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Abstract

Two Latin squares of order v are r-orthogonal if their superposition produces exactly r distinct ordered pairs. If the second square
is the transpose of the first one, we say that the first square is r-self-orthogonal, denoted by r-SOLS(v). It has been proved that for
any integer v�28, there exists an r-SOLS(v) if and only if v�r �v2 and r /∈ {v + 1, v2 − 1}. In this paper, we give an almost
complete solution for the existence of r-self-orthogonal Latin squares.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Two Latin squares of order v, L = (lij ) and M = (mij ), are said to be r-orthogonal if their superposition produces
exactly r distinct pairs, that is

|{(lij , mij ) : 0� i, j �v − 1}| = r .

Belyavskaya (see [2–4]) first systematically treated the following question: for which integers v and r does a pair of r-
orthogonal Latin squares of order v exist? Evidently, v�r �v2, and an easy argument establishes that r /∈ {v+1, v2−1}.
In papers by Colbourn and Zhu [8], Zhu and Zhang [19,20], this question has been completely answered, and the final
result is in the following theorem.

Theorem 1.1 (Zhu and Zhang [20, Theorem 2.1]). For any integer v�2, there exists a pair of r-orthogonal Latin
squares of order v if and only if v�r �v2 and r /∈ {v + 1, v2 − 1} with the exceptions of v and r shown in Table 1.

In a pair of r-orthogonal Latin squares of order v, if the second square is the transpose of the first one, we say that
the first square is r-self-orthogonal, denoted by r-SOLS(v). When an r-SOLS(v) exists, we can simply list only one
square for a pair of r-orthogonal Latin squares of order v.
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Table 1

order v Genuine exceptions of r

2 4
3 5, 6, 7
4 7, 10, 11, 13, 14
5 8, 9, 20, 22, 23
6 33, 36

For the existence of an r-SOLS(v), we have the necessary condition in Theorem 1.1, i.e., v�r �v2 and r /∈ {v +
1, v2 − 1}. It is well-known that an SOLS(v) exists if and only if v �= 2, 3, 6 (see, for example, [18]). This solves the
case of r = v2. For the case of r = v, we take the symmetric Latin square

L = (aij ), aij = i + j (mod v), i, j ∈ Zv .

It is easily seen that L is a v-SOLS(v), and we have the following theorem.

Theorem 1.2. There exist v-SOLS(v) for all integer v > 0, and v2-SOLS(v) for all integer v > 0, v �= 2, 3, 6.

So, we can focus on the cases v + 1 < r < v2 − 1 for the existence of an r-SOLS(v).
For small orders, we have the following results.

Theorem 1.3 (Zhu and Zhang [20]). For order v = 4, there is only one r ∈ [v + 1, v2 − 1], namely r = 9, such that
an r-SOLS(v) exists.

For v = 5 and v + 1 < r < v2 − 1, there is an r-SOLS(5) for r ∈ {7, 10, 11, 13, 14, 15, 17, 19, 21} only.
For v = 6 and v + 1 < r < v2 − 1, there is an r-SOLS(6) for r ∈ [8, 31] only.
For v = 7 and v + 1 < r < v2 − 1, there is an r-SOLS(7) for all r ∈ [9, 47]\{46} only.

r-SOLS(8) for all r ∈ [10, 62] are listed at the web site http://www.cs.uiowa.edu/∼hzhang/sr/. So we
have

Theorem 1.4. There exists an r-SOLS(8) for every r ∈ [8, 64]\{9, 63}.

Zhu and Zhang [20, Conjecture 3.1] conjectured that there is an integer v0 such that for any v�v0, there exists an
r-SOLS(v) for any r ∈ [v, v2]\{v + 1, v2 − 1}. The authors [14] have shown that v0 �28.

Theorem 1.5 (Xu and Chang [14, Theorem 6.4]). For any integer v�28, there exists an r-SOLS(v) if and only if
v�r �v2 and r /∈ {v + 1, v2 − 1}.

In this paper, we investigate the existence of r-SOLS(v) for the remaining v, 9�v�27.

2. Direct constructions

Let S be a set and L and M be two Latin squares based on S. If the superposition of L and M yields every ordered pair
in S × S, then L and M is said to be a pair of mutually orthogonal Latin squares, and denoted by MOLS(|S|), where
|S| is the cardinality of S.

Let H= {H1, H2, . . . , Hk} be a set of nonempty subsets of S. A holey (or, incomplete) Latin square having hole set
H is an |S| × |S| array, L, indexed by S, which satisfies the following properties:

(1) every cell of L is either empty or contains a symbol of S,
(2) every symbol of S occurs at most once in any row or column of L,

http://www.cs.uiowa.edu/hzhang/sr/
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(3) the subarrays Hi × Hi are empty for 1� i�k (these subarrays are referred to as holes),
(4) symbol x ∈ S occurs in row x or column y if and only if (x, y) ∈ (S × S)\⋃k

i=1 (Hi × Hi).

The order of L is |S|. Two holey Latin squares on symbol set S and hole set H, say L1 and L2, are said to be
orthogonal if their superposition yields every ordered pair in (S × S)\⋃k

i=1 (Hi × Hi). We shall use the notation
IMOLS(v; h1, h2, . . . , hk) to denote a pair of orthogonal holey Latin squares on symbol set S and hole set H =
{H1, H2, . . . , Hk}, where v = |S| and hi = |Hi | for 1� i�k. If H = ∅, we obtain an MOLS(v). If H = {H1}, we
simply write IMOLS(v, h1) for the orthogonal pair of holey Latin squares. Here an IMOLS stands for an incomplete
mutually orthogonal Latin squares.

If L1 and L2 form an IMOLS(v; h1, h2, . . . , hk) such that L2 is the transpose of L1, then L1 is said to be a holey SOLS,
and denoted by ISOLS(v; h1, h2, . . . , hk). If H = ∅, or {H1}, then a holey SOLS is an SOLS(v), or ISOLS(v, h1),
respectively.

If H = {H1, H2, . . . , Hk} is a partition of S, then an IMOLS is called a frame MOLS. The type of the frame
MOLS is defined to be the multiset {|Hi | : 1� i�k}. We shall use an “exponential” notation to describe types: Type
t
n1
1 t

n2
2 · · · tnl

l denotes ni occurrences of ti , 1� i� l, in the multiset. We briefly denote a frame MOLS of type t
n1
1 t

n2
2 · · · tnl

l

by FMOLS(t
n1
1 t

n2
2 · · · tnl

l ).
If L1 and L2 form an FMOLS (frame MOLS) such that L2 is the transpose of L1, then we call L1 an FSOLS.
We observe that the existence of an SOLS(v) is equivalent to the existence of an FSOLS(1v), and the existence of

an ISOLS(v, h) is equivalent to the existence of an FSOLS (1v−hh1).
Two holey Latin squares on symbol set S and hole set H, say L1 and L2, are said to be r-orthogonal if their

superposition yields r distinct ordered pairs. We shall use the notation r-IMOLS(v; h1, h2, . . . , hk) to denote a pair of
r-orthogonal holey Latin squares on symbol set S and hole set H = {H1, H2, . . . , Hk}, where v = |S| and hi = |Hi |
for 1� i�k. If H= ∅, we obtain an r-MOLS(v). If H= {H1}, we simply write r-IMOLS(v, h1) for the r-orthogonal
pair of holey Latin squares.

If L1 and L2 form an r-IMOLS such that L2 is the transpose of L1, then we call L1 an r-ISOLS.
The following construction is a modification of the starter-adder type constructions. The idea has been described by

several authors including Horton [12], Hedayat and Seiden [10], Zhu [17], and Heinrich and Zhu [11].

Construction 2.1. Let e = (a00, a01, a02, . . . , a0(n−1)) be a vector of length n with entries in Zn ∪ X, where X =
{x1, x2, . . . , xu} is a set of u index symbols. Let f = (a0x1 , a0x2 , . . . , a0xu) and g = (ax10, ax20, . . . , axu0) be vectors of
length u with entries in Zn\{0}. These vectors are used to construct an array A = (aij ) of order n + u with an empty
subarray of order u having row and column indices and entries in Zn ∪ X. The array is constructed as follows, where
all the elements including indices are calculated modulo n, and xi’s act as “infinite” elements.

(1) If aij ∈ Zn, 0� i, j �n − 1, then a(i+1)(j+1) = aij + 1.
(2) If aij ∈ X, 0� i, j �n − 1, then a(i+1)(j+1) = ai,j .
(3) If 0� i�n − 1, and j ∈ X, then a(i+1)j = aij + 1.
(4) If 0�j �n − 1, and i ∈ X, then ai(j+1) = aij + 1.

Let D1 = {±(a0i − a0(n−i) − i) : a0i , a0(n−i) ∈ Zn, 1� i��(n − 1)/2�}, D2 = {±(a0xj
− axj 0) : 1�j �u}, where

the elements of D1 and D2 are calculated modulo n.
Let

D =
{

D1 ∪ D2 ∪ {0}, n is odd,

D1 ∪ D2 ∪ {0, n/2}, n is even

and r =n|D|+ 2nu. If {a0i : 0� i�n− 1}∪ {a0xj
: 1�j �u}= {a0i − i : 0� i�n− 1}∪ {axj 0 : 1�j �u}= Zn ∪X,

and a0,n/2 /∈ X when n is even, then A = (aij ) is an r-ISOLS(n + u, u).

Example 2.2. Let n=11, u=2, e=(0, 10, 9, 5, x1, 4, x2, 1, 3, 2, 7), f =(6, 8), g=(3, 1). Then D1 ={±2, ±5, ∓1}=
{2, 9, 5, 6, 10, 1}, D2 = {±3, ±7} = {3, 8, 7, 4}, D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, r = 11 × 11 + 2 × 11 × 2 = 165.
These vectors generate a 165-ISOLS(13, 2) (ISOLS(13, 2)) shown in Fig. 1, where a denotes 10.
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Fig. 1. 165-ISOLS(13, 2).

Suppose that A = (aij ) is an array. If asp = atq and asq = atp, then

A(s, t; p, q) =
(

asp asq

atp atq

)

is a Latin sub-square of order 2 of A on the set {asp, asq}. For example,

A(0, 4; 0, 3) =
(

0 5
5 0

)

is a Latin sub-square of order 2 on set {0, 5} of the 165-ISOLS(13, 2) shown in Fig. 1.
If A = (aij ) is a Latin square, and we alter A by interchanging the two columns of the A(s, t; p, q), then we get

a new Latin square A′. We say that we have given an order-2-interchange to A, and denote A′ = I(s,t;p,q)(A), where
I(s,t;p,q) denotes the order-2-interchange.

Fill the hole of the 165-ISOLS(13, 2) with(
x1 x2
x2 x1

)

we then get a 167-SOLS(13) denoted by L, the missing pairs are (x1, x2) and (x2, x1), the repeated pairs are (x1, x1)

and (x2, x2). It can be checked that I(0,4;0,3)(L) is a 160-SOLS(13) with missing pairs

(x1, x2), (x2, x1), (0, 0), (5, 6), (6, 5), (5, x1), (x1, 5), (0, 2), (2, 0)

and repeat pairs

(x1, x1), (x2, x2), (5, 5), (0, 6), (6, 0), (0, x1), (x1, 0), (5, 2), (2, 5).

Use the same method as above, we can further get (v2 − 9)-SOLS(v) for v ∈ {15, 16, 17, 18, 20} and (v2 − 13)-
SOLS(v) for v ∈ {17, 20}. We list the vectors and the order-2-interchange in the following:

216-SOLS(15): e = (0, 12, 11, 9, 5, 8, x1, 6, x2, 3, 7, 2, 1),

f = (4, 10), g = (8, 5), I(0,3;0,x2).

247-SOLS(16): e = (0, 13, 12, 9, 3, 7, 11, 8, x1, x2, 5, 1, 6, 10),

f = (2, 4), g = (3, 7), I(0,4;0,3).
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276-SOLS(17): e = (0, 13, 12, 11, 6, x1, 5, 8, x2, 1, x3, 2, 7, 10),

f = (3, 4, 9), g = (7, 3, 4), I(0,3;0,6).

280-SOLS(17): e = (0, 14, 13, 12, 7, 11, 3, 8, x1, x2, 5, 10, 4, 2, 1),

f = (6, 9), g = (8, 5), I(0,x1;0,7).

315-SOLS(18): e = (0, 15, 14, 11, 6, 10, x1, 13, 9, x2, 3, 2, 7, 1, 8, 12),

f = (4, 5), g = (3, 15), I(0,4;0,3).

387-SOLS(20): e = (0, 16, 15, 14, 13, 12, x1, 8, 5, x2, x3, 6, 11, 4, 3, 2, 1),

f = (7, 9, 10), g = (5, 10, 3), I(0,x1;0,14).

391-SOLS(20): e = (0, 17, 16, 15, 12, 8, 11, 6, 3, 10, x1, x2, 9, 5, 7, 4, 2, 1),

f = (13, 14), g = (6, 9), I(0,5;5,13).

So, we have the following lemma.

Lemma 2.3. There exists a (v2 − 9)-SOLS(v) for every v ∈ {13, 15, 16, 17, 18, 20}, and a (v2 − 13)-SOLS(v) for
every v ∈ {17, 20}.

3. Recursive constructions

Construction 3.1 (Filling in holes). Suppose there exists an ISOLS (v; h1, h2, . . . , hk) with hole setH={H1, H2, . . . ,

Hk} such that Hi ∩ Hj = ∅ (1� i < j �k). If there exist ri-SOLS(hi) for 1� i�k, then there exists an r-SOLS(v) for
r = v2 − ∑k

i=1 h2
i + ∑k

i=1 ri .

Proof. Fill in the ith hole of the ISOLS(v; h1, h2, . . . , hk) with an ri-SOLS(hi) on set Hi for 1� i�k. �

To apply Construction 3.1, we need some “ingredients” provided in the following theorems.

Theorem 3.2 (Abel et al. [1, Theorem 2.10]). There exists an ISOLS(v, h) for all values of v and h satisfying v�3h+1,
except for (v, h) = (6, 1), (8, 2) and possibly for v = 3h + 2, h ∈ {6, 8, 10}.

Theorem 3.3 (Zhang and Zhu [15, Lemma 2.2]). There exists an ISOLS(9; 2, 2), and an ISOLS (v; 2, 2), an
ISOLS(v; 2, 2, 2) and an ISOLS(v; 2, 2, 2, 2) for v ∈ {10, 11}.

Theorem 3.4 (Zhang and Zhu [15, Theorem 7.1]). Suppose a, n and b are positive integers and a �= b. Then there
exists an FSOLS(anb1) if and only if n�4 and n�1 + (2b/a), except for (a, n, b) = (1, 6, 2) and except possibly for
(a, n, b) ∈ {(t + 2, 6, 5a − 1/2), (t, 14, 13a − 1/2), (t, 18, 17a − 1/2), (t, 22, 21a − 1/2) : t is odd}.

As an application of Construction 3.1, we give the following lemma.

Lemma 3.5. (1) There exists a (v2 − 2)-SOLS(v) for v�7 and v �= 8; (2) There exists a (v2 − 3)-SOLS(v) for v�25
and v �= 26.

Proof. (1) From Theorem 3.2 we know that there exists an ISOLS(v, 2) for v�7 and v �= 8. Filling the hole with a
symmetric Latin square of order 2 we obtain a (v2 − 2)-SOLS(v).

(2) From Theorem 3.2 and Theorem 1.4 we know that there exists an ISOLS(v, 8) for v�25 and v �= 26 and a
61-SOLS(8). Applying Construction 3.1 with k = 1, h1 = 8 and r1 = 61 we then obtain a (v2 − 3)-SOLS(v). �

Let L = (�ij ) be an r-SOLS(v) and P = {(�ij , �ji) : 0� i, j �v − 1}. It is obvious that |P | = r . We call P the DOP
set (distinct ordered pairs set) of L.
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The following recursive construction is referred to as Inflation Construction. It essentially “blows up” every cell
of an initial p-SOLS(m) into a q-SOLS(n) or a q-MOLS(n) labelled by the element in that cell such that if one
cell is filled with a certain q-SOLS(n), then its symmetric cell is filled with the same square, if one cell is filled
with a certain square of a q-MOLS(n), then its symmetric cell is filled with the transpose of the second square. We
mention the work of Brouwer and van Rees [7] and Stinson [13], which can be thought of as sources of Inflation
Construction.

Construction 3.6 (Inflation Construction). Suppose that there exists a p-SOLS(m) with DOP set {(ai, ai) : 1� i�k}∪
{(aj , bj ), (bj , aj ) : aj �= bj , 1�j � l}, where k + 2l = p. If there exists a q1-SOLS(n) for every q1 ∈ R1, and there
exists a q2-MOLS(n) for every q2 ∈ R2 when l > 0, then there exists an r-SOLS(mn) for r = ∑k

i=1 q1i + 2
∑l

j=1 q2j ,
where q1i ∈ R1, q2j ∈ R2.

Proof. Start with the p-SOLS(m) as an initial square, replace each of the cells that form the ordered pairs (ai, ai) with
a q1i-SOLS(n) labelled by ai . Replace each of the cells that form the ordered pair (aj , bj ) and contains aj with the first
square of a q2j -MOLS(n) labelled by aj , and the symmetric cell contains bj with the transpose of the second square
labelled by bj . We suppose that the input designs, q1-SOLS(n) and q2-MOLS(n), are all based on the same set. �

Corollary 3.7. Suppose that there exists an SOLS(m). If there exist a q1-SOLS(n) for every q1 ∈ R1 and a q2-MOLS(n)

for every q2 ∈ R2, then there exists an r-SOLS(mn) for r = ∑m
i=1 q1i + 2

∑(m2−m)/2
j=1 q2j , where q1i ∈ R1, q2j ∈ R2.

Proof. Applying Construction 3.6 with p = m2, k = m, l = (m2 − m)/2. �

The following recursive construction is a generalization of Corollary 3.7. It relies on information regarding the
location of transversals in certain Latin squares. Suppose L is a Latin square on a symbol set S. A transversal is a set
T of |S| cells in L such that every symbol of S occurs in exactly one cell of T and the |S| cells in T intersect each row
and each column exactly once. A transversal T is symmetric if (i, j) ∈ T implies (j, i) ∈ T . Two transversals T1 and
T2 are called a symmetric pair of transversals if (i, j) ∈ T1 if and only if (j, i) ∈ T2. A set of transversals are said to
be disjoint if they have no a cell in common.

Construction 3.8. Let m be an even integer. Suppose that there exists an SOLS(m) with t disjoint symmetric transversals
off the main diagonal. If there exist a q1-SOLS(n + 1) for every q1 ∈ R1 and a q2-MOLS(n) for every q2 ∈ R2; there
exists a q3-MOLS(n + 1) for every q3 ∈ R3 when t > 0, then there exists an r-SOLS(mn + t + 1) for r = ∑m

i=1 (q1i −
1) + 2

∑(m2−tm−m)/2
j=1 q2j + 2

∑tm/2
k=1 (q3k − 1) + t + 1, where q1i ∈ R1, q2j ∈ R2, q3k ∈ R3.

Proof. We suppose that the q2-MOLS(n) is based on set Zn, the q1-SOLS(n + 1) and the q3-MOLS(n + 1) are based
on the set Zn ∪{x}. Without loss of generality, we suppose that x is in the right bottom corner of the q1-SOLS(n+1) and
the q3-MOLS(n+ 1). Delete x from the right bottom corner of the q1-SOLS(n+ 1). We then get a q1-ISOLS(n+ 1, 1)

with DOP set containing (x, x) or a (q1 − 1)-ISOLS(n + 1, 1) with DOP set not containing (x, x). Delete x from the
right bottom corner of the q3-MOLS(n + 1). We get a q3-IMOLS(n + 1, 1) or (q3 − 1)-IMOLS(n + 1, 1).

It is obvious that the cells on the main diagonal of the SOLS(m) form a symmetric transversal. Start with the
SOLS(m) as an initial square, replace each of its cells with an n × n array labelled by the element in that cell. The
array will be a q2j -MOLS(n) if the cell is the jth cell not on the main diagonal and the t symmetric transversals.

If the cell is the ith one on the main diagonal, the array will be the upper left part of a q1i-ISOLS(n + 1, 1) or
(q1i − 1)-ISOLS(n + 1, 1) on Zn ∪ {x0} labelled by the element in that cell. The right column will be moved to the
right part of the resultant square and the lower row will be moved to the lower part of the resultant square.

If the cell is the kth cell on the t symmetric transversals and it is on the �th symmetric transversal (1��� t), the
array will be the upper left part of a (labelled) q3k-IMOLS(n + 1, 1) or (q3k − 1)-IMOLS(n + 1, 1) on Zn ∪ {x�}. The
right column of it will be moved to the right part of the resultant square and the lower row will be moved to the lower
part of the resultant square.

Every element of the input design except x0 and x� (1��� t) is labelled by the element in the cell it replaced, but
elements x0 and x� (1��� t) remains unchanged when labelling.
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Then we get the upper left part of side mn of a holey Latin square of order mn + t + 1 with hole of side t + 1 and
the hole set {x0, x1, . . . , xt }.

The right part of the holey Latin square of order mn + t + 1 consists of columns C0, C1, . . . , Ct , where C0 comes
from the labelled elements of the right column of the q1-ISOLS(n + 1, 1) or (q1 − 1)-ISOLS(n + 1, 1) on the main
diagonal and C� (1��� t) comes from the right column with the labelled elements of the q3-IMOLS(n + 1, 1) or
(q3 − 1)-IMOLS(n + 1, 1) on the �th symmetric transversal.

The lower part of the holey Latin square of order mn+ t + 1 consists of rows R0, R1, . . . , Rt , where R0 comes from
the lower (labelled element) row of the q1-ISOLS(n + 1, 1) or (q1 − 1)-ISOLS(n + 1, 1) on the main diagonal, R�

(1��� t) comes from the lower (labelled element) row of the q3-IMOLS(n + 1, 1) or (q3 − 1)-IMOLS(n + 1, 1) on
the �th symmetric transversal.

Filling the hole of side t + 1 of holey Latin square with a symmetric Latin square of order t + 1 on the set

{x0, x1, . . . , xt }, we then obtain an r-SOLS(mn+ t +1) for r =∑m
i=1 (q1i −1)+2

∑(m2−tm−m)/2
j=1 q2j +2

∑tm/2
k=1 (q3k −

1) + t + 1. �

To apply the inflation constructions, we need some “ingredients” provided in the following theorem and lemmas.

Theorem 3.9 (Bennet and Zhu [5,6], Du [9]). For all even m, m /∈ {2, 6, 10, 14}, there exists an SOLS(m) with m − 1
disjoint symmetric transversals off the main diagonal.

Lemma 3.10 (Xu and Chang [14, Lemma 4.4]). If v�7 is odd, then there exists a (v+4)-ISOLS(v+1, 1) on Zv ∪{x}
with DOP set {(0, 0), (1, 1), (0, 2), (2, 0)} ∪ {(2i − 1, 2i), (2i, 2i − 1) : 1� i�(v − 1)/2} ∪ {(x, x)} and the hole set
{x}.

Lemma 3.11 (Xu and Chang [14, Lemma 4.5]). Suppose that v is an integer and v�7. For r ∈ {v + 2, v + 3}, there
exists an r-SOLS(v) on Zv with DOP set denoted by P; and there exists an (r + 1)-ISOLS(v + 1, 1) on Zv ∪ {x} with
DOP set P ∪ {(x, x)} and the hole set {x}, where |P | = r .

Lemma 3.12 (Colbourn and Zhu [8, Lemma 2.4]). If there exists an r-MOLS(v), then there exists an r-MOLS(v) on
Zv with DOP set containing {(i, i) : 0� i�v − 1}.

Lemma 3.13. If there exists an r-MOLS(v), then there exists an r-IMOLS(v, 1) or (r −1)-IMOLS(v, 1) on Zv−1 ∪{x}
with hole set {x} and DOP set containing {(i, i) : 0� i�v − 2}.

Proof. From Lemma 3.12 we have an r-MOLS(v) on Zv−1 ∪ {x} with DOP set containing {(i, i) : 0� i�v − 2} ∪
{(x, x)}. Denote the two squares of the r-MOLS(v) by A = (aij ) and B = (bij ), and suppose that ast = bst = x. Give
the permutation � = (s, t) to the row sets of A and B we get two Latin squares A′ and B ′, respectively. Deleting x from
the cells (t, t) of A′ and B ′ we then obtain the desired r-IMOLS or (r − 1)-IMOLS. �

Construction 3.14. Let n be an integer and k = 1 or 2. Suppose that: (1) there exists an r1-MOLS(n + 1); (2) there
exists an n-SOLS(n) on set Zn with DOP set P1 and an r2-SOLS(n + 1) on set Zn ∪ {x} with x in the right bottom
corner and DOP set P2 ⊃ P1 ∪ {(x, x)}; (3) there exists an (n + 1)-SOLS(n + 1) on set Zn ∪ {x} with x in the right
bottom corner and DOP set P1 ∪ {(x, x)} when k = 2. Then there exists an r-SOLS(3n + k) for r = 2r1 + r2 − 3 + k.

Proof. Fig. 2 is a 3-SOLS(3) with three disjoint symmetric transversals T1 ={(0, 1), (1, 0), (2, 2)}, T2 ={(0, 0), (1, 2),

(2, 1)} and T3 = {(0, 2), (1, 1), (2, 0)}. The DOP set is {(0,0), (1,2), (2,1)}.

Fig. 2. A 3-SOLS(3).
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Since we have an r1-MOLS(n+1), from Lemma 3.13 we have an r1-IMOLS(n+1, 1) or (r1 −1)-IMOLS(n+1, 1)

on Zn ∪ {x} with DOP set containing {(i, i) : 0� i�n − 1} ∪ {(x, x)} and the hole set {x}. Without loss of generality,
we suppose that the hole is in the right bottom corner. From Lemmas 3.12 and 3.13 we also have an n-MOLS(n) on
the set Zn with DOP set P1 = {(i, i) : 0� i�n − 1}, and an (n + 1)-IMOLS(n + 1, 1) on Zn ∪ {x} with DOP set
P1 ∪ {(x, x)} and the hole set {x}, respectively. Deleting x from the right bottom corner of the (n + 1)-SOLS(n + 1)

and r2-SOLS(n + 1) we get an (n + 1)-ISOLS(n + 1, 1) with DOP set P1 ∪ {(x, x)}, and an r2-ISOLS(n + 1, 1) or
(r2 − 1)-ISOLS(n + 1, 1) with DOP set containing P1, respectively.

This proof is similar to that of Construction 3.8. Here we say we fill a cell with an s-ISOLS(n + 1, n) or s-
IMOLS(n + 1, n) means to fill the cell with the n × n upper left part of the input design, and move the right column
to the right edge of the resultant square, the lower row to the lower edge of the resultant square. Every input design is
labelled by the element in the cell it replaced, but x remains unchanged when labelling.

Start with the 3-SOLS(3). In T1, we fill cell (0,1) with the first square of the r1-IMOLS(n + 1, 1) or (r1 − 1)-
IMOLS(n + 1, 1), and cell (1,0) with the transpose of the second square. We fill cell (2,2) with the r2-ISOLS(n + 1, 1)

with DOP set P2. We denote the hole set of the incomplete Latin squares by {x1}.
In T2, if k = 1, we replace cell (1,2) with the first square of the n-MOLS(n) with DOP set P1, cell (2,1) with the

transpose of the second square, and cell (0,0) with the n-SOLS(n) with DOP set P1; if k = 2, we replace cell (1,2)
with the first square of the (n + 1)-IMOLS(n + 1, 1) with DOP set P1 ∪ {(x2, x2)}, cell (2,1) with the transpose of the
second square, and cell (0,0) with the (n + 1)-ISOLS(n + 1, 1) with DOP set P1 ∪ {(x2, x2)}. We denote the hole set
of the incomplete Latin squares by {x2} here.

In T3, we replace cell (2,0) with the first square of the n-MOLS(n) with DOP set P1, cell (0,2) with the transpose of
the second square, and cell (1,1) with the n-SOLS(n) with DOP set P1.

Now we get an incomplete Latin square of order 3n + k with a hole of side k. Filling the hole with x1 if k = 1, with
a symmetric Latin square on {x1, x2} if k = 2, we then obtain an r-SOLS(3n + k) with r = 2(r1 − 1) + (|P2| − 1) +
k = 2r1 + r2 − 3 + k.

This completes the proof. �

4. Existence of r-SOLS(v) for 9�v�13

Lemma 4.1. There exists an r-SOLS(9) for every r ∈ [13, 78].

Proof. L1 shown in Fig. 3 is an SOLS(9). Choose a proper permutation � to permute the rows of L1 to obtain a
new square L′

1. Then determine the cardinality of the DOP set of L′
1. The cardinality, r, and the corresponding row

permutation � are listed in Table 2.
Give one or more proper order-2-interchanges to the Latin squares L1 or L2 in Fig. 3 in turn, we can get a new

r-SOLS. We list r and the corresponding order-2-interchanges in Table 3, and simply write s, t; p, q for I(s,t;p,q).
r-SOLS(9) for r ∈ {75, 76, 78} are listed in Figs. 4 and 5. Filling each of the two holes of an ISOLS(9;2,2) from

Theorem 3.3 with a symmetric Latin square of order 2 we obtain a 77-SOLS(9). �

Fig. 3. An SOLS(9) and a 11-SOLS(9).
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Table 2

r � r � r �

13 0 3 2 7 6 5 8 1 4 36 0 1 2 8 7 4 3 5 6 54 0 1 2 3 4 6 7 8 5
15 0 1 7 5 3 8 2 4 6 37 0 1 2 3 7 6 8 4 5 55 0 1 2 3 4 5 6 8 7
17 0 3 1 5 7 4 2 6 8 38 0 1 2 4 6 8 3 5 7 56 0 1 2 3 4 6 8 5 7
19 0 4 6 2 8 1 5 7 3 39 0 1 2 3 6 5 8 4 7 57 0 1 2 3 5 4 6 7 8
21 0 3 1 5 7 6 2 8 4 40 0 1 2 4 3 6 7 5 8 58 0 1 2 3 8 4 5 6 7
23 0 1 7 5 3 6 2 8 4 41 0 1 2 3 4 8 6 5 7 59 0 1 2 3 8 5 4 6 7
24 0 2 8 6 1 7 5 3 4 42 0 1 2 4 3 8 5 7 6 60 0 1 2 3 4 5 8 6 7
25 0 1 7 2 3 8 5 4 6 43 0 1 2 3 7 8 4 6 5 61 0 1 2 3 4 5 7 6 8
26 6 1 2 5 0 3 8 4 7 44 0 1 2 4 3 7 8 5 6 62 0 1 2 5 8 7 6 3 4
27 0 1 7 4 6 8 3 5 2 45 0 1 2 3 5 6 8 4 7 63 0 1 2 3 5 8 6 7 4
28 0 1 7 5 2 8 6 4 3 46 0 1 2 3 4 7 8 5 6 64 0 4 1 3 2 7 8 5 6
29 0 1 3 2 7 6 5 4 8 47 0 1 2 3 4 5 7 8 6 65 0 1 5 6 4 7 2 3 8
30 0 1 8 5 2 7 6 4 3 48 0 1 2 3 4 7 5 8 6 66 0 1 7 3 4 5 2 6 8
31 0 1 3 2 7 8 5 6 4 49 0 1 2 3 5 7 4 6 8 67 0 8 2 1 4 5 3 7 6
32 0 1 7 6 3 5 2 8 4 50 0 1 2 3 4 8 5 7 6 68 3 4 0 5 1 2 6 8 7
33 0 1 2 7 3 8 4 6 5 51 0 1 2 3 4 6 7 5 8 69 0 6 5 4 3 2 1 8 7
34 0 1 3 5 7 4 2 8 6 52 0 1 2 3 4 7 8 6 5 72 1 0 7 5 8 3 4 2 6
35 0 1 2 8 3 7 5 4 6 53 0 1 2 3 4 5 8 7 6 73 6 8 0 3 7 5 2 4 1

Table 3

r Square Order-2-interchanges r Square Order-2-interchanges

14 L2 0, 7; 1, 7 1, 2; 0, 3 22 L2 0, 7; 1, 7 1, 6; 3, 5
16 L2 0, 7; 1, 7 70 L1 0, 8; 7, 8 1, 2; 3, 8
18 L2 0, 7; 1, 7 1, 5; 3, 6 71 L1 0, 8; 7, 8 0, 7; 3, 8
20 L2 0, 7; 1, 7 0, 1; 4, 5 74 L1 0, 8; 7, 8

Fig. 4. r-SOLS(9) for r ∈ {75, 76}.

Let k be an integer and T, T1, T2 be sets of integers. We define some set operations in the following:

kT = {kt : t ∈ T },
T1 + T2 = {t1 + t2 : t1 ∈ T1, t2 ∈ T2}

k ⊗ T =
{

k∑
i=1

ti : ti ∈ T for 1� i�k

}
.

We simply write k + T for {k} + T .
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Fig. 5. A 78-SOLS(9).

Fig. 6. An SOLS(10).

Table 4

r � r � r �

37 0 1 2 8 5 6 7 4 3 9 55 0 1 2 3 4 5 7 6 9 8 70 0 1 2 3 4 5 6 8 7 9
41 0 1 8 7 2 5 3 6 4 9 56 0 1 2 3 4 6 5 8 9 7 71 0 1 2 3 5 7 9 6 8 4
42 0 1 2 4 5 6 9 8 7 3 57 0 1 2 3 4 5 9 6 8 7 72 0 1 2 3 4 5 6 9 8 7
43 0 1 2 4 9 5 3 6 7 8 58 0 1 2 3 4 5 7 9 6 8 73 0 1 2 3 5 4 8 7 6 9
44 0 1 4 8 6 3 9 7 2 5 59 0 1 2 3 4 5 7 8 9 6 74 0 1 2 3 4 8 9 6 5 7
45 0 1 3 2 4 6 5 7 8 9 60 0 1 2 3 4 5 8 9 6 7 75 0 1 2 3 7 4 9 6 8 5
46 0 1 2 3 6 5 9 4 7 8 61 0 1 2 3 4 5 6 9 7 8 76 0 1 2 3 4 7 6 5 8 9
47 0 1 2 3 9 4 7 5 6 8 62 0 1 2 3 4 6 8 5 7 9 77 0 1 2 7 8 5 4 6 9 3
48 0 1 2 3 6 4 7 5 9 8 63 0 1 2 3 4 5 8 6 7 9 78 0 1 2 5 6 4 7 3 8 9
49 0 1 2 3 9 7 5 8 4 6 64 0 1 2 3 4 6 7 8 5 9 79 0 1 3 9 4 6 8 5 7 2
50 0 1 2 3 4 9 5 6 7 8 65 0 1 2 3 4 6 8 9 7 5 80 0 1 2 3 9 5 6 7 8 4
51 0 1 2 3 6 8 9 4 7 5 66 0 1 2 3 4 5 6 7 9 8 81 0 1 7 3 6 5 2 4 8 9
52 0 1 2 3 4 5 9 6 7 8 67 0 1 2 3 4 7 5 9 6 8 82 1 2 4 6 5 9 7 3 8 0
53 0 1 2 3 4 6 5 9 8 7 68 0 1 2 3 4 5 9 7 8 6 83 8 0 4 6 2 9 3 1 5 7
54 0 1 2 3 4 7 9 8 5 6 69 0 1 2 3 4 5 7 9 8 6 84 5 6 4 0 9 1 8 7 3 2

Lemma 4.2. There exists an r-SOLS(10) for every r ∈ [14, 97].

Proof. Start with a symmetric Latin square of order 2, applying Construction 3.6 with p = m = 2, k = 2, l = 0, n = 5
and R1 = {5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 25}, the input designs, q1-SOLS(5) for q1 ∈ R1, are from Theorems 1.2
and 1.3, then we obtain an r-SOLS(10) for every r = q11 + q12 ∈ 2 ⊗ R1 ⊃ [14, 40]\{37}.

Give a proper permutation � to the rows of a self-orthogonal Latin square L1 in Fig. 6 we obtain an r-SOLS(10) for
r ∈ [41, 84], � and r are listed in Table 4.

Give one or two proper order-2-interchanges to the Latin square L1 in Fig. 6 in turn, we obtain a new r-SOLS(10).
We list r and the order-2-interchanges in Table 5.
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Table 5

r Order-2-interchanges r Order-2-interchanges

85 0, 2; 0, 3 0, 3; 5, 7 89 0, 2; 0, 3 3, 6; 8, 9
86 0, 2; 0, 3 0, 7; 7, 9 91 0, 2; 0, 3 4, 6; 5, 9
87 0, 2; 0, 3 0, 6; 3, 9 93 0, 2; 0, 3
88 0, 2; 0, 3 2, 3; 3, 9

Fig. 7. r-SOLS(10) for r ∈ {95, 97}.

Table 6

r � r � r �

31 0 1 2 3 4 5 6 7 8 10 9 53 0 1 2 3 4 5 7 6 9 10 8 74 0 1 2 3 5 4 6 9 10 8 7
33 0 1 2 3 4 5 6 9 10 7 8 54 0 1 2 3 5 4 7 6 9 10 8 75 0 1 2 3 4 5 8 10 9 7 6
34 0 1 4 10 9 8 7 6 5 2 3 55 0 1 2 3 4 6 5 7 9 10 8 76 0 1 2 3 5 4 8 10 7 9 6
35 0 1 2 3 4 5 6 8 7 10 9 56 0 1 2 3 5 4 6 8 10 7 9 77 0 1 2 3 4 5 8 10 7 9 6
36 0 1 4 3 2 6 5 10 9 8 7 57 0 1 2 3 4 5 6 8 10 7 9 78 0 1 2 3 5 6 8 10 4 7 9
37 0 1 2 3 4 6 5 8 7 10 9 58 0 1 2 3 5 4 6 8 9 10 7 79 0 1 2 3 4 6 8 10 5 7 9
38 0 1 3 2 7 8 10 9 5 4 6 59 0 1 2 3 4 5 7 10 8 6 9 80 0 1 2 3 5 7 9 6 4 10 8
39 0 1 2 3 8 9 10 7 4 5 6 60 0 1 2 3 5 6 7 4 10 9 8 81 0 1 2 3 4 7 10 6 9 5 8
40 0 1 2 3 9 10 6 8 7 4 5 61 0 1 2 3 4 5 9 10 7 8 6 82 0 1 2 3 5 10 4 8 7 9 6
41 0 1 2 3 7 8 9 10 4 6 5 62 0 1 2 3 5 4 7 8 10 6 9 83 0 1 2 3 5 7 10 6 9 4 8
42 0 1 2 3 5 4 6 8 7 10 9 63 0 1 2 3 4 5 6 8 10 9 7 84 0 1 2 3 5 7 10 9 6 8 4
43 0 1 2 3 4 5 7 6 10 9 8 64 0 1 2 3 5 4 7 10 6 8 9 85 0 1 2 3 5 8 10 7 6 9 4
44 0 1 2 3 7 9 10 4 8 5 6 65 0 1 2 3 4 5 6 9 10 8 7 86 0 1 2 4 5 7 10 9 3 8 6
45 0 1 2 3 4 5 6 10 9 8 7 66 0 1 2 3 5 4 9 10 7 8 6 87 0 1 2 3 5 6 10 9 4 8 7
46 0 1 2 3 7 8 10 4 5 9 6 67 0 1 2 3 4 5 7 8 10 6 9 88 0 1 2 4 5 9 8 6 10 3 7
47 0 1 2 3 4 5 8 10 6 9 7 68 0 1 2 3 5 6 7 10 9 4 8 89 0 1 2 4 8 10 7 6 3 5 9
48 0 1 2 3 5 4 6 9 10 7 8 69 0 1 2 3 4 5 7 9 10 8 6 90 0 1 2 6 10 5 7 9 4 8 3
49 0 1 2 3 4 5 6 7 9 10 8 70 0 1 2 3 5 4 7 10 8 6 9 91 0 1 2 4 7 10 6 5 8 9 3
50 0 1 2 3 5 4 6 10 9 8 7 71 0 1 2 3 4 5 7 10 9 6 8 92 0 1 2 5 8 4 7 10 6 9 3
51 0 1 2 3 4 7 9 5 10 6 8 72 0 1 2 3 5 4 8 10 9 7 6 93 0 1 3 4 2 10 7 8 6 5 9
52 0 1 2 3 5 4 8 10 6 9 7 73 0 1 2 3 4 6 8 7 10 5 9 95 0 1 3 6 10 4 8 9 2 5 7

From [16] we have an FSOLS(25), and from Theorem 3.3 we have an ISOLS(10; 2, 2, 2, 2), an ISOLS(10; 2, 2, 2)

and an ISOLS(10; 2, 2). Filling all the holes of the above squares with a symmetric Latin square of order 2 we can
obtain r-SOLS(10) for r = 90, 92, 94 and 96, respectively.

r-SOLS(10) for r ∈ {95, 97} are listed in Fig. 7. �
Lemma 4.3. There exists an r-SOLS(11) for every r ∈ [15, 118].
Proof. Let L = (aij ) be a symmetric Latin square of order 11, where aij = i + j (mod 11) (0� i, j �10). Give a
permutation � to the rows of L we obtain a new r-SOLS(11) for r shown in Table 6.
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Fig. 8. A 13-SOLS(11) and a 118-SOLS(11).

Table 7

r Square Order-2-interchanges r Square Order-2-interchanges

15 L1 0, 2; 5, 6 96 L2 0, 8; 7, 8 0, 10; 0, 1 2, 9; 3, 10
17 L1 0, 1; 4, 5 97 L2 0, 8; 7, 8 0, 10; 0, 1 1, 7; 6, 7
18 L1 1, 9; 0, 9 98 L2 0, 8; 7, 8 0, 10; 0, 1 0, 8; 1, 3
19 L1 0, 6; 1, 8 99 L2 0, 8; 7, 8 0, 10; 0, 1 2, 10; 0, 4
20 L1 0, 6; 1, 8 2, 7; 0, 7 100 L2 0, 8; 7, 8 0, 10; 0, 1 1, 4; 0, 6
21 L1 0, 6; 1, 8 0, 2; 5, 6 101 L2 0, 8; 7, 8 0, 10; 0, 1 2, 3; 0, 6
22 L1 0, 6; 1, 8 1, 9; 0, 9 102 L2 0, 8; 7, 8 0, 10; 0, 1 0, 1; 1, 2
23 L1 0, 6; 1, 8 0, 1; 4, 5 103 L2 0, 8; 7, 8 0, 3; 1, 9
24 L1 0, 6; 1, 8 2, 7; 2, 9 104 L2 0, 8; 7, 8 0, 10; 0, 1
25 L1 0, 6; 1, 8 0, 1; 6, 7 105 L2 0, 8; 7, 8 1, 4; 0, 6
26 L1 0, 6; 1, 8 0, 1; 6, 7 0, 7; 7, 8 106 L2 0, 8; 7, 8 4, 6; 1, 2
27 L1 0, 6; 1, 8 0, 1; 6, 7 2, 5; 3, 7 107 L2 0, 8; 7, 8 2, 9; 1, 9
28 L1 0, 6; 1, 8 0, 1; 6, 7 1, 9; 0, 9 108 L2 0, 8; 7, 8 2, 3; 0, 6
29 L1 0, 6; 1, 8 0, 1; 6, 7 0, 1; 4, 5 109 L2 0, 8; 7, 8 4, 10; 2, 3
30 L1 0, 6; 1, 8 0, 1; 6, 7 2, 7; 2, 9 110 L2 0, 3; 1, 9
32 L1 0, 6; 1, 8 0, 1; 6, 7 0, 1; 4, 5 1, 9; 0, 9 112 L2 0, 5; 4, 7
94 L2 0, 8; 7, 8 0, 10; 0, 1 1, 7; 6, 7 4, 6; 1, 2 114 L2 2, 9; 1, 9

Give several proper order-2-interchanges to L1 or L2 in Fig. 8 in turn, we can get a new r-SOLS. We list the
order-2-interchanges and the corresponding r in Table 7.

Give order-2-interchange I(0,1;3,4) to the 14-SOLS(11) in Fig. 9 we obtain a 16-SOLS(11).
From [16] we have an ISOLS(11; 2, 2, 2, 2, 2), from Theorem 3.3 we have an ISOLS(11; 2, 2, 2, 2), an ISOLS

(11; 2, 2, 2) and an ISOLS(11; 2, 2). Filling the holes of all the above squares with a symmetric Latin square of order
2 we then obtain r-SOLS(11) for r ∈ {111, 113, 115, 117}.

116-SOLS(11) is shown in Fig. 9 and 118-SOLS(11) is in Fig. 8. �

Lemma 4.4. There exists an r-SOLS(12) for every r ∈ [16, 138].

Proof. Start with a symmetric Latin square of order 2, applying Construction 3.6 with p = m = 2, k = 2, l = 0, n = 6
and R1 = [8, 31], the input designs, q1-SOLS(6) for q1 ∈ R1, are from Theorems 1.3, then we obtain an r-SOLS(12)
for every r = q11 + q12 ∈ 2 ⊗ R1 = [16, 62].

Suppose that L = (aij ) is a symmetric Latin square of order 12, where aij = i + j (mod 12) (0� i, j �11). Give a
proper permutation � to the rows of L we obtain an r-SOLS(12) for r shown in Table 8.

Give several proper order-2-interchanges to the SOLS(12) in Fig. 10 in turn, we obtain a new r-SOLS(12). We list
the order-2-interchanges and the corresponding r in Table 9.



136 Y. Xu, Y. Chang / Discrete Mathematics 306 (2006) 124 –146

Fig. 9. A 14-SOLS(11) and a 116-SOLS(11).

Table 8

r � r �

63 0 1 2 3 4 6 7 10 5 8 9 11 94 0 1 2 3 4 7 10 8 9 6 5 11
64 0 1 2 3 4 5 7 10 8 6 9 11 95 0 1 2 3 5 7 10 4 6 9 8 11
65 0 1 2 3 4 6 9 8 5 10 7 11 96 0 1 2 3 5 6 10 9 4 8 7 11
66 0 1 2 3 4 6 7 8 10 9 5 11 97 0 1 2 3 5 8 10 9 7 6 4 11
67 0 1 2 3 4 5 10 8 9 7 6 11 98 0 1 2 4 5 8 3 10 9 7 6 11
68 0 1 2 3 4 6 5 8 10 9 7 11 99 0 1 2 3 5 10 6 9 4 8 7 11
69 0 1 2 3 4 6 7 5 10 8 9 11 100 0 1 2 3 7 6 10 5 8 4 9 11
70 0 1 2 3 4 5 6 8 10 9 7 11 101 0 1 2 3 5 10 8 6 4 9 7 11
71 0 1 2 3 4 5 7 10 9 8 6 11 102 0 1 2 4 6 10 9 7 5 3 8 11
72 0 1 2 3 4 5 6 9 10 8 7 11 103 0 1 2 4 6 9 10 8 5 3 7 11
73 0 1 2 3 4 5 7 8 10 6 9 11 104 0 1 2 5 7 6 10 3 9 4 8 11
74 0 1 2 3 4 5 9 10 8 7 6 11 105 0 1 2 4 6 9 7 10 5 3 8 11
75 0 1 2 3 4 5 7 9 10 8 6 11 106 0 1 2 5 10 6 3 9 4 8 7 11
76 0 1 2 3 4 6 7 10 8 9 5 11 107 0 1 2 4 10 8 5 3 9 7 6 11
77 0 1 2 3 4 5 7 10 9 6 8 11 108 0 1 2 4 10 8 6 3 9 7 5 11
78 0 1 2 3 4 6 7 10 5 9 8 11 109 0 1 2 4 10 8 7 5 3 9 6 11
79 0 1 2 3 4 6 9 5 10 8 7 11 110 0 1 3 5 7 10 8 6 4 2 9 11
80 0 1 2 3 4 6 8 7 10 5 9 11 111 0 1 3 7 6 10 5 4 8 2 9 11
81 0 1 2 3 5 4 6 9 10 8 7 11 112 0 1 2 6 7 10 5 9 4 8 3 11
82 0 1 2 3 4 7 9 8 6 10 5 11 113 0 2 4 8 10 6 1 3 5 7 9 11
83 0 1 2 3 4 6 9 8 10 7 5 11 114 0 3 6 4 9 1 10 2 7 5 8 11
84 0 1 2 3 4 7 6 10 8 5 9 11 115 0 2 4 6 8 10 5 1 3 7 9 11
85 0 1 2 3 4 5 8 10 9 7 6 11 116 0 3 4 7 10 2 9 6 1 5 8 11
86 0 1 2 3 4 6 9 7 10 8 5 11 117 0 3 6 2 1 4 7 10 9 5 8 11
87 0 1 2 3 4 6 8 10 5 7 9 11 118 0 2 10 6 1 9 5 7 8 4 3 11
88 0 1 2 3 4 5 8 10 7 9 6 11 120 0 6 10 2 4 8 3 7 9 1 5 11
89 0 1 2 3 4 6 7 10 9 5 8 11 122 1 3 8 9 2 4 7 10 0 5 6 11
90 0 1 2 3 4 6 8 10 7 9 5 11 123 0 4 6 10 2 3 8 9 1 5 7 11
91 0 1 2 3 4 6 10 9 7 8 5 11 124 1 3 8 2 4 9 7 5 10 0 6 11
92 0 1 2 3 4 7 9 6 10 5 8 11 126 1 5 9 10 3 4 8 0 2 6 7 11
93 0 1 2 3 4 6 10 9 5 8 7 11

Fill the hole of an ISOLS(12, 3) from Theorem 3.2 with a symmetric Latin square of order 3 to get a 138-SOLS(12).
This completes the proof. �

Lemma 4.5. There exists an r-SOLS(13) for every r ∈ [17, 163].
Proof. Start with an SOLS(4), applying Construction 3.8 with m = 4, n = 3, t = 0, R1 = {4, 9, 16} and R2 = {3, 9},
the input designs, q1-SOLS(4) for q1 ∈ R1 and q2-MOLS(3) for q2 ∈ R2, are from Theorems 1.1–1.3, then we obtain
an r-SOLS(13) for every r = ∑4

i=1 (q1i − 1) + 2
∑6

j=1 q2j + 1 ∈ 4 ⊗ (R1 − 1) + 6 ⊗ (2R2) + 1.
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Fig. 10. An SOLS(12).

Table 9

r Order-2-interchanges r Order-2-interchanges

119 0, 2; 4, 9 0, 7; 2, 7 3, 4; 1, 4 0, 2; 6, 11 130 0, 2; 4, 9 2, 5; 1, 9
121 0, 2; 4, 9 0, 7; 2, 7 0, 2; 6, 11 131 0, 2; 4, 9 2, 9; 2, 11
125 0, 2; 4, 9 0, 7; 2, 7 0, 10; 7, 9 132 0, 2; 4, 9 0, 11; 3, 10
127 0, 2; 4, 9 0, 7; 2, 7 1, 6; 3, 6 133 0, 2; 4, 9 5, 10; 7, 10
128 0, 2; 4, 9 0, 2; 6, 11 134 0, 2; 4, 9 1, 6; 3, 6
129 0, 2; 4, 9 0, 7; 2, 7 136 0, 7; 2, 7
135 5, 10; 7, 10 2, 9; 2, 11 3, 9; 0, 11 4, 6; 1, 8 137 0, 2; 4, 9

A computer search shows that 4⊗(R1−1)+6⊗(2R2)+1={49, 54, 59, 61, 64, 66, 69, 71, 73, 76, 78, 81, 83, 85, 88,
90, 93, 95, 97, 100, 102, 105, 107, 109, 112, 114, 117, 119, 121, 124, 126, 129, 131, 133, 136, 138, 141, 143, 145,

148, 150, 155, 157, 162, 169}.
Suppose that L = (aij ) is a symmetric Latin square of order 13, where aij = i + j (mod 13) (0� i, j �12). Give a

proper permutation � to the rows of L we obtain an r-SOLS(13) for r shown in Table 10.
Give several proper order-2-interchanges to the 15-SOLS(13), L1, or SOLS(13), L2, in Fig. 11 in turn, we obtain a

new r-SOLS(13). We list the order-2-interchanges and the corresponding r in Table 11.
We denote the 16-SOLS(13) shown in Fig. 12 by L. Then I(0,1;3,4)(L) is an 18-SOLS(13), I(6,9;2,8)(I(1,9;2,11)(L))

is a 28-SOLS(13). 159-SOLS(13) is in Fig. 12. 160-SOLS(13) is from Lemma 2.3. Fill the hole of an ISOLS(13, 3)

from Theorem 3.2 with a symmetric Latin square of order 3 to get a 163-SOLS(13). This completes the proof. �

5. Existence of r-SOLS(v) for 14�v�27

Lemma 5.1. There exists an r-SOLS(14) for every r ∈ [18, 190].

Proof. Start with a symmetric Latin square of order 2, applying Construction 3.6 with p = m = 2, k = 2, l = 0, n = 7
and R1 =[9, 45]∪ {47, 49}, the input designs, q1-SOLS(7) for q1 ∈ R1, are from Theorems 1.2 and 1.3, then we obtain
an r-SOLS(14) for every r = q11 + q12 ∈ 2 ⊗ R1 ⊃ [18, 94].

Start with an SOLS(4) with a symmetric transversal off the main diagonal from Theorem 3.9, applying Construction
3.8 withm=4,n=3, t=1,R1={4, 9, 16},R2={3, 9},R3={4, 6, 8, 9, 12, 16}, the input designs,q1-SOLS(4) forq1 ∈ R1,
q2-MOLS(3) for q2 ∈ R2, and q3-MOLS(4) for q3 ∈ R3, are from Theorems 1.1–1.3, then we obtain an r-SOLS(14)
for every r =∑4

i=1 (q1i −1)+2
∑4

j=1 q2j +2
∑2

k=1 (q3k −1)+2 ∈ 4⊗ (R1 −1)+4⊗ (2R2)+2 ⊗ (2(R3 −1))+2.
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Table 10

r � r �

37 0 1 2 3 4 5 6 7 8 9 10 12 11 84 0 1 2 3 4 6 5 7 10 11 9 12 8
39 0 1 2 3 4 5 6 7 8 11 12 9 10 86 0 1 2 3 4 6 5 7 9 11 12 10 8
40 0 1 4 12 11 10 9 8 7 6 5 2 3 87 0 1 2 3 4 5 6 8 9 11 12 10 7
41 0 1 2 3 4 5 6 7 8 10 9 12 11 89 0 1 2 3 4 5 6 9 11 12 8 7 10
42 0 1 5 4 3 2 7 6 12 11 10 9 8 91 0 1 2 3 4 5 6 8 11 12 10 9 7
43 0 1 2 3 10 11 12 6 7 8 9 5 4 92 0 1 2 3 4 6 5 7 11 12 9 10 8
44 0 1 8 12 11 10 9 6 7 4 5 2 3 94 0 1 2 3 4 6 5 7 11 10 12 9 8
45 0 1 2 3 4 5 6 8 7 10 9 12 11 96 0 1 2 3 4 6 5 7 10 12 11 9 8
46 0 1 3 2 9 8 12 11 10 4 5 7 6 98 0 1 2 3 4 6 5 8 12 11 7 10 9
47 0 1 2 3 4 6 5 8 7 10 9 12 11 99 0 1 2 3 4 5 6 8 9 12 11 7 10
48 0 1 4 3 2 12 11 8 7 10 9 6 5 101 0 1 2 3 4 5 6 8 12 11 9 10 7
50 0 1 2 3 5 4 7 6 9 8 12 11 10 103 0 1 2 3 4 5 6 8 12 11 7 10 9
51 0 1 2 3 4 6 5 7 8 10 9 12 11 104 0 1 2 3 4 6 7 9 11 5 10 12 8
52 0 1 2 3 5 12 7 8 9 10 4 11 6 106 0 1 2 3 4 6 5 9 12 10 11 8 7
53 0 1 2 3 4 5 6 7 9 8 12 11 10 108 0 1 2 3 4 6 7 9 11 5 12 10 8
55 0 1 2 3 4 5 6 7 8 12 11 10 9 110 0 1 2 3 4 6 8 10 12 5 9 11 7
56 0 1 2 4 3 5 8 7 6 12 11 10 9 111 0 1 2 3 4 5 6 9 12 10 11 8 7
57 0 1 2 3 4 5 6 7 10 12 8 11 9 113 0 1 2 3 4 5 8 11 9 12 7 6 10
58 0 1 2 3 4 6 5 10 11 12 7 8 9 115 0 1 2 3 4 5 10 12 7 11 9 8 6
60 0 1 2 3 4 6 5 8 7 12 11 10 9 116 0 1 2 3 4 6 11 7 10 12 9 5 8
62 0 1 2 3 4 6 5 12 11 10 9 8 7 118 0 1 2 3 4 6 12 7 11 10 5 9 8
63 0 1 2 3 4 5 6 7 9 8 11 12 10 120 0 1 2 3 5 6 10 9 12 8 4 11 7
65 0 1 2 3 4 5 6 8 7 9 11 12 10 122 0 1 2 3 5 7 10 12 9 6 8 4 11
67 0 1 2 3 4 5 6 7 8 10 12 9 11 123 0 1 2 3 5 12 6 11 10 4 9 8 7
68 0 1 2 3 4 6 5 8 7 10 11 12 9 125 0 1 2 4 5 7 9 12 3 6 8 10 11
70 0 1 2 3 4 6 5 8 7 10 12 9 11 127 0 1 2 4 5 8 12 11 6 3 9 10 7
72 0 1 2 3 4 6 5 7 9 10 11 12 8 128 0 1 2 4 5 10 8 12 11 9 3 7 6
74 0 1 2 3 4 6 5 7 9 10 12 8 11 130 0 1 2 4 8 10 3 6 9 12 11 5 7
75 0 1 2 3 4 5 6 8 7 10 12 11 9 132 0 1 3 7 9 11 2 4 8 10 12 6 5
77 0 1 2 3 4 5 6 7 8 10 12 11 9 135 0 1 3 4 9 6 12 10 2 7 5 11 8
79 0 1 2 3 4 5 6 7 8 11 12 10 9 137 0 1 2 4 5 6 12 11 10 3 9 8 7
80 0 1 2 3 4 6 5 7 10 11 12 8 9 151 0 1 3 5 7 12 11 9 2 4 6 8 10
82 0 1 2 3 4 6 5 7 10 12 11 8 9

Fig. 11. A 15-SOLS(13) and an SOLS(13).

A computer search shows that 4 ⊗ (R1 − 1) + 4 ⊗ (2R2) + 2 ⊗ (2(R3 − 1)) + 2 ⊃[95, 168] ∪ [170, 175] ∪
{178,179,180,182,186}.

Fig. 13 is an SOLS(14), where a, b, c and d denote 10, 11, 12 and 13, respectively. Give several proper order-2-
interchanges to the SOLS(14) in turn, we obtain a new r-SOLS(14). We list the order-2-interchanges and the corre-
sponding r in Table 12.
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Table 11

r Square Order-2-interchanges

17 L1 0, 2; 5, 6
19 L1 0, 1; 2, 3
20 L1 0, 11; 0, 12
21 L1 10, 12; 6, 7
22 L1 0, 11; 0, 12 0, 2; 5, 6
23 L1 10, 12; 6, 7 0, 1; 2, 3
24 L1 0, 11; 0, 12 0, 1; 2, 3
25 L1 10, 12; 6, 7 0, 1; 4, 5
26 L1 0, 11; 0, 12 0, 4; 7, 11
27 L1 0, 11; 0, 12 0, 11; 1, 11
29 L1 10, 12; 6, 7 1, 7; 5, 10 0, 1; 2, 3
30 L1 10, 12; 6, 7 1, 7; 5, 10 0, 11; 0, 12
31 L1 10, 12; 6, 7 1, 7; 5, 10 0, 1; 6, 7
32 L1 10, 12; 6, 7 1, 7; 5, 10 0, 11; 1, 11
33 L1 10, 12; 6, 7 1, 7; 5, 10 0, 5; 7, 12
34 L1 10, 12; 6, 7 1, 7; 5, 10 0, 11; 1, 11 0, 1; 2, 3
35 L1 10, 12; 6, 7 1, 7; 5, 10 0, 5; 7, 12 0, 1; 2, 3
36 L1 10, 12; 6, 7 1, 7; 5, 10 0, 5; 7, 12 8, 12; 0, 4
38 L1 10, 12; 6, 7 1, 7; 5, 10 0, 5; 7, 12 0, 11; 1, 11
134 L2 1, 3; 1, 5 1, 2; 0, 1 4, 8; 4, 7 5, 7; 7, 11 0, 6; 4, 5
139 L2 1, 3; 1, 5 1, 2; 0, 1 4, 8; 4, 7 5, 7; 7, 11 9, 10; 9, 11
140 L2 1, 3; 1, 5 1, 2; 0, 1 4, 8; 4, 7 5, 7; 7, 11 0, 2; 1, 3
142 L2 1, 3; 1, 5 1, 2; 0, 1 4, 8; 4, 7 5, 7; 7, 11
144 L2 1, 3; 1, 5 1, 2; 0, 1 4, 8; 4, 7 9, 11; 9, 12
146 L2 1, 3; 1, 5 1, 2; 0, 1 4, 8; 4, 7 9, 10; 9, 11
147 L2 1, 3; 1, 5 1, 2; 0, 1 4, 8; 4, 7 0, 2; 1, 3
149 L2 1, 3; 1, 5 1, 2; 0, 1 4, 8; 4, 7
152 L2 1, 3; 1, 5 1, 2; 0, 1 3, 10; 7, 11
153 L2 1, 3; 1, 5 1, 2; 0, 1 9, 10; 9, 11
154 L2 1, 3; 1, 5 0, 6; 4, 5
156 L2 1, 3; 1, 5 1, 2; 0, 1
158 L2 1, 3; 1, 5 3, 9; 5, 11
161 L2 0, 6; 4, 5

Fig. 12. A 16-SOLS(13) and a 159-SOLS(13).

From [1, Lemma 2.7] we have an ISOLS(14; 4, 2). Filling the hole of side four with a 9-SOLS(4) from Theorem
1.3, and the hole of side two with a symmetric Latin square of order two we obtain a 187-SOLS(14).

From Theorem 3.2 we have an ISOLS(14, 3). Filling the hole of side three with a symmetric Latin square of order
three we obtain a 190-SOLS(14). This completes the proof. �
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Fig. 13. An SOLS(14).

Table 12

r Order-2-interchanges r Order-2-interchanges

169 1, 3; 3, 9 0, 7; 5, 12 2, 4; 4, 10 0, 9; 4, 5 184 1, 3; 3, 9 1, 8; 1, 4
176 1, 3; 3, 9 0, 7; 5, 12 0, 9; 4, 5 185 1, 3; 3, 9 1, 12; 9, 12
177 1, 3; 3, 9 0, 7; 5, 12 0, 2; 2, 5 188 0, 1; 5, 9
181 1, 3; 3, 9 0, 1; 6, 12 189 1, 3; 3, 9
183 1, 3; 3, 9 1, 5; 6, 9

Lemma 5.2. There exists an r-SOLS(15) for every r ∈ [19, 219].

Proof. Start with a symmetric Latin square of order 3, applying Construction 3.6 with p = m = 3, k = 3, l = 0, n = 5
and R1 = {5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 25}, the input designs, q1-SOLS(5) for q1 ∈ R1, are from Theorems 1.2
and 1.3, we can obtain an r-SOLS(15) for every r = ∑3

i=1 q1i ∈ 3 ⊗ R1 ⊃ [19, 61].
Start with an SOLS(4) with two symmetric transversal off the main diagonal from Theorem 3.9, applying Construction

3.8 with m=4, n=3, t =2, R1 ={4, 9, 16}, R2 ={3, 9}, R3 ={4, 6, 8, 9, 12, 16}, the input designs, q1-SOLS(4) for q1 ∈
R1, q2-MOLS(3) for q2 ∈ R2, and q3-MOLS(4) for q3 ∈ R3 are from Theorems 1.1–1.3, then we obtain an r-SOLS(15)
for every r =∑4

i=1 (q1i −1)+2
∑2

j=1 q2j +2
∑4

k=1 (q3k −1)+3 ∈ 4⊗ (R1 −1)+2 ⊗ (2R2)+4⊗ (2(R3 −1))+3.
A computer search shows that 4 ⊗ (R1 − 1) + 2 ⊗ (2R2) + 4 ⊗ (2(R3 − 1)) + 3 ⊃ [63, 193] ∪ [195, 200] ∪ {203,

204, 205, 207, 211, 212, 219}.
Suppose that L = (aij ) is a symmetric Latin square of order 15, where aij = i + j (mod 15) (0� i, j �14). Give the

permutation � = (0 1 2 3 4 5 7 6 9 8 11 10 14 13 12) to the rows of L we obtain a 62-SOLS(15).
Fig. 14 is an SOLS(15), where a, b, c, d and e denote 10, 11, 12, 13 and 14, respectively. Give several proper

order-2-interchanges to the SOLS(15) in turn, we obtain a new r-SOLS(15). We list the order-2-interchanges and the
corresponding r in Table 13.

216-SOLS(15) is from Lemma 2.3. This completes the proof. �

Lemma 5.3. There exists an r-SOLS(16) for every r ∈ [20, 250] ∪ {252}.

Proof. Start with a symmetric Latin square of order 2, applying Construction 3.6 with p = m = 2, k = 2, l = 0, n = 8
and R1 = [10, 62], the input designs, q1-SOLS(8) for q1 ∈ R1, are from Theorem 1.4, then we obtain an r-SOLS(16)
for every r = q11 + q12 ∈ 2 ⊗ R1 = [20, 124].

Start with an SOLS(4), applying Corollary 3.7 with m = n = 4, R1 = {4, 9, 16}, R2 = {4, 6, 8, 9, 12, 16}, the input
designs, q1-SOLS(4) for q1 ∈ R1 and q2-MOLS(4) for q2 ∈ R2, are from Theorems 1.1–1.3, then we obtain an
r-SOLS(16) for every r = ∑4

i=1 pi + 2
∑6

j=1 qj ∈ 4 ⊗ R1 + 6 ⊗ (2R2), where pi ∈ R1, qj ∈ R2.



Y. Xu, Y. Chang / Discrete Mathematics 306 (2006) 124 –146 141

Fig. 14. An SOLS(15).

Table 13

r Order-2-interchanges r Order-2-interchanges

194 0, 2; 0, 1 0, 8; 11, 13 0, 13; 4, 10 1, 3; 7, 13 210 0, 2; 0, 1 0, 8; 11, 13
201 0, 2; 0, 1 0, 8; 11, 13 0, 13; 4, 10 1, 2; 0, 6 213 0, 6; 1, 13 7, 13; 6, 8
202 0, 2; 0, 1 0, 8; 11, 13 0, 13; 4, 10 214 0, 2; 0, 1 0, 1; 0, 4
206 0, 2; 0, 1 0, 8; 11, 13 0, 1; 0, 4 215 0, 2; 0, 1 1, 2; 0, 6
208 0, 2; 0, 1 0, 8; 11, 13 0, 1; 1, 6 217 0, 6; 1, 13
209 0, 2; 0, 1 0, 8; 11, 13 8, 11; 6, 11 218 0, 2; 0, 1

Table 14

r Order-2-interchanges

231 0, 1; 4, 6 0, 4; 1; 9 0, 1; 5, 7 2, 7; 7, 13
239 0, 1; 4, 6 0, 4; 1; 9 2, 7; 7, 13
243 0, 1; 4, 6 0, 4; 0; 8

A computer search shows that 4 ⊗ R1 + 6 ⊗ (2R2) ⊃ [125, 230]∪[232, 237] ∪{240, 241, 242, 244, 248, 249}.
Filling the hole of side five of an ISOLS(16, 5) from Theorem 3.2 with an s-SOLS(5) for s ∈ {7, 14, 15, 19, 21}

from Theorem 1.3, we then obtain an r-SOLS(16) for r ∈ {238, 245, 246, 250, 252}.
Start with an SOLS(4), applying Inflation Construction, replace each cell of the SOLS(4) with the same SOLS(4)

labelled by the element in that cell. We then get an SOLS(16) denoted by L. Give several proper order-2-interchanges
to L in turn we get a new r-SOLS. We list the order-2-interchanges and the corresponding r in Table 14.

247-SOLS(16) is from Lemma 2.3. This completes the proof. �

Lemma 5.4. There exists an r-SOLS(17) for every r ∈ [21, 283] ∪ {285}.

Proof. Applying Construction 3.14 with n=5, k=2, r1 ∈ M6 ={6}∪[8, 32], P1 ={(0, 1), (1, 0), (2, 2), (3, 3), (4, 4)},
the input designs, r1-MOLS(6) is from Theorem 1.1, 5-SOLS(5) with DOP set P1, 6-SOLS(6) with x in the right
bottom corner and DOP set P1 ∪{(x, x)}, and the r2-SOLS(6) with x in the right bottom corner and DOP set containing
P1 ∪{(x, x)} for r2 ∈ {6, 9, 11}, are from Figs. 15 and 16, we then obtain an r-SOLS(17) for every r =2r1 +r2 −3+2 ∈
2M6 + {6, 9, 11} − 1 ⊃ [21, 68].
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Fig. 15. A 5-SOLS(5) and a 6-SOLS(6).

Fig. 16. A 9-SOLS(6) and an 11-SOLS(6).

Applying Construction 3.8 with m=n=4, t=0, R1={5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 25}, R2={4, 6, 8, 9, 12, 16}
we have an r-SOLS(17) for every r = ∑4

i=1 (q1i − 1) + 2
∑6

j=1 q2j + 1 ∈ 4 ⊗ (R1 − 1) + 6 ⊗ (2R2) + 1, where
q1i ∈ R1 and q2j ∈ R2.

A computer search shows that 1 + 4 ⊗ (R1 − 1) + 6 ⊗ (2R2) ⊃ [69, 275] ∪{277, 278, 279, 281, 283, 285}.
276-SOLS(17) and 280-SOLS(17) are from Lemma 2.3. Filling the hole of an ISOLS(17, 4) from Theorem 3.2 with

a 9-SOLS(4) we obtain a 282-SOLS(17). This completes the proof. �

Lemma 5.5. There exists an r-SOLS(18) for every r ∈ [22, 318] ∪ {320}.

Proof. Start with a symmetric Latin square of order 2, applying Construction 3.6 with p = m = 2, k = 2, l = 0, n = 9
and R1 = [11, 79], the input designs, q1-SOLS(9) for q1 ∈ R1, are from Lemmas 3.11, 4.1, and 3.5, then we obtain an
r-SOLS(16) for every r = q11 + q12 ∈ 2 ⊗ R1 = [22, 158].

Applying Construction 3.8 with m=n=4, t=1, R1={5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 25}, R2={4, 6, 8, 9, 12, 16},
R3 = R1 we have an r-SOLS(18) for every r = ∑4

i=1 (q1i − 1) + 2
∑4

j=1 q2j + 2
∑2

k=1 (q3k − 1) + 2 ∈ 4 ⊗ (R1 −
1) + 4 ⊗ (2R2) + 2 ⊗ (2(R1 − 1)) + 2, where q1i , q3k ∈ R1 and q2j ∈ R2.

A computer search shows that 4 ⊗ (R1 − 1)+ 4 ⊗ (2R2)+ 2 ⊗ (2(R1 − 1))+ 2 ⊃ [159, 308] ∪{310, 311, 312, 314,

316, 318}.
Filling the hole of an ISOLS(18, 5) from Theorem 3.2 with an s-SOLS(5) for s ∈ {10, 14, 21} we obtain an r-

SOLS(18) for r ∈ {309, 313, 320}. 315-SOLS(18) is from Lemma 2.3. Filling the hole of ISOLS(18, 4) from Theorem
3.2 with a 9-SOLS(4) we obtain a 317-SOLS(18). This completes the proof. �

Lemma 5.6. There exists an r-SOLS(19) for every r ∈ [23, 357].

Proof. The first square in Fig. 17 is a 6-SOLS(6) with DOP set Q= {(0,0), (1,2), (2,1), (3,3), (4,5), (5,4)}. The second
square in Fig. 17 is a 12-SOLS(7) with x in the right bottom corner and DOP set Q ∪ {(0, 3), (3, 0), (4, 4), (5, x),

(x, 5), (x, x)}. The third square in Fig. 17 is a 14-SOLS(7) with x in the right bottom corner and DOP set Q ∪
{(0, 1), (1, 0), (0, 2), (2, 0), (2, 2), (4, 4), (5, 5), (x, x)}.

Applying Construction 3.14 with n = 6, k = 1, r1 ∈ M7 = {7} ∪ [9, 47], P1 = P = {(i, i) : 0� i�5} or P1 =
Q = {(0, 0), (1, 2), (2, 1), (3, 3), (4, 5), (5, 4)}, r2 = 7 when P1 = P , r2 ∈ {12, 14} when P1 = Q, the input designs,
r1-MOLS(7) is from Theorem 1.1, 6-SOLS(6) with DOP set P1 = P and 7-SOLS(7) with DOP set P ∪ {(x, x)} are
from symmetric Latin squares with entries aij = i + j (mod v) (i,j ∈ Zv), 6-SOLS(6) with DOP set P1 = Q and
r2-SOLS(7) with DOP set containing Q ∪ {(x, x)} for r2 ∈ {12, 14} are from Fig. 17, we then obtain an r-SOLS(19)
for every r = 2r1 + r2 − 3 + 1 ∈ 2M7 + {7, 12, 14} − 2 ⊃ [23, 100].
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Fig. 17. 6-SOLS(6) with associated 12-SOLS(7) and 14-SOLS(7).

Applying Construction 3.8 with m=n=4, t=2, R1={5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 25}, R2={4, 6, 8, 9, 12, 16},
R3 = R1 we have an r-SOLS(19) for every r = ∑4

i=1 (q1i − 1) + 2
∑2

j=1 q2j + 2
∑4

k=1 (q3k − 1) + 3 ∈ 4 ⊗ (R1 −
1) + 2 ⊗ (2R2) + 4 ⊗ (2(R1 − 1)) + 3, where q1i , q3k ∈ R1 and q2j ∈ R2.

A computer search shows that 4 ⊗ (R1 − 1) + 2 ⊗ (2R2) + 4 ⊗ (2(R1 − 1)) + 3 ⊃ [101, 341].
Filling the hole of an ISOLS(19, 6) from Theorem 3.2 with an s-SOLS(6) for s ∈ [17, 31] we obtain an r-SOLS(19)

for every r = 325 + s ∈ [342, 356]. Filling the hole of ISOLS(19, 5) from Theorem 3.2 with a 21-SOLS(5) from
Theorem 1.3 we obtain a 357-SOLS(19). This completes the proof. �

Lemma 5.7. There exists an r-SOLS(20) for every r ∈ [24, 394] ∪ {396}.

Proof. Start with a symmetric Latin square of order 2, applying Construction 3.6 with p=m=2, k=2, l=0, n=10
and R1 = [12, 98], the input designs, q1-SOLS(10) for q1 ∈ R1, are from Lemmas 3.11, 4.2, and 3.5, then we can
obtain an r-SOLS(20) for every r = q11 + q12 ∈ 2 ⊗ R1 = [24, 196].

Applying Corollary 3.7 with m = 4, n = 5, R1 = {5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 25}, R2 = R1 ∪ {12, 16, 18},
the input designs, q1-SOLS(5) for q1 ∈ R1 and q2-MOLS(5) for q2 ∈ R2, are from Theorems 1.1–1.3, then we obtain
an r-SOLS(20) for every r = ∑4

i=1 q1i + 2
∑6

j=1 q2j ∈ 4 ⊗ R1 + 6 ⊗ (2R2).
A computer search shows that 4 ⊗ R1 + 6 ⊗ (2R2) ⊃ [197, 386]∪{388, 389, 390, 392, 394, 396}.
387-SOLS(20) and 391-SOLS(20) are from Lemma 2.3. Filling the hole of an ISOLS(20, 4) from Theorem 3.2 with

a 9-SOLS(4) we obtain a 393-SOLS(20). This completes the proof. �

Lemma 5.8. There exists an r-SOLS(21) for every r ∈ [25, 437].

Proof. Start with a symmetric Latin square of order 3, applying Construction 3.6 with p = m = 3, k = 3, l = 0,

n = 7, R1 = {7} ∪ [9, 45], the input designs, q1-SOLS(n) for q1 ∈ R1, are from Theorems 1.2 and 1.3, then we can
obtain an r-SOLS(21) for every r = ∑3

i=1 q1i ∈ 3 ⊗ R1 ⊃ [25, 135].
Applying Construction 3.8 with m=4, n=5, t=0, R1={6}∪[8, 31], R2={5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

21, 25} we have an r-SOLS(21) for every r = ∑4
i=1 (q1i − 1) + 2

∑6
j=1 q2j + 1 ∈ 4 ⊗ (R1 − 1) + 6 ⊗ (2R2) + 1,

where q1i ∈ R1 and q2j ∈ R2.
A computer search shows that 4 ⊗ (R1 − 1) + 6 ⊗ (2R2) + 1 ⊃ [136, 421].
Filling the hole of an ISOLS(21, 6) from Theorem 3.2 with an s-SOLS(6) for s ∈ [17, 31] we obtain an r-SOLS(21)

for r ∈ [422, 436]. Filling the hole of ISOLS(21, 5) from Theorem 3.2 with a 21-SOLS(5) from Theorem 1.3 we obtain
a 437-SOLS(21). This completes the proof. �

Lemma 5.9. There exists an r-SOLS(22) for every r ∈ [26, 480].

Proof. Start with a symmetric Latin square of order 2, applying Construction 3.6 with p = m = 2, k = 2, l = 0, n = 11
and R1 = [13, 119], the input designs, q1-SOLS(n) for q1 ∈ R1, are from Lemmas 3.11, 4.3, and 3.5, then we can
obtain an r-SOLS(22) for every r = q11 + q12 ∈ 2 ⊗ R1 = [26, 238].

Applying Construction 3.8 with m=4, n=5, t =1, R1 =[8, 31], R2 ={5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21,

25}, R3=[8, 32], the input designs, q1-SOLS(6) for q1 ∈ R1, q2-MOLS(5) for q2 ∈ R2, and q3-MOLS(6) for q3 ∈ R3 are
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Fig. 18. A 7-SOLS(7), an 8-SOLS(8), and a 13-SOLS(8).

from Theorems 1.1–1.3, we then obtain an r-SOLS(22) for every r=∑4
i=1 (q1i−1)+2

∑4
j=1 q2j +2

∑2
k=1 (q3k−1)+2

∈ 4 ⊗ (R1 − 1) + 4 ⊗ (2R2) + 2 ⊗ (2(R3 − 1)) + 2, where q1i ∈ R1, q2j ∈ R2 and q3k ∈ R3.
A computer search shows that 4 ⊗ (R1 − 1) + 4 ⊗ (2R2) + 2 ⊗ (2(R3 − 1)) + 2 ⊃ [239, 446].
Filling the hole of an ISOLS(22, 7) from Theorem 3.2 with an s-SOLS(7) for s ∈ [12, 45] we obtain an r-SOLS(22)

for r ∈ [447, 480]. This completes the proof. �

Lemma 5.10. There exists an r-SOLS(23) for every r ∈ [27, 525].

Proof. Applying Construction 3.14 withn=7, k=2, r1 ∈ M8={8}∪[10, 62], r2 ∈ {8, 11, 13},P1={(0, 0), (1, 2), (2, 1),
(3, 4), (4, 3), (5, 6), (6, 5)}, the input designs, r1-MOLS(8) for r1 ∈ M8 are from Theorem 1.1, 7-SOLS(7) with
different ordered pair set P1, 8-SOLS(8) with x in the right bottom corner and DOP set P1 ∪ {(x, x)}, and 13-SOLS(8)
with x in the right bottom corner and DOP set containing P1 ∪ {(x, x)}, are from Fig. 18, 11-SOLS(8) with x in the
right bottom corner and DOP set containing P1 ∪ {(x, x)}, are from Lemma 3.10, we then obtain an r-SOLS(23) for
every r = 2r1 + r2 − 3 + 2 ∈ 2M8 + {8, 11, 13} − 1 ⊃ [27, 132].

Applying Construction 3.8 withm=4,n=5, t=2,R1=[8, 31],R2={5, 7, 10, 11, 12,13, 14, 15, 16, 17, 18, 19, 21, 25},
R3 = [8, 32] we obtain an r-SOLS(23) for every r = ∑4

i=1 (q1i − 1) + 2
∑2

j=1 q2j + 2
∑4

k=1 (q3k − 1) + 3 ∈
4 ⊗ (R1 − 1) + 2 ⊗ (2R2) + 4 ⊗ (2(R3 − 1)) + 3, where q1i ∈ R1, q2j ∈ R2 and q3k ∈ R3.

A computer search shows that 4 ⊗ (R1 − 1) + 2 ⊗ (2R2) + 4 ⊗ (2(R3 − 1)) + 3 ⊃ [133, 471].
From Theorem 3.4 we have an FSOLS(5431). Fill the four holes of side 5 with s-SOLS(5) for s ∈ S5={5, 7, 10, 11, 13,

14, 15, 17, 19, 21, 25}. Fill the hole of side 3 with a 3-SOLS(3). We then obtain an r-SOLS(23) for every r ∈ 420 +
4 ⊗ S5 + 3 ⊃ [472, 513].

Filling the hole of an ISOLS(23, 7) from Theorem 3.2 with an s-SOLS(7) for s ∈ [34, 45] we obtain an r-SOLS(23)
for every r ∈ 480 + [34, 45] = [514, 525]. This completes the proof. �

Lemma 5.11. There exists an r-SOLS(24) for every r ∈ [28, 572].

Proof. Start with a symmetric Latin square of order 2, applying Construction 3.6 with p = m = 2, k = 2, l = 0, n = 12
and R1 = [14, 138], the input designs, q1-SOLS(n) for q1 ∈ R1, are from Lemmas 3.11 and 4.4, then we can obtain an
r-SOLS(24) for every r = q11 + q12 ∈ 2 ⊗ R1 = [28, 276].

Applying Corollary 3.7 with m = 4, n = 6, R1 = [8, 31], R2 = [8, 32] ∪ {34}, the input designs, q1-SOLS(6)
for q1 ∈ R1 and q2-MOLS(6) for q2 ∈ R2, are from Theorems 1.1–1.3, then we obtain an r-SOLS(24) for every
r = ∑4

i=1 q1i + 2
∑6

j=1 q2j ∈ 4 ⊗ R1 + 6 ⊗ (2R2).
It is easy to get that 4 ⊗ R1 + 6 ⊗ (2R2) = [128, 532].
From Theorem 3.4 we have an FSOLS(5441). Fill the four holes of side 5 with s-SOLS(5) for s ∈ {14, 15}. Fill the

hole of side 4 with an SOLS(4). We then obtain an r-SOLS(24) for every r ∈ 460 + 4 ⊗ {14, 15} + 16 ⊃ [533, 535].
Filling the hole of an ISOLS(24, 7) from Theorem 3.2 with an s-SOLS(7) for s ∈ [9, 45] we obtain an r-SOLS(24)

for r ∈ [536, 572]. �

Lemma 5.12. There exists an r-SOLS(25) for every r ∈ [29, 623].

Proof. Start with a symmetric Latin square of order 5, applying Construction 3.6 with p = m = 5, k = 5, l = 0, n = 5,
R1 = {5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 25}, the input designs, q1-SOLS(5) for q1 ∈ R1, are from Theorem 1.3, then
we can obtain an r-SOLS(25) for every r = ∑5

i=1 q1i ∈ 5 ⊗ R1 ⊃ [29, 111].
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Applying Construction 3.8 with m = 4, n = 6, t = 0, R1 = {7} ∪ [9, 45] ∪ {47, 49}, R2 = {6} ∪ [8, 32] ∪ {34} we
have an r-SOLS(25) for every r = ∑4

i=1 (q1i − 1) + 2
∑6

j=1 q2j + 1 ∈ 4 ⊗ (R1 − 1) + 6 ⊗ (2R2) + 1, where q1i ∈ R1
and q2j ∈ R2.

A computer search shows that 4 ⊗ (R1 − 1) + 6 ⊗ (2R2) + 1 ⊃ [112, 597].
Filling the hole of an ISOLS(25, 8) from Theorem 3.2 with an s-SOLS(8) for s ∈ [37, 62] we obtain an r-SOLS(25)

for every r ∈ [598, 623]. �

Lemma 5.13. There exists an r-SOLS(26) for every r ∈ [30, 672].
Proof. Start with a symmetric Latin square of order 2, applying Construction 3.6 with p = m = 2, k = 2, l = 0, n = 13
and R1 = [15, 163], the input designs, q1-SOLS(n) for q1 ∈ R1, are from Lemmas 3.11 and 4.5, then we can obtain an
r-SOLS(26) for every r = q11 + q12 ∈ 2 ⊗ R1 = [30, 326].

Applying Construction 3.8 with m = 4, n = 6, t = 1, R1 = [9, 45] ∪ {47, 49}, R2 = [8, 32] ∪ {34}, R3 = R1 we have
an r-SOLS(26) for every r = ∑4

i=1 (q1i − 1) + 2
∑4

j=1 q2j + 2
∑2

k=1 (q3k − 1) + 2 ∈ 4 ⊗ (R1 − 1) + 4 ⊗ (2R2) +
2 ⊗ (2(R1 − 1)) + 2, where q1i , q3k ∈ R1 and q2j ∈ R2.

It is easy to get that 4 ⊗ (R1 − 1) + 4 ⊗ (2R2) + 2 ⊗ (2(R1 − 1)) + 2 ⊃ [327, 654].
Filling the hole of an ISOLS(26, 7) from Theorem 3.2 with an s-SOLS(7) for s ∈ [28, 45] we obtain an r-SOLS(26)

for every r ∈ [655, 672]. �

Lemma 5.14. There exists an r-SOLS(27) for every r ∈ [31, 727].
Proof. Start with a symmetric Latin square of order 3, applying Construction 3.6 with p = m = 3, k = 3, l = 0, n = 9,
R1 = {9} ∪ [11, 79], the input designs, q1-SOLS(n) for q1 ∈ R1, are from Theorem 1.2 and Lemmas 3.11, 4.1 and 3.5,
then we can obtain an r-SOLS(27) for every r = ∑3

i=1 q1i ∈ 3 ⊗ R1 ⊃ [31, 237].
Applying Construction 3.8 with m=4, n=6, t=2, R1=[9, 45]∪{47}, R2=[8, 32], R3=[9, 47] we have an r-SOLS(27)

for every r =∑4
i=1 (q1i −1)+2

∑2
j=1 q2j +2

∑4
k=1 (q3k −1)+3 ∈ 4⊗ (R1 −1)+2 ⊗ (2R2)+4⊗ (2(R3 −1))+3,

where q1i ∈ R1, q2j ∈ R2 and q3k ∈ R3.
It is easy to get that 4 ⊗ (R1 − 1) + 2 ⊗ (2R2) + 4 ⊗ (2(R3 − 1)) + 3 ⊃ [238, 677].
Filling the hole of an ISOLS(27, 8) from Theorem 3.2 with an s-SOLS(8) for s ∈ [13, 62] we obtain an r-SOLS(27)

for r ∈ [678, 727]. �

6. Concluding remarks

We are now in a position to give the main results of this paper.

Theorem 6.1. For any integer 9�v�27, there exists an r-SOLS(v) if v�r �v2 and r /∈ {v + 1, v2 − 1} with the
possible exceptions of v and r shown in Table 15.

Proof. Combining Theorem 1.2, Lemmas 3.5, 3.11, 4.1–4.5, and 5.1–5.14. �

The following is an updated theorem about the existence of r-self-orthogonal Latin squares.

Theorem 6.2. For any integer v�2, there exists an r-SOLS(v) if and only if v�r �v2 and r /∈ {v + 1, v2 − 1} except
the genuine and possible exceptions listed in Table 16.

Table 15

Order v Possible exceptions of r

12, 13, 14, 15 v2 − 5, v2 − 4, v2 − 3
16, 17, 18, 20 v2 − 5, v2 − 3
19, 21, 22, 23, 24, 26 v2 − 3
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Table 16
Exceptions of r-SOLS(v) for r ∈ [v, v2]\{v + 1, v2 − 1}
Order v Genuine exceptions of r Possible exceptions of r

2 4
3 5, 6, 7, 9
4 6, 7, 8, 10, 11, 12, 13, 14
5 8, 9, 12, 16, 18, 20, 22, 23
6 32, 33, 34, 36
7 46
12,13,14,15 v2 − 5, v2 − 4, v2 − 3
16,17,18,20 v2 − 5, v2 − 3
19,21,22,23,24,26 v2 − 3

Proof. The necessity comes from Theorem 1.1. The sufficiency comes from Theorems 1.3–1.5, and Theorem 6.1. �
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