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Over the past 10 years considerable progress has been made in studying 
various questions concerning rational approximation on unbounded sets. 

To a large extent the starting point of this effort was the paper of Cody, 
Meinardus and Varga [6] and this has led to investigations of best approxima- 
tion properties in various settings [l-4, 8-91 and studies of the error of best 
approximation [lo-121. 

In this paper we wish to study the best approximation properties of strong 
uniqueness and continuity of the best approximation operator for reciprocal 
polynomial approximation on [0, a) of continuous positive functions 
tending to 0 as x + co. Thus, we define 

C; [0, a) = {.f~ C[O, co):f(x-) :,> 0, x E [O, m) and.Ji,m j’(x) =~ 0). (I) 

and 

R7l = j 1 ‘P: p E fl, 1 p(.u) > 0, x E [O, m)), /I $2 I) (2) 

where 17, denotes the class of all algebraic real polynomials of degree < n. 
Furthermore, define i1fll = sup{lf(x)!. . x E [0, a)} in what follows. In this 
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setting, it is known that best approximations exist and are unique 13. 41 and 
that the following characterization theorem holds: 

THEOREM I [4]. Let f E Cz[O, a), f $ R,, with 11 I. Thlr(w I p ’ i, tlw 
best rrpproximation to ffrom R, on [0, “c) 12’ 

(i) (stmdurd cdternution) thrrr exist J u.\!’ ’ ’ 0 I- AJZ--0 * 

x,+1, SUC/J tht J(s,) I,ip*(x~) IIJ’ I ‘/I< I, i 

or 

(ii) (nonstmdurd ulternution) ip” II I and thcrc c.yi.ct ;.Y,;;’ ,, 

0 6 x0 < Xl -‘Z ... < x, such thatf(x?) ~~~ l/P*(.v,) :m (- -1)” ! f‘ 1 /pa’ 

In both cases the points {xi) are called extreme points. Also. me wish to 
note that for II ;,: 1, p* cannot be a constant. Indeed, sincef(.\-) 0 for all 
x E [O, c/3) and lim~,,Df(x) : 0, then in order for the reciprocal of a constant, 
I/c*. to be a best approximation to J; we must have that c ” 2 :.21. where 
M = max,,>,,f(x). Since f(x) + 0 as x ---f z we can find .\-,, 0 \uch that 
f(x) e< A4 for x I..: x,, . It is then easily seen that for /j*(s) C(.V .v,,) i’. 
with E :> 0 and sufficiently small that i1.f -- I/p-’ /, a._ ,i,f I i(’ !. :~ by a straight- 
forward continuity-compactness argument. 

In addition, it has been shown in [3] that if l/p* E R, is the best approxima- 
tion to ,f~ C,,l-[0, m) from R, with ip* :~- n then both strong uniqueness 
.(i.e., iIf-- l/p;1 - ilf- l/p” :/ ;Z ~11 l/p-m- I//I’ Ii, y r(,f) I 0, for all 1 >E R,,) 
and Lipschitz continuity of the best approximation operator at f‘ (i.e.. 
I/ l/p* - lj~~, ,/ -< ,/3 i:f- g /~, 13 fl(,f) ,,I 0. g E C,, [0, m) and I,),, the best 
approximation to g from R,) hold. Furthermore, it was shown in [3] that fat 
each f whose corresponding best approximation from R,, , 1 ;P’. satisfies 
‘-P ‘_ * < II ~~- 2 the strong uniqueness theorem cannot hold. In this present 
paper we shall prove that iffE C,f[O, a) has I ;‘p” E I<, as its best approxima-- 
tion then (i) if ip4’ .:. IZ ~ 2 (i.e., 1 jp* is delicient of order 2 or more) then 
the best approximation operator is discontinuous atfand (ii) if i/j )I ! 
then the best approximation operator is continuous at .c It remain\ open a> 
to whether or not a strong uniqueness theorem holds in the case that (/’ 
n - I. 

MAIN RESUL.IS 

In this section we state and prove our main results. The firs! result ehtab- 
lishing the discontinuity of the best approximation operator is given in two 
parts. The first theorem will treat this problem for the case that either I “JJ, i\ 
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deficient of order 3 or more, or l/p* is deficient of order 2 and f - I/p” 
possesses a standard alternating sequence. In this case we can prove even 
stronger results concerning the discontinuous behavior of the best approxima- 
tion operator. The second theorem will treat the discontinuity of the best 
approximation operator when I ,‘p * is deficient of order 2 with only non- 
standard alternation holding for f - l/p*. Our final result will be to prove 
that the best approximation operator is continuous whenever I/p” is deficient 
of order 1. 

THEOREM 2. Letf E C,,+[O, a), f $ R, and 1 /p* E R, be the best approxima- 
tion to ffrom R, . Further, assume that ip” :G n - 2 and that if ?p* = n ~ 2 
then f - l/p* possesses a standard alternating set. Then, given E > 0 there 
exists S > 0, {I /pk.]& C R,, and {g,~}~zl C Ct[O, a) such that each g, has 
1 /pi, as its best approximation ,from R n , gi: converges uniformly to f on [O. co) 
and 6 < 11 l/p* - I/p, Ij < E for all k. 

Remark. This theorem establishes that not only is the best approximation 
operator discontinuous at f but, in fact, that it is also not possible for a local 
(relative to I/p*) strong uniqueness result to hold. 

Prooj: Set E == Ilf- l/p*’ 1; _ P 0 and assume without loss of generality 
that E < E/4. Set 6 = ~18. Since we are assuming throughout this paper that 
II ::J I, we have that p*(x) is not identically equal to a constant which implies 
that lim ,,.mp*(x) =- 03. Select fl ./ 0 such that J”(X) :,; E and p*(x) >, 4/e 
for all s > /3. Set e,, = (c/4 I- 2/p*(k))-l and note that for k > ,&p*(k) ;- c,~. 
Define pli E Ll,, by 

Since for all x > fl, p”‘(.u) :> ek , we have that 

(p*(x) - ed [($ - 1)’ t- plck;l. (,,~ ] > 0 

implying that P,<(X) ‘\ c’,, ’ 4/36 for .Y ,‘- 13. 
Next, observe that ejL - 41~ as k -f cc, and (x/k - 1)” converges uniformly 

to 1 on [0, p] as h- + co. Thus, p,.. converges uniformly to p* on [0, /3] as 
k -+ co. Now, let 

7 m= min 
( 

min f(s), min .YC[O,P]‘ -d) 
XW,J;l p*(x) I 

and select p > I-; such that for k 2 p, max,,[0,41 / l/p,(x) - I/p*(x)l < v/2. 
This implies that l]p,c(x) > l/p‘l’(x) - 77.12 3 77/2 > 0 for all x E [0, p] and 
k “CL. Hence l/p,: E R,,, for /i , ,LL as /I,~(x) _ .I 0 for all x E [0, mx)). 
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Now, since p,(k) = 2e,: we have that l/p,(k) - I/p*(k) .-= ~18 = 5. Thus, 
11 l/p,, - l/p* I] 3 6 for all k > p. Also, for k > p we have that j l/p,(x) - 
l/p*(x)] < q/2 < E for x E [0, p]. In addition, for x ;-I- ,6 we have that 
l/p*(x) < ~14 and l/p,(x) < 3~14 for k :;a p. Hence 1) 1 jp,; - 1 /p* 11 < t as 
claimed. 

Finally, define g, , for k >: p, by 

= linear with endpoint valuesf(P) -t- & - & 
h 

and.f(B 4 h), 

Clearly, g,< E C[O, co), k > TV and since f(x) I l/pdx) - 1 /p”(x) 2:fc.x) -~ 
712 >, 0 for x E [0, p] we have that g,; E CJ [0, co) for k 3‘ p. Since f(P) I 
l/p,(p) -- I/p*(p) < f(P) 1~ $2 < S(p) Cm ~12 2:; f(P) I- E/8 ::< ;E and 

f(/3 T Ilk) < E/4 we have that glc(x) < :E for x E [p, ,0 -t- l/k] implying 
g/,(x) < 3E/8 for x 2 ,B. Also, /: I /pi, -- 1 /p* :~ < E -: E/4 implies that 
l/p,(x) < l/p*(x) 2 E/4 .< E/2 for .Y :,- p. From this it follows that 
1 gi,(x) - l/pb(x)( .< $E for x ;z /3. In addition, for s E [0, /3] we have that 
&(4 - I/P,(X) --f(x) - 1 !I)“(” ) XY and this implies that g - l/pi2 exhibits 
the same alternating behavior asf ~ 1 //I* on [0, co). Thus, iff- l/p” has a 
standard alternating set so does gs - l/p, implying that I/p,< is the best 
approximation to gI; from R, OII [0, CX). If f - 1 /,D* possesses only a non- 
standard alternating set then so does g,; ~~ I jp,; . Since in this case we must 
have that ip,( < 17 - 3, we must have that ?p,: ::i II - 1 implying once again 
that l/p,; is the best approximation to g,. from R, on [0, “u). Since it is clear 
that g,G converges uniformly tofon [0, co), the proof is completed by relabel- 
ing the sequences (I/p&z,U and {g!,j;-~,, as (l,lphjF=, and {girjR, , respec- 
tively. 1 

For the case that ip* =~= II - 2 and f‘ - 1/p” has only a nonstandard 
alternating sequence we have the slightly weaker theorem: 

THEOREM 3. Let f E C;[O, co), f$ R, und, i/p* t R,, be its best uppro.ui- 
rnation from R, . Further, assume that ip* =m: 11 - 2 rind ,f ~~ I /p * possesses 
onl~v a nonstandard alternating set. Then there exists { li:p,,G& C R,, und 
{ gk}& C C,+ [0, a) such that for each k, 1 /pi, is the best approximation to g,< 
from R, on [0, co), gjc converges uniformly to f on [0, CO) and ~1 I ip,( - I //.J* ,/ _ 
;E, bihere E = ‘If - l/p* Ij > 0. 
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Proof. Select /3 ;:, 0 such that p*(x) > 8/E, f(x) < E/8 and p*(x) is 
monotone increasing for x 3 /3. For k ;s /3, define 

Note that p,(x, t) is continuous on [0, a) x [0, l/E]. Define h(t) = 
min{ pk(.v, t): .X E [/3, 2/c]} and observe that h is a continuous function of t, 
0 < t .< l/E. In addition, /l(O) = min{ p*(x)(x/k - 1)2: x E [/3, 2k]) =- 0 as 
k > /3 and that h(l/E) = min{l/E + (p”(x) - I/E)[(x/k - I)” jm 
l/(Ep*(k) - I)]: XE [,L?, 2k]j > l/E as p*(x) > l/E on [/3, 2k]. Select 
e,; E (0, I/E) so that h(e,) = l/E. Thus, P,~(.x, e,,) > l/E for x E [,& 2/c]. 
Select e, E (0, 1 /E) so that Ir(eJ = l/E. Thus, pk(x, ek) > 1 /E > 0 for x E [fl, 2k]. 
Observe that p,(x, e,,.) converges uniformly to p*(x) on [0, /3] as k + 03 since 
0 < ek c: l/E, ei;/( p*(k) - cl;) + 0 and (x/k - 1)” converges uniformly 
to I on [0, ,B] as k --f 03. 

Next. let 

q = min m&%,-f(~), min ~ t l E>O ~ 
xq0,81 p*(x) ’ 4 1 . 

Select p 3 p such that k > p implies that ~‘k > p, k > 1, max{l l/p,:(x, e,) - 
1 /p”(x)l: x E [0, p]> -< 712. Thus, for k > p, l/p,(x, eJ 3 7/2 > 0, for all 
.Y E [0, j3]. This implies that for k > CL, I/p,.(x, ek) is positive and converges 
uniformly to I/p*(x) on [0, /3]. In addition, for k > p and x E [,8, dk] we 
have ps(x, ek) > e, + (p*(x) - ek)[(l /dk - 1)2] > e,; + J( p*(x) -- eJ > 
ip*(x) 3 4/E asp*(x) > 8/E for x 3 p. Since max{l /p,,(x, eJ: x E [p, 2k]) = 
E we have that if tk E [p, 2k] is such that l/pk(tk, P,;) -== E then t, > dk for 
k ,-, /L. 

Next, note that for x > k 3 p, pIC(x, e,;,) is a monotone increasing function 
of x and that pB(2k , e!,) = ei, -t (p*(2k) - e,)(l :- ei,/( p*(2k) - CT,()) > 
p*(W > S/E. Thus, l/pk(s, eJ -< E/S for x c: 2/c. Summarizing, we have 
shown that l/p,Jx, ek) < E/4 for x E [0, \ik], I/p,,(x, e,,) 5: E/S for .Y ;> 2k 
and 1 jp,,(x, el,) < E for x E [dk, 2k] with t,; E [l/k, 2/c] a point at which 
the value E is attained. 

Next, define 01~ by E - l-y$ -m: max{( 1 jp,,(s, e/J -f(.~)): .Y E [/3, 2k]). Since 
f(s) ‘;. E/8 for x > p and I/p,(t, , el,) ~ E we have that E ~ CX,; 2 E - 
f(tfc) J: $E implying that E/S >f(tk) 2: Q. Let y,; E [p, 2k] be such that 
1 /pd ys , cJic) - f( yTc.> = E - ak for each k > p. Since 1 /plc(x, eJ < E/S for 
.Y E [fl, ~‘k] we have that ~1~ E [z/k, 2/c]. Also, since f(t/J - 0 as k - a3 
(as tlC + CO) it follows that 01~~ + 0 as k --f 03. Noting that f(x) < E/8 for 
x E [/3, CD) and that l/pk(x, e,J < E/8 for x 2 2k we have that j,f(x) - 
I/p,;(x, r,)l < E - a,, for x E [p, ~3) and k -> p. Also, since l/pI,(tk , e,J = E 
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and l/p*(t,) -.: E/8 we have that ~ lip[, -- l/y* ! & ; l/pli(tIL;, elc) - l/pi(tk)l : 
7E/X. 

Now define gk by (for k p) 

: linear on /3, /3 with endpoint values 

Observe that g,,(.~) ’ 0 for all .Y 0. Indeed. for .I- c [O. ::I with 
I ,f(.u) I,‘p*(.r)i .” E --~ k,, we have that ,g,. j’(s) 1 ‘p,,.(s. f’,, ) 
I,il,"(x) i>,f(X) - '7,'2 , . 7'2 0. For s E [0, /$ with .f(.~) ~~ I :p.‘(.r) 
E - N,, , g,,.(x) ~~ E ~- x,, 1 !'p,;(s, Pi.) -gE ~- 1 /plc(x, e,,.) 0 and Tot 
.w E [0, p] withf(.y) -- I //,“(.Y) _. E ‘i. 3 gi‘(-*-) -1: 1 ,\) 1 /p,.(s. f’,;) 
-E J 'Y,, 1 /p*(x) [m I /~,J.Y., of;) I,p'(.u) f(s) ~),'2 $2 0. 
Sincef(p) I @,.(/3, c,;) ~~ I /IJ:‘(/~) ‘-,f(p) 7’2 ” 71112 0 andf(P 1 1 //i) 
0 we have that g,,(.r) 0 on [p, /3 I!/\] and finally g,. is positive on 
[LI 1. I//;. co) as ,f is. To see ihat g,;(x) is continuous on [O. Ix)) one must 
only check on [0, /3] as for .Y /3 it is clearly continuous. IHowever. 
on [0, ,@, g,,.(.r) is simply the truncation of j’(s) ~~ 1 ,p”(.~) to the range 
[-E j- ,“,,. , E +] plus the continuous function I/P,~(s. c,%) showing that 
g,” E c,, i [O. ,m). 

Next, let us consider g,,(.\-) ~~ 1;pJ.u. LJ,;):. Note that by construction 
g,(s) ~~ I :P,~(.Y, c,;): E \,, for .Y E [0, ,3] and that. if I.Y~~:’ ,, with .Y,, 

.yt <c: “. .’ .Y,, is a nonstandard altcrnatin~ set for f 1 ;[J* then \ve must 
have that .Y,, -< F and 

Next, on [p, 13 -~ l/k] we have that ,f(i3) : E/X, f(p t ;‘k) ZY;8 and 

1 Ijp,(fl, e,?) ~- f;‘y+(j!)/ :C Z<,iX so that g&3”) ’ E/4 and g,;(fi ( I !h) .< E/S. 
Thus, g,,(s) ::, E/4 on [i':. p 1 /k]. Also, recall that 1 /p,Jx, c,,) E/4 on 
[0, d/k] so that 1 Ly,.(S) ~ t ,“/J,,(X, ?,: )I . E/4 on [/I, /3 -~ I//c]. Finally, we 
noted earlier that I f(x) 1 //‘,,(s. c,,.) E ~ 1,. on [,/3, c/,) so that g,,(.~) 
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1 ,pt(.‘, e,.); .& E - oi,; on [0, 00). Since there exists J,; E [k/E, 21i] at which 
.f( y,,) - 1 ipi,( y, , eli) = -(E - aJJ we have that g, - l/pk possesses a 
standard alternating set at the points x0 < x1 < ... < x, < yli and thus 
I /p, is the best approximation tog, from R, on [0, CD). Finally, it is a straight- 
forward argument to prove that g,; converges uniformly to J Thus, once 
again reindexing the sequence {l/pI;}F& gives the desired result. 1 

Next, we wish to show that iffG C$[O, a) has I/p* as its best approxima- 
tion from R, with i‘p* = n - 1 then the best approximation operator is 
continuous. This we do in the following theorem. 

THEOREM 4. Let f E C,+[O, CD) N R, and let l/p* be its best approxima- 
tion ,from R,, o/z [O, 03) IvitA ip* ~zm II ~- 1. Then, the best approximation 
operator is c,ontirzuous at f. 

Proof. Let {gk);im_I C C,‘[O, co) with g,c -,f uniformly on [0, co). Further, 
let 1 ‘p,, E R,, be the best approximation to g,i on [0, a) for each /i. Then, we 
must prove that /I l/pIL - l/p* i’ ---f 0 as k -+ n3. Let us first note that 
I~ hoi 1 ‘Pl. :; II g,c - I/p* 1~ implying that lim,c,, sup I’g,. - l/p,; im 

lim,. , sup gI, - I/p” I/ -=- lif- I/p% ,I ~~~ E. Also, E = ~1, -- I/p” ;j .:I 
If I ,j7,, ii.f ~- 00~ I1 tm I/ gk - ~:‘PL 1: that ’ implying ’ E = lim,;,, 
inf(f: f’ ~~ g,2 ii) -< lim,+, inf /: g,; ~ 1 /p,; il. Combining these results gives 
that lirn,~ .,, g,& - l/p,. 1; -= E. In addition, since E -< i;f - l/p,; ~’ 2:: 
/ f’ g,; ” ;I g,. - l/p,; ij we also have that lim,?,, lif - 1 ]pk 1: =-= E. 

Next. fix ~9 E [0, XI) such that f( y) max{f(x): x E [0, co)). Then since 
a constant cannot be a best approximation toffrom R, on [0, co) we must 
have that 2E -::f( J,). Select 6 >, 0 such that for s E I =: [ ~3 - 8. y -~ S] n 
[O. z) we must havef(x) :: .?(2E i-f(y)) > 2E. Choose ,B such that 1~ YAP 
implies that ,,f- 1 ‘pi: ~ ‘<I i ‘E. Then for k 2 ,13 and s E 1. we have that 

In addition, observe that the inequality Ijp,(x) < M kolds for all x E [0, co) 
and /\ ; /3. Let { pvj be a subsequence of{p,:j. Then, since l/Ad .c; p”(x) < l/m 
for all .Y in I, there exists a subsequence {p ,J of {pV> such that pU converges 
uniformly to some I, E fl, on I. This implies that the coefficients of p, con- 
verge to the coefficients of jj which in turn implies that for each x E [0, co), 
p,‘(x) --t /l(x). Thus, we must have l/M < p(x) < ljnz on I and l/M <p(x) 
on [0, z). This last inequality shows that l/p E R, . Furthermore, for x E 
[0, a) fixed, 1 f(x) - l/j?(x) / =mm lim,_., / ,f(x) - 1 ipu(x); :-z lim,.., ~i ,f - 
1 .ip, ” E. Thus, 1j.f - l/p 1: =‘: E implying that ji Z-Z p” by the uniqueness of 



78 DUNHAM AND TAYLOR 

best approximations from ii,. Since this is true for any subsequence (i~,j ot 
( plJ we must have that this is also true for the full sequence { pi%:. 7 hat is, that 
pk converges uniformly to p* on I and pointwise on [0, co). To complete this 
argument we must prove that lip,, converges uniformly to I ;p* on [0, x;). 
From the above discussion we have that l/p,: converges pointwise to I //I” on 
[0, co) and, in fact, on any fixed closed interval [0, n], o( -, 0, I /p,. converges 
uniformly to l/p” (due to the coefficient convergence). 

In order to estabhsh this final fact, we must examine the coethcient conver- 
gence in more detail. Thus, let p*(.~) &.Y”~’ 4~ ... I (1: with (I,!~-, 0 
(here we are using our hypothesis that it’s 7 II ~ I and I//>” E R,,) and let 
pi,(.y) =- ((,I’XT1 ~!L .’ -~ u,,~, where we know that the leading nonzero coeiii- 
cient ofp, must be positive. In addition, we have that u,~ + u,” as 1, -f ~8 I’OI 
j = 0, 1 ,,... 77, where af =: 0. Thus, there exists y p such that /c 7 
implies that & : a:-,,‘2 .., 0 and ~1,~ 0: / : I for j o,.... I7 2. 
Thus, given E ;- 0 there exists 8 ’ 0 such that i;(.v) (uz-,,2) A& 
(L& - 1) ,Y”+2 -1~ ‘.’ ‘m (a,* ~- I) .‘, 2:‘E. Since p,,(x) ‘:: j(.\-) for k y and 
p*(x) ‘i j(x) for all .Y , 6 we have that 

for k ;-, y and s _ 8. On [0, S] we have that l/pk converges uniformly to 
to I/~J”. Thus, we may select I( I.,- y such that k 3: K implies I/p,,(x) 
1 ,ip*(.~)l < t for all x E [0, 61. Hence, for /c : : I< we have that / 1 /P,~ ~~ I/p“ ~ 
E implying the desired result. 1 

CONCLUDING REMARKS 

Observe that the question of whether or not a strong uniqueness result 
holds for the case thatfE Ct[O, cc) with its best approximation I:‘/>” from 
X, satisfying i’/7Y’ = II - I remains open. Likewise, the question of Lipschitz 
continuity of the best approximation operator remains open in this case. 

A second item of interest is that in ordinary rational approximation on a 
finite interval, nonstandard (i.e., fewer) alternation due to degweracy of the 
best approximation may be unimportant as the set offwith degenerate best 
approximations is nowhere dense [5, 71. If the corresponding result that 
{fi the best approximation I/p* E X, has ip* < n) was nowhere dense then 
we could expect to be able to usually employ the simpler theory of [S] for 
this problem. However, the continuity result for degree n ~ 1 implies that 
every f with nonstandard alternation and best approximation l/p” E R,, 
with ;‘p* = n - 1 has all g sufficiently close with nonstandard alternation 
and best approximations of degree M ~ I. In this regard, an interesting 
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question is to characterize those f for which nonstandard alternation will 
occur. Some initial results in this direction have been obtained by the second 
author and D. Leeming. 

Nor<, u&/u/ iu proof. D. Schmidt has proved that strong uniqueness holds when 
ill’ I7 I. 
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