The exact number of conjugacy classes of the Sylow p-subgroups of $GL(n, q)$ modulo $(q - 1)^{13}$

A. Vera-López a,*, J.M. Arregi a, Leyre Ormaetxea a, F.J. Vera-López b

a Departamento de Matemáticas, Fac. de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, Bilbao, Spain

b Departamento de Matemática Aplicada, Escuela de Informática, Murcia, Spain

Received 14 June 2007; accepted 17 March 2008

Submitted by J.F. Queiro

Abstract

Let G be a finite p-group of order p^n. A well known result of P. Hall determines the number of conjugacy classes of G, $r(G)$, modulo $(p^2 - 1)(p - 1)$. Namely, he proved the existence of a non-negative constant k such that $r(G) = n(p^2 - 1) + p^k + k(p^2 - 1)(p - 1)$.

We denote by \mathcal{G}_n the group of the upper unitriangular matrices over F_q, the finite field with $q = p^t$ elements. In [A. Vera-López, J.M. Arregi, F.J. Vera-López, On the number of conjugacy classes of the Sylow p-subgroups of $GL(n, q)$. Bull. Austral. Math. Soc. 53 (1996) 431–439] the number $r(\mathcal{G}_n)$ is given modulo $(q - 1)^5$.

In this paper, we introduce the concept of primitive canonical matrix. The knowledge of the number of primitive canonical matrices with connected graph of size less than or equal to n should be sufficient to determine the number of all canonical matrices of size n. Moreover, we give explicitly the polynomial formulas $\mu_i = \mu_i(n)$, $i = 0, \ldots, 12$, depending only on n, and not on q, such that

$$r(\mathcal{G}_n) = \sum_i \mu_i(n)(q - 1)^i + k(n, q)(q - 1)^{13} \quad \forall n \in \mathbb{N}$$

© 2008 Elsevier Inc. All rights reserved.
We use the notion of canonical matrices given in [3,7]. These matrices are, in some sense, the simplest in each conjugacy class.

In the set \(J = \{(i,j)|1 \leq i < j \leq n\} \) of entries over the main diagonal, we define the order \((i,j) < (k,l) \) if \(i > k \) or \(i = k \) and \(j < l \). Given a matrix \(A = (a_{ij}) \in G_n \), to each entry \((i,j) \in J \) we associate a linear form \(L_{ij} = \sum_k (a_{ik}x_{kj} - a_{kj}x_{ik}) \). We define that an entry \((i,j) \) is an inert point (resp. ramification point) if its linear form \(L_{ij} \) is independent (resp. dependent) of the preceding forms \(L_{kl} \), \((k,l) \prec (i,j) \). We say that a matrix is canonical if it has the zero value at the inert points. It is proved that in each conjugacy class there exists a unique canonical matrix, so counting classes is counting canonical matrices.

Definition. Let \(A \in G_n \). We define the associated undirected graph of \(A \), denoted by \(\gamma = \gamma(A) \), the graph \(\gamma = (\nu, \delta) \), where
\[
\nu = \{i \in [1,n]|\exists a_{ij} \neq 0 \text{ or } \exists a_{ji} \neq 0\},
\]
\[
\delta = \{(i,j) \in J|a_{ij} \neq 0\}.
\]

We denote by \(\Gamma_n \) the set of undirected graphs associated to the canonical matrices of \(G_n \).

For each connected component \(\xi \) of \(\gamma \), with vertices \(k_1 < \cdots < k_r \), we define \(A_\xi = A_{k_1 \ldots k_r} \) to be the principal submatrix of \(A \) formed by \(k_1, \ldots, k_r \) rows and columns. For each linear form \(L_{ij} \) of \(A \) we define \(\text{var}(L_{ij}) = \text{var}_A(L_{ij}) \) to be the set of unknowns which appear in the form \(L_{ij} \) with non-zero coefficients. Dually, for each unknown \(x_{uv} \), we define \(\text{form}(x_{uv}) = \text{form}_A(x_{uv}) \) to be the set of linear forms \(L_{ij} \) in which \(x_{uv} \) appears with non-zero coefficient.

Proposition 1. Let \(A \in G_n \) and \(\xi = (\nu_1, \delta_1) \) a connected component of \(\gamma = \gamma(A) \). The following assertions hold:

1. Let \(i < j, i, j \in \nu_1 \). Then the indices of the unknowns of \(\text{var}(L_{ij}) \) are in \(\nu_1 \).
2. Let \(i < j, i, j \in \nu_1 \). Then the indices of the linear forms of \(\text{form}(x_{ij}) \) are in \(\nu_1 \).

Proof

1. We have \(L_{ij} = \sum_{k=i+1}^{j-1} (a_{ik}x_{kj} - a_{kj}x_{ik}) \). Suppose that \(a_{ik} \neq 0 \). Then the indices \(k, j \) of \(x_{kj} \) are in \(\nu_1 \). Similarly, suppose that \(-a_{kj} \neq 0 \). Then \(k \in \nu_1 \) because \(j \in \nu_1 \) and \(a_{kj} \neq 0 \), that is the indices of \(x_{ik} \) are in \(\nu_1 \).
2. The proof is like that of (1). \(\square \)

Note. In virtue of the previous proposition, for each \(i, j \in \nu_1 \), we can write
\[
L_{ij} = L_{ij}(A) = \sum_{s \in \nu_1} (a_{is}x_{sj} - a_{sj}x_{is}).
\]

Theorem 2. Let \(A \) be a matrix of \(G_n \). If the indices \(i, j, i < j \) belong to the same connected component of \(\gamma = \gamma(A) , \xi = (\nu_1, \delta_1) , i, j \in \nu_1 \), then the entry \((i, j) \) is an inert (resp. ramification) point of \(A \), if and only if it is an inert (resp. ramification) point as entry of the submatrix \(A_\xi \).
Proof. Suppose that \((i, j)\) is a ramification point of \(A\). Then
\[
L_{ij} = \sum_{(\sigma, \tau) < (i, j)} \lambda_{\sigma \tau} L_{\sigma \tau}.
\] (2)

There is no loss of generality if we suppose that the \(\lambda_{\sigma \tau}\) coefficients in (2) correspond to the inert points \((\sigma, \tau)\) preceding \((i, j)\). If \(\var{L_{ij}} \cap \var{L_{\sigma \tau}} = \emptyset\), then equality (2) implies \(\lambda_{\sigma \tau} = 0\) and \(L_{ij} = 0\). In other case, if \(x_{fg} \in \var{L_{ij}} \cap \var{L_{\sigma \tau}}\), then, using the previous proposition we have \(f, g \in v_1\) and \(\sigma, \tau \in v_1\). Therefore, the linear forms that appear in the second member of (2) with non-zero coefficients have their indices in \(v_1\), so that \((i, j)\) is a ramification point as an entry of the submatrix \(A_{\xi}\).

Conversely, if \((i, j)\) is a ramification point as an entry of the submatrix \(A_{\xi}\), then \(L_{ij}\) depends on the preceding forms of \(A_{\xi}\) which also are preceding forms of \(A\) and consequently, \((i, j)\) is a ramification point as an entry of \(A\). □

We use this theorem to analyze the canonical matrices of \(G_n\), being known the canonical matrices of \(G_m\) for \(m < n\).

From now on, we express the graph \(\gamma = (\nu, \delta)\) as union of its disjoint components:
\[
\gamma = \xi_1 \cup \cdots \cup \xi_r, \quad \xi_k = (\nu_k, \delta_k), \quad v_k = |\nu_k|, \quad v_1 \leq \cdots \leq v_r.
\] (3)

Thus, we have the following result.

Theorem 3. Let \(A \in G_n\) and \(\gamma = \gamma(A)\) its graph. Then \(A\) is canonical in \(G_n\) if and only if for each connected component \(\xi_k = (\nu_k, \delta_k)\) of \(\gamma\), the matrix \(A_{\xi_k}\) is canonical in \(G_{v_k}\).

Proof. Let \(A\) be a canonical matrix and \(\xi_k\) a connected component of \(\gamma\). Suppose that \(i, j \in v_k\) and \(a_{ij} \neq 0\). Then, since \(A\) is canonical, \((i, j)\) is a ramification point of \(A\) and \(i, j \in v_k\). So, by Theorem 2, \((i, j)\) it is a ramification point of \(A_{\xi_k}\). Therefore, the non-zero entries of \(A_{\xi_k}\) lie at ramification points of \(A_{\xi_k}\) and, consequently, \(A_{\xi_k}\) is canonical.

Conversely, suppose that \(A_{\xi_k}\) are canonical and \(a_{ij} \neq 0\), \((i, j) \in \delta\). Then \((i, j) \in \delta_k\) for some \(k\) and, since \(A_{\xi_k}\) is canonical, the entry \((i, j)\) is a ramification point of \(A_{\xi_k}\) and, by Theorem 2, it a ramification point of \(A\). Therefore, the non-zero entries of \(A\) lie at ramification points of \(A\) and, consequently, \(A\) is canonical. □

Definition. A canonical matrix \(A\) (resp. a graph \(\gamma \in \Gamma\)) is said to be **primitive** if for each index \(j = 1, \ldots, n\) there exists some \(a_{ij} \neq 0, i < j\), or \(a_{jk} \neq 0, j < k\) (resp. edge \((i, j)\) or \((j, k)\) \(\in \delta\)).

Given a canonical matrix \(A\) we obtain a primitive canonical matrix by suppressing that indices whose row and column of \(A_0 = A - I\) are zero.

Definition. For each graph \(\gamma\) we denote \(\mathcal{A}_\gamma\) the set of primitive canonical matrices of \(G_n\) with graph \(\gamma\) and \(r_\gamma(G_n) = |\mathcal{A}_\gamma|\).

As immediate consequence of the preceding theorem we have the next result.

Corollary 4. Let be a graph union of disjoint components: \(\gamma = \xi_1 \cup \cdots \cup \xi_r, \xi_k = (\nu_k, \delta_k)\). Then \(r_\gamma(G_n) = r_{\xi_1}(G_{v_1}) \cdots r_{\xi_r}(G_{v_r})\).
Corollary 5. Let \(A \in \mathcal{G}_n \) be a canonical matrix and \(B \in \mathcal{G}_t \) its primitive matrix. Then \(A \) is canonical in \(\mathcal{G}_n \) if and only if \(B \) is canonical in \(\mathcal{G}_t \).

Proof. Let \(B = A_{s_1, \ldots, s_t} \). Then it is obvious that \(A \) and \(B \) have the same connected components \(\xi \). Moreover, \(A_\xi = B_\xi \) for every connected component \(\xi \). \(\Box \)

Example. Consider the following canonical matrix:

\[
A = \begin{pmatrix}
* & \cdot & \cdot & \cdot & \cdot & \cdot & \\
* & \cdot & \cdot & \cdot & \cdot & \cdot & \\
* & \cdot & \cdot & \cdot & \cdot & \cdot & \\
* & \cdot & \cdot & \cdot & \cdot & \cdot & \\
* & \cdot & \cdot & \cdot & \cdot & \cdot & \\
* & \cdot & \cdot & \cdot & \cdot & \cdot & \\
\end{pmatrix}
\]

The graph of this matrix is:

\begin{align*}
1 & \rightarrow 3 \\
& \downarrow \\
4 & \rightarrow 7 \\
\end{align*}

\begin{align*}
2 & \rightarrow 6 \rightarrow 8 \\
\end{align*}

The index 5 does not appear in these components, so the primitive matrix of \(A \) is of order 7 and its graph has the next two connected components:

\begin{align*}
1 & \rightarrow 3 \\
& \downarrow \\
4 & \rightarrow 6 \\
\end{align*}

\begin{align*}
2 & \rightarrow 5 \rightarrow 7 \\
\end{align*}

The two matrices corresponding to these components are, respectively,

\[
A_1 = \begin{pmatrix}
* & \cdot & \cdot & \\
* & \cdot & \cdot & \\
* & \cdot & \cdot & \\
\end{pmatrix}, \quad A_2 = \begin{pmatrix}
* & \cdot & \cdot \\
* & \cdot & \\
* & \cdot & \\
\end{pmatrix}
\]

Bearing in mind the two last results, from now on, we will study the canonical primitive matrices with connected graphs.

Let \(\mathcal{D}_n \) be the set of regular diagonal matrices of size \(n \) over \(\mathbb{F}_q \). For each \(D \in \mathcal{D}_n \), the map \(A \mapsto A^D \) is an automorphism of \(\mathcal{G}_n \) which permutes the conjugacy classes of the same size, moreover, it transforms canonical matrices into canonical matrices having the same non-zero entries, inert and ramification points. We define the \(\mathcal{D}_n \)-class of \(A \) to be the set

\[
A^{\mathcal{D}_n} = \{A^D \mid D \in \mathcal{D}_n\}.
\]

For each canonical matrix \(A \) we have

\[
|A^{\mathcal{D}_n}| = |\mathcal{D}_n; C_{\mathcal{D}_n}(A)|.
\]

We can obtain this cardinality in the following way.

Definition. An edge-subset \(\delta' \subset \delta \) is said to be admissible (for \(A \)) if the corresponding graph is cycle-free. In this case the subgraph \(\xi' = (v, \delta') \) is also said to be admissible.
Theorem 6. Let $A \in \mathcal{G}_n$. Then
\[|A^{D_n}| = (q - 1)^{|\delta M|}, \]
where δ_M is a maximal admissible edge-subset of A.

Proof. See [8, Theorem 4]. □

Note. In each D_n-class of canonical matrices, we choose as representative the one with the value 1 at the entries (i, j) of a maximal admissible edge-subset.

Corollary 7. Let $A \in \mathcal{G}_n$ be a primitive canonical matrix with connected graph. Then
\[|A^{D_n}| = (q - 1)^{n - 1}. \]

Proof. Let $\xi = (\nu, \delta)$ be the connected graph of A. Since A is primitive, $v = n$. By dropping the edges which close cycles, we obtain a maximal admissible subgraph $\xi_M = (\nu, \delta_M)$ which is a tree joining the n indices with $|\delta_M| = n - 1$ edges. □

Remark. In general, let $\gamma = \bigcup_{k=1}^{r} \xi_k$, be the graph of a canonical matrix A expressed as disjoint union of connected components. Then a maximal admissible graph is obtained by taking maximal admissible graphs on these components. These new components are trees with $|\delta_M| = v_k - 1$ edges. So, for any canonical matrix A we have
\[|A^{D_n}| = (q - 1)^{v_1 + \cdots + v_r - r}. \]

Definition. For each canonical matrix $A \in \mathcal{G}_n$, let $\gamma = \gamma(A)$, as in (3), be its graph and v_0 the number of indices not appearing in γ. Note that $\sum_{k=0}^{r} v_k = n$. We denote by $\mathcal{A}_{v_0; v_1, \ldots, v_r}$ the family of canonical matrices with parameters $v_0; v_1, \ldots, v_r$. To determine totally the graph of A it is necessary and sufficient to fix a partition of the set $\{1, \ldots, n\}$ into $r + 1$ subsets with cardinalities v_0, v_1, \ldots, v_r, satisfying $v_1 \leq \cdots \leq v_r$, and then fix the corresponding connected components of the graph, ξ_1, \ldots, ξ_r. So, we conclude the proof of the following result.

Proposition 8. The number of canonical matrices with parameters $v_0; v_1, \ldots, v_r, v_0 + v_1 + \cdots + v_r = n$, is given by
\[|\mathcal{A}_{v_0; v_1, \ldots, v_r}| = \binom{n - v_0}{v_0} P_{v_1, \ldots, v_r}^{n - v_0} |\mathcal{A}_{v_1}| \cdots |\mathcal{A}_{v_r}|, \]
(4)

where $\mathcal{A}_v = \mathcal{A}_{0, v}$ is the set of canonical matrices with connected primitive graph, $\xi_k = (v_k, \delta_k)$, and P_{v_1, \ldots, v_r} is the number of partitions of the set $\{1, \ldots, n - v_0\}$ into r subsets with v_1, \ldots, v_r elements, respectively.

Remark. The combinatorial expression for cited number of partitions is
\[P_{v_1, \ldots, v_r}^{n - v_0} = \binom{n - v_0}{v_1, \ldots, v_r} \frac{1}{\rho(1)! \cdots \rho(n - v_0)!}, \quad \rho(i) = |\{k|v_k = i\}|. \]

Definition. We define $r_{pc}(\mathcal{G}_n)$ as the number of conjugacy classes of \mathcal{G}_n whose canonical matrices are primitive and have connected graph.
To compute \(r(\mathcal{G}_n) \), we add the cardinalities (4) corresponding to the different sets of parameters and we obtain the following proposition.

Theorem 9. Suppose that, for each \(t \leq n \), there exists a polynomial \(r_{pc,t}(x) \) whose coefficients are independent of \(q \), such that \(r_{pc}(\mathcal{G}_t) = r_{pc,t}(q - 1) \). Then the number of conjugacy classes of \(\mathcal{G}_n \) may be computed by the following equation:

\[
 r(\mathcal{G}_n) = \sum_{v_0, v_1, \ldots, v_r \geq 0} \binom{n}{v_0} p_{v_1, \ldots, v_r} \prod_{i=0}^{r} r_{pc,i}(q - 1).
\]

Comparing coefficients in this equality, we have the explicit expressions for the coefficients \(\mu_i(n) \):

Corollary 10. Suppose that, for \(t \leq n \), \(r_{pc}(\mathcal{G}_t) \) is a polynomial in \((q - 1)\) whose coefficients depend on \(n \) but not on \(q \). Then the number of conjugacy classes of \(\mathcal{G}_n \) may be computed by the following equation:

\[
 r(\mathcal{G}_n) = \sum_{i=0}^{\infty} \mu_i(n)(q - 1)^i, \quad (5)
\]

where

\[
 \mu_i(n) = \sum_{v_0, v_1, \ldots, v_r \geq 0} \binom{n}{v_0} p_{v_1, \ldots, v_r} \text{coeff}(r_{pc,t_1}(x) \cdots r_{pc,t_r}(x), x^i). \quad (6)
\]

Remark. Higman has conjectured that, for each \(n \), the number of conjugacy classes of elements of \(\mathcal{G}_n \) is a polynomial expression in \(q \) with coefficients independent of \(q \). In the hypothesis of Higman’s conjecture, the polynomial \(r(\mathcal{G}_n) \) is given by means of expressions (5) and (6). These expressions show that the computation of \(r(\mathcal{G}_n) \) depends only on the concepts of canonical primitive matrices with connected graph.

We list the first thirteen \(r_{pc,k}(x) \) polynomials:

\[
\begin{align*}
 r_{pc,1}(x) &= 1, \\
r_{pc,2}(x) &= x, \\
r_{pc,3}(x) &= x^2, \\
r_{pc,4}(x) &= 2x^3, \\
r_{pc,5}(x) &= 5x^4, \\
r_{pc,6}(x) &= 18x^5 + x^6, \\
r_{pc,7}(x) &= 77x^6 + 8x^7, \\
r_{pc,8}(x) &= 404x^7 + 74x^8 + 4x^9, \\
r_{pc,9}(x) &= 2451x^8 + 665x^9 + 72x^{10} + 3x^{11}, \\
r_{pc,10}(x) &= 17100x^9 + 6462x^{10} + 1140x^{11} + 110x^{12} + 5x^{13}, \\
r_{pc,11}(x) &= 134145x^{10} + 66584x^{11} + 16632x^{12} + 2563x^{13} + 242x^{14} + 11x^{15},
\end{align*}
\]
Corollary 11. The first 12 coefficients of the development of \(r(\mathcal{D}_n) \) into powers of \(q - 1 \) are polynomial functions only depending on \(n \) and not on \(q \), because of the following equalities:

\[
\begin{align*}
\mu_0(n) &= 1, \\
\mu_1(n) &= n(n - 1)/2, \\
\mu_2(n) &= n(n - 1)(n - 2)(3n - 5)/24, \\
\mu_3(n) &= n(n - 1)(n - 2)(n - 3)(n^2 - 5n + 8)/48, \\
\mu_4(n) &= n(n - 1)(n - 2)(n - 3)(n - 4)(3n^3 - 30n^2 + 121n - 182)/1152, \\
\mu_5(n) &= n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5) \\
&\quad \times (3n^4 - 50n^3 + 365n^2 - 1310n + 1920)/11520, \\
\mu_6(n) &= n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)(9n^6 - 279n^5 \\
&\quad + 3915n^4 - 31405n^3 + 150060n^2 - 401372n + 465888)/414720, \\
\mu_7(n) &= n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)(n - 6) \\
&\quad \times (9n^7 - 378n^6 + 7350n^5 - 84700n^4 + 618625n^3 \\
&\quad - 2842154n^2 + 7556672n - 8917632)/580680, \\
\mu_8(n) &= \frac{1}{278691840} n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)(n - 6)(n - 7) \\
&\quad \times (27n^8 - 1476n^7 + 37926n^6 - 591528n^5 + 6074075n^4 \\
&\quad - 41775748n^3 + 186904996n^2 - 494895824n + 591057792), \\
\mu_9(n) &= \frac{1}{557383680} n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)(n - 6)(n - 7) \\
&\quad \times (3n^{10} - 231n^9 + 8442n^8 - 191614n^7 + 2975371n^6 \\
&\quad - 32874695n^5 + 260680104n^4 - 1459329876n^3 \\
&\quad + 5500310480n^2 - 12561067392n + 13155760128), \\
\mu_{10}(n) &= \frac{1}{33443020800} n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)(n - 6)(n - 7)(n - 8) \\
&\quad \times (9n^{11} - 846n^{10} + 38025n^9 - 1072470n^8 + 20988735n^7
\end{align*}
\]
\[\mu_{11}(n) = \frac{1}{735746457600} n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n-7)(n-8) \times (9n^{13} - 1095n^{12} + 64071n^{11} - 2377815n^{10} + 62230685n^9 - 1209104369n^8 + 17892479077n^7 - 20365182242n^6 + 1778477794390n^5 - 11741788530164n^4 + 56836649446232n^3 - 190597857038880n^2 + 396040317099264n - 384327254476800), \]

\[\mu_{12}(n) = \frac{1}{52973744947200} n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n-7) \times (n-8)(n-9)(27n^{14} - 3861n^{13} + 266679n^{12} - 11748825n^{11} + 367673625n^{10} - 8621844759n^9 + 155837722381n^8 - 2200418288739n^7 + 24336685840632n^6 - 209372512972392n^5 + 1376482974616848n^4 - 6692871949029936n^3 + 22709660250220544n^2 - 48046159820733696n + 47735892549734400). \]

Remark. For \(n \leq 13 \) and each \(q \), \(r(\mathcal{G}_n) \) is totally determined in [8]. In particular, the coefficients \(\mu_i(n) \) of \((q-1)^i\) for \(i \leq 12 \) agree with those obtained by Corollary 11.

Consequently, the number \(r(\mathcal{G}_n) \) is determined modulo \((q-1)^{13}\) for every \(n \in \mathbb{N} \).

References