
10 nm

Common �uorescent agents include organic
�uorophores (e.g., Cy5), �uorescent proteins
(e.g., GFP), and semiconductor quantum
dots each with different size, photobleaching,
blinking, and labeling ef�ciency properties.

Wide-�eld detection with EMCCD camera enables parallel
measurements. The temporal resolution is >ms, and the working 
concentration is limited to nM or less. 

Confocal detection from an effective volume of ~10-15 l with
an avalanche photodiode or photomultiplier tube. The temporal
resolution is <ms, and the working concentration is limited to
~nM or less.

Prism-type

Fluorophores

TECHNIQUE DESCRIPTION APPLICATION COMMENTS

Total internal reflection fluorescence (TIRF) Confocal fluorescence

Objective-typeGFP

Quantum
dot

Cy5

Single-molecule
Förster resonance

energy transfer (smFRET)
TIRF, confocal

Measure distance-dependent 
Förster resonance energy
transfer (FRET) between a donor
and an acceptor �uorophore 
attached to a single biomolecule
or to two different biomolecules

Three- and four-color FRET 
measure multiple distances

Dynamics of intra- and intermolecular 
motion

Association and dissociation kinetics

Confocal detection from an effective
volume of ~10-15 l with an avalanche
photodiodeor photomultiplier tube; 
the temporal resolution is <ms, and 
the working concentrationis limited
to ~nM or less.

Structure determination

Sensitive to ~1–10 nm distance changes

Accuracy limited by background noise
and �uorophore mobility

Calibration of absolute distances 
is challenging
 

Protein complexes from cell
lysate are captured by immobilized
antibodies and visualized using
�uorophore-labeled antibodies or
�uorescent protein (FP) tags

Stoichiometry, intermolecular
interactions, and biochemical
analysis of cellular protein
complexes

Simple and more sensitive alternative
to western blots

Possibly applicable to single-cell analysis

Polarized evanescent wave 
generated by total internal
re�ection excites dipole moments
of individual �uorophores, the
orientation of which is measured
by the polarization of the
�uorescence emission

Rotational dynamics

Unique approach with ~ms temporal
resolution to measure rotational
conformational dynamics with 
~10° resolution

Requires complex instrumentation and
rotationally constrained �uorophore
attachment to protein

In vivo FRET-based tension sensor
using FPs genetically encoded in
reporter protein; tension extends
the protein, which results in a
change in the FRET signal

In vivo measurement of
mechanical forces (≤10 pN)
on reporter protein

Calibrating the FRET vs. tension
relationship requires a combined 
single-molecule manipulation and
�uorescence instrument

Labeled proteins are tracked in
one, two, or three dimensions
with high spatial and temporal
resolution

Translocation and diffusion of
proteins on extended substrates
or in solution

Tracking in the plane (x-y) relies on 
Gaussian �tting of the point-spread 
function; out-of-plane (z) motion is 
determined from changes in the intensity 
of the �uorophore in the TIRF evanescent 
�eld or from depth-dependent changes
in the point-spread function

Labeled biomolecules are trapped
inside lipid nanovesicles with
~50–100 nm diameter

Effective detection volume is 
~10-19 l

Biomolecular interactions
(~µM or weaker)

Can be immobilized on surface, minimizes
nonspeci�c interactions, and mimics the
cellular environment

Particularly suited for studying membrane-
associated proteins

Not suitable for studying extended
substrates

Labeled molecules are excited
inside metal-clad wells or lanes
fabricated on silica substrate

Excitation volume ~10-21 l
reduces �uorescence background

Biomolecular interactions
(~µM or weaker)

Easy exchange of solutions, suitable for 
studying extended substrates

Potential changes in �uorophore 
properties and higher nonspeci�c binding 
due to the metal surface

Single-molecule
pull-down

(SiMPuLL) TIRF

Single-molecule
fluorescence polarization

(SMFP) TIRF

Single-molecule
fluorescence force

spectroscopy
(SMFFS) TIRF

Single-molecule
fluorescence tracking

(SMFT) TIRF

Nanovesicle trapping
TIRF, confocal

Zero-mode waveguide
(ZMW) TIRF
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Choosing the Method
Single-molecule fluorescence has been widely used in the study of intra- and intermolecular dynamics in biological systems, in addition to binding and motion on extended 
substrates in vitro and in vivo. There are two complementary fluorescence techniques that differ in their excitation and detection modalities: total internal reflection fluorescence 
(TIRF) and confocal. TIRF is a wide-field technique in which an evanescent field is used to illuminate only the surface of the sample. TIRF is particularly suited for single-molecule 
tracking and is also suitable for measuring conformational dynamics, intermolecular interactions, and stoichiometry of immobilized protein complexes. Confocal florescence is 
a focal volume-limited technique suitable for measuring diffusion constants, association and dissociation kinetics, and conformational dynamics of freely diffusing biomolecules 
with faster timescales (< ms) compared to TIRF (> ms). Confocal detection can also be used to achieve higher time resolution and improved signal to noise in experiments with 
immobilized molecules, but this is a low-throughput approach. Variations and extensions of these two approaches have led to a wide array of techniques and associated acro-
nyms.

Fluorescent Labeling
The first essential step is labeling the biomolecules of interest. The choice of fluorescent label depends on many factors, including photostability, brightness, size, environmen-
tal sensitivity, labeling efficiency, quantum yield, wavelength, linker size, and attachment chemistry. For Förster resonance energy transfer (FRET) measurements, the spectral 
overlap between the donor and acceptor dictates the characteristic length scale (r0) and the range of separations that can be resolved (~0.1r0 – 0.9r0).

Single-Molecule Fluorescence of Low-Affinity Interactions
Biomolecular interactions with ~µM or weaker affinities can be studied by employing nanovesicles or zero-mode waveguides (ZMW) to reduce the effective detection volume 
(<10−19 l) while increasing the local concentration (~µM). Advantages of nanovesicle trapping include (1) surface immobilization, (2) minimization of nonspecific interactions, (3) 
approximation of cellular environment, and (4) suitability for studying membrane-associated proteins. However, this technique is not suitable for studying extended substrates 
that exceed the vesicle diameter. Furthermore, it is difficult to effectuate buffer exchange inside of vesicles. Some of these drawbacks can be overcome using zero-mode wave-
guides that are metal-clad wells or lanes fabricated on a silica substrate. Effective detection volume can be as low as ~10−21 l, whereas the effective concentrations of labeled 
biomolecules can be in the mM range. Advantages of ZMWs include straightforward exchange of buffer and suitability for studying extended substrates. Disadvantages are the 
potential changes in fluorophore properties due to metal surface and higher nonspecific binding.

Analysis of Single-Molecule Data
Extracting meaningful information from single-molecule fluorescence data, which is typically noisy and can be quite complex, is challenging. There is an ever-growing array 
of analysis techniques ranging from simple histograms to sophisticated hidden Markov and Bayesian approaches, each with their attendant advantages and limitations. Inde-
pendent of the choice of analysis methods, simulations are an invaluable tool to determine how the combined effect of the analysis procedures and noise distort the underlying 
phenomenon being investigated. Simulations and models can provide a rigorous test of the conclusions drawn from the data and the analysis techniques used to extract the 
pertinent quantities on which the conclusions are based.
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