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Abstract The microbial diversity in Wuli Area, Qinghai-Tibetan Plateau was investigated using 16S

rRNA gene phylogenetic analyses. A total of 117 bacterial and 66 archaeal 16S rRNA gene clones were

obtained from the Wuli cold springs. The bacterial clones could be classified into Proteobacteria, Acid-

obacteria, Deinococci, Sphingobacteria, Flavobacteria, Nitrospirae, Actinobacteria, Gemmatimona-

detes, and unclassified-bacteria; and the archaeal clones could be classified into Crenarchaeota and

Thaumarchaeota. Among the major groups, Proteobacteria and Crenarchaeota were dominant in the

bacterial and archaeal 16S rRNA gene clone libraries, respectively. The clone sequences obtained in Wuli

cold springs were closely related to those from cold habitats, such as snow/ice/soils on high mountains or

at high latitude. Especially, the microbial community composition of Wuli Area was more similar to that

in Tibetan glaciers than cold environments of other locations. The data presented in this study have impli-

cations for a better understanding of microbial diversity in cold springs on the Qinghai-Tibetan Plateau.
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1. Introduction

Microbial communities in terrestrial cold springs at low elevation
and high latitude have been sporadically reported, such as cold
sulfurous springs in Regensburg, Bavaria, Germany (Rudolph et al.,
2001), a cold sulfurous spring in the province ofValencia, East Spain
(Camacho et al., 2005), cold perennial springs of the High Arctic
(Perreault et al., 2007; Perreault et al., 2008), a cold sulfur-rich-
spring on the shoreline of Lake Erie, Michigan (Chaudhary et al.,
2009), and a cold spring in Shawan, Xinjiang, China (Zeng et al.,
2010). These studies reveal that diverse microbial communities are
present in cold springs; and the diverse microbial communities were
mainly psychrotolerant or psychrophilic (Perreault et al., 2008).
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Despite these limited microbial studies of cold springs, almost
little is known about the microbial diversity in cold springs at high
elevations, especially on the Qinghai-Tibetan Plateau. The Qing-
hai-Tibetan Plateau is located in the Mediterranean-Himalayas
tectonic zone, and most of this area is underlain by deep,
continuous permafrost and it hosts many active faults, along which
cold springs are often distributed (Wu et al., 2003). However,
nothing is known about the bacterial and archaeal diversity in
these cold springs. The objective of this study was therefore to
investigate the bacterial and archaeal diversity in two cold springs
in Wuli Area, located in the west of Qinghai Province and elevated
at 4600 m above sea level, on the Qinghai-Tibetan Plateau by
using 16S rRNA gene phylogenetic analysis.

2. Materials and methods

2.1. Sample collection

In July 2010, two cold springs (34�200N/94�380E) adjacent to each
other were selected for sampling in Wuli Area (Fig. 1). At the
sampling location (around noon), the ambient temperature was
15e17 �C, whereas the water temperature of the sampled cold
spring was around 4 �C. Sediments in the two cold springs
(designated as QCS1 and QCS2, respectively) were collected into
50 mL sterile Falcon tubes using a sterile spatula, and were
subsequently stored at �20 �C on the field and during trans-
portation. The samples were stored at �80 �C on arrival in the
laboratory until further analysis.

2.2. Pore water chemistry and sediment mineralogy

Anion compositions of the porewater in the sedimentwere analyzed
using ionic chromatograph (IC) on a Dionex ISC90 equipped with
Figure 1 A geographic map showing the locations of
a conductivity detector and an AS14A column (Eluent, 10 mmol/L
Na2CO3/NaHCO3; flow rate, 1.0 mL/min). Cation compositions of
the pore water in the sediment were analyzed using inductively
coupled plasma-optical emission spectrometry (ICP-OES; Varian
VistaMPX,Varian, Palo Alto, CA, USA). The sediment mineralogy
was analyzed by using powder X-ray diffraction (XRD) with
a D/max-2550/PC diffractometer (Rigaku) using a Cu KR as
X-radiation source (40 kV; 40 mA).

2.3. DNA isolation, PCR amplification, and phylogenetic
analysis

The collected samples were subjected to DNA extraction using
FastDNA� SPIN Kit for soil (MP Biomedicals, LLC, Ohio, USA)
according to the manufacturer’s protocols. Total community
DNAwas amplified using 16S rRNA gene primer sets, Bac27F-YM
(50-AGA GTTTGATYMTGGCTCAG-30)/Univ1492R (50-CGG
TTACCTTGTTACGACTT-30) and Arch21F (50-TTCYGGTT
GATCCYGCCRGA-30)/Arch958R (50-YCCGGCGTTGAMTCC
ATTT-30) for bacteria and archaea, respectively (Jiang et al., 2007;
Jiang et al., 2009). PCR conditions were established according to
Jiang et al. (2007) and Jiang et al. (2009). The PCR products were
purified using an Agarose Gel DNA Fragment RecoveryKit Ver. 2.0
(TaKaRa, Dalian, China) according to the manufacturer’s instruc-
tions. Purified PCR products were ligated into pGEM�-T Easy
Vector system (Promega, Madison, WI, USA) and transformed into
competent Escherichia coli JM109 cells according to the manufac-
turer’s instructions, and 16S rRNA gene clone libraries were con-
structed. Approximately 30 and 60 positive clones per library were
randomly selected for sequencing. The 16S rRNA gene inserts were
sequenced at Shanghai SangonBiotechwith anABI 3100 automated
sequencer using primers of Arch21F and Bac27F-YM for archaea
and bacteria, respectively. The raw sequences were trimmed by
sampling site in Wuli, Qinghai Province, NW China.
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using Sequencher 4.8, and were examined for chimera with
Bellerophon (http://foo.maths.uq.edu.au/whuber/bellerophon.pl).
Potential chimeric sequences were removed. Operational taxonomic
units (OTUs) were determined using DOTUR (Schloss and
Handelsman, 2005) with a 97% cutoff value. Rarefaction analysis
(Schloss and Handelsman, 2005) was performed to evaluate the
saturation of the sampled clones. The clone sequencing was stopped
when the rarefaction curves were (or almost) saturated. Represen-
tative clones (one from each OTU) were BLASTed in the GenBank
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Phylogenetic analysis was
performed using distance-based Neighbor-Joining method with
MEGA version 4.0 (Tamura et al., 2007). Bootstrap replications of
1000 were assessed. The representative clone sequences determined
in this study have been deposited in the GenBank database under
accession numbers JF776281-JF776296 and JF776297-JF776355
for archaea and bacteria, respectively.

2.4. Statistical analysis and sequence population diversity

Clone sequences with similarities of greater than 97% were
considered to represent the same phylotypes (Jiang et al., 2007).
Coverage (C) was calculated as follows: C Z 1 � (n1/N), where
n1 is the number of phylotypes that occurred only once in the
clone library and N is the total number of clones analyzed.

3. Results

3.1. Pore water chemistry and sediment mineralogy

The concentrations of major anions and cations in the pore water
are as follows (ppm): Cl� (132.94), SO4

2� (159.06), NO3
� (3.57),

PO4
3� (0.42), Kþ (5.19), Naþ (104.15), Ca2þ (50.14), and Mg2þ

(40.75). X-ray diffraction results indicated that the sediment
samples were dominated with quartz (70%), plagioclase (10%),
calcite (3%e4%), montmorillonite, illite and kaolinite in decreasing
order of abundance.
Table 1 Ecological estimates and major group affiliation of bacterial 1

on the Tibetan Plateau.

Clone library QCSB1

Library size (No. of clones) 52

Coverage (%) 69.2

No. of observed OTUs 22

Simpson’ s diversity index (D) 0.785

ShannoneWiener’s diversity index (H ) 3.339

ShannoneWiener’s evenness index (E ) 0.586

Major group affiliation Number of c

Alphaproteobacteria 3 (5.8%)

Betaproteobacteria 3 (5.8)

Deltaproteobacteria 2 (3.8%)

Gammaproteobacteria 24 (46.2%)

Acidobacteria 7 (13.8%)

Actinobacteria 3 (5.8%)

Deinococci 0 (0%)

Flavobacteria 3 (5.8%)

Gemmatimonadetes 1 (1.9%)

Nitrospirae 5 (9.6%)

Sphingobacteria 0 (0%)

Unclassified-bacteria 1 (1.9%)
3.2. Bacterial diversity in sediments

A total of 52 and 65 bacterial 16S rRNA gene clone sequences
were obtained from the QCSB1 and QCSB2 clone libraries,
respectively. These sequences could be classified into the
following groups: Proteobacteria, Acidobacteria, Deinococci,
Sphingobacteria, Flavobacteria, Nitrospirae, Actinobacteria,
Gemmatimonadetes, and unclassified-bacteria (Table 1 and
Fig. 2). Among these groups, the Proteobacteria was the dominant
component for the bacterial 16S rRNA gene clone libraries, and
they accounted for 61.5% and 58.5% of the bacterial 16S rRNA
gene clone sequences retrieved from QCSB1 and QCSB2 clone
libraries, respectively.

The Proteobacteria sequences were classified into four
subgroups: Betaproteobacteria, Gammaproteobacteria, Alphap-
roteobacteria, and Deltaproteobacteria (Fig. 2a and Table 1). The
Alphaproteobacteria contained nine OTUs, representing 17
sequences (5.8% and 21.5% of the total sequences in QCSB1 and
QCSB2, respectively), and most of these sequences were closely
related to clones retrieved from cold habitats, such as glaciers and
lakes on the Tibetan Plateau (Liu et al., 2006; Liu et al., 2009;
Xiang et al., 2009; Xing et al., 2009), soils and ice in Arctic and
Antarctic (Mosier et al., 2007; Wallenstein et al., 2007; Simon
et al., 2009). One clone (QCSB1-009) is also closely related
(identity: 100%) to Ochrobactrum tritici strain Y13 isolated from
a petroleum-oil contaminated soil and to a clone sequence
retrieved from the cleaning seawater from Tunisian oil reservoirs
(Zrafi-Nouira et al., 2009).

The Betaproteobacteria included 12 OTUs, representing 22
clone sequences (5.8% and 29.2% of the total sequences in
QCSB1 and QCSB2, respectively), and most of these sequences
were also closely related to clones retrieved from cold habitats,
such as high-mountain lakes and snow/ice (Xiang et al., 2009) and
Arctic/Antarctic ice/snow (Sattley and Madigan, 2006; Cheng and
Foght, 2007; Harding et al., 2011). Among these clone sequences,
one clone (QCSB2-068) was also closely related (identity: 98%)
6S rRNA gene clone sequences retrieved from the two cold springs

QCSB2

65

60.0

37

0.953

4.821

0.801

lones (relative percentage in each clone library)

14 (21.57%)

19 (29.2%)

2 (3.1%)

3 (4.6%)

9 (13.8%)

2 (3.1%)

1 (1.5%)

1 (1.5%)

2 (3.1%)

2 (3.1%)

9 (13.8%)

1 (1.5%)

http://foo.maths.uq.edu.au/~huber/bellerophon.pl
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Arctic pack ice clone (AF468264)
Arctic sea ice floes clone (AY198105)

QCSB2-059 (JF776336)

QCSB2-082 (JF776347)

High mountain snow clone (AJ867670)
High arctic snow clone (HQ230120)
China Tianshan Mountains Kuytun 51 Glacier clone (EU263770)

QCSB2-101 (JF776321) 5

Antarctica hydrocarbon contamination of soil clone (AY571836)
QCSB2-068 (JF776340)

QCSB2-053 (JF776333) 2

QCSB1-038 (JF776312)

Canadian low-temperature oil reservoir water clone (AY570620)
QCSB1-045 (JF776315) 2

Antarctica perennially ice-covered lake water clone (DQ451827)
QCSB2-065 (JF776339)

West Antarctic ice sheet clone (EU030491)
QCSB2-076 (JF776344)

QCSB2-105 (JF776324) 2

QCSB2-052 (JF776332)

Arctic glacier ice clone (HQ595214)
High mountain lake epilithic biofilm clone (FR667307)

QCSB2-063 (JF776337) 2

Canadian high Arctic glacier clone (DQ628920)
Greenland Mittivakkat glacier clone (HM565427)

QCSB2-005 (JF776331)

QCSB2-054 (JF776334)

Betaproteobacteria

QCSB2-002 (JF776329)

QCSB1-027 (JF776309)

QCSB2-070 (JF776341)

Northern Chile high altitude Andean Altiplano aquatic clone (EF632940)
QCSB2-085 (JF776349)

Gammaproteobacteria

Arctic Ocean Chukchi sediments clone (EU287108)
Arctic streams clone (FJ849513)
Michigan cold sulfur-rich spring clone (FJ968021)
QCSB1-001 (JF776297) 23

United States Alaska nonpermafrost and cold soil clone (EU978743)
China Tianshan Mountains Kuytun 51 Glacier clone (EU263683)
QCSB2-056 (JF776335) 5

Antarctica Vida the perennial ice cover water(DQ521492)
QCSB2-001 (JF776319)

QCSB2-079 (JF776345)

Antarctic soil clone (FJ645604)
Mount Everest moraine lakes and glacial meltwaters clone (DQ675503)

QCSB2-106 (JF776325) 5

Tibetan lake clone (HM129466)
Eastern Tibetan Plateau high-altitude lakes water clone(EU703461)

QCSB1-002 (JF776298)

Denmark central Jutland freshwater seep water clone (GQ339216)
QCSB1-039 (JF776313)

Trembling aspen soil clone (EF018737)
Arctic tundra tussock and shrub soils clone(DQ510059)

QCSB2-109 (JF776328)

QCSB2-099 (JF776354)

QCSB1-009 (JF776300)

Ochrobactrum tritici strain Y13 (EU301689)
Tibetan Plateau glaciers clone (EU153023)
Tunisia oil reservior-cleaning seawater clone (CU914884)

Alphaproteobacteria

Petroleum-contaminated saline-alkali soils clone(HQ697729)
QCSB2-107 (JF776326)

Deltaproteobacteria

QCSB2-071 (JF776342)

QCSB1-023 (JF776307)

Qinghai-Tibetan Plateau permafrost clone (HQ864225)
QCSB1-055 (JF776318)

Coal-impacted wetland sediment clone (AF523972)
Aquifex pyrophilus (M83548)
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Figure 2 Neighbor-Joining tree (partial sequences, w700 bp) showing the phylogenetic relationships of bacterial 16S rRNA gene sequences

cloned from the studied samples to closely related sequences from the GenBank database. One representative clone type within each OTU is

shown, and the number of clones within each OTU is shown at the end (After the GenBank accession number). If there is only one clone sequence

within a given OTU, the number ‘1’ is omitted. Clone sequences from this study are coded as follows for the example of QCSB1-001: cold spring

QCS1 bacterial clone number 001. Scale bars indicate the JukeseCantor distances. Bootstrap values of >50% (for 1000 iterations) are shown.

Clone sequences obtained in this study are in bold. Aquifex pyrophilus is used as an outer group. Fig. 2a, b is for Proteobacteria and non-

Proteobacteria, respectively.
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QCSB1-037 (JF776311)

Antarctica Alexander Island soil clone (FN811216)
Antarctica the Ross Sea region soil clone (GQ454872)
QCSB2-097 (JF776353) 2

Tibetan Plateau Kobresia Meadow Soil clone (GQ128189)
QCSB1-012 (JF776301) 4

Canadian high Arctic wetland cryosolic soil clone(GU047650)
QCSB1-013 (JF776302)

Petroleum-contaminated soil-core clone (DQ664101)
Coal-tar-waste-contaminated ground waters clone (AF351217)

QCSB2-064 (JF776338)

Antarctic Dry Valley soil clone (HQ197531)
QCSB2-108 (JF776327) 5

QCSB2-095 (JF776352)

QCSB1-026 (JF776308)

Norway seasonal arctic snow meltwater clone (FJ946620)

Acidobacteria

Deinococcus sp. IMCC1761 (DQ664230)
QCSB2-086 (JF776350)

Deinococci

Pristine geological substrata aquifer clone (DQ003153)
QCSB2-020 (JF776355)

QCSB2-104 (JF776323) Sphingobacteria

Antarctic Peninsula clone (FR749753)
QCSB2-100 (JF776320) 7

QCSB1-019 (JF776305)

Arctic Ocean marine sediment clone (DQ514299)
QCSB2-090 (JF776351)

Germany Harz Mountains hard-water clone (AM177392)
QCSB1-008 (JF776299) 2

Flavobacterium sp. (GU078570)

Flavobacteria

QCSB1-015 (JF776303) 3

China Xinjiang Shawan cold spring sediment clone (GQ302556)
Tar oil contaminant plume clone (EU266788)
QCSB2-083 (JF776348) 2

QCSB1-016 (JF776304) 2

Nitrospria

QCSB1-053 (JF776316)

Leachate sediment clone (HQ183929)
Northern Norway high Arctic permafrost soil clone (EF034829)

QCSB2-102 (JF776322)

QCSB1-020 (JF776306)

Hanford Site saturated zone clone (HM186411)
QCSB1-054 (JF776317)

Tennessee Oak Ridge Meltaon Branch Watershed soil clone (EU335429)
petroleum-contaminated soil clone (HQ727644)

South China Sea Dongsha Area cold seep marine sediment clone (GU475297)
QCSB2-075 (JF776343)

Actinobacteria

QCSB2-081 (JF776346)

McMurdo Dry Valleys stream sediment clone (EU869731)
QCSB1-044 (JF776314)

unclassified Bacteria

QCSB2-003 (JF776330) 2

Alpine tundra wet meadow soil clone (DQ450801)
Canadian high Arctic permafrost ground ice core clone (EU218702)
QCSB1-036 (JF776310)

China Qinghai-Tibet Plateau meadow soil clone (HQ645213)
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Aquifex pyrophilus (M83548)
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Fig. 2 (Continued).
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to a clone retrieved from hydrocarbon-contaminated soil in Scott
Base, Antarctica (Saul et al., 2005); another clone (QCSB1-038)
was related (identity: 97%) to a clone sequence obtained from
production waters in a low-temperature biodegraded oil reservoir
in the Pelican Lake oilfield located in the Western Canadian
Sedimentary Basin (Grabowski et al., 2005).

The Deltaproteobacteria included 4 OTUs, representing four
clone sequences, two of which (QCSB1-023 and QCSB2-071)
showed 97% similarity to a clone obtained from permafrost soil on
the Qinghai-Tibetan Plateau (GenBank description), and the other
two (QCSB1-055 and QCSB2-107) were related to clones retrieved
from coal-impacted wetland sediment (Brofft et al., 2002) and
petroleum-contaminated saline-alkali soils (GenBank description).

The Gammaproteobacteria included twenty-seven sequences
(46.2% and 4.6% of the total sequences in QCSB1 and QCSB2,
respectively) grouped into five OTUs, amongwhich the QCSB1-001
(representing 23 clone sequences) was closely related (99%e100%)
to clones the 447 m-depth sediment on the submarine plateau in the
Arctic ocean (Li et al., 2009) and cold sulfur-rich-spring water near
Woodtick Peninsula on the shoreline of Lake Erie, Michigan
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(Chaudhary et al., 2009). The other four OTUs (QCSB2-002, CSB1-
027, QCSB2-070, and QCSB2-085) showed high similarity to
a clone retrieved from aquatic environments of the high altitude
Andean Altiplano in northern Chile (GenBank description).

Among the non-Proteobacteria groups, the Acidobacteria was
most abundant, and contains 8 OTUs, representing 16 clone
sequences (13.5% and 13.8% of the total sequences in QCSB1 and
QCSB2, respectively) (Fig. 2b and Table 1). Most of the clone
sequences (7 OTUs and 15 clone sequences) were related to
clones retrieved from cold environments, such as meadow soil
from Mount Mila on the Qinghai-Tibetan Plateau (GenBank
Description) and soil/ice/snow from Antarctic/Arctic (Larose
et al., 2010). One OTU (QCSB1-013) from the QCSB1 clone
library was related (identity: 96%) to a clone from petroleum-
contaminated sediments in Michigan (Allen et al., 2007) and to
a clone from coal tar waste-contaminated groundwater located in
South Glens Falls, NY (Bakermans and Madsen, 2002).

A total of thirty-one clones (25.0% and 27.7% of the total
sequences in QCSB1 and QCSB2, respectively) were affiliated with
some minor non-Proteobacteria groups, such as Actinobacteria,
Deinococci, Flavobacteria, Gemmatimonadetes, Nitrospirae,
QCSA1-18 (JF776285) 3

Switzerland central Alps dolomite r

High mountain snow clone (AJ867

QCSA1-01 (JF776281) 2

Canadian Arctic Mackenzie River

QCSA2-04 (JF776291) 2

Shawan cold spring sediment c

Crude oil-contaminated saline

Trembling aspen soil clone (EF020735)

QCSA2-13 (JF776294)
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QCSA2-01 (JF776288) 4
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QCSA1-27 (JF776287)

QCSA2-18 (JF776296)

California deep-sea whale-fall sedim

Oil reservoirs residual hydrocarbons

QCSA2-17 (JF776295) 2

China Qinghai-Tibetan Plateau

QCSA1-02 (JF776282) 3

QCSA1-10 (JF776284) 2
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QCSA2-03 (JF776290) 2

Xinjiang underground coal mine fi
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Figure 3 Neighbor-Joining tree (partial sequences, w750 bp) showing

cloned from the studied samples to closely related sequences from the G

(Fig. 2a, b) were used. Methanocella paludicola is used as the outgroup.
Sphingobacteria, and unclassified-Bacteria (Fig. 2b and Table 1).
Most of these clone sequences were also related to clones retrieved
from cold environments, such as tundra/permafrost/wetland soils
and snow meltwater/ice in Arctic/Antarctic. In addition, two OTUs
in the QCSB2 library were related to clones from tar-oil contami-
nated aquifer sediments (Winderl et al., 2008) andmarine sediments
of cold seeps in Dongsha Area of South China Sea (GenBank
description).

3.3. Archaeal diversity in sediments

A total of 43 and 23 archaeal 16S rRNA gene clone sequences
were obtained from the QCSA1 and QCSA2 clone libraries,
respectively. These clone sequences could be classified into
Crenarchaeota and Thaumarchaeota (Spang et al., 2010). The
Crenarchaeota was the dominant component, accounting for
100.0% and 91.3% of the archaeal 16S rRNA gene clone
sequences retrieved from QCSA1 and QCSA2 clone libraries,
respectively (Fig. 3 and Table 2). The Crenarchaeota contained
fifteen OTUs, and they were related to clones retrieved from cold
habitats, such as river water in Arctic (Galand et al., 2008), snow
ock clone (AB257682)

728)

 clone (EU244286)

lone (GQ302611)

 soil clone (EU328120)

 (FJ968078)

ents clone (EU220725)

 clone (HM598528)
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re overlying soil clone (GU113021)

Crenarchaeota

M1(DQ085097)

groundwater clone(AB294266)

s clone(GU911418)

Methanocella paludicola SANAE (NR 028164)

Thaumarchaeota

the phylogenetic relationships of archaeal 16S rRNA gene sequences

enBank database. The same algorithms as those for the archaeal tree



Table 2 Ecological estimates and major group affiliation of archaeal 16S rRNA gene clone sequences retrieved from the two cold springs on

the Tibetan Plateau.

Clone library QCSA1 QCSA2

Library size (No. of clones) 43 23

Coverage (%) 95.4 91.3

No. of observed OTUs 7 9

Simpson’ s diversity index (D) 0.465 0.851

ShannoneWiener’ s diversity index (H ) 1.540 2.947

ShannoneWiener’s evenness index (E ) 0.284 0651

Major group affiliation Number of clones (relative percentage in each clone library)

Crenarchaeota 43 (100.0%) 21 (91.3%)

Thaumarchaeota 0 (0%) 2 (8.7%)
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and permafrost soil on the Qinghai-Tibetan Plateau (GenBank
description), and terrestrial cold springs (Chaudhary et al., 2009;
Zeng et al., 2010). Among the Crenarchaeota clone sequences,
two OTUs were also closely related to clones from crude oil-
contaminated soil (GenBank description) and residual hydro-
carbon in oil reservoirs (Siegert et al., 2011).

Only one OTU (QCSA2-07, representing two clone sequences)
fell in the Thaumarchaeota. This OTU was related to clones from
deep coal seam groundwater in Northern Japan (Shimizu et al.,
2007) and bottom sediments at Lake Baikal sites of natural oil
seeps (GenBank description). This OTU and the two references
were closely affiliated with ammonia-oxidizing Nitrosopumilus
maritimus SCM1 (Konneke et al., 2005).
Figure 4 Histogram showing frequencies of OTUs affiliated with majo

Springs (This study), glaciers on the Tibetan Plateau (Liu et al., 2009), hyd

meadow soil in alpine tundra in Rocky Mountain Front Range, Colorado,

(Zeng et al., 2010), a cold sulfur-rich-spring near to Woodtick Peninsula (4

et al., 2009), and a low-temperature biodegraded oil reservoir in the Pelic

(Grabowski et al., 2005).
4. Discussion

4.1. Microbial diversity in sediments of cold springs in Wuli
Area of the Qinghai-Tibetan Plateau

To our knowledge, this research was the first to specifically study
microbial diversity in cold springs on the Qinghai-Tibetan Plateau.
Previously, several studies have investigated the microbial diversity
in cold springs at low elevation or high latitude (Rudolph et al.,
2001; Grabowski et al., 2005; Perreault et al., 2008; Chaudhary
et al., 2009; Zeng et al., 2010). The microbial communities of the
Wuli cold springs were characteristic of predominance of Proteo-
bacteria and Crenarchaeota for the bacterial and archaeal 16S
r phylogenetic groups in the bacterial clone libraries for Wuli Cold

rocarbon-contaminated soil in Antarctica (Saul et al., 2005), saturated

USA (Costello and Schmidt, 2006), Shawan cold spring in Xinjiang

1�460N/83�270E) on the shoreline of Lake Erie, Michigan (Chaudhary

an Lake oilfield located in the Western Canadian Sedimentary Basin
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rRNA gene clone libraries, respectively. Such microbial predomi-
nance has been found for the bacterial community in a cold sulfur-
rich-spring on the shoreline of Lake Erie, Michigan (Chaudhary
et al., 2009) and for the archaeal community in Shawan cold
spring of Xinjiang, China (Zeng et al., 2010), respectively.

In addition, the bacterial communities of the Wuli cold springs
were composed of microorganisms related to clone sequences
retrieved from cold habitats, such as snow/ice and soils in
Qinghai-Tibetan Plateau and Arctic/Antarctic. In order to make
comparisons among the bacterial communities of different cold
habitats, bacterial 16S rRNA gene clone libraries of several cold
environments were selected based on the phylogenetic analysis for
making a histogram showing frequencies of OTUs affiliated with
major phylogenetic groups for Wuli Cold Springs (This study),
glaciers on the Qinghai-Tibetan Plateau (Liu et al., 2009),
hydrocarbon-contaminated soil in Antarctica (Saul et al., 2005),
saturated meadow soil in alpine tundra in Rocky Mountain Front
Range, Colorado, USA (Costello and Schmidt, 2006), Shawan
cold spring in Xinjiang (Zeng et al., 2010), a cold sulfur-rich-
spring near to Woodtick Peninsula (41�460N/83�270E) on the
shoreline of Lake Erie, Michigan (Chaudhary et al., 2009), and
a low-temperature biodegraded oil reservoir in the Pelican Lake
oilfield located in the Western Canadian Sedimentary Basin
(Grabowski et al., 2005) (Fig. 4). The comparison showed the
difference of the bacterial diversities between Wuli cold springs
and Qinghai-Tibetan glaciers was much smaller than that between
Wuli cold springs and other cold habitats of low elevation or high
altitude. For example, the bacterial communities of Wuli cold
springs and Qinghai-Tibetan glaciers were mainly composed of
Alphaproteobacteria, Betaproteobacteria, and Gammaproteobac-
teria (Fig. 4). This indicates that microbial community in cold
springs on the Qinghai-Tibetan Plateau may be distinct from that
of cold habitats in other locations; and biogeography may play an
important role in shaping the microbial distribution in cold
springs. However, the latter must await further investigation.

4.2. Implication for the presence of underlying coal or gas
hydrate in Wuli Area

It is remarkable that some of bacterial and archaeal 16S rRNA
gene clone sequences of this study showed close affiliation with
those retrieved from petroleum (oil)- or coal-related environments.
Previous studies showed that the methane-related microbial
communities in the marine cold seeps may be indicative of
underlying gas hydrate (Hovland, 2000; Reed et al., 2006). The
sampling site of this study is located in one part of Wuli-Daha
coal-bearing belt of the southern Qinghai province, and coal
seams are relatively developed in this region (Zhou, 2004), which
could account for the observed relatedness of clone sequences
between Wuli cold springs and other petroleum (oil)- or coal-
related environments. So with the limited data, it is hard to
conclude there is gas hydrate underneath the sampling site in this
study. However, our results at least suggested that microbial
analysis might be an accessorial tool for prospecting for coal and
oil deposits in extreme environments.

5. Conclusions

Themicrobial communities ofWuli Area inQinghai-Tibetan Plateau
were mainly composed of Proteobacteria and Crenarchaeota for
bacteria and archaea, respectively, and the retrieved bacterial and
archaeal 16S rRNA gene clone sequences were closely related to
those from cold habitats, such as snow/ice and permafrost soils in
high mountains and snow/ice/soil in Arctic/Antarctic. The microbial
community composition of Wuli Area was more similar to that in
Tibetan glaciers than cold environments of other locations.
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