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INTRODUCTION

Over the past 10 years considerable progress has been made in studying
various questions concerning rational approximation on unbounded sets.
To a large extent the starting point of this effort was the paper of Cody,
Meinardus and Varga [6] and this has led to investigations of best approxima-
tion properties in various settings [1-4, 8-9] and studies of the error of best
approximation [10-12].

In this paper we wish to study the best approximation properties of strong
uniqueness and continuity of the best approximation operator for reciprocal
polynomial approximation on [0, ©©) of continuous positive functions
tending to 0 as x — co. Thus, we define

Ci10, o0) = { fe C[0, o0): f(x) > 0, x € [0, o) and li\rjnf(x) =0} (1
and
R, = {Up:ipell, , p(x) > 0,xe[0, )}, n I, (2)

where 11, denotes the class of all algebraic real polynomials of degree < n.
Furthermore, define |j /|| = sup{|f(x)|: x € [0, c0)} in what follows. In this
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setting, it is known that best approximations exist and are unique [3. 4] and
that the following characterization theorem holds:

THEOREM | [4]. Let fe CF0, o), f¢ R, with n - 1. Then 1;p™ is the
best approximation to f from R, on [0, ) iff

(i) (standard alternation) there exist {x; g . 0 - x, - x -
Xnap » Such that * f(x;) — Up*(x,), =1 f— Lp*,i O...n 1 and
I R— (o) L) o
VI - Cin1) e
S prx;) o P )
or
(i) (nonstandard alternation) ¢p* n - | and there exist {x;)] .

0 < xp < xy <0 -0 < xp such that f(x;) — 1p*(x;) = (--D" "0 f— Lip™

In both cases the points {x,;} are called extreme points. Also, we wish to
note that for n 2> 1, p* cannot be a constant. Indeed, since f{x) = 0 for ali
x € {0, o) and lim,...., f(x) = 0, then in order for the reciprocal of a constant,
1/c*, to be a best approximation to f, we must have that ¢© 2/, where
M = max,,f(x). Since f(x) —~ 0 as x— o we can find x, -0 such that
f(x) == M for x = x, . It is then easily seen that for p*(x) -~ e(x -~ x,) - ¢~
with € > 0 and sufficiently small that(| /- U/p* | < ]f - l/¢* ! byastraight-
forward continuity-compactness argument.

In addition, it has been shown in [3] that if 1/p* € R, is the best approxima-
tion to fe C,7[0, «) from R, with ¢p* == n then both strong uniqueness
(e, | f—=1pl—=if—1Up* i =yl lp-—1p*hy-y(f) >0 forall 1/pe R,)
and Lipschitz continuity of the best approximation operator at f (i.c.
1p* — Lpy i < BILS — gl B = B(f) = 0. ge Cy [0, ) and 1jp, the best
approximation to g from R,) hold. Furthermore, it was shown in [3] that for
each f whose corresponding best approximation from R, . I/p*, satisfies
ép* < n — 2 the strong uniqueness theorem cannot hold. In this present
paper we shall prove that if fe Cy[0, oc) has 1/p* € R, as its best approxima-
tion then (i) if ¢p* <L n — 2 (i.e., 1/p* is deficient of order 2 or more) then
the best approximation operator is discontinuous at fand (i) if ¢p* - n !
then the best approximation operator is continuous at f. It remains open as
to whether or not a strong uniqueness theorem holds in the case that «p”
n— 1.

MAIN RESULTS
In this section we state and prove our main results. The first resuit estab-

lishing the discontinuity of the best approximation operator is given in two
parts. The first theorem will treat this problem for the casc that either 1/p™ 15
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deficient of order 3 or more, or 1/p* is deficient of order 2 and f — 1/p*
possesses a standard alternating sequence. In this case we can prove even
stronger results concerning the discontinuous behavior of the best approxima-
tion operator. The second theorem will treat the discontinuity of the best
approximation operator when 1/p* is deficient of order 2 with only non-
standard alternation holding for f — l/p*. Our final result will be to prove
that the best approximation operator is continuous whenever I/p* is deficient
of order 1.

THEOREM 2. Letfe CF[0, «©),f¢ R, and |/p* € R, be the best approxima-
tion to f from R, . Further, assume that ¢p* << n — 2 and that if ¢cp* —n — 2
then f— 1/p* possesses a standard alternating set. Then, given € > 0 there
exists 8 >0, {1/pin1 C R, and {g.}v.1 C CJ[0, o) such that each g, has
1/p,. as its best approximation from R, , g, converges uniformly to f on [0. )
and & < || 1/p* — 1/p;. | < e for all k.

Remarik. This theorem establishes that not only is the best approximation
operator discontinuous at f but, in fact, that it is also not possible for a local
(relative to 1/p*) strong uniqueness result to hold.

Proof. Set E =|f— l/p*| >0 and assume without loss of generality
that € <C E/4. Set 6 = ¢/8. Since we are assuming throughout this paper that
n 2= 1, we have that p*(x) is not identically equal to a constant which implies
that lim,.., p*(x) == oo. Select § > 0 such that f(x) <l e and p*(x) > 4/e
forall x = 5. Sete, = (/4 -+ 2/p*(k))~' and note that for k == 3, p*(k) = ¢,.
Define p, 11, by

9

Since for all x = B, p*(x) > e, , we have that

2

fx) — e [ — 1) a0 %] <
(P*(0) —en [(- 1) e ] =0
implying that p,(x) > ¢, > 4/3e for x .= f3.
Next, observe that e, — 4/e as k - oo and (x/k — [)? converges uniformly
to 1 on [0, /] as k& — co. Thus, p, converges uniformly to p* on [0, B] as
k — oo. Now, let

v = min (i, 109 1, oty

and select u == 8 such that for k > u, maxX,eg.q1 | 1/p{x) — 1/p*(x)] < 5/2.
This implies that 1/p,(x) = 1/p*(x) — /2 = »/2 > 0 for all xe[0, B] and

k = p. Henee 1/p,. e R, for k = p as p,(x) = 0 for all x € [0, o0).
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Now, since p(k) = 2e, we have that 1/p (k) — l/p*(k) = ¢/8 == §. Thus,
1 1/p. — 1/p*|| = & for all k = p. Also, for k > p we have that /pk(x) —
Hp*(x)| < n/2 < e for xe| O, B]. In addition, for x >> 8 we have that
1/p*(x) < €/4 and 1/pu(x) < 3¢/4 for k = p. Hence || 1/p, — 1/pF || < € as
claimed.

Finally, define g, , for & = u, by

1 1

gilx) = f(x) = ) PR ve [0, B]
-/, x =B
g - - L1
= linear with endpoint values f(8) - O
andf(ﬂ -+ %), re(ﬁ B f—/)

Clearly, g, € C[0, o©), k = p and since f(x) - 1/p(x) — 1/p¥(x) = f(x) —
77/2 >0 for x € [0, B] we have that g, € C§ [0 ) for k = ,u Since F(B)

UpdB) = 1ip"(@) < FG) 1 2 < )+ 2 < [@) | B < UL and
f(B—+ I’k) < E/4 we have that gilx) < E for xe[B, ﬁ -+ I/k 1mplymg
() < 3E/8 for x = B. Also, [[1/p, — 1/p*| < e < E/4 implies that

1/p(x) < 1jp*(x) — E/4 < E 2 for x = f. From this it follows that
g(x) — Up(x)| << FE for x =2 f. In addition, for x [0, ] we have that
gu(x) — 1jpu(x) = f(x) — 1/p*(x) and this implies that g — 1/p; exhibits
the same alternating behavior as f— 1/p*on [0, w). Thus, if f — 1/p* has a
standard alternating set so does g, — l/p, implying that 1/p, is the best
approximation to g, from R, on {0, «). If f— 1/p* possesses only a non-
standard alternating set then so does g, — 1/p, . Since in this case we must
have that ¢p, <_n — 3, we must have that ¢p, < n — 1 implying once again
that 1/p, is the best approximation to g, from R, on [0, co). Since it is clear
that g, converges uniformly to fon [0, «), the proof is completed by relabel-
ing the sequences {1/p,}7.,. and {g.}y . as {l/p}i, and {g.)i . respec-
tively.

For the case that ép* ==n — 2 and f— I/p* has only a nonstandard
alternating sequence we have the slightly weaker theorem:

THEOREM 3. Let fe C;[0, ), /¢ R, and, 1ip* € R, be its best approxi-
mation from R, . Further, assume that ¢p* ==n — 2 and f — 1/p* possesses
only a nonstandard alternating set. Then there exists {1/p.71C R, and
{ g1t C CF0, o0) such that for each k, |[p,. is the best approximation to g,
from R, on [0, o), g, converges uniformly to fon [0, w)and| 1/p, — 1/p* ] ==
LE, where E = | f — 1[/p*] > 0.
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Proof. Select B >0 such that p*(x) = 8/E, f(x) < E/8 and p*(x) 1s
monotone increasing for x > f. For k 2= B, define

P ) = 14 (p7) — 0 [(5 — 1) *7*(/:)—4]’
0=t <—,x2=0.

Note that p{x, ¢) is continuous on [0, o) x [0, l/E]. Define A(t) =
min{ pi(x, 1): x € [B, 2k]} and observe that % is a continuous function of ¢,
0 < t << 1/E. In addition, A(0) = min{ p*(x)(x/k — 1)*: x€[B, 2k]} = 0 as

> B and that #(1/E) = min{l/E + (p*(x) — E)(x/k — 1)+

/(bp*(k) — D] xe[B, 2k]} > 1JE as p*(x) > 1/E on [B, 2k]. Select

e, €(0, 1/E) so that h(e,) = 1/E. Thus, px, ¢,) = l/E for xe[B, 2k].
Select e, €(0, 1/E)so that i(e,) = 1/E. Thus, p,(x, e;) =>1]E > 0for x €[, 2k].
Observe that p.(x, e,) converges uniformly to p*(x) on [0, B] as k — o0 since
0 <ep <1/E, eJ(p*(k) — ¢;)— 0 and (x/k — 1)? converges uniformly
to | on [0, 5] as k — oo,

Next, let

n:min(mmf() E

€[0,8] iy H]p*(A) > 4 ) =0

Select 4 == B such that & == p implies that vk = B, k > 1, max{| 1/pu(x, e;) -
p*(x): x e [0, B} < /2. Thus, for k = u, p(x, e) = n/2 > 0, for all
x € [0, B]. This implies that for k == p, 1/p.(x, e;) is positive and converges
uniformly to 1/p*(x) on [0, B). In addition, for k = p and x € [B, VK] we
have pi(x, ¢;) = e + (p*(x) — eI/ vk — 1)?] > e+ HpHx) —ep) =
p¥(x) = 4/Eas p*(x) = 8/Efor x = B. Since max{l/p(x, ¢,): x € [B, 2k]} =
E we have that if 1, € [3, 2k] is such that 1/p (7, e;) = E then 1, > vk for
k Z= p.

Next, note that for x = k > p, pi(x, e,} is a monotone increasing function

of x and that py(2k, ;) = e, + (P (2k) — e)(1 - e, /( p*(2k) — ep)) =

p*(2k) = 8/E. Thus, 1/px, e,) < E/8 for x = 2k. Summarlzmg, we have
shown that 1/p{(x, e;) << E/4 for x € [0, \/k], I/pdx, e;) < EJ8 for x == 2k
and 1/pdx, e,) < E for x e [Vk, 2k] with t, e [vk, 2k] a point at which
the value £ is attained.

Next, define «y by E — oy = max{(l/p.(x, e;) — f(x)): x B, 2k]}. Since
f(x) <X E/8 for x = 8 and 1/py(t;,, e;) — E we have that £ — o), = E —
f(t) = iE implying that E/8 = f(#,) = «, . Let y,€[B8, 2k] be such that

Vpl( v, er) — f(y) = E — o for each k& = p. Since 1/p(x, ¢,) < E/8 for
xe[B, vk] we have that y, e [vk, 2k]. Also, since f(t,) — 0 as k — o
(as 1, — o) it follows that o, — 0 as k — oo. Noting that f(x) < E/8 for
xe€[B, ) and that 1/px, e) < E/8 for x > 2k we have that Jf(x) —
I/pi(x, e;)] < E — oy for x € [B, «0) and k > u. Also, since 1/p(t;., ¢,) = E



76 DUNHAM AND TAYLOR

and 1/p*(¢;) =2 E/8 we have that ' Lip, - 1/p* | = | ljpts, ex) = 1/p*(t)] =
TE/8.
Now define g, by (for £ = u)

| ! . [
gielx) = f(x) - p,(chT,S - /2;(7\) : ve [0, 8], p¥(x) l % E X
- — Y . ,__,__!,_,,,,, c 3 - “;.V]. i
= F gt p/\:(x’ e/“) s X [O, ﬁ]. f(x) p*(x‘) e E - 0
‘ I o
= —E | oy ey Y€ 0,85, fx)— T —E - v
-, v

= linear on [B, B - /ITJ with endpoint values

o | ey |
]‘(p’) : });(6:(1,\) /;**(B’)’ and f (/3 7‘*)

Observe that gx) = 0 for all x - 0. Indeed, for x [0, 5] with
VA(x) — 1ip*(x¥)| -7 E — x,. we have that g, - f(x) Updx, e
[p*(x) = f(x) — %j2 =22 -0. For xe[0,B] with f(x) — 1/p7(x)

E — oy, gilx) = E — o - Up(xoer) = §E = Tipdx, e) - 0 and for
x € [0, B] with f(x) — l‘f’p‘*’(‘.\') < E g, gldx)y o E e xg  Updx, ep)
—E g 1pH(x) = 1 pdx, <,) - pH(x) - f(\') — 92 opf2 - 0
Since (9) - UpiR.c0 = Up"0) /@)~ 22002 Oandf(B 1 17k)

0 we have that g, {(x) = 0 on [, S - and finally g, is positive on
[B 1 1/k, o0) as f is. To see that g ,‘.(,\) 1S contmuous on [0, o0) one must
only check on [0, 8] as for x -8 it is clearly continuous. However,
on [0, B], g{x) is simply the truncation of f(x) — I;p*(x) to the range
[—F &, E - o] plus the continuous function 1/p(x. ¢;) showing that
g€ Cy'[0. o).

Next, let us consider g {x) — 1/pdx, e,);. Note that by construction
LX) — Upx, e =0 E — x, for xe[0, 8] and that, if (v}, with x, <
X, < - < x, is a nonstandard alternating set for /- 1/p* then we must
have that x, < 5 and

gilx) — Uplx;, e) =- sgn(f(x;) — p*(x UL — ~) = (1Y (E )

Next, on [B, B~ 1/k] we have that f(g) = E/8. f(f - 1/k) - E/8 and
I 1pu(B, ¢) — l,p “(B)} =< EI8 so that g (B) = bf4 and g8 4 1jk)y < EI8.
Thus, g{x) = E/4 on [B, B - 1/k]. Also, ICCdll that l'p,(v ¢ = El4 on
[0, VK] so that La 3y — Lipdx, )l == E/4 on [, B — 1/k]. Finally, we
noted earlier that | f(x) — Up(x. e,)] =2 E — ~,on [B, o) so that | g.(x)
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1ipidx, e,) << E — a on [0, o). Since there exists y, € [Vk, 2k] at which
Sy — Upd vy, &) = —(E — ;) we have that g, — l/p, possesses a
standard alternating set at the points x, < x; < - < x, <y, and thus
1/p,. is the best approximation to g, from R, on [0, o). Finally, it is a straight-
forward argument to prove that g, converges uniformly to f. Thus, once
again reindexing the sequence {1/p;}i_, gives the desired result. |

Next, we wish to show that if fe C [0, o) has [/p* as its best approxima-
tion from R, with ¢p* = n — | then the best approximation operator is
continuous. This we do in the following theorem.

THEOREM 4. Let fe Cf[0, ©) ~ R, and let 1[p* be its best approxima-
tion from R, on [0, oo) with ¢p* =n — 1. Then, the best approximation
operator is continuous at f.

Proof.  Let{g.)r, C CF0, o0) with g, — f uniformly on [0, o). Further,
let 1,p, € R, be the best approximation to g, on [0, «) for each k. Then, we
must prove that || 1/p, — I/p*|l—0 as k— oo. Let us first note that
1gr - Upe << llge — U/p*| implying that lim,... suplig. — L/p.|

lim, , sup g — Up*|| = |f— Up*| = E. Also, E — if — 1p*| =
= tp S — gl 4+ llge — lipet implying  that £ = lim,..
inf(£ L f— g ) < lim_, inf}| g, — 1/p,|l. Combining these results gives
that lim, . i g, — l/p.| = E. In addition, since E =Z{f — 1/p.|' <
V- g, g, — 1p,il we also have that lim;_, | f — 1/ps || = E.

Next, fix 3y €]0, o) such that f( y) = max{f(x): x € [0, o)}. Then since
a constant cannot be a best approximation to f from R, on [0, c0) we must
have that 2F < f( ). Select 6 > 0 such that for xel=:{y — 8,y — 3] N
[0, o) we must have f(x) == {2FE -- f( 3)) > 2F. Choose 3 such that k == S
wmplies that | f— 1/p, | << 2E. Then for k > f8 and x € /. we have that

VS F ey Sp e L
0 <m=2F 3 E < f(x) §E NPT
. 3 . 3
Sf) S E s fIESE - M.
Fa pa

In addition, observe that the inequality [/p,(x) << M kolds for all x € [0, o0)
and k .- f3. Let{ p,} be a subsequence of {p,}. Then, since /M < p(x) < I/m
for all x e/, there exists a subsequence {p,} of {p,} such that p, converges
uniformly to some p € I1, on I. This implies that the coefficients of p, con-
verge to the coeflicients of p which in turn implies that for each x € [0, o0),
2.(x)-— p(x). Thus, we must have 1/M < p(x) < 1/m on I and 1/M <p(x)
on [0, o0). This last inequality shows that 1/p € R, . Furthermore, for x ¢
[0, o) fixed, |f(x)— Up(x)| = lim, | Ax) —1/p.(x) < lim,_. | f —
Up, ' E.Thus,lif— 1/pli < E implying that p == p* by the uniqueness of
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best approximations from £,. Since this is true for any subsequence {p,} of
{ pr} we must have that this is also true for the full sequence { p,}. That is, that
P converges uniformiy to p* on / and pointwise on [0, «). To complete this
argument we must prove that 1/p, converges uniformly to 1/p* on [0, ).
From the above discussion we have that 1/p, converges pointwise to 1/p* on
[0, o) and, in fact, on any fixed closed interval [0, «], « = 0, 1/p, converges
uniformly to 1/p* (due to the coeflicient convergence).

In order to establish this final fact, we must examine the coeflicient conver-
gence in more detail. Thus, let p*(x) - af_;x"1 4 - | af with af_, =0
(here we are using our hypothesis that ¢p* —=»n — 1 and 1/p” ¢ R,) and let
pi(x) == a,*x" - -+ — a,*, where we know that the leading nonzero coeffi-
cient of p, must be positive. In addition, we have that a;* — ¢ as k —» oo for
j=0, 1,.., n, where af == 0. Thus, there exists y > f such that k .

implies that a;_, > af4/2 >0 and «* ~af | =1 for j  O...m 2.
Thus, given ¢ >0 there exists & - 0 such that p(x) = (a_,;2) x"!
(@, — Dx" 2+ = (aF — 1) = 2fe. Since p{x) = p(x) for k .~y and

pH(x) > p(x) for all x > & we have that

1 -

ol =l | [l <55
Pi(X) pr) 1| pal) prxyl 2 2
for k == v and x 2> 3. On [0, 8] we have that 1/p, converges uniformly to
to 1/p*. Thus, we may select K > v such that £ == K implies : 1/p(x)
I/p*(x)| << eforall x [0, 8]. Hence, for k 2> K we have that | 1/p,, — l/p*| -
e implying the desired result. [

CONCLUDING REMARKS

Observe that the question of whether or not a strong uniqueness result
holds for the case that fe C; [0, «c) with its best approximation 1/p* from
R, satisfying ¢p* == n — | remains open. Likewise, the question of Lipschitz
continuity of the best approximation operator remains open in this case.

A second item of interest is that in ordinary rational approximation on a
finite interval, nonstandard (i.e., fewer) alternation due to degeneracy of the
best approximation may be unimportant as the set of f with degenerate best
approximations is nowhere dense [5, 7]. If the corresponding result that
{ f the best approximation 1/p* € R, has ¢p* < n} was nowhere dense then
we could expect to be able to usually employ the simpler theory of [8] for
this problem. However, the continuity result for degree » — | implies that
every f with nonstandard alternation and best approximation 1/p* e R,
with ¢p* = n — 1 has all g sufficiently close with nonstandard alternation
and best approximations of degree » — [. In this regard, an interesting
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question is to characterize those f for which nonstandard alternation will
occur. Some initial results in this direction have been obtained by the second
author and D. Leeming.

Note added in proof. D. Schmidt has proved that strong uniqueness holds when

op

5]

(S

6.
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