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a b s t r a c t

We present a new method to achieve an embedded desingulariza-
tion of a toric variety.

Let W be a regular toric variety defined by a fanΣ and X ⊂ W
be a toric embedding. We construct a finite sequence of combina-
torial blowing-ups such that the final strict transforms X ′ ⊂ W ′ are
regular and X ′ has normal crossing with the exceptional divisor.

© 2011 Elsevier Ltd. All rights reserved.

Introduction

Fix a polynomial ring, a toric (not necessarily normal) variety is defined by a prime ideal generated
by binomials. Such varieties can be considered as combinatorial, in fact all the information they carry
canbe expressed in termsof combinatorial objects. This gives awayof computing geometric invariants
of the toric variety. There are also many applications of the theory of toric varieties, see for example
Cox (1997). For an introduction to toric varieties, see Danilov (1978), Oda (1988) or Fulton (1993).

This paper is devoted to construct an algorithm of desingularization of toric varieties and log-
resolution of binomial ideals. Given a binomial prime ideal, corresponding to a toric variety X , we
construct a sequence of combinatorial blowing-ups such that the strict transform of the variety X ′
is nonsingular and has normal crossings with the exceptional divisor. Our algorithm is valid if the
ground field is perfect of any characteristic. In principle amore general field could be used in our case,
but some problems arise even in the combinatorial case when computing equimultiple points; see
Theorem 3.1 in Bierstone and Milman (2006).

In González Pérez and Teissier (2002) an algorithm of desingularization of toric varieties is given.
In this paper the authors construct a toric map X ′ → X , which is a (non embedded) desingularization

✩ This research was partly supported by MTM2006-10548, MTM2007-64704.
E-mail addresses:mariarocio.blanco@uclm.es (R. Blanco), sencinas@maf.uva.es (S. Encinas).

1 Tel.: +34 969 17 91 70; fax: +34 969 17 91 71.

0747-7171/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2011.08.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82717081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jsc.2011.08.005
http://www.elsevier.com/locate/jsc
http://www.elsevier.com/locate/jsc
mailto:mariarocio.blanco@uclm.es
mailto:sencinas@maf.uva.es
http://dx.doi.org/10.1016/j.jsc.2011.08.005


1230 R. Blanco, S. Encinas / Journal of Symbolic Computation 46 (2011) 1229–1241

of X . The map X ′ → X is not a sequence of blowing-ups along nonsingular centers, it is a toric
morphism defined in one step in terms of the fan of X .

There is another desingularization method of toric varieties (Bierstone and Milman, 2006),
producing a sequence of blowing-ups along nonsingular centers. It uses the Hilbert function of the
variety and is valid for binomial ideals without embedding components.

In Blanco (in press, 2011) an algorithm of log-resolution of binomial ideals is constructed based on
the computation of an ordering function E-ord. The function E-ord is the order of the ideal defining
the variety along a normal crossing divisor E. To achieve a log-resolution, this algorithm needs a step
called locally monomial resolution (the transform ideal is locally generated by monomials). The step
from the locally monomial resolution to the log-resolution increases the difficulty of the process. The
algorithm presented in Blanco (in press, 2011) is valid for binomial ideals without any restriction. In
fact it is valid for ideals generated bymonomials and binomials, but it depends on a choice of a Gröbner
basis of the ideal. Both disadvantages are avoided in this new approach.

The algorithm presented here depends on the ordering function E-ord and a codimension function
Hcodim. The use of the codimension function in the resolution function does not appear in the
previous approaches and makes this algorithm independent of any choice. This algorithm can be
implemented at the computer and we expect to have a working implementation shortly.

On the other hand, we prove an equivalence of the geometric notion of transversality of a variety
with respect to a normal crossing divisor and a new notion of transversality of Z-modules. Then we
are able to translate geometric notions to combinatorial terms.

This can be considered as a first step on a more ambitious program translating notions from toric
varieties, in terms of dual cones and fans, to notions in terms of the binomial equations of the variety.

We would like to thank Ignacio Ojeda for useful suggestions and conversations which helped to
improve the presentation of this paper.

The paper is structured as follows: first we recall known facts on toric varieties. There is a bijection
between toric varieties and saturated Z-submodules of Zn. We define a notion of transversality of
Z-submodules which will be equivalent to the usual notion of transversality of the toric variety with
respect to a normal crossing divisor. Given an affine toric variety X , we will prove also the existence
of a minimal regular toric variety V transversal to E (the normal crossing divisor) and containing X .
This minimal embedding X ⊂ V will define a function Hcodim which is the first coordinate of our
resolution function. The rest of the coordinates of this resolution function comes from the process of
E-resolution constructed in Blanco (in press, 2011). In the last section wewill construct the algorithm
of embedded desingularization of a toric variety X ⊂ W , whereW is a smooth toric variety.

Notation and first definitions

Remark 1. Fix a perfect field k. We will denote the affine space of dimension n as usual An
=

Spec(k[x1, . . . , xn]). The torus of dimension n isTn
= Spec(k[x±1 , . . . , x

±
n ]). Note thatAn

\Tn is a union
of n hypersurfaces having only normal crossings. Let E be a set of hypersurfaces such that every H ∈ E
is an irreducible component of An

\ Tn. The set E corresponds to a subset of indexes E ⊂ {1, . . . , n}.
We set

TAn
E = An

\


H∉E

H = Spec

k[x1, . . . , xn]∏i∉E xi


where Spec(k[x1, . . . , xn]∏i∉E xi) is the localization of the polynomial ring with respect to the product∏

i∉E xi.
Note that E is a set of hypersurfaces of TAn

E having only normal crossings.

A morphism Tn
→ T1 which is a group homomorphism is called a character.

For example if a ∈ Zn then the morphism defined by T → Xa1
1 · · · X

an
n is a character. In fact, every

character of Tn is as above (Cox et al., 2011; Humphreys, 1975; Eisenbud and Sturmfels, 1996). So that
the group of characters of a n-dimensional torus is a free abelian group of rank n.
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There is a bijection between morphisms Td
→ Tn which are also group homomorphisms and

homomorphisms Zn
→ Zd of Z-modules (Humphreys, 1975). Moreover, closed reduced immersions

Td
→ Tn correspond to surjective homomorphisms Zn

→ Zd.
We recall some basic definitions and well known results on toric varieties in order to make the

article self-contained.

Definition 2. An affine toric variety is an affine variety X of dimension d, such that X contains the
torus Td as a dense open set and the action of the torus extends to an action of Td to X .

Theorems 3 and 4 are well known results.

Theorem 3 (Cox et al., 2011; Miller and Sturmfels, 2005; Eisenbud and Sturmfels, 1996). Let X be a scheme
of dimension d. These facts are equivalent:

(1) X is an affine variety.
(2) X ∼= Spec(k[ta1 , . . . , tan ]), where a1, . . . , an ⊂ Zd.
(3) X ⊂ An and I(X) is prime and generated by binomials.

Theorem 4. Let X be an affine toric variety of dimension d.
X is regular if and only if X ∼= TAd

E for some E ⊂ {1, . . . , d}.

Definition 5. An affine toric embedding is a reduced closed subscheme X ⊂ W where

• W is a regular affine toric variety.
• X is an affine toric variety.
• The inclusion is toric, whichmeans that one has a group homomorphism from the torus of X to the

torus ofW .

Toric varieties are related to Z-submodules of Zn.

Definition 6. LetM ⊂ Zn be a Z-module. The saturation ofM is:

Sat(M) = {α ∈ Zn
| λα ∈ M for some λ ∈ Z}.

We say that a Z-module L ⊂ Zn is saturated if Sat(L) = L.

Note that L ⊂ Zn is saturated if and only if the quotient Zn/L is a free Z-module.
Note also thatM ⊗Z Q = Sat(M)⊗Z Q.
The following theorem is based on known results.

Theorem 7 (Eisenbud and Sturmfels, 1996). Let be n ∈ N, r ≤ n and d ≤ n. There is a bijection
correspondence between the following sets:

(1) The set of affine toric embeddings X ⊂ TAn
E , with d = dim X.

(2) The set of closed and reduced immersions Td
→ Tn.

(3) The set of surjective homomorphisms of Z-modules, Zn
→ Zd.

(4) The set of saturated Z-submodules L ⊂ Zn of rank n− d.

1. Sublattices of Zn

In this section we introduce the notion of transversality of a Z-module with respect to a subset
E ⊂ {1, . . . , n}. We will prove that there exists always a maximal transversal submodule of any
saturated Z-submodule of Zn.

Lemma 8. Let α = (α1, . . . , αn) ∈ Zn with α ≠ 0.
The following facts are equivalent:

(1) gcd{α1, . . . , αn} = 1.
(2) The Z-module (α) is saturated (Definition 6).
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Moreover assume that αm+1 = · · · = αn = 0 for some m ≤ n and that (α) is saturated, then there
is a surjective homomorphism ψ : Zn

→ Zn−1 with Kerψ = (α) and such that ψ(e(n)j ) = e(n−1)j−1 for
j = m+ 1, . . . , n, where e(n)j ∈ Zn is the j-th element of the canonical base of Zn.

Proof. The equivalence of (1) and (2) is an easy exercise.
The last assertion follows from the fact that the Smith normal form of the column matrix α is

(1, 0, . . . , 0). There is a ( non unique) invertible integer matrix P such that Pα = (1, 0, . . . , 0). In fact
if αm+1 = · · · = αn = 0 then P may be chosen as follows

P =

P ′ 0
0 In−m


.

Set A the (n− 1)× nmatrix obtained by deleting the first row of P . The matrix A defines the required
homomorphism Zn

→ Zn−1. �

Definition 9. Let E ⊂ {1, . . . , n} be a subset. We define Zn
E and Zn

E+ to be

Zn
E = {(α1, . . . , αn) ∈ Zn

| αj ≥ 0 ∀j ∈ E}
Zn
E+ = {(α1, . . . , αn) ∈ Zn

| αj > 0 ∀j ∈ E}.

Definition 10. LetM ⊂ Zn be a Z-submodule and E ⊂ {1, . . . , n} be a subset.
We say that M is weak-transversal to E if M admits a system of Z-generators α1, . . . , αℓ with

αj ∈ Zn
E (Definition 9).

We say that a Z-module L ⊂ Zn is transversal to E if it is weak-transversal to E and L is saturated.

Definition 11. Let M ⊂ Zn be a Z-submodule and E ⊂ {1, . . . , n} be a subset. Consider prj : Zn
→ Z

the j-projection, j = 1, . . . , n. Set

EM = {j ∈ E | prj(M) ≠ 0}.

Remark 12. The set EM depends on the module M , but we can reduce the study of transversality of
M to the smaller subset EM . Note that for any generator system α1, . . . , αℓ ofM we have that αi,j = 0
for all i = 1, . . . , ℓ and any j ∈ E \ EM .

Propositions 13 and 14 come from discussions with Ignacio Ojeda.

Proposition 13. Let M ⊂ Zn be a Z-submodule and E ⊂ {1, . . . , n} be a subset.
The Z-module M is weak transversal to E (Definition 10) if and only if M is weak transversal to EM .

Proof. One implication is obvious. Assume that M is weak transversal to EM . So that there exists a
generator system α1, . . . , αℓ such that αi,j ≥ 0 for i = 1, . . . , ℓ and j ∈ EM . The result follows from
Remark 12. �

Proposition 14. Let M ⊂ Zn be a Z-submodule and E ⊂ {1, . . . , n} be a subset.
The Z-module M is weak transversal to E if and only if there is γ ∈ M ∩ Zn

E+M
.

Proof. Assume that M is weak transversal to E. There is a generator system α1, . . . , αℓ of M with
αi ∈ Zn

E, i = 1, . . . , ℓ.
Note that for any j ∈ EM there is an index i ∈ {1, . . . , ℓ} such that αi,j > 0. Set γ = α1 + · · · + αℓ

and it is clear that γ ∈ Zn
E+M

.

Conversely, assume that there is γ ∈ M∩Zn
E+M

. Consider β1, . . . , βℓ a generator system ofM . There

are integers a1, . . . , aℓ ∈ Z with γ = a1β1 + · · · + aℓβℓ. We may assume that gcd{a1, . . . , aℓ} = 1.
Note that we may complete γ to a generator system ofM , say, γ , γ2, . . . , γℓ. This is a consequence of
the fact that the Smith normal form of the row matrix (a1, . . . , aℓ) is (1, 0, . . . , 0).

Now we may choose positive integers λ2, . . . , λℓ such that γi + λiγ ∈ Zn
E. Set α1 = γ and

αi = γi + λiγ , i = 2, . . . , ℓ. It is clear that α1, . . . , αℓ is a generator system of M and αi ∈ Zn
E,

i = 1, . . . , ℓ. In fact we may assume that αi ∈ Zn
E+M

. �
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Proposition 15. Let E ⊂ {1, . . . , n} and let M ⊂ Zn be a Z-module.
If M is weak-transversal to E then Sat(M) is transversal to E.

Proof. Note that EM = ESat(M). Then Proposition 15 is a direct consequence of Propositions 13 and
14. �

Proposition 16. Let E ⊂ {1, . . . , n} be a subset. Let L ⊂ Zn be a saturated Z-submodule.
There exists a unique Z-module L0 such that

• L0 ⊂ L,
• L0 is transversal to E,
• If L′0 ⊂ L and L′0 is transversal to E then L′0 ⊂ L0.

Proof. Consider all Z-submodules {Mλ}λ∈Λ such that Mλ ⊂ L and Mλ is weak-transversal to E for
every λ ∈ Λ.

SetM =
∑

λ∈ΛMλ. Note thatM is weak-transversal to E and M ⊂ L.
By Proposition 15 L0 = Sat(M) is transversal to E and we have also that M ⊂ L0 ⊂ L. In fact by

construction M = L0 and it is the biggest Z-module with this property. �

2. Affine toric varieties and transversality

In this section we will prove the equivalence of the new notion of transversality of Z-submodules
(Definition 10) and the geometric usual notion of transversality of a variety with respect to a normal
crossing divisor.

Let W be a regular affine toric variety of dimension n. It follows from Theorem 4 that W ∼= TAn
E

(notation as in Remark 1). Recall that E is a set of regular hypersurfaces in W having only normal
crossings. Using the isomorphism W ∼= TAn

E we may identify E with a set E ⊂ {1, . . . , n}. With this
identification

W = TAn
E = Spec(k[x1, . . . , xn]∏i∉E xi).

The varietyW = TAn
E has a distinguished point ξ0 ∈ W

ξ0 ∈

H∈E

H

with coordinates ξ0 = (ξ0,1, . . . , ξ0,n)where ξ0,i = 0 if i ∈ E and ξ0,i = 1 if i ∉ E.

Definition 17 (Blanco, in press, 2011). Let W be a regular affine toric variety of dimension n and let
J ⊂ OW be a sheaf of ideals. For any point ξ ∈ W consider Eξ the intersection of all hypersurfaces
H ∈ E with ξ ∈ H:

Eξ =

ξ∈H∈E

H.

The ideal I(Eξ ) ⊂ OW is generated by all the equations of hypersurfaces H with ξ ∈ H ∈ E.
We define the function E-ord(J) : W → N as follows:

E-ord(J)(ξ) = max{b ∈ N | J ⊂ I(Eξ )b}

where J is an ideal inW .

Note that the function E-ord(J) is constant along the strata defined by E. In fact E-ord(J)(ξ) is the
(usual) order of the ideal J at the generic point of Eξ . The function E-ord(J) : W → N is upper-semi-
continuous, see Blanco (in press, 2011) for a proof and more details.

Definition 18. An ideal J ⊂ OW , W = TAn
E , is binomial if J can be generated, as ideal, by binomials:

xα − xβ , with α, β ∈ Nn.

Lemma 19. Let J ⊂ OW be a binomial ideal, W = TAn
E , and let ξ0 ∈ W be the distinguished point.

Then ξ0 ∈ Max E-ord(J) = {ξ ∈ W | E-ord(J)(ξ) = max E-ord(J)}.
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Proof. Note that Eξ0 ⊂ Eξ for any ξ ∈ W . �

The following definition is general for any variety.

Definition 20. Let X ⊂ W be an embedded variety and let E be a set of regular hypersurfaces of W
having only normal crossings.

We say that X is transversal to E at a point ξ ∈ X if there is a regular system of parameters of OW ,ξ ,
x1, . . . , xn ∈ OW ,ξ , such that

• I(X)ξ = (x1, . . . , xr) for some r ≤ n and
• for all H ∈ E with ξ ∈ H , then I(H)ξ = (xi) for some i with r < i ≤ n.

Consider W = TAn
E , for some E ⊂ {1, . . . , n}. The derivatives with poles along E is a free OW -

module of rank n and a natural basis of this module is

xϵii
∂

∂xi
i = 1, . . . , n

where ϵi = 0 if i ∈ E and ϵi = 1 if i ∉ E.

Lemma 21. Let X ⊂ W = TAn
E be an affine toric embedding with d = dim(X).

Consider any set of binomial generators of the ideal I(X) ⊂ OW

I(X) = (xα
+

1 − xα
−

1 , . . . , xα
+
m − xα

−
m ) = (f1, . . . , fm).

Fix a point ξ ∈ X. The variety X is transversal to E at the point ξ (Definition 20) if and only if the Jacobian
matrix:

xϵii
∂ fj
∂xi


i,j

has rank n− d at the point ξ .

Proof. This lemma is a direct consequence of a general fact on algebraic varieties. �

Proposition 22. Let X ⊂ W = TAn
E be an affine toric embedding.

If max E-ord(I(X)) > 0 then X is not transversal to E.

Proof. It follows from Lemmas 21 and 19. At the distinguished point ξ0, the Jacobian matrix in
Lemma 21 is zero modulo the maximal ideal at ξ0. �

Theorem 23. Let V ⊂ W = TAn
E be an affine toric embedding.

They are equivalent:

(1) V is transversal to E.
(2) The ideal I(V ) is generated by hyperbolic equations

I(V ) = (xα1 − 1, . . . , xαℓ − 1)

where ℓ = n− dim V , α1, . . . , αℓ ∈ Zn
E and they generate a saturated lattice of rank ℓ.

Proof. Set ℓ = n− dim V .
Let α1, . . . , αℓ ∈ Zn

E be such that α1, . . . , αℓ they generate a saturated lattice of rank ℓ. Assume
that I(V ) = (xα1 − 1, . . . , xαℓ − 1). Consider the Jacobian matrix (Lemma 21)

xi
∂

xi
(xαj − 1)


=

 α1,1xα1 · · · αℓ,1xαℓ
...

...
α1,nxα1 · · · αℓ,nxαℓ

 .

Note that the rank of this matrix at any point ξ ∈ V is the rank of the matrix (α1| · · · |αℓ) having αi as
columns. And the rank of this matrix is ℓ (independently of the characteristic of the ground field k).
So that V is transversal to E.
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Conversely assume that V is transversal to E. We may assume that E = {r + 1, . . . , n}.
Let us show first the codimension one case: ℓ = 1. So that I(V ) = (xα

+

1 −xα
−

1 )whereα1 = α
+

1 −α
−

1
and α+1 , α

−

1 ∈ Zr
×Nn−r . By Proposition 22we have thatmax E-ord(I(V )) = 0 so that wemay assume

that I(V ) = (xα1 − 1) with α1 ∈ Zr
× Nn−r . Since V is a toric variety the ideal I(V ) is prime and

gcd{α1,1, . . . , α1,n} = 1. Lemma 8 gives the result.
We now prove the general case, codimension ℓ > 1. By Proposition 22 there is an hyperbolic

equation xα1 − 1 ∈ I(V ). Since V is toric, we may assume that gcd{α1,1, . . . , α1,n} = 1. Set W1 the
toric hypersurface defined by xα1 − 1. After reordering the last n− r coordinates wemay assume that
α1,m+1 = · · · = α1,n = 0 and α1,i > 0 for i = r+1, . . . ,m, where r ≤ m. We do not assume anything
on α1,1, . . . , α1,r .

Let ψ : Zn
→ Zn−1 be the homomorphism given by Lemma 8. Note that W1 ∼= Tm−1

× An−m. We
have V ⊂ W1 and by induction there are β̄2, . . . , β̄ℓ ∈ Zm−1

× Nn−m such that the ideal of V in W1 is
generated by yβ̄2 − 1, . . . , yβ̄ℓ − 1, and β̄2, . . . , β̄ℓ generate a saturated lattice in Zn−1 of rank ℓ− 1.
Let β2, . . . , βℓ ∈ Zn such that ψ(βi) = β̄i for i = 2, . . . , ℓ. We have that α1, β2, . . . , βℓ generate a
saturated lattice of rank ℓ.

It is clear that βi ∈ Zm
× Nn−m, but in general βi ∉ Zr

× Nn−r . Since α1,i > 0 for i = r + 1, . . . ,m
there are natural numbers λ2, . . . , λℓ such that αi = βi + λiα1 ∈ Zr

× Nn−r , i = 2, . . . , ℓ. And
α1, α2, . . . , αℓ generate the same lattice. Finally we have the equality of ideals

I(V ) = (xα1 − 1, xα2 − 1, . . . , xαℓ − 1). �

Lemma 24. Let J = (xβ1 − 1, . . . , xβs − 1) be an ideal generated by hyperbolic binomials, βi ∈ Zn
E,

i = 1, . . . , s. Assume that J is a prime ideal.
If γ ∈ Zn then xγ

+

− xγ
−

∈ J if and only if γ belongs to the Z-module generated by β1, . . . , βs in Zn.

Proof. The Z-module L generated by (β1, . . . , βs) is associated to the toric variety defined by J .
It is well known that β ∈ L if and only if xβ

+

− xβ
−

∈ J . �

Proposition 25. Let V ⊂ TAn
E be an affine toric embedding. Set L ⊂ Zn be the lattice associated to V .

V is transversal to E if and only if L is transversal to E.

Proof. It is a consequence of Theorem 23 and Lemma 24. �

Theorem 26. Let X ⊂ W = TAn
E be an affine toric embedding.

There is a unique toric variety V such that the embeddings X ⊂ V ⊂ W are toric and V is the minimum
toric variety containing X and transversal to E.

Proof. It follows from Propositions 16 and 25. �

3. Embedded toric varieties

In the previous sections we have reduced to the case of affine toric varieties. We generalize here
to (non affine) toric varieties, and we define the first coordinate of our resolution function.

Let W be a regular toric variety defined by a fan Σ (Fulton, 1993). Let T ⊂ W be the torus of W ,
which is open and dense in W . Set E the simple normal crossing divisor given byW \ T .

For every σ ∈ Σ the open setWσ ⊂ W is an affine toric variety, so thatWσ
∼= TAn

E .

Definition 27. A toric embedding is a closed subscheme X ⊂ W such that for every σ ∈ Σ if
Xσ = X ∩Wσ then Xσ ⊂ Wσ is an affine toric embedding (Definition 5).

For every σ ∈ Σ there is a unique toric affine variety Vσ ⊂ Wσ transversal to E and such that
Xσ ⊂ Vσ (Theorem 26).

In fact, this toric affine variety Vσ is a regular toric affine variety.

Remark 28. Note that for any ξ ∈ W , there is a unique σ ∈ Σ such that ξ ∈ Wσ and the affine open
setWσ is minimumwith this property. In fact ξ belongs to the orbit of the distinguished point ofWσ .



1236 R. Blanco, S. Encinas / Journal of Symbolic Computation 46 (2011) 1229–1241

Definition 29. Let ξ ∈ X ⊂ W be a point. Let Xσ be the minimum affine open set containing the
point ξ .

The hyperbolic codimension of X at ξ is

Hcodim(X)(ξ) = dim Vσ − dim X

where Vσ ⊂ Wσ is the minimum toric affine variety such that Vσ ⊃ Xσ and it is transversal to E
(Theorem 26).

Remark 30. The hyperbolic codimension Hcodim(X) (Definition 29) can be understood as a toric
embedding dimension. The number Hcodim(X) at ξ is the minimum dimension of a regular toric
variety V including X .

In the case Vσ = Wσ , then Hcodim(X)(ξ) = codimW (X), the codimension of X in W .

Remark 31 (Bierstone and Milman, 2006). Let∆ ∈ Σ be an element of the fanΣ defining the regular
varietyW . The cone∆ defines a smooth closed subvariety Z∆ ⊂ W as follows:

The toric variety W is covered by affine toric varieties Wσ with σ ∈ Σ . So that Z∆ is covered by
affine pieces (Z∆)σ = Z∆ ∩Wσ , σ ∈ Σ .

If∆ is not a face of σ then (Z∆)σ = ∅.
If∆ is a face of σ , note thatW∆ ⊂ Wσ is an open inclusion. Then (Z∆)σ is the (closure) of the orbit

of the distinguished point ofW∆.
The smooth closed center Z∆ we will say that it is a combinatorial center of W . In fact note that

at every affine chart Wσ
∼= TAn

E , for some E, the combinatorial center Z∆ ∩ Wσ is defined by some
coordinates xi with i ∈ E.

Remark 32. Note that if X ⊂ W ∼= TAn
E is an affine toric embedding and Z∆ ⊂ W is a combinatorial

center, then the strict transforms X ′ ⊂ W ′ give an affine toric embedding.

Proposition 33. Let∆ ∈ Σ and Z∆ ⊂ W the combinatorial center associated to∆ (Remark 31).
Let W ′ → W be the blow-up with center Z∆. Set X ′ ⊂ W ′ the strict transform of X. If ξ ′ ∈ X ′ then

Hcodim(X ′)(ξ ′) ≤ Hcodim(X)(ξ)

where ξ ′ maps to ξ .

Proof. LetWσ be theminimumaffine open set ofW containing the point ξ and let Vσ be theminimum
toric affine variety inWσ such that Vσ ⊃ Xσ and it is transversal to E (Theorem 26).

Let W ′
σ ′
, with σ ′ ∈ Σ ′, be the minimum affine open set of W ′ containing the point ξ ′. Let V ′

σ ′
be

the minimum toric affine variety such that V ′
σ ′
⊃ X ′

σ ′
and it is transversal to E ′. Note that X ′

σ ′
⊂ (Xσ )′

is an open immersion, where (Xσ )′ ⊂ X ′ is the strict transform of Xσ ⊂ X .
Let (Vσ )′ be the strict transform of Vσ . Note that (Vσ )′ is smooth and transversal to E ′. So that

(Vσ )′ ∩W ′
σ ′
⊃ V ′

σ ′
. And the result follows from the last inclusion. �

4. E-resolution of binomial ideals

In Blanco (in press, 2011) were given some notions in terms of binomial basic objects along E, where
E was a normal crossing divisor in the ambient spaceW . In terms of the E-ord (Definition 17) onemay
construct a sequence of combinatorial blowing-ups such that the transform of a given binomial ideal
has maximal E-order equal to zero.

We remind here the main results. For more details on the several constructions and proofs, see
Blanco (in press) and Blanco (2011). All these notions work for general binomial ideals, without any
restriction.

Using this structure of binomial basic object along E, and the language ofmobiles (see Encinas and
Hauser (2002)), it is possible to construct a resolution function involving the E-order of certain ideals
computed by induction on the dimension ofW .
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Remark 34. Roughly speaking, given (W , (J, c),H, E), where J is a binomial ideal, c is a positive
integer, and H is the set of exceptional hypersurfaces, by induction on the dimension ofW , construct
ideals Ji defined in local flags W = Wn ⊇ Wn−1 ⊇ · · · ⊇ Wi ⊇ · · · ⊇ W1, and then objects
(Wi, (Ji, ci+1),Hi, Ei) in dimension i, where each Ei = Wi ∩ E, Hi = Wi ∩ H . The integer numbers ci+1
are computed as the E-order of certain ideals Pi+1 coming from the previous dimension i + 1, that is
ci+1 = max E-ord(Pi+1) is the critical value in dimension i. Denote cn+1 = c.

If the E-singular locus of (Ji, ci+1) is non empty, then factorize the ideal Ji = Mi · Ii, where each ideal
Mi is defined by a normal crossing divisor supported by the current exceptional locus Hi.

To make this induction on the dimension of W , in Blanco (in press, 2011) the existence
of hypersurfaces of E-maximal contact at any stage of the resolution process is proved. These
hypersurfaces are always coordinate hyperplanes, and produce a combinatorial center to be blown up.
Combinatorial centers are convenient to preserve the binomial structure of the ideal after blow-up.

Definition 35. A binomial basic object along E is a tuple B = (W , (J, c),H, E)where

• W is a regular toric variety defined by a fanΣ .
• E is the simple normal crossing divisor given byW \ T , where T ⊂ W is the torus of W .
• (J, c) is a binomial pair, thismeans thatJ ⊂ OW is a coherent sheaf of binomial ideals with respect

to E, and c is a positive integer number. Note that for any σ ∈ Σ the sheaf of ideals J restricted to
the open affine subsetWσ ⊂ W is a binomial ideal J ≠ 0 in k[x1, . . . , xn]∏i∉E xi .
• H ⊂ E is a set of normal crossing regular hypersurfaces inW .

Definition 36. Let J ⊂ OW be a binomial ideal, c a positive integer. We call E-singular locus of J with
respect to c to the set,

E-Sing(J, c) = {ξ ∈ W/ E-ordξ (J) ≥ c}.

Remark 37. The E-singular locus is a closed subset ofW .

Definition 38. Let J ⊂ OW be a binomial ideal. Let ξ ∈ W be a point such that E-ordξ (J) =
max E-ord(J) = θE . A hypersurface V is said to be a hypersurface of E-maximal contact for J at the
point ξ if

- V is a regular hypersurface, ξ ∈ V ,
- E-Sing(J, θE) ⊆ V and their transforms under blowing up with a combinatorial center Z∆ ⊂ V also
satisfy E-Sing(J ′, θE) ⊆ V ′, whereas the E-order, θE remains constant.
That is, E-ordξ (J ′) = E-ordξ (J), where J ′ is the controlled transformof J and V ′ is the strict transform
of V .

Remark 39. The controlled transform of J is the ideal J ′ = I(Y ′)−θE · J∗ where Y ′ is the exceptional
divisor and J∗ is the total transform of J under blowing up.

Proposition 40. Let J ⊂ OW be a binomial ideal. There exists a hypersurface of E-maximal contact for J .

Definition 41. Let (W , (J, c),H, E) be a binomial basic object along E. For all points ξ ∈ E-Sing(J, c)
the resolution function E-inv(J,c) will have n components with lexicographical order, and will be of
one of the following types:

E-inv(J,c)(ξ) =




E-ordξ (In)

cn+1
,

E-ordξ (In−1)
cn

, . . . ,
E-ordξ (In−r )

cn−r+1
, ∞, ∞, . . . ,∞


(a)

E-ordξ (In)
cn+1

,
E-ordξ (In−1)

cn
, . . . ,

E-ordξ (In−r )
cn−r+1

,Γ (ξ),∞, . . . ,∞


(b)
E-ordξ (In)

cn+1
,

E-ordξ (In−1)
cn

, . . . ,
E-ordξ (In−r )

cn−r+1
, . . . ,

E-ordξ (I1)
c2


(c)

where the ideals Ii and the integer numbers ci are as in Remark 34.
In the case Ji = 1, for some i < n, define (E-inv(J,c)i(ξ), . . . , E-inv(J,c)1(ξ)) = (∞, . . . ,∞) in order

to preserve the number of components.
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If E-ordξ (Ii) = 0, for some i < n, then E-inv(J,c)i(ξ) = Γ (ξ), where Γ is the resolution function
corresponding to themonomial case, see Encinas and Villamayor (2000). And complete the resolution
function with the needed number of∞ components.
Remark 42. The E-inv(J,c) function is an upper-semi-continuous function, see Blanco (in press, 2011).
We also denote E-inv(J,c)(ξ) = E-invξ (J, c).

As a consequence of the upper-semi-continuity of the E-inv(J,c) function,

Max(E-inv(J,c)) = {ξ ∈ E-Sing(J, c)| E-inv(J,c)(ξ) = max E-inv(J,c)}

is a closed set. In fact, it is the center of the next blow-up.
It can be proven that the E-inv(J,c) function drops lexicographically after blow-up, (Blanco, in press,

2011).

Lemma 43. Let (W , (J, c),H, E) be a binomial basic object along E. Let W
π
← W ′ be a blow-up with

combinatorial center Z∆ = Max(E-inv(J,c)) then

E-inv(J,c)(ξ) > E-inv(J ′,c)(ξ ′)

where ξ ∈ Z∆, ξ ′ ∈ Y ′ = π−1(Z∆), π(ξ ′) = ξ .
The function E-inv(J,c) is the resolution function associated to the binomial basic object along E given

by (W , (J, c),H, E), and E-inv(J ′,c) corresponds to its transform by the blow-up π , (W ′, (J ′, c),H ′, E ′).
Proof. See Blanco (in press, 2011). �

Remark 44. The E-inv(J,c) function provides an E-resolution of the binomial basic object along E,
(W , (J, c),H, E).
Definition 45. Let (W , (J, c),H, E) be a binomial basic object along E, where E = {E1, . . . , Er}, with
r ≤ n = dimW . Let H = {H1, . . . ,Hs} ⊂ E be the set of exceptional divisors, for some s ≤ r .

We define a transformation of the binomial basic object

(W , (J, c),H, E)← (W ′, (J ′, c),H ′, E ′)

by means of the blowing upW
π
← W ′, in a center Z ⊂ E-Sing(J, c), with

• H ′ = {Hg
1 , . . . ,H

g
s , Y

′
}whereHg

i , i = 1, . . . , s, is the strict transformofHi and Y ′ is the exceptional
divisor inW ′.
• E ′ = {Eg

1 , . . . , E
g
r , Y

′
}where Eg

i , i = 1, . . . , r , is the strict transform of Ei and Y ′ is the exceptional
divisor inW ′.
• J ′ = I(Y ′)−c · J∗ is the controlled transform of J , where J∗ is the total transform of J .

Definition 46. A sequence of transformations of binomial basic objects
(W (0), (J (0), c),H(0), E(0))←(W (1), (J (1), c),H(1), E(1))←· · · ←(W (N), (J (N), c),H(N), E(N)) (1)

is an E-resolution of (W (0), (J (0), c),H(0), E(0)), or simply an E-resolution of the pair (J (0), c), if E-
Sing(J (N), c) = ∅.

This E-resolution function, the E-inv(J,c), works for general binomial ideals, without any restriction,
for more details see Blanco (in press, 2011).

The E-resolution constructed in this way is independent of the choice of coordinates.
In Blanco (in press, 2011) was proved that one may use this E-resolution in order to construct an

algorithm of log-resolution of binomial ideals and embedded desingularization of binomial varieties.
But this algorithm of log-resolution depends on a choice of a Gröbner basis of the original binomial
ideal.

In the next section we will construct an Algorithm 1 of embedded desingularization of toric
varieties which is independent of the choice of coordinates.
Theorem 47. Let J be a binomial ideal. If E-Sing(J, c) ≠ ∅ then there exists an E-resolution of (J, c).
Proof. The E-resolution of (J, c) is given by the E-inv(J,c) function, such that E-Sing(Jg, c) = ∅, this
means max E-ord(Jg) = 0. �

Remark 48. At any stage of the E-resolution process, the E-inv(J,c) function determines the next
combinatorial center to be blown-up Z∆ = Max(E-inv(J,c)), or equivalently, the cone∆, (Remark 31).
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5. Embedded desingularization

Now we construct an algorithm of embedded desingularization of toric varieties. This algorithm
is defined in terms of the function Hcodim and a E-resolution of a suitable ideal, depending on the
function E-inv.

Proposition 49. Let X ⊂ W be a toric embedding and let ξ ∈ X be a point. Let Xσ be the minimum affine
open set containing the point ξ and let Vσ be the minimum toric affine variety such that Vσ ⊃ Xσ and it is
transversal to E.

At any affine open subset, Xσ ⊂ Vσ ⊂ Wσ . Let Wσ
π
← W ′σ be a blow-up with center Z∆ then

(Hcodim(X)(ξ), E-invξ (IVσ (Xσ ), c)) > (Hcodim(X ′)(ξ ′), E-invξ ′(IV ′
σ ′
(X ′σ ′), c))

where ξ ∈ Z∆, ξ ′ ∈ Y ′ = π−1(Z∆),π(ξ ′) = ξ , IVσ (Xσ ) is the ideal of X in V , and c = max E-ord(IVσ (Xσ )).

Proof. It follows from Proposition 33 and Lemma 43. �

Algorithm 1. Let X ⊂ W be a toric embedding and let ξ ∈ X be a point. Let Wσ be the minimum
affine open set containing the point ξ (Remark 28).

Input: X ⊂ W a toric embedding.
(1) Compute Vσ , the minimum toric affine variety such that Vσ ⊃ Xσ and it is transversal to E

(Theorem 26).
(2) Set Hcodim(X)(ξ) = dim Vσ − dim X .
• If Hcodim(X)(ξ) > 0 then compute E-invξ (IVσ (Xσ ), 1), here we set c = 1. This

determines Z∆. Go to step (3).
• If Hcodim(X)(ξ) = 0 the algorithm stops. Note that in this case Vσ = Xσ ⊂ X .

(3) Perform the blow-up with center Z∆ and go to step (1).
Output: A collection of affine charts X j, where each X j is regular and transversal to E j.

Correctness of the algorithm follows by construction (Definition 29 and Proposition 33). Termina-
tion of the algorithm follows from (Proposition 49) and (Theorem 47).

Remark 50. The algorithm of embedded desingularization given in Blanco (in press) depends on the
choice of a system of coordinates. Note that the new Algorithm 1 given here does not depend on the
coordinates election. Complexity of this algorithm and also for algorithm in Blanco (in press, 2011)
has not been studied yet. Even if all centers are combinatorial there is not an estimation of how long
computations are.

Theorem 51 (Embedded Desingularization). Let X ⊂ W be a toric embedding (Definition 27). Let E be
the simple normal crossing divisor given by W \ T , where T ⊂ W is the torus of W.

There exists a sequence of transformations of pairs

(W , E)← (W (1), E(1))← · · · ← (W (N), E(N))

which induces a proper birational morphismΠ : W (N)
→ W such that

(1) The restriction of this morphismΠ to the regular locus of X along E, defines an isomorphism

RegE(X) ∼= Π−1(RegE(X)) ⊂ W (N)

where RegE(X) = {ξ ∈ X | X is regular at ξ and has normal crossings with E}.
(2) X (N), the strict transform of X inW (N), is regular and has normal crossings with the exceptional divisors

E(N).

Proof. It follows from correctness and termination of Algorithm 1. �

The embedded desingularization of Theorem 51 can be implemented, since the key points are to
determine the stratum Eξ (or the open subset Wσ ) where the hyperbolic codimension is maximum,
and then to compute a combinatorial blow-up, that can be easily encoded in the computer.
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Remark 52. Theorem 51 may be used to achieve a log-resolution of a toric ideal.
With thenotation of Theorem51, letW (N+1)

→ W (N) be the blowingupwith centerX (N), which is a
permissible center. Note that the total transform of I(X)OW (N+1) is locally amonomial ideal (generated
bymonomials) andwemay use an algorithmof log-resolution ofmonomial ideals as in Goward (2005)
or Bierstone andMilman (2006). So that log-resolution of the ideal I(X) follows from Theorem 51 and
log-resolution of monomial ideals.

Example 53. We give here an example of the Algorithm 1. All the computations are made by hand.

Input: Let X ⊂ W = A4 be a toric embedding and let ξ ∈ X be a point. Let E = {V (x),
V (y), V (z), V (w)} be the simple normal crossing divisor given byW \ T . The toric variety X
is given by the equations

X = {x2 − y3 = 0} ∩ {xyz − w2
= 0}.

The singular locus of the surface X is the z-axis. Compute the hyperbolic codimension at some points
of X (steps 1 and 2 of the algorithm), for example:

• If ξ ∉ E, then in a neighborhood of ξ , Wσ = Spec(k[x±, y±, z±, w±]) and Eξ = ∅. The
minimum toric affine variety Vσ such that Vσ ⊃ Xσ and it is transversal to Eξ is Vσ = Xσ . Then
Hcodim(X)(ξ) = 0.
• Set (V (x))c = W \ V (x) be the complement of V (x). If ξ ∈ (V (x))c ∩ (V (y))c ∩ V (z) ∩ V (w),

then Wσ = Spec(k[x±, y±, z, w]) and Eξ = V (z) ∩ V (w). It is clear that Vσ = {x2 − y3 = 0} and
therefore Hcodim(X)(ξ) = 3− 2 = 1.
• If ξ ≠ 0 is a point at the z-axis,Wσ = Spec(k[x, y, z±, w]) and Eξ = V (x) ∩ V (y) ∩ V (w). Assume
ξ is the distinguished point ofWσ , in this case Vσ = Wσ and Hcodim(X)(ξ) = 4− 2 = 2.
• If ξ is the origin, Wσ = Spec(k[x, y, z, w]) and Eξ = V (x) ∩ V (y) ∩ V (z) ∩ V (w). The minimum

toric affine variety Vσ = Wσ and Hcodim(X)(ξ) = 4− 2 = 2.

It is easy to check that the hyperbolic codimension Hcodim attains its highest value along the z-axis.
If one computes the whole resolution function (Hcodim, E-inv) (here we set c = 1) then its

maximum value is

max(Hcodim(X), E-inv) = (Hcodim(X)(0), E-inv(IVσ (Xσ ), 1)) = (2, 2, 1, 3/2, 2)

and it is achieved at the origin, which is the first center to be blown-up.
We denote as x-th chart the chart where we divide by x. For simplicity, wewill denote each y

x ,
z
x ,

w
x

again as y, z, w. (Step 3 of the algorithm.)
At the x-th chart, the controlled transform of the ideal I(X) is

I(X)′ = x−1 · (x2 − x3y3, x3yz − x2w2) = x · (1− xy3, xyz − w2).

If η′ is a point that maps to the origin then η′ ∉ X ′ and it lies in the first exceptional divisor
V (x). Consider ξ ′ ∈ X ′ ∩ V (z) ∩ V (w), the affine chart W ′

σ ′
associated to ξ ′ as in (Remark 28) is

W ′
σ ′
= Spec(k[x±, y±, z, w]) and E ′

ξ ′
= V (z)∩V (w). The minimum toric affine variety V ′

σ ′
containing

X ′ is V ′
σ ′
= {xy3 − 1 = 0} and Hcodim(X ′)(ξ ′) = 3 − 2 = 1. The maximum value of the resolution

function is

max(Hcodim(X ′), E-inv) = (Hcodim(X ′)(ξ ′), E-invξ ′(IV ′
σ ′
(X ′σ ′), 1)) = (1, 1, 2,∞,∞)

and it is reached along Z ′ = {z = 0} ∩ {w = 0} ∩ {xy3 − 1 = 0}. Inside V ′
σ ′
, the center is given by

coordinates, Z ′∆ = {z = 0} ∩ {w = 0}, which is the next combinatorial center to be blown-up. After
the blow-up at Z ′∆, we consider thew-th chart

I(X)′′ = w−1 · (xyzw − w2) = (xyz − w)mod I(V ′σ ′),

this means I(X)′′ = (xy3 − 1, xyz − w).
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Let ξ ′′ ∈ X ′′ mapping to ξ ′. At this stage of the resolution process, the maximum value of the
resolution function is

max(Hcodim(X ′′), E-inv) = (Hcodim(X ′′)(ξ ′′), E-invξ ′′(IV ′′
σ ′′
(X ′′σ ′′), 1)) = (1, 1, 1,∞,∞)

and it is reached along Z ′′ = {z = 0}∩{w = 0}∩{xy3−1 = 0}. After the blowing-up at Z ′′∆ we obtain
two charts and for both maxHcodim(X ′′′) = 0. And X ′′′ is regular and transversal to E ′′′.
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