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a b s t r a c t

How to solve oscillatory integral equations rapidly and accurately is an issue that attracts
special attention in many engineering fields and theoretical studies. In this paper, a rapid
solution method is put forward to solve a kind of special oscillatory integral equation
whose unknown function is much less oscillatory than the kernel function. In the method,
an improved-Levin quadrature method is adopted to solve the oscillatory integrals. On
the one hand, the employment of this quadrature method makes the proposed method
very accurate; on the other hand, only a small number of small-scaled systems of linear
equations are required to be solved, so the computational complexity is also very small.
Numerical examples confirm the advantages of the method.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

How to solve integral equations rapidly and accurately is an important issue arising in many fields. Among the integral
equations, the Fredholm integral equations of the 2nd kind have attracted much attention, and they can be uniformly
expressed as [1,2]

ψ(x) = h(x)+

 b

a
ψ(y)k(x, y)dy, (1)

where k(x, y) is the kernel function, and ψ(x) is the unknown function. Many methods (such as the Nyström method [1])
have been developed to solve this kind of integral equation, and they are mainly concerned with the integral equation
with a non-oscillatory kernel function. However, in many fields such as the electromagnetics and quantummechanism, the
phenomenon of oscillation actually exists widely. This poses a serious challenge to the conventional methods.

While the oscillation is taken into account, the above integral equation can be rewritten as the following form:

ψ(x) = h(x)+

 b

a
f (x, y)ψ(y)eiωg(x,y)dy, (2)

where k(x, y) = f (x, y)eiωg(x,y) is the oscillatory kernel function. In this work, we concern the integral equationwith smooth
functions f , g , h andψ . With the increase of frequencyω, the kernel function becomesmore andmore oscillatory. Therefore,
if this integral equation is to be solved by a conventional method, very fine samples are required for the convergence of the
method, and this might make the method computationally prohibitive. In this sense, it is of significance to develop a rapid
and accurate solution method for this kind of integral equation [3,4].

The key of solving this kind of integral equation is how to calculate the oscillatory integral accurately and rapidly. In the
past decades, some efficient evaluation methods for oscillatory integrals have been developed [5–10], but they are mainly
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concerned with the cases with non-oscillatory amplitude functions and phase functions. However, Ref. [11] shows that the
solution of an oscillatory integral equation should also be of oscillatory type. This means that the unknown function ψ(x)
in (2) is also highly oscillatory, and the existing rapid solution methods cannot be directly applied to solve the oscillatory
integral involved. Fortunately, in many situations of practical interest, the oscillation of the unknown function ψ(x) can be
well extracted, and the extracted oscillation can further be transferred to the existing kernel eiωg(x,y) to form another highly
oscillatory kernel. In this manner, the transformed oscillatory integral equation is with a non-oscillatory unknown function,
and the oscillatory integral involved is with a non-oscillatory amplitude function. In this paper, we are mainly concerned
with the transformed oscillatory integral equations, i.e., the functions f , g , ψ , h are assumed to be much less oscillatory in
comparison with the oscillatory kernel function.

Actually, this transformation technique has a very promising application in computational electromagnetics and some
other fields. For example, in the study of the scattering characteristics of a convex scatterer, the following oscillatory integral
equation about unknown function µ(r) is adopted to characterize the scattering behavior [12–14]:

1
2
µ(r)−


S


∂G(r, r′)
∂n(r)

+ iγG(r, r′)

µ(r′)ds(r′) =

∂uinc(r)
∂n(r)

+ iγ uinc(r), (3)

where uinc(r) = eik·r is the incident plane wave,µ(r) = ∂u(r)/∂n(r) is the surface current, n(r) is the outward unit normal
vector at point r on S, γ is a coupling constant, and G(r, r′) = ei|r−r′|/|r − r′| is the free-space Green function. Here, the
presence of Green functionmakes the kernel functionH(r, r′) =

∂G(r,r′)
∂ν(r) +iγG(r, r′)highly oscillatory. Fortunately, according

to the physical phenomenon of high frequency scattering [13,15], we can introduce an ansatz

µ(r) = µslow(r)eik·r (4)

to (3) to yield an integral equation with respect to a slowly variational function µslow:

1
2
µslow(r)−


S
H(r, r′)eik·(r′−r)µslow(r′)ds(r′) = i(k · n(r)+ γ ), r ∈ S. (5)

After the transformed integral equations have been obtained, the efficiency of solving the integral equation relies on the
calculation of the oscillatory integral involved. Bruno, et al. have developed a new convergent quadrature method based on
the localized integration around the critical points (such as stationary phase points) [12]. The algorithm is well established,
but the transformed oscillatory integrals over the local intervals are calculated with a conventional quadrature method.
Higher efficiency is expected if a better quadrature method is applied. Huybrechs developed a numerical steepest descent
method to solve the oscillatory integrals [14]. This method has a relatively high accuracy, but the integrandmust be analytic
in the complex plane and the process of finding the steepest descent path might be relatively complicated. In [16,17] Li,
et al. proposed an improved-Levin method to compute the oscillatory integrals. The present paper intends to construct an
alternative solution method for the oscillatory integral equations based on this quadrature method.

2. A new rapid solution method for Fredholm integral equations of oscillatory kind

2.1. Discrete form of the Fredholm integral equation

To solve the Fredholm integral equation is to work out the expression of the unknown function. However, in many
situations the function values are even more useful, so this study focuses on obtaining the function values of ψ(x) on the
given nodes.

First, discretizing the integral equation on the given nodes {xj}j=0,1,...,M yields

ψ(xj) = h(xj)+

 b

a
f (xj, y)ψ(y)eiωg(xj,y)dy. (6)

Obviously, the key of solving these discrete equations is how to compute the following oscillatory integrals rapidly and
accurately:

Ij[f , g] =

 b

a
f (xj, y)ψ(y)eiωg(xj,y)dy, j = 0, 1, . . . ,M. (7)

These integrals are difficult to calculate with a conventional method, especially while singularity is involved. Here, we first
give a brief discussion on the singularity of the integral.

2.2. Singularity of the integral

A singular integral is an integral with unbounded integrand over the interval. The presence of singularity could pose
even more challenges to the calculation of oscillatory integrals. It is known that the types of singularity is numerous and
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each of them deserves special attention. In [18], we have studied a special singularity—the Cauchy principal value integral
of oscillatory kind:

I[f , τ ] =

 1

−1

f (x)
x − τ

eiωg(x)dx, τ ∈ (−1, 1).

This integral can be separated into two sub-integrals:

I[f , τ ] =

 1

−1

f (x)− f (τ )
x − τ

eiωg(x)dx + f (τ )
 1

−1

eiωg(x)

x − τ
dx. (8)

The former is non-singular, so it can be handled as a regular oscillatory integral. The latter is singular, but it has an analytical
result in a closed form. Consequently, the singular oscillatory integral is well determined.

It should be noted that a different type of singularity may require a different technique to handle it, so a comprehensive
analysis of all the singularities is very difficult. Fortunately, in many situations of practical interest, the singularities are
removable. For example, the integral in (5) is with a second-order singularity which is caused by the factor ∂G(r, r′)/∂n(r),
but the singularity can be removed if the integral is expressed in the spherical coordinate system. Therefore, in this study
we are mainly concerned with the oscillatory integrals free of singularities.

2.3. Calculation of the oscillatory integrals

Efforts have beenmade in the past decades to develop special solution methods for oscillatory integrals, and the existing
representative ones include the asymptotic expansion method [5], the Levin(-type) method [6,7], the Filon(-type) method
[8,9], and the numerical steepest descent method [10]. Among them, the Levin(-type) method has attracted much attention
for its good applicability to oscillatory integrals with complicated phase functions, but it is very susceptible to the ill-
conditioning [19]. Based on the Levin method, we have developed an improved-Levin quadrature method in [16,17]. The
new method is numerically stable and has broken through the bottleneck that the Levin method is susceptible to the ill-
conditioning. The present study intends to construct a new solution method for the oscillatory integral equations based on
this quadrature method.

As has been stated in many references, the stationary phase points play an important role in the calculation of the
oscillatory integrals. Therefore, we here study the oscillatory integrals with respect to the presence of stationary phase
points or not.

2.3.1. Calculation of the oscillatory integrals free of stationary phase point
The method proposed in [16,17] can be directly used to calculate the oscillatory integrals free of stationary phase point.

According to the Levin theory, the calculation of an oscillatory integral like (7) can be reduced to solving an ordinary
differential equation (ODE) without boundary condition:

p′(y)+ iωg ′(xj, y)p(y) = f (xj, y)ψ(y). (9)

If the unknown function p(y) is solved from (9), then the integral result is obtained as

Ij = p(b)eiωg(xj,b) − p(a)eiωg(xj,a). (10)

In [16], the Chebyshev pseudo-spectral method is employed to solve the differential equation (9), and the nodes
used are of Chebyshev–Lobatto type, i.e., yk =

b−a
2 cos(πkN ) +

b+a
2 , k = 0, 1, . . . ,N . In the process, the Chebyshev

differentiation matrix D is adopted to obtain the derivative of a function [16,20,21]. To be specified, if the function values of
y = f (x) on the given nodes compose a vector f, the function values of f ′(x) on these nodes can be well approximated
by f′ = Df. Consequently, applying the differentiation matrix D on ODE (9) yields the following system of linear
equations [16]:

2
b − a

D + iωΣj


Pj = diag(Fj)Φ, (11)

where

• Pj = [p(y0), . . . , p(yN)]T ,Φ = [ψ(y0), . . . , ψ(yN)]T , and Fj = [f (xj, y0), . . . , f (xj, yN)]T are numerical vectors composed
of the different function values,

• Σj = diag

g ′(xj, y0), g ′(xj, y1), . . . , g ′(xj, yN)


is a diagonal matrix,

• diag(Fj)Φ = Fj ⊗ Φ (symbol ‘⊗’ denotes the Hadamard product) is a vector with the entries being f (xj, yk)ψ(yk), k =

0, 1, . . . ,N .
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As has been stated in [16], Eq. (11) can be well solved by the LU factorization method (or some iteration techniques such
as the Conjugate Gradient (CG) method and the Generalized Minimum Residual (GMRES) method) if it is well-conditioned;
otherwise, the truncated singular value decomposition (TSVD) method can serve as a proper solution method for it. For
simplicity, we uniformly denote the solution of (11) by

Pj =


2

b − a
D + iΣj

−1

diag(Fj)Φ. (12)

Considering that the first and last entries of Pj are p(b) and p(a) respectively, the integral result can then be obtained
from (10) and (12):

Ij = QjPj = Qj


2

b − a
D + iΣj

−1

diag(Fj)Φ, (13)

where Qj = [eiωg(xj,b), 0, . . . , 0,−eiωg(xj,a)] is a vector with the entries being 0 except for the first and last entries.
Because we have assumed that f (x, y), g(x), and ψ(x) are all smooth and non-oscillatory functions, a small number of

nodes are adequate to well interpolate these functions. This means that the computational complexity of (13) is very small.
As will be illustrated in Section 2.5, this property makes the total computational complexity of the proposed method very
small.

At the same time, the quadrature method samples at the endpoints (the nodes used are of Chebyshev–Lobatto type), so
the asymptotic order of the error should be O(ω−2) at least [9]. This asymptotic order is higher than that of the integral
itself (O(ω−1)) [5,7,22], so the accuracy of the quadrature method on a given number of nodes becomes increasingly
better as the frequency ω increases. However, the corresponding asymptotic order of a conventional method (such as the
Gauss quadrature method) is O(1)while fixed nodes are adopted, so it becomes less and less accurate with the increase of
frequency. This makes the newly proposed method much more advisable while a large frequency ω is involved.

Now, the calculation of an oscillatory integral free of stationary phase point has been well described. The case with
stationary phase points are a little complicated, and the following section pays attention on this effect.

2.3.2. Calculation of the oscillatory integrals with stationary phase points
We have studied the impact of stationary phase points on the quadrature algorithm in [17]. As stated there, if stationary

phase points are involved in the interval and the frequency ω is large enough, the integral result will be mainly determined
by the property of the integrand around the stationary phase points. The presence of stationary phase points requires fine
samples around them to obtain a good description of the oscillator’s behavior. In our method, the discrete nodes are of
Chebyshev–Lobatto typewhich clusters around the endpoints. Hence, if the stationary phase points are around the endpoints
of the interval, fine samples around the stationary phase points can be easily obtained; otherwise, special techniques should
be employed. For the latter case, Ref. [17] has provided two candidates to handle it: one is to increase the total number of
nodes, and another is to divide the interval into several sub-intervals according to positions of the stationary phase points.
The second candidate is proved to be of higher efficiency and accuracy because the stationary phase points are located at
the endpoints of the sub-intervals. For example, if the integral Ij[f , g] =

 b
a f (xj, y)ψ(y)eiωg(xj,y)dy has a single stationary

phase point at point y = τ(xj), it can be divided into the following two integrals:

Ij[f , g] =

 b

τ(xj)
f (xj, y)ψ(y)eiωg(xj,y)dy +

 τ(xj)

a
f (xj, y)ψ(y)eiωg(xj,y)dy , I1j + I2j ,

then each of them can be well calculated with a relatively small number of nodes because the stationary phase point is now
located at the endpoints. The case of multiple stationary phase points can be handled in the same way. There is no need to
give more details.

For each new integral, we need to specify new nodes in the sub-interval, and they are generally different from the global
nodes. It has beenmentioned that we are concerned with the unknowns on the global nodes, so the interpolation technique
should be adopted to establish a relationship between the function values on the global nodes and those on the new nodes.
Among the interpolation methods, the Barycentric interpolation is a very stable and accurate one [23,24]. For a function
u = u(x), when the nodes and the function values on them are given as {(ζj, u(ζj))}j=0,1,...,n, the function value at a fixed
inner point can be interpolated as [24]

u(ζ ) =

n
j=0

ϖj
ζ−ζj

u(ζj)

n
j=0

ϖj
ζ−ζj

(14)

where the weightsϖj follow

ϖj =
1

k≠j


ζj − ζk

 , j, k = 0, 1, . . . , n.
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In the present study the nodes used are of Chebyshev–Lobatto type, so the above weights can be simplified as

ϖj = (−1)jδj, δj =


1/2, j = 0 or j = n,
1, otherwise.

From (14) it is seen that the interpolated function value can be expressed in a matrix form:

u(ξ) =

l0(ξ) l1(ξ) · · · ln(ξ)

 
u(ζ0) u(ζ1) · · · u(ζn)

T
,

where coefficients are lj =

ϖj
ζ−ζjn

j=0
ϖj
ζ−ζj

. Consequently, the function values on new ν + 1 nodes (ξ ′

k, k = 0, 1, . . . , ν) are

expressed as
u(ξ ′

0)
u(ξ ′

1)
...

u(ξ ′

ν)

 =


l0(ξ ′

0) l1(ξ ′

0) · · · ln(ξ ′

0)
l0(ξ ′

1) l1(ξ ′

1) · · · ln(ξ ′

1)
...

...
...

...
l0(ξ ′

ν) l1(ξ ′

ν) · · · ln(ξ ′

ν)



u(ζ0)
u(ζ1)
...

u(ζn)

 , LY.

We assume that the new nodes in the two sub-intervals are y1t =
b−τ(xj)

2 cos( π tN1
) +

b+τ(xj)
2 , t = 0, 1, . . . ,N1 and y2t =

τ(xj)−a
2 cos( π tN2

) +
τ(xj)−a

2 , t = 0, 1, . . . ,N2, respectively. If they are different from the global nodes yk =
b−a
2 cos(πkN ) +

b+a
2 , k = 0, 1, . . . ,N , then the interpolated function values can be yielded as

Φ1 =


ψ(y10)
ψ(y11)
...

ψ(y1N1
)

 =


l0(y10) l1(y10) · · · ln(y10)
l0(y11) l1(y11) · · · ln(y11)
...

...
...

...

l0(y1N1
) l1(y1N1

) · · · ln(y1N1
)



ψ(y0)
ψ(y1)
...

ψ(yN)

 , L1Φ

and

Φ2 =


ψ(y20)
ψ(y21)
...

ψ(y2N2
)

 =


l0(y20) l1(y20) · · · ln(y20)
l0(y21) l1(y21) · · · ln(y21)
...

...
...

...

l0(y2N2
) l1(y2N2

) · · · ln(y2N2
)



ψ(y0)
ψ(y1)
...

ψ(yN)

 , L2Φ.

After the interpolated function values in the sub-intervals have been obtained, the integral results I1j and I2j can then be
worked out in the same way as (13). For example, the integral I1j is obtained as

I1j = Q1
j


2

b − τ(xj)
DN1 + iωΣ1

j

−1

diag(F1j )Φ1 = Q1
j


2

b − τ(xj)
DN1 + iωΣ1

j

−1

diag(F1j )L1Φ (15)

with

• Q1
j = [eiωg(xj,b), 0, . . . , 0,−eiωg(xj,τ (xj))],

• Σ1
j = diag


g ′(xj, y10), g

′(xj, y11), . . . , g
′(xj, y1N1

)

a diagonal matrix,

• DN1 the Chebyshev differentiation matrix of order N1 + 1,
• and F1j = [f (xj, y10), f (xj, y

1
1), . . . , f (xj, y

1
N1
)]T a numerical vector.

Conclusively, the total integral result is obtained as

Ij = I1j + I2j =


Q1

j


2

b − τ(xj)
DN1 + iωΣ1

j

−1

diag(F1j )L1 + Q2
j


2

τ(xj)− a
DN2 + iωΣ2

j

−1

diag(F2j )L2


Φ. (16)

It should be noted that if a fixed stationary phase point is involved, the situation could bemuch simpler. In this situation,
the stationary phase point y = τ is irrelative to xj, and then the interpolation matrices L1 and L2 remain unchanged.
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The following section intends to solve the discrete integral equations (6) using the result obtained in (13) or (16).

2.4. Solving the unknown function from the discrete equations

In (13) and (16) the result of an oscillatory integral has been expressed in a matrix form. For the convenience of
description, we uniformly denote them by

Ij = Uj Φ (17)

with Uj ∈ C1×(N+1) and Φ ∈ C(N+1)×1. That is to say, if no stationary phase point is involved, there should be

Uj = Qj


2

b − a
D + iωΣj

−1

diag(Fj), (18)

and if a single stationary phase point is involved, there should be

Uj = Q1
j


2

b − τ(xj)
DN1 + iωΣ1

j

−1

diag

F1j


L1 + Q2

j


2

τ(xj)− a
DN2 + iωΣ2

j

−1

diag

F2j


L2. (19)

The case of multiple stationary phase points has a similar expression.
Consequently, substituting the integral result (17) into (6) gives the matrix form of the discrete equation

ψ(xj) = h(xj)+ Uj Φ. (20)

In (20), the unknown function values Φ is based on the Chebyshev–Lobatto nodes in the y direction: yk =
b−a
2 cos(πkN ) +

b+a
2 , k = 0, 1, . . . ,N . If the nodes in the x direction is specified to be identical with those in the y direction (M = N and

xj = yj), there should be [ψ(x0), ψ(x1), . . . , ψ(xN)]T = Φ. For a different j, (20) leads to a different linear equation, then
the combination of them results in the following system of linear equations:

Φ = H + UΦ, (21)

where

U =


U0
U1
...

UN

 ∈ C(N+1)×(N+1), H =


h(x0)
h(x1)
...

h(xN)

 ∈ C(N+1)×1.

Finally, the system of linear equation (21) is transformed as

(I − U)Φ = H. (22)

While solving this system of linear equation, the behavior of I−U plays a very important role to the stability and accuracy
of the solution. In the present study we mainly concern the high frequency problems (ω ≫ 1). Under this assumption, it is
easy to observe from (18) and (19) that the entries of Uj should be of the order of O(ω−1), and then the entries of coefficient
matrix U should also be of the order of O(ω−1). In this sense, the matrix I − U tends to be well-conditioned when a high
frequency is involved (ω ≫ 1). Consequently, the unknown numerical vector Φ can be easily worked out from (22) using a
conventional method such as the LU factorization, and then the integral equation (2) is solved.

It should be also noted that the solution of (22) has a special physical background. In the light of the operator theory [25],
the solution of (22) can be expanded as the following series if ∥U∥ < 1:

Φ = (I − U)−1H =

∞
j=0

UjH.

This expression is called the Born series (or the Neumann series). If the first two terms on the right-hand side is adopted
and the rest terms are truncated, the approximation solution is called the first-order Born approximation (or called the
Born approximation for simplicity). Similarly, keeping more terms corresponds to a higher-order Born approximation. The
technique of Born approximation is very useful for multi-dimensional scattering analysis to save computation cost. In this
study, the scale of the system of linear equations is very small, so we directly use the LU factorization method to solve the
Eq. (22).

2.5. Analysis of the computational complexity

As shown in (22), if one tries to obtain the unknown function values Φ, he (or she) has to do the following two things:
determining thematrixU and solve the target system of linear equations (22). Because (22) is a small-scaled system of linear
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equations, so the computation of it is computationally very easy. In this sense, the main computational complexity of the
present method comes from the determination of matrix U (or the rows of it: Uj, j = 0, 1, . . . ,N).
1. If the integral is free of stationary phase points, the determination of vector Uj needs for solving a system of linear

equations of order N + 1, so the computational complexity is O((N + 1)3) if a direct solution method (such as the LU
factorization method) is adopted. Of course, if a proper iteration technique (such as the Conjugate Gradient (CG) method
or the GeneralizedMinimumResidual (GMRES)method) is employed [23], the computational complexity can be reduced
to O((N + 1)2).

2. If the integral is with stationary phase points, the situation is a little complicated. Assume the integral has s stationary
phase points in the interval, then we should divide the original integral into s + 1 sub-integrals and each sub-integral
needs for solving a system of linear equations. The interpolation in a sub-interval requires a computational complexity
of O((N + 1)Nk), which is generally much smaller than that of solving the system of linear equations. Therefore, the
computational complexity is mainly determined by the calculation of the s + 1 systems of linear equations, resulting in
a total computational complexity of O(

s
k=1(Nk +1)3) and O(

s
k=1(Nk +1)2) for direct solution methods and iteration

methods, respectively. The number of nodes in a sub-interval is generally smaller than that in the global interval, so the
total computational complexity could be even smaller than the case free of stationary phase points.

Conclusively, themaximum computational complexity of determining theN+1 differentUj, j = 0, 1, . . . ,N isO((N+1)4)
and O((N + 1)3) for direct solutions and iteration methods, respectively. It has been stated that the unknown function can
be well interpolated by a small number of nodes (i.e., N is small), so the total computational complexity is very small.

3. Numerical examples

Three examples are provided in this section to illustrate the performance of the present method: the first one is free of a
stationary phase point, the second one is with a fixed stationary phase point, and the third one is with an unfixed stationary
phase point.

For a common oscillatory integral equation, its solution is generally not possible to obtain in a closed form. In order to
make the analysis feasible, the numerical examples are proceeded in the following way:

• First, the functions ψ(x) and g(x, y) are given, and the integral is given as
 b
a f (x, y)ψ(y)eiωg(x,y)dy = p(x, y)eiωg(x,y),

then the functions f (x, y) and h(x) can be constructed in the following way: f (x, y) =
p′
y(x,y)+iωp(x,y)g ′

y(x,y)
ψ(y) and h(x) =

ψ(x)− p(x, b)eiωg(x,b) + p(x, a)eiωg(x,a).
• Second, construct an oscillatory integral equation using the resulting functions f (x, y), h(x) and the given functions

g(x, y). This integral equation has the form of (7), and its exact solution should be ψ(x).
• Third, numerically work out the ‘‘unknown function ψ(x)’’ from the resulting integral equation with the proposed

method, then the comparison between the numerical solution and the exact ψ(x) leads to the relative error.

We first study an oscillatory integral equation which is free of stationary phase point.

Example 1. Solve the oscillatory integral equation

ψ(x) = h(x)+

 b

a
f (x, y)ψ(y)eiωg(x,y)dy,

with g(x, y) = x2/20 + (y + 6/5)2, h(x) = 1 + (x − 1/2)2 cos(10x) − e−x2−7

eiω(x

2/20+121/25)
− eiω(x

2/20+1/25)

, and

f (x, y) =
−28y3+iω(2y+12/5)
1+(y−1/2)2 cos(10y)

e−x2−7y4 .

The exact solution of this integral equation is ψ(x) = 1 + (x − 1/2)2 cos(10x). Obviously, the oscillatory integral 1
−1 f (xj, y)ψ(y)e

iωg(xj,y)dy is free of stationary phase point in the y direction.
For conventional methods, the high oscillation of eiωg(x,y) makes the integral equation difficult to be solved with a high

efficiency. But for the present method, both rapid computational speed and accurate result can be achieved. We show its
performance in the following two ways:
• for a fixed ω and different N , the relative errors (Er ) on the nodes are presented in Fig. 1(a);
• for a fixed N and different ω, the relative errors (Er ) on the nodes are presented in Fig. 1(b).

Here, the relative error is defined as Er = |ψnum/ψ − 1| with ψnum denoting the numerical result.
From Fig. 1, two phenomena are observed:

1. Fig. 1(a) shows that for a fixed frequencyω (hereω = 100), the relative error becomes smaller and smaller as the number
of nodes increases. This is a very natural phenomenon because more nodes can give a better interpolation of the related
functions.

2. In Fig. 1(b), it is found that for a fixed number of nodes (here N = 30), the relative error decays with the increase of
frequency ω. This is a very interesting phenomenon. For a conventional method, the accuracy with fixed nodes should
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(a) ω is fixed at ω = 100 and N varies as N = 10, 20, 30, 40. (b) N is fixed at N = 30 and ω varies as ω = 100, 200, 300, 400,
500, 600.

Fig. 1. Performance of the proposed method for the oscillatory integral equations free of stationary point.

be worse and worse with the increase of frequency. But for the present method, an inverse trend is observed. The
root cause of this phenomenon is that the error of the improved-Levin quadrature method (O(ω−2) [5]) has a higher
asymptotic order than the integral result itself (O(ω−1) [5,7]). That is to say, the error decays faster than the integral
result. Consequently, the final solution will naturally be more accurate for a large ω.

At the same time, it is also observed that for larger frequencies the gaps between relative error lines become smaller
and smaller. This is to say, the relative error of the present method gradually converge to its limit for the fixed number
of nodes (the number of nodes in Fig. 1(b) is N = 30). Of course, if more nodes are used, the limits of the relative error
will be smaller.

The above example shows the good performance of the proposedmethodwhen the integral equation is free of stationary
phase points. The following examples pay attention to the cases with stationary phase points. First, a fixed stationary phase
point case is presented.

Example 2. Solve the oscillatory integral equation

ψ(x) = h(x)+

 b

a
f (x, y)ψ(y)eiωg(x,y)dy,

with g(x, y) = x2/20 + (y − 0.3)2, h(x) = 1 +
sin(5x)
x2+1/5

− e−2x3−6

eiω(x

2/20+49/100)
− eiω(x

2/20+169/100)

, and f (x, y) =

−12y+iω(2y−3/5)
1+sin(5y)/(y2+1/5)

e−2x3−6y2 .

The exact solution of this integral equation isψ(x) = 1+
sin(5x)
x2+1/5

. Obviously, the oscillatory integral has a fixed stationary
phase point y = τ = 0.3 in the interval [−1, 1]. We divide the target interval [−1, 1] into two sub-intervals according to
the location of the stationary phase point: [−1, 0.3] and [0.3, 1], and specify Chebyshev–Lobatto nodes to each of them.
Obviously, the interpolationmatrices L1 and L2 in the example need to be calculated only once because the stationary phase
point is fixed. The performance of the proposed method is shown in Fig. 2.

It is observed in Fig. 2 that the relative error decays with the increase of the number of nodes N . This is also caused by
the fact that more nodes can give a better interpolation of the related functions. At the same time, the relative error of the
present method also decays with the increase of frequency; this also well shows the advantage of the present method for
high frequency situations.

The following example intends to testify the benefits of the proposed method in the case with an unfixed stationary
phase point.

Example 3. Solve the oscillatory integral equation

ψ(x) = h(x)+

 b

a
f (x, y)ψ(y)eiωg(x,y)dy,

with g(x, y) = (x/20 − y)2, h(x) = 1 + (x − 1/5)2 cos(10x) − e−2x3−6

eiω(x/20−1)2

− eiω(x/20+1)2

, and f (x, y) =

−12y+iω(−x/10+2y)
1+(y−1/5)2 cos(10y)

e−2x3−6y2 .
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(a) ω is fixed at ω = 200 and N varies as N = 10, 20, 30, 40. (b) N is fixed at N = 30 and ω varies as ω = 100, 200, 300, 400,
500, 600.

Fig. 2. Performance of the proposed method for the oscillatory integral equation with a fixed stationary phase point.

(a) ω is fixed at ω = 200 and N varies as N = 10, 20, 30, 40. (b) N is fixed at N = 30 and ω varies as ω = 100, 200, 300, 400,
500, 600.

Fig. 3. Performance of the proposed method for the oscillatory integral equation with an unfixed stationary phase point.

The exact solution of this integral equation is ψ(x) = 1 + (x − 1/5)2 cos(10x). Obviously, the stationary phase point
y = xj/20 varies with the variation of point xj. The performance of the proposed method is shown in Fig. 3. Fig. 3(a) also
shows that more nodes can give a solution of better accuracy, and Fig. 3(b) shows that a higher frequency will result in a
more accurate solution.

From the above three examples we see that the proposed method can obtain very satisfactory solutions even if the
number of nodes is very small. What is more important, the asymptotic order of the error is relatively high, so the method
has a much better applicability for high frequency problems in comparison with the conventional methods.

4. Conclusions and future work

A new solution method for highly oscillatory integrals is put forward based on the development of an improved-
Levin quadrature method for oscillatory integrals. The new method has the merits of being accurate and having a rapid
computational speed. This could provide a positive contribution to the rapid solution of oscillatory integral equations arising
in the scattering study and other related fields.

In this paper, one-dimensional oscillatory integral equations are considered. However, in practical physical problems
(such as the electromagnetic scattering), the integral equations are generally in multi-dimensional forms, so it is of
significance to extend this method from one-dimension to multi-dimension. The authors of this paper are now considering
this problem.
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