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In this paper, we obtain the light neutrino masses and mixings consistent with the experiments, in the 
democratic texture approach. The essential ansatz is that νRi are assumed to transform as “right-handed 
fields” 2R + 1R under the S3L × S3R symmetry. The symmetry breaking terms are assumed to be diagonal 
and hierarchical. This setup only allows the normal hierarchy of the neutrino mass, and excludes both of 
inverted hierarchical and degenerated neutrinos.
Although the neutrino sector has nine free parameters, several predictions are obtained at the leading 
order. When we neglect the smallest parameters ζν and ζR , all components of the mixing matrix UPMNS
are expressed by the masses of light neutrinos and charged leptons. From the consistency between 
predicted and observed UPMNS, we obtain the lightest neutrino masses m1 = (1.1 → 1.4) meV, and the 
effective mass for the double beta decay 〈mee〉 � 4.5 meV.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The observation of the neutrino oscillation [1,2] clarified finite 
masses of the neutrinos and lepton flavor nonconservation. Fur-
thermore, the Daya Bay and RENO experiments [3,4] discovered 
that Ue3 is nonzero and relatively large. However, these exper-
iments shed us a further mysteries, e.g., dozen of unexplained 
parameters, and the origin of the flavor. In particular, the lepton 
mixing matrix UPMNS [5,6] is remarkably different from the quark 
mixing matrix UCKM [7,8].

Innumerable models have been proposed so far, to explain the 
mysterious flavor structures of the standard model. As representa-
tive approaches, researchers explore the continuous or discrete fla-
vor symmetries [9–11], and specific flavor textures [12,13]. In the 
texture approach, the democratic texture [14–23], realized by the 
S3L × S3R symmetry is widely studied. It assumes that the Yukawa 
interactions of the fermions f = u, d, e have the “democratic ma-
trix” in Eq. (1). In particular, Fujii, Hamaguchi and Yanagida [24]
has derived the large mixing angles of light neutrinos by the 
seesaw mechanism [25], assuming almost degenerated neutrino 
Yukawa matrix Yν ∼ cν diag(1, 1, 1). This degenerated Yν is aes-
thetically unsatisfactory, because it is realized by assuming that 
the right-handed neutrinos νRi transform as “left-handed fields” 
2L + 1L under the S3L × S3R symmetry. Furthermore, the degener-
ated Yν is undesirable in viewpoints of grand unified theory (GUT). 
A part of previous authors also have considered the democratic 
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matrices in SU(5) GUT [26]. However, degenerated Yν can not be 
unified to other Yukawa matrices.

Then, in this paper, νRi are assumed to transform as “right-
handed fields” 2R + 1R under the S3L × S3R symmetry. The sym-
metry breaking terms are assumed to be diagonal and hierarchical, 
which is basically same as the previous studies. These assumptions 
realize hierarchical Yν and forbid degenerated Yν . It enables us to 
treat quarks and leptons uniformly under a simple framework. By 
the seesaw mechanism, we obtain the light neutrino masses and 
mixings consistent with the experiments. This setup only allows 
the normal hierarchy of the neutrino masses, and excludes both of 
inverted hierarchical and degenerated neutrinos.

Although the neutrino sector has nine free parameters, several 
predictions are obtained at the leading order. When we neglect the 
smallest parameters ζν and ζR , the resulting neutrino matrix mν

has only three parameters and then determined from the neutrino 
masses mi . Therefore, all components of the mixing matrix UPMNS
are expressed by the masses of light neutrinos and charged lep-
tons. From the consistency between predicted and observed UPMNS, 
we obtain the lightest neutrino masses m1 = (1.1 → 1.4) meV, and 
the effective mass for the double beta decay 〈mee〉 � 4.5 meV.

In the second-order perturbation, the predictability becomes lit-
tle lower. However, the hierarchical Yν can be unified to other 
Yukawa interactions in SO(10) GUT or Pati–Salam models. Relating 
Yν and Yu in some manner, several free parameters in the neu-
trino sector are expected to be removed. Meanwhile, the derivation 
in this paper remains only at tree level. The radiative corrections 
[35–37] and threshold correction [38] will modify the results. We 
leave it for our future work.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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This paper is organized as follows. In the next section, we 
review the Yukawa matrices with democratic texture. In Sect. 3
and 4, we present the parameter analysis of the light neutrino 
mass. Section 5 is devoted to conclusions and discussions.

2. Yukawa matrices with democratic texture

In the democratic mass matrix approach [14–23], the Yukawa 
matrices are assumed to be the following texture:

Y f = K f

3

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠ +

⎛
⎝ζ f 0 0

0 ε f 0
0 0 δ f

⎞
⎠ , (1)

where f is the SM fermions f = u, d, e. The first term (often 
called “democratic” mass matrix [17,18]) is realized by assigning 
fermions f L,R as 1L,R + 2L,R under the S3L × S3R symmetry;

f ′
(L,R)i = S(abc)

(L,R)i j f(L,R) j. (2)

For example, right-handed fields are explicitly written as

uRi =
⎛
⎝uR

cR

tR

⎞
⎠ , dRi =

⎛
⎝dR

sR

bR

⎞
⎠ , eRi =

⎛
⎝ eR

μR

τR

⎞
⎠ , (3)

and the left-handed fermions are written as similar way. The rep-
resentation of S(abc)

i j is

S(123)
(L,R) =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , S(213)

(L,R) =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ ,

S(132)
(L,R) =

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ , (4)

S(321)
(L,R) =

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ , S(312)

(L,R) =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ ,

S(231)
(L,R) =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ . (5)

The second term in Eq. (1) breaks the permutation symmetry 
slightly [15,16]. Here, the hierarchical relation

K f � δ f � ε f � ζ f , (6)

is assumed. For the sake of simplicity of the discussion, we assume 
all breaking parameters are real. The discussion on the CP violation 
is given later.

The previous study by Fujii, Hamaguchi, and Yanagida [24] has 
derived the large mixing angles of light neutrinos by the seesaw 
mechanism, assuming almost degenerated neutrino Yukawa matrix 
Yν ∼ cν diag(1, 1, 1). This degenerated Yν is aesthetically unsatis-
factory, because it is realized by assuming that the right-handed 
neutrinos νRi transform as “left-handed fields” 2L + 1L under the 
S3L × S3R symmetry. Furthermore, the degenerated Yν is undesir-
able in viewpoints of grand unified theory (GUT).

Then, in this paper, νRi are assumed to transform as “right-
handed fields” 2R + 1R under the S3L × S3R symmetry. The charge 
assignments of the leptons are shown in the Table 1. The sym-
metry breaking terms are assumed to be diagonal and hierarchical, 
which is basically same as the previous studies. These assumptions 
realize hierarchical Yν and forbid degenerated Yν . The texture of 
Yukawa matrices are determined as Eq. (1) for all SM leptons 
f = ν, e.
Table 1
The charge assignments of the leptons 
under the discrete symmetries.

S3L S3R

lLi 1L + 2L 1R
νRi , eRi 1L 1R + 2R

Due to the charge assignment, the majorana mass term of νRi
invariant under the S3R symmetry is found to be

MR = mR

⎡
⎣ K R

3

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠ + cR

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

+
⎛
⎝ζR 0 0

0 εR 0
0 0 δR

⎞
⎠

⎤
⎦ . (7)

Here, we assume the symmetry breaking term to MR is also the 
diagonal. The term proportional to cR is forbidden for the Yν by 
the assignment. In order to cancel out the hierarchy of Yν in the 
seesaw mechanism, the mass matrix (7) should be strongly hierar-
chical. Then, K R � cR is required. Since the term cR diag (1, 1, 1) is 
symmetric under S3L × S3R , the parameter cR need not necessarily 
be small parameter. Then, we assume

K R � cR � δR � εR � ζR . (8)

When we analyze the matrices (1), at first the democratic ma-
trix is diagonalized by the following unitary matrix:

UDC =

⎛
⎜⎜⎝

1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −
√

2√
3

1√
3

⎞
⎟⎟⎠ . (9)

It is explicitly written as,

U †
DCY f UDC (10)

=

⎛
⎜⎜⎝

1√
2

− 1√
2

0
1√
6

1√
6

−
√

2√
3

1√
3

1√
3

1√
3

⎞
⎟⎟⎠

⎡
⎣ K f

3

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠ +

⎛
⎝ζ f 0 0

0 ε f 0
0 0 δ f

⎞
⎠

⎤
⎦

×

⎛
⎜⎜⎝

1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −
√

2√
3

1√
3

⎞
⎟⎟⎠ (11)

= K f

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠

+
⎛
⎜⎝

1
2 (ζ f + ε f )

1
2
√

3
(ζ f − ε f )

1√
6
(ζ f − ε f )

1
2
√

3
(ζ f − ε f )

1
6 (ζ f + ε f + 4δ f )

1
3
√

2
(ζ f + ε f − 2δ f )

1√
6
(ζ f − ε f )

1
3
√

2
(ζ f + ε f − 2δ f )

1
3 (ζ f + ε f + δ f )

⎞
⎟⎠ .

(12)

From the hierarchical relation (6), approximate form of this matrix 
found to be the “cascade texture” [27]

U †
DCY f UDC

∼= 1

6

⎛
⎜⎝

3ε f −√
3ε f −√

6ε f

−√
3ε f 4δ f −2

√
2δ f

−√
6ε f −2

√
2δ f 6K f

⎞
⎟⎠ . (13)

If we assign ζ f = −ε f , it leads to the zero texture (U †
DCY f UDC)11 =

0 [15,16,19,28], that corresponds the “hybrid texture” in Ref. [27].
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Eq. (12) is perturbatively diagonalized as

U †
f Y f U f = diag(y1 f , y2 f , y3 f ), (14)

where

y1 f = (ζ f + ε f + δ f )/3 − ξ f /6, (15)

y2 f = (ζ f + ε f + δ f )/3 + ξ f /6, (16)

y3 f = K f + (ζ f + ε f + δ f )/3, (17)

with

ξ f =
√

(2δ f − ε f − ζ f )
2 + 3(ε f − ζ f )

2. (18)

Here, the second order perturbations O (ζ 2
f /ε f , ε2

f /δ f , δ2
f /K f ) are 

all ignored. If we use Eq. (6), the eigenvalues (15)–(17) are ap-
proximated as the diagonal elements of Eq. (12),

y1 f � 1

2
ε f , y2 f � 2

3
δ f , y3 f � K f . (19)

The unitary matrices U f = UDC B f are found to be [15,16,20]

B f =
⎛
⎝ cos θ f sin θ f λ f sin 2θ f

− sin θ f cos θ f −λ f cos 2θ f
−λ f sin 3θ f λ f cos 3θ f 1

⎞
⎠ , (20)

where

tan 2θ f � −√
3

ε f − ζ f

2δ f − ε f − ζ f
, λ f = ξ f

3
√

2K f
. (21)

Note that this system can be interpreted as a toy model of the mix-
ing between neutral mesons π0, η0, η′ 0. Indeed, in Eq. (1), the first 
democratic term corresponds the gluonic anomaly that provides
η′ 0 mass and the second term does the small quark masses mu,d,s
[29]. The mixing angle θ f (21) is the same form to the π0–η0 mix-
ing in the chiral perturbation theory [30].

The similarity between the Yukawa interactions and the neu-
tral meson mixing is indicated since long years ago [31,32], and it 
suggests that fermion mass matrices might be ruled by some mass 
gap phenomena or unknown underlying principle.

3. Simplified case: ζν = ζR = cR = 0

From the Yukawa matrices Eq. (1) and the mass matrix Eq. (7), 
the small neutrino mass is obtained by the seesaw mechanism [25]

mν = v2

2
Y T

ν M−1
R Yν, (22)

where v/
√

2 = 〈H〉 is the vacuum expectation value of the Higgs 
boson. As the simple and important example, let us consider a 
simplified parameter set, ζν = ζR = cR = 0. In this case, the result-
ing small neutrino mass is also democratic type with the diagonal 
breaking term:

m(0)
ν = v2

2

1

mR

⎡
⎣ K 2

ν

3K R

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠ +

⎛
⎝0 0 0

0 ε2
ν/εR 0

0 0 δ2
ν/δR

⎞
⎠

⎤
⎦ .

(23)

Note that this is the exact results and no approximation is used.
In order to obtain observed large mixing angles of UPMNS, the 

diagonalization of mν should have only small mixing angles. Oth-
erwise, the diagonalization of mν cancels out that of the charged 
lepton mass, or Ye , which is almost diagonalized by UDC (9). Then, 
the following hierarchical relation is required phenomenologically:
K 2
ν

3K R

 ε2

ν

εR

 δ2

ν

δR
. (24)

Accordingly, the normal hierarchy (NH) m1 
 m2 
 m3 is forced 
for these parameter sets, and both inverted hierarchical and de-
generated masses are excluded.

If we treat m1 as a small perturbation, the mass matrix (23) is 
diagonalized at the leading order as

m(0)
ν =

⎛
⎝m1 m1 m1

m1 m2 m1
m1 m1 m3

⎞
⎠ ≡ Vνmdiag

ν V †
ν, (25)

�

⎛
⎜⎜⎝

1 m1
m2−m1

m1
m3−m1

− m1
m2−m1

1 m1
m3−m1

− m1
m3−m1

− m1
m3−m1

1

⎞
⎟⎟⎠

⎛
⎝m1 0 0

0 m2 0
0 0 m3

⎞
⎠

×

⎛
⎜⎜⎝

1 − m1
m2−m1

− m1
m3−m1

m1
m2−m1

1 − m1
m3−m1

m1
m3−m1

m1
m3−m1

1

⎞
⎟⎟⎠ , (26)

where

m1 = v2

2 mR

K 2
ν

3K R
, m2 = v2

2 mR

(
ε2
ν

εR
+ K 2

ν

3K R

)
,

m3 = v2

2 mR

(
δ2
ν

δR
+ K 2

ν

3K R

)
. (27)

As a result, the neutrino mixing matrix is calculated as

U 0
PMNS = U †

e Vν = B†
eU †

DC Vν (28)

�

⎛
⎜⎜⎝

1 me√
3mμ

3me√
6mτ

− me√
3mμ

1
mμ√
2mτ

− 2me√
6mτ

− mμ√
2mτ

1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1√
2

− 1√
2

0
1√
6

1√
6

−
√

2√
3

1√
3

1√
3

1√
3

⎞
⎟⎟⎠

×
⎛
⎜⎝

1 m1
m2

m1
m3

−m1
m2

1 m1
m3

−m1
m3

−m1
m3

1

⎞
⎟⎠ (29)

�

⎛
⎜⎜⎜⎜⎝

1√
2

+ m1√
2m2

− 1√
2

+ m1√
2m2

0

1√
6

+ mμ√
6mτ

− m1√
6m2

1√
6

+ mμ√
6mτ

+ m1√
6m2

−
√

2

3
+ mμ√

6mτ

1√
3

− mμ

2
√

3mτ

− m1√
3m2

1√
3

− mμ

2
√

3mτ

+ m1√
3m2

1√
3

+ mμ√
3mτ

⎞
⎟⎟⎟⎟⎠ .

(30)

In the final expression, we neglect the ratios me/mμ , me/mτ and 
m1/m3.

In this simplified case, we have six free parameters. However, at 
leading order, free parameters are only three neutrino masses mi in 
the mixing matrix (30). In particular, Uμ3 and Uτ3 are expressed 
by masses of heavy leptons:

Uμ3 � −
√

2

3
+ mμ√

6mτ

� −0.766, (31)

Uτ3 � 1√
3

+ mμ√
3mτ

� 0.645. (32)

Here, we used the pole masses mμ = 105.6 MeV and mτ =
1776 MeV. These components are in the 3σ range of the latest 
global analysis [33]:
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|U | =
⎛
⎝0.801 → 0.845 0.514 → 0.580 0.137 → 0.158

0.225 → 0.517 0.441 → 0.699 0.614 → 0.793
0.246 → 0.529 0.464 → 0.713 0.590 → 0.776

⎞
⎠ .

(33)

Note that the difference between the realistic pattern |U | (33)
and the leading order mixing UDC (9) is of O (0.1) for all matrix 
elements. It suggests that |U | (33) might result from properly per-
turbed UDC [34]. Therefore, in the next section, we will explore 
the proper parameter sets of this neutrino mass system, including 
parameters ζν , ζR and cR .

4. General case: ζν �= ζR �= cR �= 0

The system of neutrinos analyzed here has nine free param-
eters, Kν,R , cR , δν,R , εν,R , and ζν,R (mR is essentially not free 
parameter because its magnitude can be absorbed into other pa-
rameters). Hereafter, we will treat the following quantities as free 
parameters:

m1,2,3, cR , ζν, ζR ,
Kν

K R
≡ rK ,

δν

δR
≡ rδ,

εν

εR
≡ rε . (34)

4.1. Case 1: ζν �= ζR �= 0, cR = 0

For the finite (but small) ζν , ζR and cR = 0, the mass matrix 
mν calculated from the seesaw formula (22) will be perturbed ex-
pression from the mass matrix for ζν = ζR = cR = 0 (23). When we 
expand the mass matrix in the first order of ζν , ζR , the perturba-
tion is found to be

m(1)
ν = m(0)

ν + δmν, (35)

where

δmν = v2

2 mR

⎛
⎝ 0 −rε −rδ

−rε 0 0
−rδ 0 0

⎞
⎠ ζν

+ v2

2 mR

⎛
⎝0 0 0

0 −r2
ε −rεrδ

0 −rεrδ −r2
δ

⎞
⎠ ζR . (36)

Here, we used the relation rδ, rε � rK , obtained from the hierar-
chical relations (6), (8), and the phenomenologically required rela-
tion (24). At first the mass matrix is diagonalized by V (0)

ν = Vν in 
Eq. (26), and further diagonalized by the proper perturbation V (1)

ν :

m(1)
ν = V (1)†

ν V (0)†
ν (m(0)

ν + δmν)V (0)
ν V (1)

ν . (37)

As a result, the mixing matrix is modified from Eq. (30)

U (1)
PMNS = U †

e V (0)
ν V (1)

ν = U (0)
PMNS V (1)

ν . (38)

Although the explicit form of V (1)
ν is troublesome, Ue3 found to be

Ue3 � ενζR√
2δνεR

− ζν√
2δν

. (39)

It suggests rather large parameters ζn, ζR � 0.2δν , and contradicts
to the hierarchical assumption Eqs. (6), (8). If we consider the 
unification between quarks and leptons such as SO(10) GUT, this 
possibility is undesirable because Yν = Yu and the resulting θ13 is 
too suppressed by ζν/δν � mu/mc , εν/δν � mu/mc . However, with 
the assumption ζn, ζR � 0.2δν , we found some parameter regions 
where all elements are in 3 σ range of Eq. (33).
4.2. Case 2: ζν = ζR = 0, cR �= 0

Since the term cR diag (1, 1, 1) is symmetric under S3L × S3R
symmetry, we assume cR � δR � εR , as in Eq. (8). In this case, 
parameters δR , εR do not appear at the leading order.

The procedure is rather similar to the simplified case. The mass 
matrix is found to be

mν � v2

2

1

mR

⎡
⎣ K 2

ν

3K R

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠

+ 1

3cR

⎛
⎝0 0 0

0 2ε2
ν −δνεν

0 −δνεν 2 δ2
ν

⎞
⎠

⎤
⎦ . (40)

It is not exact result, because we used hierarchical relation (8).
Eq. (40) is diagonalized at the leading order as

mν =
⎛
⎝m1 m1 m1

m1 m2 m23
m1 m23 m3

⎞
⎠ ≡ Vνmdiag

ν V †
ν, (41)

Vν �
⎛
⎜⎝

1 m1
m2−m1

m1
m3−m1

− m1
m2−m1

1 m23
m3−m2

− m1
m3−m1

− m23
m3−m2

1

⎞
⎟⎠ . (42)

Here,

m1 = v2

2 mR

K 2
ν

3K R
, (43)

m2 = v2

2 mR

(
2ε2

ν

3cR
+ K 2

ν

3K R

)
≡ m1 + δm21, (44)

m3 = v2

2 mR

(
2δ2

ν

3cR
+ K 2

ν

3K R

)
≡ m1 + δm31, (45)

and

m23 = v2

2 mR

(
K 2

ν

3K R
− δνεν

3cR

)
. (46)

Indeed, this parameter m23 is not independent from the mass m1
and the mass differences δmi1 ≡ mi − m1 (i = 2, 3):

m23 = m1 − 1

2

√
δm21 δm31 . (47)

Then, the mass matrix (41) is determined by the three neutrino 
masses mi .

In this case, the neutrino mixing matrix UPMNS is approximately 
given by product of Eq. (30) and a mixing matrix

UPMNS = B†
eU †

DC Vν � U (0)
PMNS

⎛
⎝1 0 0

0 1 −m23
m3−m2

0 m23
m3−m2

1

⎞
⎠ . (48)

Accordingly, Ue3 is found to be

Ue3 � 1√
2

m23

m3 − m2

(
1 − m1

m2

)
. (49)

Then, if we treat Ue3 as a perturbative input parameter, UPMNS is 
expressed by known parameters except mi :

UPMNS

�

⎛
⎜⎜⎜⎝

1√
2

+ m1√
2m2

− 1√
2

+ m1√
2m2

0

1√
6

+ mμ√
6mτ

− m1√
6m2

1√
6

+ mμ√
6mτ

+ m1√
6m2

−
√

2
3 + mμ√

6mτ

1√ − mμ√ − m1√ 1√ − mμ√ + m1√ 1√ + mμ√

⎞
⎟⎟⎟⎠
3 2 3mτ 3m2 3 2 3mτ 3m2 3 3mτ
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×

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0 1 −√
2 Ue3

(
m1
m2

− 1
)−1

0
√

2 Ue3

(
m1
m2

− 1
)−1

1

⎞
⎟⎟⎟⎟⎟⎠

.

(50)

At the leading order, Uμ3 and Uτ3 are written by all known pa-
rameters:

Uμ3 � − 1√
3

Ue3 −
√

2

3
+ mμ√

6mτ

= −0.701 → −0.713, (51)

Uτ3 � −
√

2

3
Ue3 + 1√

3
+ mμ√

3mτ

= 0.723 → 0.740. (52)

Here, we used mμ = 105.6 MeV, mτ = 1776 MeV, and Ue3 =
−0.137 → −0.158 (negative value is more preferred). These two 
elements are in 3σ range of Eq. (33). However, these formulas can 
have roughly 5 ∼ 10% error which come from the second order 
perturbations of m1/m2, m2/m3, and Ue3.1 They are inevitable pre-
dictions of this model (assuming CP conservation).

If we set m1 = 0, it determines other masses δm21 = m2 �
0.008 eV and δm31 = m3 � 0.05 eV. Ue3 is also determined from 
Eq. (49),

Ue3 = −
√

m2m3

2
√

2 (m3 − m2)
� −0.168. (53)

This value is close to the global fit |Ue3| = 0.137 → 0.158. Then, 
treating m1 as a perturbative parameter, we can predict m1 from 
the current error of Ue3:

m1 = (0.2 → 0.6)meV. (54)

On the other hand, consistency between Eq. (50) and the lat-
est global analysis Eq. (33), the mass ratio of lighter neutrinos is 
predicted as

0.138 � m1

m2
� 0.150. (55)

Then, the mass eigenvalues are found to be

m1 � (1.1 → 1.4)meV. (56)

There is a tension between the predictions from Ue3 and Ue(1,2,3) , 
Uμ(1,2,3) . However, if we adopt ζe = −εe same as the previ-
ous study [24], Ue3 becomes finite at the zeroth order, Ue3 =
−

√
2me
3mμ

� −0.056. In this case the tension will be successfully 
reconciled. Then we tentatively discard the prediction (54). The re-
lation between Ue3 and mi will be reevaluated in the next study.

The neutrino masses predicted from Eq. (56) are found to be

m1 � (1.1 → 1.4)meV, m2 � (8.5 → 9.1)meV,

m3 � (48 → 51)meV. (57)

To show an example, when we set the parameters as follows,
m1

m2
= 0.14, ⇒ Ue3 = −0.127, (58)

and the numerical value of the UPMNS will be

UPMNS =
⎛
⎝0.822 −0.575 −0.127

0.380 0.692 −0.625
0.455 0.466 0.772

⎞
⎠ . (59)

1 The terms like Ue3
m1
m are also regarded as the second order perturbations.
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this matrix, all elements are in 3σ range of Eq. (33), except 
. It shows that the large mixing angles consistent with the ex-
iments are possible from the democratic mass matrices. In the 
ond-order perturbation, the predictability becomes little lower. 
wever, we can consider SO(10) GUT or Pati–Salam models for 
 hierarchical Yν . Relating Yν and Yu in some manner, several 
e parameters in the neutrino sector are expected to be removed. 
thermore, the derivation in this paper remains only at the tree 
el. The radiative corrections [35–37] and threshold correction 
] will modify the results. We leave it for our future work.

. Relating observables and CP violation

Effective mass in double beta decay experiment 〈mee〉

ee〉 =
3∑

i=1

mi U
2
ei, (60)

alculated from Eqs. (50) and (57) as

ee〉 � m1

(
1√
2

+ m1√
2m2

)2

+ m2

(
− 1√

2
+ m1√

2m2

)2

+ m3U 2
e3

(61)

� m2 − m1

2
+ m3U 2

e3 � 4.5 meV. (62)

this study, we assumed all parameters are real. Meanwhile, sev-
l studies survey CP violation in democratic matrices [39,40]. 
ce the S3 symmetry prohibits the relative phase between ma-
 elements, nontrivial phases are associate with the breaking 
ameters. When the breaking term is diagonal, CP violation is 
roduced by the following replacement

f 0 0
0 ε f 0
0 0 δ f

⎞
⎠ →

⎛
⎝ζ f eiφ1 0 0

0 ε f eiφ2 0
0 0 δ f eiφ3

⎞
⎠ . (63)

se CP phases can produce baryon asymmetry of universe by the 
togenesis [41], as in the previous study [24]. Furthermore, the 
tonic CP phases might be relate the hadronic ones in the view-
nt of GUT. In this case, the leptogenesis might also be restricted 
some extent by the CKM phase.

Conclusions and discussions

In this paper, we obtain the light neutrino masses and mix-
s consistent with the experiments, in the democratic texture 
roach. The ansatz is that νRi are assumed to transform as 
ht-handed fields” 2R + 1R under the S3L × S3R symmetry. The 
metry breaking terms are assumed to be diagonal and hierar-

cal, which is basically same as the previous studies. This setup 
y allows the normal hierarchy of the neutrino masses, and ex-
des both of inverted hierarchical and degenerated neutrinos.
Although the neutrino sector has nine free parameters, several 
dictions are obtained at the leading order. When we neglect the 
allest parameters ζν and ζR , the resulting neutrino matrix mν

 only three parameters and then determined from the neutrino 
sses mi . Therefore, all components of the mixing matrix UPMNS
 expressed by the masses of light neutrinos and charged lep-
s. From the consistency between predicted and observed UPMNS, 
 obtain the lightest neutrino masses m1 = (1.1 → 1.4) meV, and 
 effective mass for the double beta decay 〈mee〉 � 4.5 meV.
In the second-order perturbation, the predictability becomes lit-
lower. However, the hierarchical Yν can be unified to other 
awa interactions in SO(10) GUT or Pati–Salam models. Relating 
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Yν and Yu in some manner, several free parameters in the neu-
trino sector are expected to be removed. Meanwhile, the derivation 
in this paper remains only at tree level. The radiative corrections 
and threshold corrections will modify the results. We leave it for 
our future work.
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