formation of EMPO-OH adduct by decomposition of EMPO-OOH adduct is unlikely.

To find out whether EMPO-OH adduct is formed by the interaction of spin trap with ¹O₂, EMPO-OH adduct EPR spectra were measured in the presence of either ¹O₂ scavenger sodium azide (NaN₃) or deuterium oxide (D₂O), which prolongs the half-lifetime of ¹O₂ and enhances ¹O₂-mediated effects. No pronounced effect of NaN₃ (suppression by 12±3%) and D₂O (suppression by 11±2%) on the formation of EMPO-OH adduct EPR signal has been observed (Fig. 2). These findings exclude the possibility that OH· is formed as an artifact during the reaction between the spin trap and ¹O₂, which has been suggested to occur in the presence of DMPO [21].

3.3. Effect of catalase, peroxide and chelators on OH· generation

The most straightforward mechanism of OH· production in biological systems involves the univalent reduction of H₂O₂ by reduced metals in a Fenton-type reaction [22]. To test whether this pathway is of importance for the formation of OH· in PSII membrane particles at elevated temperature, effects of catalase and metal chelators were measured. Removal of H₂O₂ by catalase (5000 U ml⁻¹) completely suppressed OH· production (Fig. 3). It has been demonstrated that catalase is thermally stable up to 50 °C; however, the activity of the enzyme is slightly lowered at high temperature [23]. This might provide explanation why partial OH· production was observed at lower catalase concentration (2500 U ml⁻¹) (data not shown). In agreement with the effect of catalase, the addition of H₂O₂ to PSII membrane particles prior to heating doubled OH· generation (increase by 107±7%) (Fig. 3). The presence of metal chelator EDTA lowered OH· production (data not shown), however, removal of redox active iron by stronger chelator desferal completely suppressed EMPO-OH EPR signal (Fig. 3). Based on these results it is suggested that OH· is likely formed via metal-catalyzed reduction of H₂O₂.

3.4. Effect of high pH, chloride and calcium on OH· production

Evidence has been given that the light-induced formation of H₂O₂ on the donor side of PSII is promoted at high pH [24]. The authors proposed that at high pH one of the inorganic cofactors, namely chloride ion, is replaced by hydroxide ion and that this hydroxide ion can be oxidized to H₂O₂. Recently, it has been demonstrated that PSII membranes depleted of chloride are characterized by higher rates of light-induced OH· production compared to active PSII membranes [25]. To reveal whether heat-induced dark production of OH· is related to PSII donor side, pH dependence of EMPO-OH EPR signal and effect of inorganic cofactors of water-splitting complex on OH· formation were studied (Fig. 4).

Increase in pH above physiological values induced significant enhancement in OH· production (Fig. 4A). The fitting of pH dependence of EMPO-OH EPR signal intensity to a single proton titration curve gives apparent pKₐ of 7.3. The excess of chloride or calcium ions in the medium during heat treatment suppressed EMPO-OH adduct EPR signal intensity by 32±4% and 41±6%, respectively (Fig. 4B). These observations indicate that OH· is likely produced on PSII donor side.

Fig. 2. Effect of OH· and ¹O₂ scavengers on EMPO-OH adduct EPR spectra measured in PSII membrane particles exposed to 47 °C for 1.5 min. 250 mM mannitol, 10 mM NaN₃ were added before heat treatment. 50% D₂O was used to replace H₂O in buffer medium. Other experimental conditions were as described in Fig. 1A. EPR spectra were plotted as the first derivative of the EPR absorption. Vertical bar represents 2000 relative units.
The stability of PSII donor site at elevated temperatures was followed by the measurement of EPR signal corresponding to oxidized form of tyrosine-161 of D2 subunit of PSII, usually denoted as TyrDox. Exposure of PSII membrane particles to 47 °C results in a rapid loss of TyrDox EPR signal (Fig. 4A, insert). Since TyrD is known to be in redox equilibrium with the water-oxidizing complex, the conversion of TyrD into its reduced form provides evidence of very fast heat-induced destabilization of the donor side of PSII.

3.5. Production of 1O$_2$ and its link to OH$^-$ formation

The formation of 1O$_2$ in thylakoid membranes heated to high temperatures in the dark has already been described [6]. Even though the exact mechanism of 1O$_2$ production was not studied, the authors suggested that it might be related to the process of lipid peroxidation.

Lipid peroxidation can be induced by various factors and ROS usually act as initiators of this process. To clarify the role of OH$^-$ in 1O$_2$ production at elevated temperature, the formation of TEMPO was followed in the presence of catalase and metal chelator. When catalase or desferal were added to PSII membrane particles before heating, no effect on 1O$_2$ production was observed (Fig. 5), whereas under the same conditions OH$^-$ production was completely suppressed (Fig. 3). Similarly, 1O$_2$ production was unaffected when PSII membrane particles were heated in the presence of mannitol (Fig. 5). These observations indicate that OH$^-$ produced at elevated temperature is unlikely coupled with 1O$_2$ production.

4. Discussion

4.1. Dark production of OH$^-$ at elevated temperature

In this study, EPR spin-trapping spectroscopy was used to study dark production of ROS in PSII membrane particles at elevated temperature. Spin trap EMPO is sensitive to both OH$^-$ and O$_2^-$ and the respective paramagnetic adducts are more stable in comparison to widely used trap DMPO [17,18]. So far, EMPO has been successfully employed for the detection of light-induced ROS in PSII membrane particles [26,27]. Even though EPR spin-trapping technique is the most direct and sensitive method for the detection of ROS in biological systems, the possibility of artifacts and misinterpretations has to be carried in mind [28]. Considering this fact, formation of EMPO-OH adduct does not necessarily reflect the production of OH$^-$ in the investigated system and therefore scavenger effects were studied to verify the origin of EMPO-OH.

To exclude the possibility that EMPO-OH adduct is derived from the decomposition of EMPO-OOH adduct, which is known to occur in the case of DMPO, OH$^-$ production was measured in the presence of OH$^-$ scavenger mannitol (Fig. 2).
The fact that EMPO-OH adduct EPR signal was completely diminished by mannitol indicates that EMPO-OH is formed by the interaction of EMPO with OH•. Recently it has been demonstrated that the reaction of DMPO with 1O2 can lead to artifactual formation of DMPO-OH [21]. To study whether the formation of EMPO-OH adduct is affected by 1O2, EMPO-OH adduct EPR spectra were measured in the presence of NaN3 and D2O (Fig. 2). These two compounds are known to suppress and enhance 1O2 mediated processes, respectively, but they lacked any significant effect on EMPO-OH adduct EPR signal. These results suggest that neither O2− nor 1O2 are involved in the formation of EMPO-OH adduct.

4.2. OH• is formed by decomposition of H2O2 on PSII donor side

Based on the observation that catalase and desferal suppressed OH• production (Fig. 3), it can be concluded that OH• is formed by one-electron reduction of H2O2. It has been previously suggested that under heat treatment H2O2 is formed by partial oxidation of water on the donor side [14]. Release of extrinsic proteins was proposed to result in uncontrolled water accessibility to Mn-complex and oxidation of released extrinsic proteins was proposed to result in uncontrolled water accessibility to Mn-complex and oxidation of water-splitting complex. Based on these evidences we suggest that during heat treatment, OH• is formed as its by-product via recombination of lipid radicals. In such case it would be likely that rather than OH•, another highly oxidizing species (such as ferryl, perferryl, ferrous–dioxygen–ferric complex) participate in the initiation of lipid peroxidation at higher temperature [31,32]. Hydroxyl radical is typical by its very short lifetime, diffusion controlled reaction rates and very high standard redox potential [2]. On the other hand, the extreme reactivity of OH• restricts its harmful effects to targets in the close proximity of the site of its production. It is known that EMPO is rather hydrophilic, reacting with OH• by partial oxidation of water on the donor side of PSII [14], and therefore its oxidized and reduced form. It seems that the enhancement in OH• production is correlated with the reduction of TyrDox, which in turn is generally considered as a sign of the destabilization of water-splitting complex. Based on these evidences we suggest that during heat treatment, OH• is formed via univalent reduction of H2O2 in a process linked to the impairment of PSII donor side.

4.3. OH• is not closely linked to 1O2 production

Our observation that catalase, desferal and mannitol did not affect 1O2 generation indicates that OH• is not involved in the production of 1O2. We suggest that the formation of 1O2 is connected to some heat-stimulated oxidation processes, but detailed clarification of its origin is beyond the scope of this study. It has been previously suggested that 1O2 formation can be related to the process of lipid peroxidation [6] and that it can be formed as its by-product via recombination of lipid radicals. Thus, the fact that the formation of 1O2 was not affected by scavengers abolishing EMPO-OH EPR signal (Fig. 5) would not necessarily rule out the possible involvement of OH• in a process leading to 1O2 if it takes place in the interior of the thylakoid membrane.

Acknowledgements

This work was supported by the grants of The Ministry of Education, Youth and Sports of the Czech Republic No. 1K04103 and MSM 6198959215. We thank Dr. Jan Hrbáč and Prof. Jan Lasovský for stimulatory discussions and support with respect to the EPR measurement.

References

P. Pospíšil et al. / Biochimica et Biophysica Acta 1767 (2007) 854–859

