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Genomics has contributed to a growing collection of gene–function and gene–disease annotations that
can be exploited by informatics to study similarity between diseases. This can yield insight into disease
etiology, reveal common pathophysiology and/or suggest treatment that can be appropriated from one
disease to another. Estimating disease similarity solely on the basis of shared genes can be misleading
as variable combinations of genes may be associated with similar diseases, especially for complex dis-
eases. This deficiency can be potentially overcome by looking for common biological processes rather
than only explicit gene matches between diseases. The use of semantic similarity between biological pro-
cesses to estimate disease similarity could enhance the identification and characterization of disease sim-
ilarity. We present functions to measure similarity between terms in an ontology, and between entities
annotated with terms drawn from the ontology, based on both co-occurrence and information content.
The similarity measure is shown to outperform other measures used to detect similarity. A manually
curated dataset with known disease similarities was used as a benchmark to compare the estimation
of disease similarity based on gene-based and Gene Ontology (GO) process-based comparisons. The
detection of disease similarity based on semantic similarity between GO Processes (Recall = 55%, Preci-
sion = 60%) performed better than using exact matches between GO Processes (Recall = 29%, Preci-
sion = 58%) or gene overlap (Recall = 88% and Precision = 16%). The GO-Process based disease similarity
scores on an external test set show statistically significant Pearson correlation (0.73) with numeric scores
provided by medical residents. GO-Processes associated with similar diseases were found to be signifi-
cantly regulated in gene expression microarray datasets of related diseases.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

A disease is usually caused by congenital or acquired mutations,
or by the action of external agents that disrupt gene regulation [1].
This disrupts biological processes in which the affected genes par-
ticipate. Disruption of the biological processes results in pheno-
types that characterize each disease, with the phenotype
depending on the influence of the affected biological processes on
the larger biological network. Single gene diseases such as sickle
cell anemia are easier to decode than polygenic diseases that in-
volve multiple variable genes [2]. The latter scenario is analogous
to the ‘k-out-of-n’ model in engineering that is used to build
fault-tolerant subsystems. Systems with ‘n’ partially redundant
components fail only if at least ‘k’ components are defective, k 6 n
[3]. Multifactorial disease can be conceptualized in similar fashion,
where a module fails only when ‘k’ out of ‘n’ genes in the module are
mutated/differentially regulated. Since ‘k’ can be variable, it is often
hard to find a reproducible set of genes across multiple microarray
analyses [4] of a disease state. This suggests that representations
ll rights reserved.

ndian).
that summarize the contributions of groups of genes rather than
match genes explicitly could be useful in understanding disease.
Examples of such representations are biological processes and net-
work modules.

The use of representations (e.g., GO-Processes) other than sets of
genes has helped determine signatures in meta-analysis of studies
on breast cancer [5]. It can further our understanding of diseases by
offering alternative ways to study the similarity between them.
Studying disease similarities can yield insight into etiology, reveal
common pathophysiology and/or suggest treatment that can be
appropriated from one disease to another [6]. A broad analysis of
the ‘‘diseasome’’ showed that different diseases in the same disor-
der class exhibited concordance in protein networks and biological
processes [2]. With the high cost of drug development and lower
approval rates [7], drug repositioning opportunities can be effec-
tively explored by studying disease similarities. Several diseases
previously thought to be distinct have been found to share biolog-
ical processes either in their etiology or in manifestation of symp-
toms [8]. Genetic, symptom and phenotype information along
with penetrance models has been used to find comorbidity be-
tween diseases [9]. Medicare data has been used to study co-occur-
rence of diseases [10,11]. Microarray gene expression data has been

http://dx.doi.org/10.1016/j.jbi.2011.11.017
mailto:dinakard@umkc.edu
http://dx.doi.org/10.1016/j.jbi.2011.11.017
http://www.sciencedirect.com/science/journal/15320464
http://www.elsevier.com/locate/yjbin


364 S. Mathur, D. Dinakarpandian / Journal of Biomedical Informatics 45 (2012) 363–371
used to find modules affected by diseases and to find similarity be-
tween diseases by measuring the correlation between affected
modules [12]. Shared pathways [13] and the gene–phenotype net-
work [14] have also been used to compute similarity between
diseases.

A concomitant trend in research has been the increasing use of
data annotated with biomedical ontologies. In particular, such
datasets can be exploited to reveal relationships between biologi-
cal entities (Gene Ontology) [15] and disease pathology (UMLS)
[16]. Data can be combined across ontologies and similarity be-
tween terms quantified by using computational methods. Methods
to estimate similarity between ontology terms are based mainly on
the co-occurrence of terms in annotation, information content or
the ontology graph structure [17]. In turn, semantic similarity be-
tween diseases can be assessed by computing the similarity be-
tween the sets of associated ontological terms.

Studies on disease similarity often lack systematic assessment
and evaluation of the result, in part due to the difficulty in identi-
fying a validation set. In this paper, we present a systematic ap-
proach to evaluate the benefit of using an ontological approach
for inter-disease similarity. We first present a measure to represent
the similarity between terms in an ontology that combines infor-
mation from both co-occurrence in annotations and ontological
hierarchy [18]. Its performance is compared to well-known simi-
larity measures using a subset of KEGG (Kyoto Encyclopedia of Genes
and Genomes) [19] pathways as the benchmark. We exploit UMLS
and open knowledge-sources to augment the existing Disease
Ontology (DO) [20] with missing terms and synonyms. We then
contrast the performance of a gene-based approach to disease sim-
ilarity with a biological process-based (GO biological processes)
one by using a predefined set of diseases as the benchmark. We
further demonstrate the benefits of considering the semantic sim-
ilarity between GO-Processes rather than only exact process
matches. The measure is also used on an external data set previ-
ously rated by human experts to verify the accuracy of the predic-
tions. We verify GO-Processes predicted to be involved in each
disease using gene expression microarray datasets.
2. Method

The similarity between two diseases is computed as a function of
the genes or, alternately, the biological processes associated with
them. To be able to do this, existing gene–disease associations were
expanded by augmenting the Disease Ontology as described in Sec-
tion 2.1. The metric used to compute the similarity between two
genes or two processes is developed in Section 2.2 and validated
in Sections 2.3 and 2.4. The approaches taken to compare diseases,
based on the equations in Section 2.2, are described in Section 2.5.
The benchmark sets used to evaluate the prediction of disease sim-
ilarity are described in Section 2.6, and the use of microarray data to
evaluate underlying GO processes in Section 2.7.
2.1. Sources of annotated data

Gene–GO Process annotations were downloaded in March 2010.
Gene–disease associations were pooled from multiple sources
since there is variable coverage of disease terms in different ontol-
ogies. For example, though MeSH has broad coverage on a variety
of subjects, it has several missing terms and lacks detail in the dis-
ease section. SNOMED-CT has a large collection of terms but the fo-
cus is on medical billing. ICD has a broad classification of diseases
and lacks detail. To overcome this, the Disease Ontology (DO ver. 3)
vocabulary was augmented using UMLS (MeSH, SNOMED-CT,
ICD9) as described in [21]. The DO consisting of 12,082 terms
was augmented with synonyms to a total of 33,085 terms. To in-
crease the amount of annotated data available, disease–gene asso-
ciations from OMIM, Swissprot and GeneRIF were pooled together.
Swissprot records were matched against UMLS using MetaMap.
OMIM records were mapped against UMLS AUI records from which
Concept Identifiers (CUIs) were extracted. Protein identifiers from
Swissprot, gene identifiers from OMIM and GeneRIF identifiers
were matched with corresponding NCBI Entrez identifiers. In the
final annotation, each DO identifier was annotated with NCBI En-
trez identifiers.
2.2. Estimation of semantic similarity

Measures that quantify semantic similarity can be broadly clas-
sified as node-based, edge-based and hybrid that combine node
and edge-based measures. Node-based measures use the proper-
ties of terms, their ancestors and descendents. The most commonly
used approach is Information Content, which is defined as the neg-
ative logarithm of probability of occurrence of a term in a given
corpus. Similarity between a pair of terms is often measured by
the information content in the most specific common ancestor.
This approach has limited ability to distinguish between similarity
among descendants of a pair of terms and similarity between the
terms themselves. Further, information content relies on the anno-
tation density of terms, which is biased towards well-studied
nodes of the graph. Another node-based approach uses the degree
of co-occurrence of attributes of the terms [22]. A vector-based
method by Patwardhan and Pedersen [23] is a purely corpus-based
method to measure semantic relatedness using second-order con-
text vectors.

Edge-based measures [24] use the structure of the graph (path
length) to measure similarity between terms in an ontology. The
main assumption is that an edge represents the same semantic dis-
tance anywhere in the graph, which is not true as sections of the
graph may be finely classified and others only coarsely defined.
Hybrid methods such as Wang et al. [25] use a combination of
node-based and edge-based measures by computing the contribu-
tion of all ancestors. Similarity between a pair of terms is found by
weighing the type of edges that connect the terms (IS-A has a
greater weight than PART-OF) along with the information content
of the nodes.

Existing approaches estimate similarity between a pair of terms
by relying either on the structure of the graph or co-annotation,
but not both, to measure similarity. Biomedical ontologies like
the Gene Ontology (GO), although widely used among the commu-
nity, are a work in progress. Its structure and use in annotation are
frequently updated. Hence, measures relying solely on graph struc-
ture or annotation will not be able to capture similarity when
either of them is inaccurate. To mitigate this, we propose a similar-
ity measure that takes the graph structure as well as co-occurrence
in annotation to quantify similarity between terms.

Given two terms x and y in an ontology (e.g., GO Biological Pro-
cess), n(x) = number of genes annotated with x, n(x \ y) = number
of genes annotated with both x and y, the extent of co-occurrence
in annotation between x and y is captured by the following
equation:

scðx; yÞ ¼ nðx \ yÞ
nðx [ yÞ ð1Þ

This is the essentially the well-known Jaccard Index. It measures
the strength of co-annotation between two terms based on their
joint use in annotation. Note that this captures evidence from anno-
tation in addition to relatedness that is a consequence of the onto-
logical structure (if a gene is annotated with term x, it is assumed
that it is also annotated with all the ontological ancestors of x). For
example, the fact that the gene MMP9 is annotated with the



S. Mathur, D. Dinakarpandian / Journal of Biomedical Informatics 45 (2012) 363–371 365
biological process ‘‘GO:0006508: proteolysis’’ implies that is also
annotated with all its ancestral terms, i.e., GO:0008152: metabolic
process, GO:0044238: primary metabolic process, and
GO:0019538: protein metabolic process. The values of the raw score
can range from zero (when x and y are never used together) to 1 in
case of identical annotation. Eq. (1) does not distinguish between
co-annotation by a pair of related abstract terms and co-annotation
by a pair of related specific terms. Ideally, co-annotation by highly
specific terms should count towards a higher degree of similarity
than co-annotation by abstract concepts. To overcome this limita-
tion, the score is subsequently multiplied by the average informa-
tion content of the terms. The resultant semantic similarity
between x and y is given by the following equation:

simðx; yÞ ¼ scðx; yÞ � AvgðICðxÞ; ICðyÞÞ ð2Þ

where IC(x) is the information content of x estimated as (�log2 p),
and ‘p’ is the ratio of the number of genes annotated with term x
to the total number of genes annotated with any term. The average
information content of the terms is based on the frequency of expli-
cit use in annotation, as well as the implicit frequency of use in-
ferred from the ontological hierarchy. This is combined with the
extent of co-occurrence from Eq. (1) to measure similarity between
a given pair of terms.

The similarity Mb between two entities (e.g., genes or diseases)
A and B that are each annotated with a set of descriptors (e.g., pro-
cesses or genes) is computed using the following equation:

MbðA; BÞ ¼ 1
2

P
16i6mmsimðTAi; TBÞ

m
þ
P

16j6nmsimðTBj; TAÞ
n

� �
ð3Þ

where A is annotated with m terms, B with n terms, TAi are terms
annotating entity A and msim(TAi, TB) is the maximum semantic sim-
ilarity between the ith term of A and all terms in B (Eq. (2) is used to
compute the semantic similarity between each of the m terms
describing A and each of the n terms describing B). The similarity
score thus obtained is a measure of involvement in similar biological
processes. The maximum similarity of the pair of terms is chosen so
that the best alignment between the entities (vectors) is obtained or
the best-case similarity between entities is measured without loss of
information. There are other ways to measure similarity between
entities, for example using average or minimum among all pairs of
terms, but a recent study has shown that using the maximum simi-
larity is a better approach in a biological context [17].

2.3. Comparison with other similarity measures

We compared the proposed measure Mb with similarity mea-
sures representing different approaches: co-occurrence of annota-
tion (PMI), node-based measures like Resnik [26], and Lin [27];
edge-based measure Leacock and Chodrow [24] (lc) and a hybrid
measure Wang et al. [25]. Resnik et al. similarity measures were
used from GOSemSim [28] implemented as part of the Bioconduc-
tor package, while PMI and LC were implemented using R.

Some of the ways to evaluate similarity measures are based on
gene co-expression, membership in regulatory pathways, member-
ship in protein families or sequence similarity. We have chosen to
base our comparisons on the pathway membership of annotated
genes. Genes involved in a common pathway are expected to yield
a higher similarity score than the average similarity score within a
set of randomly selected genes. A set of pathways from KEGG [19],
version December 2010, was used to compare existing similarity
measures with the proposed measure. Only genes having GO-Pro-
cess annotation were included in the analysis. Further, associations
inferred from electronic annotation (IEA evidence code) were ig-
nored in order to minimize the presence of false positives. Corre-
sponding p-values were computed with respect to a null model
analogous to a previously published study [29]. In a given pathway
(n genes), pairwise similarities of n � (n � 1)/2 combinations be-
tween genes were computed using Eq. (3) with GO-Process as the
ontology. These pairwise scores were averaged and assigned to each
pathway to obtain a pathway score. The membership of KEGG path-
ways ranges from 3 to over 1000 genes. Pathways whose member-
ship ranged from 5 to 50 were extracted, totaling 71 pathways. A
minimum membership of 5 was chosen to ensure meaningful com-
parison between pathways, and a maximum of 50 was chosen to lim-
it the computation time – computing the null model in particular
requires substantial computational resources because of the qua-
dratic complexity (doubling the number of genes takes four times
as much to compute). To create a null model for each pathway,
5000 average similarity scores of k randomly selected genes were
computed, where k corresponds to the number of genes in the corre-
sponding pathway. The p-value for each pathway was computed as
the proportion of null-scores greater than the pathway score.

To check if Mb can discriminate between pathways, the inter-
pathway similarity score was obtained by randomly choosing a
pair of pathways and calculating the average similarity between
the genes of one pathway and the genes of the other. The inter-
pathway scores for 71 KEGG pathways were compared with their
intra-pathway scores using the Wilcoxon rank-sum test.

2.4. Ontology perturbation

Ontologies are often incomplete and subject to continuous
revision, e.g., GO is updated almost daily. Examining the historical
log of changes shows, for example, deletion of an existing IS-A rela-
tion between the terms GO:0016485 (protein processing) and
GO:0043687 (post-translational protein modification), with a new
IS-A relation added with GO:0051604 (protein maturation). Subse-
quently, a new HAS-PART relation has been added with GO:0080
120 (CAAX-box protein maturation). GO:0016485 has many descen-
dants. Therefore, removing and adding links can change the location
of the entire sub-graph (http://www.ebi.ac.uk/QuickGO/GTerm?id=
GO:0051605#term=history). Ideally, in addition to being accurate, a
similarity measure should be robust to minor perturbations in the
ontology.

Since genes involved in the same pathway can be assumed to
have collaborative functional relationships, the average gene-
similarity scores within pathways can be used to test the robust-
ness of similarity measures. To simulate this, partially altered
versions of the GO-Process ontology were created. In the proce-
dure, a pair of nodes was chosen and the nodes along with their
descendents were swapped. To avoid drastic transformation of
the ontology, nodes that were at a distance of at least 6 from the
root node of the GO-Process graph were chosen (so that relatively
small subsections of the ontology were swapped). This was re-
peated a number of times resulting in a perturbed ontology. The
amount of perturbation was measured by comparing the pairwise
graph matrix (direct or descendent association in ‘‘graph_path’’ GO
table) with the ‘‘graph_path’’ table of the perturbed ontology. The
pathway similarity scores were measured for each perturbation
and compared to that of the unperturbed GO pathway scores by
measuring the deviation of the recomputed pathway score from
the score based on the unperturbed ontology, normalized by the
latter.

Deviation ¼j pert � un pert j =un pert

where pert = average score of pathways from the perturbed ontol-
ogy and un_pert = average score of pathways based on the original.

Perturbation results in a change of annotation, with new genes
associated to ancestors of swapped GO-terms. The change is pro-
portional to the amount of perturbation of the ontology. For exam-
ple, if gene G is annotated with terms x and y that have a common

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051605#term=history
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ancestor z, the terms might or might not have a different common
ancestor in the perturbed ontology, depending on how abstract
(position in the hierarchy) the term z is. Ideally, the similarity
scores of terms should not change much (deviation � 0) for small
perturbations and should progressively deviate with an increase
in perturbation.

2.5. Gene-based and process-based disease similarity

The similarity for a given pair of diseases was calculated in four
different ways: Gene-Identity based (GIB), Process-Identity based
(PIB) and Process-Similarity based (PSB) (Fig. 1). As the name sug-
gests, GIB computes inter-disease similarity based only on the set
of genes known to be implicated in both diseases. PIB computes
disease similarity based on shared processes, while PSB also takes
the similarity between related processes into consideration. The
three approaches are illustrated using a pair of diseases, Alzhei-
mer’s (240 genes) and Schizophrenia (200 genes) with 39 genes
in common.

2.5.1. Gene-based disease similarity
In the GIB approach, the similarity between a pair of diseases

was calculated as the hypergeometric probability of shared gene
associations. For example, the p-value for Alzheimer’s and Schizo-
phrenia, based on the 39 shared genes, is 5.61 � 10�14.

2.5.2. Process-based disease similarity
GO-Processes associated with each disease were identified by

measuring the over-representation of GO-Processes in the corre-
sponding gene set by using the hypergeometric test, and corrected
for multiple testing using the Benjamini–Hochberg test. To mini-
mize false-positives, a minimum membership of at least three
genes was required for a GO-Process to be considered significant
as it was observed that GO-Processes with one or two genes were
highly likely to have artificially low p-values. To find a suitable p-
value cut-off for associating a GO-Process with a disease, GO-Pro-
cesses were first extracted at multiple p-value cut-offs of 0.05,
0.01, 0.005, 0.001 and 0.0001. This resulted in a disease being anno-
tated with sets of biological processes at different stringencies.

A common denominator of various diseases is the set of genes
that participate in the immune response such as B/T-cell prolifera-
tion, chemotaxis and regulation of isotype switching. These pro-
cesses, though not very specific to disease etiology, can give
artificially high scores if raw frequencies are used. To minimize
Fig. 1. Contrasting approaches used to compute similarity between diseases. D1
and D2 are diseases, Gi are associated genes, Pi are enriched GO-Processes. G1 and
G2 are genes common to both diseases. P1and P2 are biological processes common
to both diseases; P4 is similar to P6.
the obfuscating effect of such commonly used terms on the simi-
larity score between diseases, each GO-Process used in the calcula-
tion of the similarity score was normalized by its information
content in the GO-Process graph and its information content in dis-
ease space.

NF ¼ ICGOðPÞ
MaxICGO

� ICDISðPÞ
MaxICDIS

where NF is the Normalizing Factor for the GO-Process, ICGO is the
information content of the GO-Process P in the entire GO-Graph,
and ICDIS is its information content in disease space. MaxICGO and
MaxICDIS are maximum information contents in GO-Graph and Dis-
ease Space respectively. The msim values from Eq. (3) were multi-
plied by corresponding NF values.

In the PIB approach, the similarity between a pair of diseases
was calculated by considering only the common processes. A
self-similarity score was computed for each process using Eqs.
(1) and (2), and then summed to yield a disease similarity score.
An example of a GO-process that would be included in PIB estima-
tion of the similarity between Alzheimer’s and Schizophrenia is
‘neurotransmitter biosynthetic process’ (GO:0042136) as both the
corresponding gene sets are enriched in this. These diseases have
a total of nine identical processes.

In the PSB approach, in addition to the common GO-processes,
the similarity between non-identical processes between two dis-
eases was also used to calculate similarity. The similarity between
each pair of GO-Processes was computed using Eqs. (1) and (2).
The similarity between a pair of diseases (entities) was computed
by integrating the similarity between corresponding GO-Processes
(attributes) using Eq. (3). For example, ‘synaptic transmission, dopa-
minergic’ (GO:0001963) in Alzheimer’s is estimated by PSB to be
similar to ‘dopamine receptor signaling pathway’ (GO:0007212) in
Schizophrenia, and would therefore be included, in addition to com-
mon processes, in calculating the similarity between the two dis-
eases. It is important to note that, even though the similarity
between these terms appears to be trivially intuitive, these terms
are not obviously related in the GO hierarchy; their nearest common
ancestor is the root term ‘biological process.’ These diseases have 20
pairs of similar processes, in addition to the nine common processes.

PSB and PIB scores were converted to p-values by comparing
them with a corresponding null model – 20,000 random disease
pairs in DO-Lite. Cross-validation on a benchmark set of diseases
was used to determine the optimal combination of disease similar-
ity p-value cut-off and hypergeometric cutoff for process enrich-
ment (Table 2 in Supplementary material).

2.6. Validation and test sets for disease similarity

2.6.1. Validation set
A set of 36 diseases with 68 known disease similarities (see

Supplementary material) was used as the benchmark. This was
based on the diseases analyzed in the study by Suthram et al.
[12] with the addition of common diseases like asthma, hyperten-
sion and lipid disorders. Cancers were omitted as a large number of
secondary biological processes are affected. The guiding principle
for classifying a pair of diseases as being related was that the
knowledge of one could potentially help in the management or
treatment of the other. A disease pair was marked as similar if it
was reported in a textbook, review paper in a peer-reviewed main-
stream journal, or multiple independent journal articles and met at
least one of the following conditions: (a) Have common underlying
pathophysiology that causes or increases the risk of both diseases.
(b) Both diseases could result in a common metabolic signature or
biochemical phenotype. (c) One of the diseases could increase the
risk of the second one, e.g., diabetes mellitus increasing the risk of
nephropathy or HIV infection increasing the risk of tuberculosis.
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Isolated reports of weak correlations based on statistical studies of
clinical records were not taken as evidence of disease similarity.

2.6.2. Test set
A published dataset (available at http://rxinformatics.umn.edu/

SemanticRelatednessResources.html) based on the judgment of
medical residents [30] on the semantic relatedness of medical
terms was used as an external test set. Out of the 587 pairs of
UMLS concepts, the majority involve symptoms and drugs, for
example, ‘‘Lipitor-Zocor’’ or ‘‘Heartburn-Protonix.’’ Only 76 were
found to be disease pairs, where disease is defined as a term that
maps to the Disease Ontology [20]. Of these, 27 pairs of diseases re-
mained after filtering for GO Process enrichment (Processes having
at least 3 associated genes AND p-value 6 0.005). UMLS-Similarity
tools [31] were used to estimate semantic similarity and semantic
relatedness [32] for these disease pairs and compared with the
process-based measured proposed here.

2.7. Fold change calculation

Microarray datasets mentioned in Suthram et al. [12] that had
both disease and control (normal) data were extracted from NCBI-
GEO [33]. In addition, a dataset for Asthma was also extracted
(GSE470). Expression values were calculated using RMA [34] if
CEL files were available; otherwise the existing values were trans-
formed to log 2. In case of multiple probesets for a gene, the probe-
set with the highest inter-quartile range was selected. To find if a
GO-process is significantly regulated in a disease, the fold change
(average expression value in diseased samples/average expression
value in control samples) for a GO-process was compared with
average fold change of random sampling of genes from the experi-
ment. Fold change provides a rough estimate of the change in gene
expression in diseased samples compared to control samples.
Genes with high fold change in positive or negative directions have
a high likelihood of being involved in the disease. The fold change of
a GO-Process was calculated by averaging the fold changes (fc) of
the individual genes. As a null model, fold changes for 1000 ran-
domly selected gene-sets of variable size were estimated for each
disease. A fold change p-value for a GO-Process was calculated as
the percentage of random gene-set fold changes greater/lower than
that of the fold change of the GO-Process, depending on whether
the value was positive/negative. To further contrast the GO-Process
p-values of similar diseases detected by PSB and PIB approaches, a
null model was constructed using 1000 random GO-Processes.
The p-value for each random GO-Process was determined using
the fold change method described earlier for each disease. The med-
ian p-value among diseases was associated with the random GO-
Process. Finally, the set of p-values obtained for random GO Pro-
cesses were compared to the p-values obtained from PSB and PIB
approaches.
Table 1
Comparison of p-values for gene similarity within KEGG Pathways from six different
methods.

KEGG Pathway No. of genes Mb Lin Res Wang Lc PMI

hsa00511 5 0.001 0.01 0.01 0.01 0.01 0.13
hsa00450 11 0.015 0.43 0.02 0.83 0.14 0.35
hsa00760 15 0.016 0.92 0.93 0.81 0.34 0.09
hsa00270 20 0.000 0.67 0.01 0.11 0.17 0.37
hsa00310 23 0.105 0.20 0.26 0.07 0.64 0.78
hsa00350 30 0.001 0.96 0.49 0.88 0.13 0.48
hsa00330 38 0.001 0.96 0.68 0.23 0.26 0.16
hsa00980 45 0.001 0.04 0.07 0.02 0.01 0.01

‘Mb’ is the proposed method.
3. Results

3.1. Performance of similarity metric

Pathways from KEGG were used as a benchmark to evaluate the
accuracy of the proposed measure (Mb). The intra-pathway scores
for Mb (mean = 1.9, SD = 0.68) were significantly higher than the
inter-pathway scores (mean = 0.08, SD = 0.21), p-value = 1.88e�17,
demonstrating that Mb distinguishes between unrelated and re-
lated genes. The performance of the proposed similarity measure
(Mb) for genes is contrasted with five other measures in Table 1.
A representative sample of the KEGG pathways used for evaluation
is shown. The first two columns show the pathway ID and corre-
sponding number of genes. As detailed in Methods, the p-values
reflect the probability that the group of genes in each pathway
could be assembled by chance; low p-values imply that the genes
within a pathway are related.

The proposed metric’s p-value (Mb in column 1) is consistently
lower than that of the other five similarity measures. The average
p-values of 71 pathways for the six similarity measures in the or-
der listed in Table 1 are 0.02, 0.31, 0.12, 0.26, 0.17, 0.19 respec-
tively. The number of pathways that were significantly
distinguished by the similarity measures (p 6 0.05) was 68, 27,
51, 35, 22 and 55 respectively. The next best performer after Mb
is ‘‘Res’’. One explanation for the lower p-values for Mb compared
to the other metrics is that, in many instances, GO-Processes with
similar function have abstract terms as common ancestors. In other
words, the similarity between processes is not obvious from the
ontological hierarchy as the terms appear to be far apart. So mea-
sures that use the information content in common ancestors or the
graph structure could fail to capture similarity in such instances.

Since Resnik performed the best among existing metrics, we fur-
ther compared it to ‘Mb’ as follows. The GO-Process ontology was
perturbed up to 2%, 5%, 10%, 15% and 20% (Fig 2) and average devi-
ation of pathway scores assessed. Ideally, the resulting deviation
should be proportional to the amount of error introduced into
the ontology.

The Resnik pathway scores seem unaffected by the degree of
perturbation, implying that the information content in the com-
mon ancestors does not undergo sizable changes. This is expected
as the common ancestors of many pairs of terms are abstract
terms. In contrast, the deviation for ‘Mb’ is proportional to the ex-
tent of perturbation. It shows a small deviation at low perturba-
tions (2% and 5%) but rises on large perturbations (10–20%). This
suggests that ‘Mb’ is robust to small errors in an ontology and de-
grades gracefully with increasing noise.

To check for the bias introduced by variable cardinality of anno-
tation as reported by [35], i.e., any effect of the number of GO Pro-
cesses or genes associated with diseases on the disease similarity
scores, the Pearson correlation coefficient was calculated between
the following: the number of genes associated with a disease, num-
ber of associated biological processes and the average disease sim-
ilarity scores. As expected, higher the number of genes annotating
a disease, higher the number of enriched GO Processes (correla-
tion = 0.93). The accompanying increase in score is smaller as the
correlation of the number of processes to similarity scores is
0.56. This indicates that the increase in similarity score is only
weakly proportional to gene/bioprocess cardinality.
3.2. Comparison of gene-based and process-based assessments of
disease similarity

A curated set of 36 diseases with 68 known pairwise similarities
(see Table 1 of Supplementary material for complete list) was taken
as a benchmark to compare different approaches to assess disease

http://rxinformatics.umn.edu/SemanticRelatednessResources.html
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Fig. 2. Box-plots of deviation of pathway scores with increasing ontology perturbation for ‘Mb’ and ‘Resnik’ similarity measures.

Table 2a
Sample of related disease pairs with p-values for gene based and process based
similarity.
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similarity. A representative sample of disease pairs with corre-
sponding p-values is shown in Tables 2a and 2b.

Recall and precision were estimated based on the optimal com-
bination of cutoffs for associating a process with a disease, and for
the disease similarity score threshold (details in Table 2 of Supple-
mentary material). In the PSB approach, hypergeometric p-
value 6 0.005 and score p-value 6 0.067 had the best performance
with f-score = 0.575 (Recall = 55%, Precision = 60%). In the PIB ap-
proach, hypergeometric p-value 6 0.001 and score p-value 6 0.081
had the best performance with f-score = 0.38 (Recall = 29%, Preci-
sion = 58%). Disease similarities calculated using the extent of gene
overlap (GIB) (hypergeometric p-value < 0.05) resulted in f-
score = 0.27 (Recall = 88%, Precision = 16%). While GIB seems to
perform almost as well as PSB in detecting the presence of disease
similarity, it suffers from poor precision. In other words, it suffers
from a large proportion of false positives. A comprehensive sum-
mary of the performance of GIB, PIB and PSB approaches is plotted
as Recall/Precision curves in Fig. 3 (Recall and Precision plot is
shown rather than a receiver operating curve (ROC) as the number
of True-Negatives is much higher than True-Positives). The area
under the curve for the PSB approach is the highest.
Fig. 3. Recall–precision graphs for disease similarity obtained from PSB (hyper-
geometric p-value 6 0.005), PIB (p-value 6 0.001) and GIB (p-value 6 0.05)
approaches.
Pubmed identifiers, with supporting evidence type in parenthe-
sis (see Section 2.6), for the first eight disease pairs reported in Ta-
ble 2a are 15,236,409 (a), 9,787,748 (c), 18,230,193 (a), 21,083,567
(a), 20,371,230 (a), 17,552,001 (a), 17,401,045 (b), and 20,157,305
(b). The last pair is trivial as diabetes is known to cause kidney fail-
ure. Table 2b shows unrelated diseases. GIB predicts all of these as
having a low probability of being unrelated, i.e., makes an incorrect
prediction for all of them. While PSB does better, it yields lower p-
values for the last three entries in the table; false positives persist,
though less than in a gene-based assessment.

3.3. Comparison with existing methods

Out of the 54 diseases chosen by Suthram et al. [12], 41 were
found in DO. Cancers were omitted from the analysis, as were
diseases with minimal annotation, resulting in 24 diseases. This
Disease 1 Disease 2 GIB PIB PSB

Alzheimer’s Disease Schizophrenia 0 0.040 0.008
Hyperlipidemia Diabetes Mellitus 0 0.103 0.023
Polycystic Ovary

Syndrome
Diabetes Mellitus 0 0.185 0.040

Asthma Diabetes Mellitus 0 0.010 0.041
Mental Depression Schizophrenia 0 0.262 0.024
Hyperlipidemia Brain Diseases, Metabolic,

Inborn
0.04 0.127 0.062

Alzheimer’s Disease Bipolar Disorder 0 0.002 0.039
Infertility, Male Obesity 0.06 0.261 0.053
Diabetic Nephropathy Diabetes Mellitus 0 0.174 0.058

Table 2b
Sample of unrelated disease pairs with p-values for gene based and process based
similarity.

Disease 1 Disease 2 GIB PIB PSB

Schizophrenia Polycystic Kidney Diseases 0 0.050 0.133
Multiple Sclerosis Lipid disorder 0 0.051 0.182
Endometriosis Aortic Aneurysm 0 0.331 0.257
Multiple Sclerosis Asthma 0 0.031 0.025
Endometriosis Diabetes Mellitus 0.020 0.026 0.034
Sarcoidosis Asthma 0.020 0.074 0.031



Table 3
Pearson correlation between mean scores provided by residents and semantic similarity and relatedness measures.

PSB Lin Res Lc Jc Lesk adapted Vector based

Pearson correlation 0.733 0.529 0.552 0.312 0.321 0.562 0.841
p-Value 1.4e�05 0.004 0.002 0.113 0.101 0.002 3.8e�08

Jc = Jiang and Conrath [36], Lesk adapted = extended gloss overlaps [37], Vector based = semantic relatedness [38].
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contains 21 true disease pairs (see section 2.6 for definition of dis-
ease similarity). The PSB method predicted 14 pairs out of which
nine were true (Recall = 43% and Precision = 65%), while Suthram
et al. reported 115, out which eight are true (Recall = 38% and Pre-
cision = 7%). The pairs that were correctly detected by both meth-
ods are Alzheimer’s Disease & Schizophrenia, Alzheimer’s & Bipolar
Disorder, Schizophrenia & Bipolar Disorder and Hyperlipidemia &
Diabetic Nephropathy. Examples of similarity detected by PSB
but not by Suthram et al. are Obesity & Polycystic Ovary Syndrome,
and Hyperlipidemia & Obesity. Out of the 20 disease pairs reported
by Li et al., none were found to be significant using the PSB method.
Out of 20 associations reported by Wang et al., 11 were found to be
significant (six were trivially related by IS-A relations).

Table 3 lists the Pearson correlation coefficients between the
mean scores of the medical resident test set and those obtained
from PSB and other measures. Since the expert scores are a numer-
ical value between 0 and 1600 rather than a Boolean judgment,
correlation with the raw scores from the PSB method was com-
puted. Table 4 shows scores and verdicts for 10 of the 27 disease
pairs from the resident test set (The details of all the disease pairs
and the corresponding scores are shown in Table 3 of the Supple-
mentary file).

The vector-based relatedness measure shows the highest corre-
lation with numerical scores provided by a group of medical resi-
dents. PSB shows the second highest correlation. As expected, the
semantic similarity measures (Lin, Res, Lc and Jc) show lower or
insignificant correlations when compared with semantic related-
ness measures (PSB, Lesk adapted and Vector-based).

3.4. GO-Processes in microarray expression data

Among the disease pairs detected by PSB and PIB methods, 10
and 11 pairs respectively had available microarray data. P-values
of the top 3 GO-Processes were computed using the method de-
scribed in Section 2.7 and compared with random GO-Process p-
values using the non-parametric Wilcoxon rank sum test. The
GO-Process p-values obtained from PSB approach were found to
be significantly different (p-value = 0.024). The distribution of p-
values using PIB was not found to be significantly different (p-va-
lue = 0.178). This indicates that the GO-Processes found by the
PSB approach between similar diseases are significantly regulated
in gene expression microarray datasets.
Table 4
Mean scores provided by residents and the corresponding PSB scores for the five most
related and five least related disease pairs in the test set.

Disease 1 Disease 2 Resident
scores

PSB
scores

PSB
decision

Hypothyroidism Goiter 1424 1.0494 Yes
Ischemias Arteriosclerosis 1399.5 1.4226 Yes
Angina Atherosclerosis 1357.75 1.4922 Yes
Pneumoniae Influenza 1354 1.0023 Yes
Meningitis Encephalitis 1325.75 1.0334 Yes
Ischemia Epilepsy 477.5 0.28 No
Influenza Atherosclerosis 416 0.1265 No
Epilepsy Cataract 361 0.1222 No
Cataract Pancreatitis 345.5 0.0239 No
Cardiomyopathy Osteoporosis 326.25 0.2191 No
4. Discussion

Biomedical ontologies are growing in popularity as the useful-
ness of controlled vocabulary in addressing biomedical problems
is being increasingly recognized. In this paper, we have demon-
strated that similarity between genes, or between diseases, can
be more accurately measured by combining evidence from co-
occurrence, information content and the semantics embedded in
the ontological hierarchies. A case is made for estimating disease
similarity based not just on gene overlap, but in terms of the sim-
ilarity between the underlying processes.

As noted in [22], measures like PMI that are based purely on co-
occurrence in corpi are biased towards very specific terms which
share only one gene. It introduces negative scores when the joint
probability is lower than the product of individual probabilities,
i.e., log of real numbers between 0 and 1. This can confound the re-
sults when estimating disease similarity.

The construction of ontologies in a domain is often dictated by
the overarching theme of classification. There can be multiple ways
to classify entities, e.g., diseases can be classified based on anat-
omy, symptoms or etiology. This can result in different hierarchical
relationships. A similarity metric can therefore yield different esti-
mates for the similarity of a pair of entities based on the particular
ontology used. Further, ontologies are often a work in progress
with terms and relationships both added and deleted over time
(e.g., GO has grown in size by an order of magnitude in the decade
since its inception). Thus, similarity metrics that are based on the
common-ancestor of two terms in the ontology will, by definition,
be unable to capture similarity between terms that are related but
topologically far apart in the ontology. Such methods are also sen-
sitive to errors in ontologies. Hybrid methods which use graph
structure and node information are also inadequate as they will fail
to capture similarity between terms that are far apart in the
ontology.

The observed co-occurrence of ontological terms in annotated
data can potentially compensate for the subjective and incomplete
nature of a given ontology in estimating term-term similarity. For
example, rhodopsin mediated phototransduction (GO:0009586)
and rhodopsin mediated signaling pathway (GO:0016056) are clo-
sely related semantic terms. However, they share the common
ancestor ‘Signaling’ only one level below the generic term ‘Biolog-
ical Process’ in the GO Process ontology; their position in the ontol-
ogy seems to indicate that they are not closely related. In fact, the
two GO-Processes share all three genes annotated to them in the
human genome. The proposed metric, based on both co-occurrence
and information content of terms, gives a high score (95th percen-
tile) while the scores for existing metrics range from 0 to 0.58 (1
being highest).

Similarity between diseases has previously been computed be-
tween flat lists of shared genes [21], pathways [13] or functional
modules [12]. Given the fact that many processes are related, we
computed the pair-wise similarity between diseases by basing it
on process similarity. In other words, instead of looking only for
identical matches between biological processes, the similarity be-
tween biological processes was computed and used in assessing
the similarity between a pair of diseases. The hypergeometric dis-
tribution was used to estimate overrepresentation, i.e., the
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enrichment of processes in the gene set associated with a disease.
To minimize spurious results, the following filter was applied. A
biological process was required to have at least 3 genes to be con-
sidered for association with a disease. Further, rather than relying
on the rather permissive traditional value of 0.05 for statistical sig-
nificance, a curated set of 36 diseases with 68 verified pairs of sim-
ilar diseases was used to find the optimal p-value cutoff (see
Supplementary file, Table 2). The p-value cutoff of 0.005 was found
to be the most stringent as out of 1565 diseases that were associ-
ated with at least 1 GO-Process at 0.05 significance level, 1477 dis-
eases were found at 0.005 significance level.

To evaluate if using similarity between processes is more accu-
rate than using identical matches to compute disease similarity,
disease similarities were computed using the two approaches in
parallel and compared. While process-matching performed better
than gene-matching or gene-similarity, process similarity did bet-
ter than all other approaches (Fig. 3 and Tables 2a and 2b). Some of
the possible reasons for this are discussed below.

When a pair of diseases has few identical processes, the
resulting disease similarity score may be low. For example,
Diabetic nephropathy and Hyperlipidemia only share ‘triacylglyc-
erol metabolic process’ (GO:0006641). A consideration of similar-
ity, and not just identical processes reveals that ‘cholesterol
transport’ (GO:0030301) in Diabetic Nephropathy shares similarity
with ‘cholesterol efflux’ (GO:0033344) and ‘phospholipid efflux’(-
GO:0033700) in Hyperlipidemia. Another example is the associ-
ation of Male Infertility with Obesity despite having no identical
process matches. Process similarities between Male Infertility
and Obesity involve ‘triacylglycerol metabolic process’ (GO:0006641),
‘follicle-stimulating hormone secretion’ (GO:0046884) and ‘regula-
tion of insulin secretion’ (GO:0050796). Other interesting disease
pairs include Rheumatoid Arthritis and Diabetes Mellitus. Patients
with Rheumatoid Arthritis have increased risk to type-2 diabetes
as systemic inflammation can cause insulin resistance [39]. Some
of the significant process pairs between the 2 diseases are ‘positive
regulation of MHC class II biosynthetic process’ (GO:0045348),
‘negative regulation of osteoclast differentiation’ (GO:0045671),
‘positive regulation of B cell proliferation’ (GO:0030890) and ‘fibri-
nolysis’ (GO:0042730). Another disadvantage of considering only
identical processes is that it can give an artificially high score based
on rare matching processes that are not relevant to disease etiol-
ogy, e.g., spurious association of Huntington’s disease with Ham-
man–Rich syndrome based on the common process ‘protein
oligomerization’ (GO:0051259). Studying processes in common be-
tween diseases can potentially help in borrowing treatment for one
disease from another. An interesting example is the drug Donepezil
(DrugBank ID: DB00843), which is effective in Alzheimer’s by tar-
geting genes in the ‘‘muscarinic acetylcholine receptor signaling
pathway’’ (GO:0007213). Process-based disease similarity shows
that this is the top hit among shared processes between Alzhei-
mer’s and Schizophrenia. In fact, though its effectiveness is incon-
clusive (Ferreri, Agbokou et al. 2006), Donepezil has been used in
several clinical trials for Schizophrenia. Thus, there are several
advantages to incorporating the semantic similarity between pro-
cesses in assessing similarity between diseases.

By comparing the fold changes of apparently significant GO-
Processes with randomly selected processes, the set of significant
findings can be minimized. GO-Processes corresponding to posi-
tively classified disease pairs were found to have significant fold
changes in gene-expression microarray data.

Though some of the disease pairs reported by other studies were
found to be significant by the PSB method, the overlap was poor. This
can be attributed to the variety of data sources used for computing
disease similarities, the nature of annotation and differences in the
methods used. Wang et al. [25] used only OMIM as the source of gene
annotation and looked for identical matches between pathways.
Though pathways offer a rich source of annotation, much of the hu-
man genome is not represented. Comparatively, GO-Processes offer
higher annotation coverage and a platform for function inference.
Suthram et al. [12] used microarray gene-expression datasets for
estimating disease similarity. While microarrays measure the over-
all response of the disease, it is susceptible to noise which is exacer-
bated by relatively small sample sizes for each disease. Microarrays
include the measurement of many incidental features of a disease
like immune response and secondary effects. This could mask the
primary genes that cause the disease. The authors note that targets
for potential repositioning of drugs between diseases were often im-
mune-response related processes. Li et al. use phenotypes from
OMIM to link diseases. The phenotypes can be abstract and have a
strictly genetic pre-disposition. Many of the reported disease simi-
larities share an IS-A relationship in DO. Studies on disease similar-
ities often report their findings without using a test set to validate
the accuracy of the predictive method used. A notable exception is
a series of studies on semantic relatedness verified by physicians,
medical residents or coders [30–32]. However, most of the terms
in the benchmark used in the studies refer to non-disease terms,
and the few pairs of terms that represent disease–disease pairs often
represent dissimilar pairs. We were able to find 27 pairs of diseases
suitable for verifying the accuracy of the PSB measure on an external
test set. A significant correlation with medical resident scores vali-
dates the PSB measure. Interestingly, a vector based measure [38]
that exploits second-order co-occurrence of terms in clinical notes
performed even better. This suggests that combining relational clues
in co-occurrence of terms with hierarchical inference from ontolog-
ical structure is a reliable estimate of disease similarity. However,
the vector based measure had relatively low scores for the less obvi-
ous similarities detected by the PSB measure, such as Diabetes mel-
litus & Polycystic Ovary Syndrome (vector score = 0.619), Asthma &
Diabetes mellitus (vector score = 0.462), and Male infertility and
Obesity (vector score = 0.3452). Presumably, the underlying pro-
cesses need to be factored into the comparison to detect shared as-
pects of pathophysiology.

Understandably, it is difficult to identify true negatives as this is
an active area of research with systems-level analysis continuing to
reveal previously unknown relationships. However, this makes it
difficult to evaluate the true effectiveness of various methods. By
creating and using a benchmark set, we have systematically evalu-
ated the performance of the proposed measure. It would be worth-
while to establish a curated data set, such as the one in this paper
but larger in size, that has both true positives and negatives delin-
eated in a causal context by collaborative efforts that could help in
benchmarking different methods in the future. Although restricting
the use of GO-Processes by using an arbitrary level in the GO hier-
archy as cutoff has been shown to be detrimental [40,41], we ob-
served that performance of PSB improved (f-score = 0.61) when
GO-Processes < level 5 were discarded (data not shown). This is
due to association of many abstract GO-Processes to diseases with
low p-values.

We have shown that incorporating the similarity between bio-
logical processes yields more accurate detection of disease similar-
ity than explicit gene or process matching. Enhancing the disease
vocabulary by using a combination of UMLS (SNOMED-CT, MeSH,
ICD) and DO overcomes the problem of synonyms and yields better
coverage by exploiting the hierarchical structure of ontologies.
However, it is important to point out the limitations of the work
described here. The ontological term similarity measure tends to
overestimate similarity between a pair of terms that are rare/
poorly annotated as the average information content is high even
though the co-occurrence score is compensated by the average of
maximum scores. We have used genes from OMIM, GeneRIF and
Swissprot data sets in this approach. While OMIM and Swissprot
offer high quality annotation, GeneRIF covers a wide variety of
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gene–disease relationships reported in the literature. Conse-
quently, a disease is not only annotated with causal genes but also
ancillary genes associated with its symptoms (e.g., immune re-
sponse genes are common to a large subset of diseases, leading
to false positives like the last three rows in Table 2b). As discussed
above, this can confound the interpretation of observed disease
similarity. The PSB approach has a bias towards well annotated dis-
eases. To minimize false positives in using the hypergeometric dis-
tribution, diseases were required to have at least five genes [40],
and GO-Processes at least 3. Hence relationships among diseases
that are sparsely annotated cannot be inferred; this is unfortunate
as understanding the etiology of such diseases is particularly
important. At the other end, a large number of genes annotated
to a disease also tend to bias the disease similarity score as many
biological processes are affected.
5. Conclusion

The widespread use of biomedical ontologies demands methods
that translate information between ontologies and quantify simi-
larity between terms in an ontology. This paper presents a function
to measure similarity between a pair of ontological terms, or enti-
ties annotated with them, that outperforms other well known sim-
ilarity measures. Quantifying similarity between diseases has the
potential to help in understanding pathophysiology and ultimately
leading to clinical interventions like repositioning of drugs. By
using a curated set of similar diseases to evaluate different ap-
proaches to measure similarity between diseases (gene-based
and process-based), we conclude that it is important to consider
the similarity between processes underlying each disease for more
accurate prediction of disease similarity. Complementing infer-
ences on diseases similarity from gene annotation with text-min-
ing approaches that exploit phenotypic case reports [42] and
clinical notes [43] can help in more comprehensive discernment
of hidden similarities between apparently disparate diseases.
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