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1. INTRODUCTION

More than half a century ago S. M. Ulam [15] raised the following
problem concerning the stability of homomorphisms: given a group G,, a
metric group G, with metric d(-,-), and a positive real number €, does
there exist a positive real number 6 such that if a mapping f:G, — G,
satisfies d(f(xy), f(x)f(y)) < & for all x,y € G,, then a homomorphism
h:G, = G, exists with d(f(x), h(x)) < € for all x € G?

The case of approximately additive mappings was solved by D. H. Hyers
[5] under the assumption that G, and G, are Banach spaces. Th. M.
Rassias [13] proved the following substantial generalization of the result of
Hyers:

THEOREM 1.1. Let X and Y be Banach spaces, let 0 € [0,, and let
p €10,1[. If a function f : X — Y satisfies

IF(x +y) = F(x) = f(2) | < 6CIx” + lIyl7)

forallx,y € X, then there is a unique additive mapping A : X — Y such that
26
- T xl?
F(x) =A< 5=+l
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for all x € X. If, in addition, f(&x) is continuous in t for each fixed x € X,
then A is linear.

Due to this fact, the Cauchy functional equation f(x + y) = f(x) + f(y)
is said to have the Hyers—Ulam—Rassias stability property on (X, Y). This
terminology is also applied to other functional equations (see [7] for more
detailed definitions).

Later, many Rassias type theorems concerning the stability of different
functional equations were obtained by numerous authors (see, for in-
stance, [2, 3, 9-11)).

In this paper we deal with the Jensen type functional equation

W) 50 +10) +£2)
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Equation (1.1) has been considered for the first time by T. Popoviciu [12],
in connection with the following inequality: if [ is a nonempty interval and
f: 1 — Ris a convex function, then it holds that

() ) 1) + ()
o e R G |

for all x,y,z € I. Today the inequality (1.2) is commonly known as the
Popoviciu inequality.

In Section 2 of this paper we solve the functional equation (1.1). In
Section 3, using ideas from the papers of Th. M. Rassias [13] and D. H.
Hyers [5], the Hyers—Ulam—Rassias stability of Eq. (1.1) will be investi-
gated.

2. SOLUTIONS OF EQ. (1.1)

It is interesting to note that the functional equation (1.1) is equivalent to
the Jensen functional equation

222 ) =1 + 10, (2.1)

It is well known that if X and Y are real linear spaces, then a function
f: X — Y satisfying f(0) = 0 is a solution of Eq. (2.1) if and only if it is
additive.
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THEOREM 2.1. Let X and Y be real linear spaces. A function f: X - Y
satisfies (1.1) for all x,y, z € X if and only if there exist an element B € Y
and an additive mapping A : X — Y such that

f(x) =A(x) + B forallx € X.

Proof. Necessity. Set B := f(0) and then define the mapping A: X - Y
by A(x) = f(x) — B. Then A(0) = 0 and
x+y+z
(=

= 2[14(2) +A(y +Z) +

) +A(x) + A(y) + A(z)

A(Z ;x)] (2.2)

2 2

for all x, y, z € X. We claim that A is additive.
Putting y = x and z = —2x in (2.2) yields

x
A(—2x) =4A(—5) forall x € X. (2.3)

Replacing x by —x in (2.3) we get

x
A(2x) = 4A(§) for all x € X. (2.4)
Replacing x by 2x in (2.4) we get
A(4x) = 4A(x) for all x € X. (2.5)

Putting y = z = 0 in (2.2) and taking account of (2.4) we obtain

3A(§) =A(2x) — A(x) forall x € X. (2.6)

Putting y = x and z = 0 in (2.2) and taking account of (2.6) we obtain
x
A(4x) — A(2x) = 4A(E) for all x € X. (2.7)
From (2.4), (2.5), and (2.7) it follows that
A(2x) = 2A(x) for all x € X. (2.8)

Putting y =x and z = —x in (2.2) and taking account of (2.6) and (2.8)
we get

A(—x) = —A(x) for all x € X. (2.9)
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Finally, putting z = —x — y in (2.2) and taking account of (2.8) and (2.9)
we get
A(x +y) =A(x) + A(y) forall x,y € X.
Therefore A is additive, as claimed, and f(x) = A(x) + B for all x € X.
Sufficiency. This is obvious. |

Remark. From Theorem 2.1 it follows that a continuous function
f:R — R satisfies (1.1) for all x,y,z € R if and only if it has the form
f(x) = ax + b, with a and b arbitrary real constants. This result has been
established by T. Popoviciu [12].

3. HYERS-ULAM-RASSIAS STABILITY OF EQ. (1.1)
Throughout this section X and Y will be a real normed linear space and
a real Banach space, respectively. Given a function f: X — Y, we set

+y+

DI, 2) = 3| 1) + 10 +1(2)

57 A=) )
for all x,y,z € X.

THEOREM 3.1. Assume that 8,6 € [0, and that p €10, 1[. If the func-
tion f: X — Y satisfies

IDf(x,y,2) [l < &+ O(lxI” + llyll” + 11z1I) (3.1)

for all x,y, z € X, then there is a unique additive mapping A: X — Y such
that

)
IFCx) = £(0) = A(x) | < 5 + Ixl1” (32)

2P -1

for all x € X. If, in addition, f(tx) is continuous in t for each fixed x € X,
then A is linear.

Proof. Let g: X — Y be the function defined by g(x) == f(x) — f(0).
Then g(0) = 0 and, since Dg(x, y, z) = Df(x,y, z) for all x,y,z € X, we
have

| Dg(x,y,2) | <&+ o(llxII” + lyll” +llzII”) (3.3)

for all x,y,z € X.
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Putting y = x and z = —2x in (3.3) we get

X
‘g(—Zx)—4g(—5)Hs6+6(2+2P)||x||p for all x € X.

Replacing x by —2x in the above relation yields
lg(4x) —dg(x)| < &+ 6227(1 + 2'77)|Ix]I” (3.4)
for all x € X.

Next we prove by induction on #n that for all x € X it holds that

[2727¢(2%"x) —g(x)| = 8 X 272K + o(1 + 21 7)|Ix||? ) 2720 -Pk,
k=1 k=1

(3.5)

Dividing both sides of (3.4) by 2% ensures the validity of (3.5) for n = 1.
Now, assume that the inequality (3.5) holds true for some positive integer
n. Replacing x in (3.4) by 2*"x and then dividing both sides of (3.4) by
221+ D yields

” 272(n+ 1)g(22(n+ 1)x) _ 272ng(22nx) ”

< 62—2(n+1) + 9(1 + 21—p)||x||l72—2(1—p)(n+])’

hence
|72+ g (220 D) — g ()
<[[272 g (2% hx) — 272 (221x) || +[272"g(22"x) — g(x) |

n+1 n+1
<& Y 27+ 0(1 + 21 P)|Ix|P Y 27k
k=1 k=1

for all x € X. This completes the proof of the inequality (3.5).
Let x be any point in X. By virtue of (3.5) we have

[2727g(2%x) — 2727g(2%0)
— 272m||272(n7m)g(22(n7m)22mx) _ g(zzmx)”

< 2-2'"(5 Y 27 4 g(1 + 2122 x|l Y 2—2<1—P>k)
k=1 k=1

o
<272 S 4 o(1+ 21 )2

221-p) _ 1 )

0
=2—2m — + - 22mp||x||]7
3 21 — 1
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for all positive integers m and n with m < n. Since

) 1) (7]
lim 272" = + 17—22mp||x||[7 =0,
m— o 3 2770 —1

it follows that (272"g(2*"x)), .y is a Cauchy sequence for all x € X.
Consequently, we can define the mapping A: X — Y by

A(x) = lim 27%"g(2%"x).

Let x, y, and z be any points in X. We have

| DA(x,y,z)|| = lim 272"|| Dg(2%"x,22"y,22"2) ||

n—w

lim 2727(8 + 0227 (Ilxll” + lIyll” + lIz117))

n—o
= 0.

Hence A satisfies (2.2) for all x, y, z € X. Since A(0) = 0, it follows that
A is additive. Moreover, by passing to the limit in (3.5) when n — o, it
follows that

IA

(7]
—_IIIxIIP forall x € X.

15}
lg(r) =AM < 5 + 55

This inequality implies the validity of (3.2).
Now, let A: X — Y be another additive mapping satisfying

0 p
m”x”

- )
[7(x) =@ Ao < 5 +
for all x € X. Then we have
la(x) = A(x)]| = 27" ] A2"x) = A2"x) ||
<27(]l A(2"x) = f(2"x) + f(O)|
+] f(27x) = £(0) — A(27x) )

25 20
<2 T+ 1—2"p||x||”)
32T

for all x € X and all positive integers n. Since

26 26
lim 27" — + =———=2"7|Ix[I”| = 0,
0o 30 21
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we can conclude that A(x) = A(x) for all x € X. This proves the unique-
ness of A.

The proof of the last assertion in the theorem goes through in the same
way as that of the theorem in [13]. |

The proof of the next theorem (containing the case p = 0), being similar
to that of Theorem 3.1, is omitted.

THEOREM 3.2. Let 8 € [0, and let f: X — Y be a function satisfying
IDf(x,y,z)| <&  forallx,y,z € X.

Then there is a unique additive mapping A : X — Y such that

wW| o

IF(x) = £(0) = A(x) [ <

forallx € X.

If, in addition, f(tx) is continuous in t for each fixed x € X, then A is linear.

THEOREM 3.3. Let 0 € [0,[, p €]1,[, and let f : X — Y be a function
satisfying f(0) = 0 and

IDf(x,y,2) | < 6(lxll? + lIyl” + llzII”) (3.6)

forall x,y,z € X. Then there is a unique additive mapping A: X — Y such
that

p—1

2
lf(x) —A(x) [l < WGHXIIP forallx € X.

If, in addition, f(tx) is continuous in t for each fixed x € X, then A is linear.

Proof. Putting y = x and z = —2x in (3.6) we see, as in the proof of
Theorem 3.1, that

Hf(_zx)_4f(—%)HS0(2+2”)IIxI|p for all x € X.

Replacing x by — 5 in the above relation yields

[22f(272x) — f(x)]| < 6(1 + 27~ 12! P|x||”  forall x € X. (3.7)
Starting from (3.7) it is easy to prove that
[227F(272"x) — f(x) ]| < 6277 1(1 + 27~ Y)|Ix||? Y 27 2p- Dk
k=1

for all x € X and all positive integers 7.
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The rest of the proof is similar to the corresponding part of the proof of

Theorem 3.1. |}

Th. M. Rassias and P. Semrl [14] have constructed a continuous function
f:R — R to show that the functional inequality

If(x +y) = f(x) = F(0) | < o(lixll + Iyl

does not have Hyers—Ulam—Rassias stability property. In what follows we
prove that their function serves as a counterexample to Theorem 3.3 for
the case p = 1.

THEOREM 3.4. The continuous function f:R — R defined by f(x) ==
x log,(1 + |x]) satisfies the inequality

IDf(x,y,2)| < F(Ixl + |yl + 1z) (3.8)

forallx,y,z € R, but

{‘f(X) —A(x)
e |

‘x S R\{O}} =

for each additive mapping A:R — R.
Proof. Tt was proved in [14] that the function f satisfies

[f(x+y) = f(x) = f(y) [ < Ixl + 1yl (3.9)

for all x, y € R. We claim that f satisfies also the inequality

[f(x +y+2) = f(x) = f(y) = f(2)| < 5012l + Iyl +12) (3.10)
for all x, y, z € R. Indeed, taking into account the inequality (3.9) we get
[f(x+y +2) = f(x) = f(y) = f(2)]

<[f(x+y+z) = f(x +y) = f(2)| +[f(x +y) = f(x) = f(¥)]

<lx+yl+lzl + x| + 1yl

< 2|x|+ 2|yl + |zl

Analogously we obtain

[f(x +y +2) = f(x) = f(y) = f(2)] < 2yl + 2lz| + |x|

and

[f(x +y +2) = f(x) = f(y) = f(2)] < 2lzl + 2Ix| + Iyl.
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Summing the last three inequalities implies the validity of (3.10). Since

Df(x.y,2) = 3]

X+§+Z)_f(x+y+z)

—[f(x+y+2z) —f(x) = f(y) = f(2)]

R R R e Y e Ry e

by virtue of (3.10) we have

IDf(x,y,z)| < 3lx +y +zl + 5(Ixl + |yl + |z])
+3(lx +yl+ 1y + 2zl + |z + x])

< 2(lxl + Iyl + IzI)

for all x, y, z € R. Hence (3.8) holds true.

Now, let A:R — R be any additive mapping. If A is continuous at a

point, then there is a real number ¢ such that A(x) = cx for all x € R. In
this case we have |f(x) — A(x)|/|x| = o« as x — . On the other hand, if

A
is

1

2.

10.

is nowhere continuous, then the range of x € R\{0} — |f(x) — A(x)|/|x|
also unbounded, because the graph of A is everywhere dense in R%. i
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