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0. Introduction

Orbifolds, which play an important role in mathematical physics, have been recently studied from many viewpoints,
including groupoid and symplectic geometrical. Orbifold index theory has played an important role in these studies.

Firstly, Atiyah established in [1] many important results on the index of G-transversally elliptic operators, which are
closely related to elliptic operators on orbifolds as we will explain later. In the late seventies Kawasaki gave several
proofs, one of which making extensive use of Atiyah’s results, of an index theorem for orbifolds [11–13]. I later proved
a K -theoretical index theorem for orbifolds with operator algebraic means [7], and Berline and Vergne computed the index
of transversally elliptic operators via heat equation methods in [4]. Their work was then deepened by Vergne who proved
a general index theorem for orbifolds [17]. By using elliptic estimates, I established in [8] some spectral properties of the
eigenvalues of the Laplacian on orbifolds, and in [9] I defined orbifold eta invariants and established an index theorem for
orbifolds with boundary.

There have been many proofs of the cobordism invariance of the index of pseudo-differential elliptic operators on closed
manifolds. (See for example [15,10,2].) Recently, Carvalho proved in [5] a KG -theoretical (G compact Lie) index cobordism
invariance theorem for pseudo-differential G-equivariant elliptic operators that are multiplication at infinity. Her methods
are topological and rely heavily on key properties of Atiyah’s KG -functor. It has also recently come to our attention that
Braveman proved the cobordism invariance of orbifold indices analytically (see [3]), and that Carvalho extended her cobor-
dism invariance results to families (see [6]).

In this note we will prove the cobordism invariance of the index of pseudo-differential operators on orbifolds topologi-
cally by a generalization of Carvalho’s method. Our main result is indeed the following theorem.
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Theorem 4.6. Let Q i be a closed orbifold which is the locally free quotient of an action of a compact Lie group on a smooth closed
manifold, and let P i be an elliptic pseudo-differential operator on Q i with symbol pi , i = 1,2. Suppose that (Q 1, p1) is orbifold
symbol cobordant to (Q 2, p2). Then Ind(P1) = Ind(P2).

To prove this result, instead than working directly on the orbifold, we work on its G-frame bundle. More in general,
any closed effective orbifold Q arises as the locally free quotient of an action of a compact Lie group G on a closed
G-manifold M , see e.g. [7]. (M is a G-frame bundle of Q , and in general G is a compact Lie group.) Therefore an elliptic
pseudo-differential operator P on Q lifts to a G-transversally elliptic operator P̃ on M with G-transverse symbol class in
K 0

G(T ∗
G (M)). Atiyah’s distributional index homomorphism Ind : K 0

G(TG (M)) → D′(G) calculates the index of P , and, conse-
quently, the index of P̃ ; see Section 1 for details.

There are two main ingredients in our proof. One is the push-forward property of the transverse index Ind under
G-embeddings established by Atiyah in [1], and the other is the K -theoretical proof provided by Carvalho in [5] for the
invariance of the index of elliptic operators on manifolds under cobordism. Here we generalize Carvalho’s approach to
the context of transversally elliptic operators in the framework of [1]. So Ind(σ ) = 0 if σ arises from a trivial symbol
G-cobordism, see Theorem 4.3. By reinterpreting this at the orbifold level, we obtain our orbifold index cobordism invari-
ance result, Theorem 4.6.

More in detail, the contents of this note are as follows. In Section 1 we recall the definition of Atiyah’s distributional
transverse index Ind. In Section 2, we define restriction and boundary maps, together with symbol G-cobordism. In Section 3
we detail properties of the index, restriction, and boundary maps with respect to G-equivariant embeddings. In Section 4
we will state and prove our main results.

In the sequel, all orbifolds and manifolds are assumed to be smooth, Spinc , connected, and closed, unless otherwise
specified. Moreover, G will denote a compact connected Lie group. By a G-manifold we mean a manifold with a smooth
and proper action of G .

1. The distributional index homomorphism

In this section we will review the definition and some of the main properties of the distributional G-index homomor-
phism for G-transversally elliptic operators (cf. [1] for details).

Let X be a G-manifold and let G be the Lie algebra of G . To each V ∈ G associate the vector field V G on X defined by

V G( f ) = Lim
t→0

f (Exp(tV x)) − f (x)

t
, ∀ f ∈ C∞(X).

Definition 1.1. ([1]) Let X be a G-manifold. Define the G-invariant space T ∗
G(X) ⊆ T ∗(X) by

T ∗
G(X) = {

v ∈ T ∗(X)
∣∣ v(V G) = 0, ∀V ∈ G

}
.

Let X be a G-manifold and let D be a pseudo-differential operator acting on sections of the G-vector bundle E . D is said
to be G-transversally elliptic G if the symbol of D is invertible on T ∗

G(X), except for the zero section. We will call such an
operator a G-t.e.p.d. operator for short.

We will now recall how the transverse index of D is defined, see [1, Lecture 2]. If G denotes the Lie algebra of G , and X j ,
j = 1, . . . ,k, the first order differential operators defined by the action of G on E , denote by �G the following operator

�G = 1 −
k∑

j=1

X 2
j .

Let λ be an eigenvalue of �G , and denote by C∞(X, E)λ the kernel of the operator �G − λ. Since D is G-invariant, D com-
mutes with �G , and induces an operator

Dλ : C∞(X, E)λ → C∞(X, E)λ,

with index Ind(Dλ). Define

Ind(D) =
∑

λ

Ind(Dλ).

This sum converges in the sense of distributions, and is equal to the distributional index of D . If we denote by D′(G) the
group of the G-invariant distributions on G , then the index of D is an element of D′(G) [1].

Let K s
G , s = 0,1, be Atiyah’s equivariant K -theory functor. Then the symbol of D determines a class σD ∈ K 0

G(T ∗
G(X)), in

analogy G-elliptic operators [1]. σD ∈ K 0 (T ∗ (X)) is called the G-transverse symbol class of D . We have
G G
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Theorem 1.2. ([1, Theorem 2.6]) Let X be a G-manifold and let D be a G-t.e.p.d. operator. Then the index of D depends only on the
class σD ∈ K 0

G(T ∗
G(X)). In particular, there exists an index homomorphism

Ind : K 0
G

(
T ∗

G(X)
) → D′(G),

such that Ind(σD) = Ind(D).

Ind can also be defined for non-compact G-manifolds via equivariant G-embeddings into compacts G-manifolds, for G
compact [1].

If the action of G on X is locally free, and if D is the lift of a pseudo-differential elliptic operator on the quotient
orbifold X/G , Ind computes the distributional orbifold index, and consequently the orbifold numerical index of the opera-
tor [13,7,17].

2. Boundary maps and symbol G-cobordism

We say that a G-manifold X is the G-boundary of a G-manifold with boundary W if ∂(W ) = X , and X has a collared
G-invariant neighborhood in W of type X × [0,1) with product G-action, which is assumed to be trivial on the second
factor; we will write X = ∂G(W ). We will also say that W has G-boundary X . Note that, T ∗

G(W )|X = T ∗
G(X) × R.

The G-equivariant operation of restriction to X induces restriction KG -theory homomorphisms

ρs
W ,X : K s

G

(
T ∗

G(W )
) → K s

G

(
T ∗

G(X) × R
)
, s = 0,1.

By definition,

K 1
G

(
T ∗

G (X) × R
) ∼= K 0

G

(
T ∗

G (X) × R
2).

Hence, for s = 1,

ρ1
W ,X : K 1

G

(
T ∗

G(W )
) → K 0

G

(
T ∗

G(X) × R
2).

Theorem 2.1. ([5]) Let W be a G-manifold having as G-boundary the G-manifold X, i.e., ∂G(W ) = X. The symbol G-boundary map
∂W

X : K 1
G(T ∗

G(W )) → K 0
G(T ∗

G(X)) is defined by the following equality

∂W
X = (

β0
T ∗

G (X)

)−1 ◦ ρ1
W ,X ,

where β0
T ∗

G (X)
: K 0

G(T ∗
G(X)) → K 0

G(T ∗
G(X) × R

2) is the equivariant Bott isomorphism.

Definition 2.2. ([5]) Let Υi = (Xi, σi) with Xi a G-manifold and σi ∈ K 0
G(T ∗

G (Xi)), i = 1,2. Then we say that Υ1 and Υ2 are
symbol G-cobordant if there exists a pair W = (W , σ ), with W a G-manifold with boundary, and σ ∈ K 1

G(T ∗
G(W )), such

that the G-boundary of W is X1 � X2, and

∂W
X (σ ) = −σ1 ⊕ σ2.

If Υ1 and Υ2 are symbol G-cobordant, we will write Υ1 ∼ Υ2. Note that ∼ is an equivalence relation.

3. Embeddings, index, and symbol G-cobordisms

We will now describe the behaviors of the index, restriction and boundary homomorphisms with respect to
G-embeddings. We will require that all G-embeddings ϕ : X → Y of G-manifolds are G-equivariant, K -oriented, and admit
open G-invariant tubular neighborhoods. If X and Y are G-manifolds with boundary, we also assume that a G-embedding
ϕ : X → Y restricts to a G-embedding on ∂ X . (This follows from the existence of tubular neighborhoods for G-manifolds
with boundary.)

Let ϕ : X → Y be a G-embedding of X into Y . Then ϕ induces KG -theory ‘wrong way functoriality’ shriek maps
ϕs

! : K s
G(T ∗

G (X)) → K s
G(T ∗

G (Y )), s = 0,1, defined as below [1].
Let N be an open G-invariant tubular neighborhood of ϕ(X) in Y and let

τ s
X,N : K s

G

(
T ∗

G (X)
) → K s

G

(
T ∗

G(N)
)
, s = 0,1,

be the Thom homomorphism. Moreover, let

κ s
N,Y : K s

G

(
T ∗

G (N)
) → K s

G

(
T ∗

G(Y )
)
, s = 0,1,

be the KG -theory maps induced by the open embedding κ : T ∗ (N) → T ∗ (Y ).
G G
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Definition 3.1. Let ϕ : X → Y be a G-embedding of G-manifolds. Then the shriek map

ϕs
! : K s

G

(
T ∗

G(X)
) → K s

G

(
T ∗

G(Y )
)
, s = 0,1,

is defined by the following equality

ϕs
! = κ s

N,Y ◦ τ s
X,N , s = 0,1.

The following deep theorem, which states the invariance of the transverse index under push-forwards, is proved by
Atiyah in [1].

Theorem 3.2. ([1]) Let ϕ : X → Y be a G-embedding of G-manifolds. Then the diagram below is commutative:

K 0
G(T ∗

G (X))
ϕ0

!

Ind

K 0
G(T ∗

G (Y ))

Ind

D′(G)
Id D′(G)

Moreover, if ϕ : X → Y and ψ : Y → Z are G-embeddings of G-manifolds, then

(ϕ ◦ ψ)s
! = ϕs

! ◦ ψ s
! , s = 0,1.

In the above theorem, Y can also be assumed to be non-compact because of the functoriality of the shriek maps, and
the open G-embeddings index invariance [1].

The following results, detailing the behavior of the transverse symbol with respect to G-embeddings and push-forwards,
are generalizations of analogous results in [5]. We omit their proofs.

Lemma 3.3. Let ϕ : X → Y be a G-embedding of G-manifolds. Then the diagram below is commutative:

K 0
G(T ∗

G (X))
ϕ0

!

β0
X

K 0
G(T ∗

G(Y ))

β0
Y

K 0
G(T ∗

G (X) × R
2)

ϕ̃0
! K 0

G(T ∗
G(Y ) × R

2)

Here

β0
Z : K 0

G

(
T ∗

G (Z)
) → K 0

G

(
T ∗

G(Z) × R
2), Z = X, Y ,

is the Bott periodicity isomorphism and ϕ̃ is the lift of ϕ to X × R
2 . (The action of G on R

2 is trivial.)

Lemma 3.4. Let ϕ : X → Y be a G-embedding of G-manifolds with boundary. Then the diagram below is commutative:

K 1
G(T ∗

G (X))
ϕ1!

ρ1
X,X0

K 1
G(T ∗

G(Y ))

ρ1
Y ,Y0

K 0
G(T ∗

G (X0) × R
2)

ϕ̃0
0! K 0

G(T ∗
G(Y0) × R

2)

where ∂ Z = Z0 , Z = X, Y , ϕ0 = ϕ|X0 , and ϕ̃0 is the lift of ϕ0 to X0 × R
2 . (Notation as in Section 2 and Lemma 3.3.)

Proposition 3.5. Let ϕ : X → Y be a G-embedding of G-manifolds with boundary. Then the diagram below is commutative:

K 1
G(T ∗

G (X))
ϕ1!

∂ X
X0

K 1
G(T ∗

G(Y ))

∂Y
Y0

K 0
G(T ∗

G (X0))
ϕ0

0! K 0
G(T ∗

G(Y0))

where ϕ0 = ϕ|X0 , ∂ Z = Z0 , and the boundary map ∂ Z
Z0

, is as in Theorem 2.1. (Z = X, Y .)
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4. The main result

In this final section, we will prove our main results, Theorems 4.3 and 4.6. But first two lemmas.
Let M be a G-manifold and σ ∈ KG(T ∗

G (M)). Recall that Υ = (M, σ ) ∼ 0 (that is, Υ is symbol G-cobordant to zero) if
there exist a G-manifold with boundary W with X = ∂G(W ), and ω ∈ K 0

G(T ∗
G (W )) such that ∂W

X (ω) = σ .

Lemma 4.1. Let M be a G-manifold and σ ∈ KG(T ∗
G (M)), with Υ = (M, σ ) ∼ 0 via the G-cobordism W . If ϕ : W → Y is

a G-embedding of W into the G-manifold with boundary Y , with restriction to the boundary given by ϕ0 , then

∂Y
∂Y

(
ϕ1

! (ω)
) = ϕ0

0!(σ ),

which implies ΥY = (∂Y ,ϕ0
0!(σ )) ∼ 0.

Proof. Apply the results of Section 3. �
Lemma 4.2. We have

K i
G

(
T ∗

G (E)
) = 0, i = 0,1,

where E is equal to the space [0,1) × R
t , t > 0.

Proof. Firstly, K i
G(T ∗(E)) = 0, i = 0,1, since this space is G-contractible [5]. Next, K i

G(T ∗
G (E)), i = 0,1, can be decomposed

as the direct sum K i
G(T ∗

G (E)) = ⊕
j K i

G(T ∗
G (E( j)− E( j +1))), where E( j) = {x ∈ E: dim Gx � j}, i = 0,1, see [1, Theorem 8.4].

Also note that a decomposition similar to the above can be proved for K i
G(T ∗(E)), i = 0,1, with similar methods. Of course,

in this latter case, each of the factors is the zero module.
Since on each of the spaces appearing in the above decompositions the action of the group can be assumed to have

only finite stabilizers, by the Bott periodicity theorem it follows that each of the factors in the two decompositions are
isomorphic in pairs, from which the result follows. Note that the Bott periodicity theorem can be applied to this case where
the action is non-trivial by [16, Remark 2.8.7]. �
Theorem 4.3. Suppose that M is a G-manifold, and let D be a G-p.d.t.e. operator on M with G-transverse symbol class
σ ∈ K 0

G(T ∗
G(M)). If Υ = (M, σ ) ∼ 0, then Ind(D) = 0.

Proof. Let W = (W ,ω), for some ω ∈ K 1
G(T ∗

G(W )), be a symbol G-cobordism between Υ and 0. Let ϕ : W → E be a
G-embedding of W into E = [0,1) × R

t (see e.g. [14]). If we denote by ϕ0 the restriction of ϕ to the boundary, then
by Lemma 4.1,

∂ F
∂ F

(
ϕ1

! (ω)
) = ϕ0

0!(σ ).

By Lemma 4.2 and the results in Section 3, ϕ1
! (ω) = 0, which implies Ind(D) = 0. �

As a corollary, we have

Corollary 4.4. Suppose that Mi is a G-manifold, and let Di be a G-p.d.t.e. on Mi with G-transverse symbol class σi ∈ K 0
G(T ∗

G(Mi)),
i = 1,2. Assume that Υ1 = (M1, σ1) ∼ Υ2 = (M2, σ2). Then Ind(D1) = Ind(D2).

Proof. We have that

(M1 � M2,−σ1 ⊕ σ2) ∼ 0.

Now (−σ1 ⊕ σ2) is the G-transverse symbol of D∗
1 ⊕ D2. Then the claim follows from Theorem 4.3. �

We can now prove the invariance under cobordism of the orbifold index.

Definition 4.5. Let Q i be an orbifold. Assume that Q i arises as the locally free quotient of the G-manifold Mi , i = 1,2. Let
Pi be an elliptic pseudo-differential operator on Q i with symbol pi , and let P̃ i be its lift to Mi with symbol p̃i , i = 1,2.
Then P̃ i is a G-p.d.t.e. on Mi with G-transverse symbol class σ P̃ i

∈ K 0
G(T ∗

G (Mi)), i = 1,2. We say that (Q 1, p1) is orbifold
symbol cobordant to (Q 2, p2) if Υ1 = (M1, σ P̃1

) ∼ Υ2 = (M2, σ P̃2
).

Theorem 4.6. Let Q i be an orbifold and let P i be an elliptic pseudo-differential operator on Q i with symbol pi , i = 1,2. Suppose that
(Q 1, p1) is orbifold symbol cobordant to (Q 2, p2). Then Ind(P1) = Ind(P2).
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