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SUMMARY

Centromeres form the site of chromosome attach-
ment tomicrotubules duringmitosis. Identity of these
loci is maintained epigenetically by nucleosomes
containing the histone H3 variant CENP-A. Propaga-
tion of CENP-A chromatin is uncoupled from DNA
replication initiating only during mitotic exit. We
now demonstrate that inhibition of Cdk1 and Cdk2
activities is sufficient to trigger CENP-A assembly
throughout the cell cycle in a manner dependent on
the canonical CENP-A assembly machinery. We
further show that the key CENP-A assembly factor
Mis18BP1HsKNL2 is phosphorylated in a cell cycle-
dependent manner that controls its centromere
localization duringmitotic exit. These results strongly
support a model in which the CENP-A assembly
machinery is poised for activation throughout the
cell cycle but kept in an inactive noncentromeric
state by Cdk activity during S, G2, and M phases.
Alleviation of this inhibition in G1 phase ensures tight
coupling between DNA replication, cell division, and
subsequent centromere maturation.

INTRODUCTION

Accurate segregation of newly replicated chromosomes during

mitosis is essential for the maintenance of genome integrity.

Central to preserving fidelity of this process is the kinetochore,

which forms the chromosomal attachment site for spindle micro-

tubules and is required for chromosome movement and mitotic

checkpoint signaling (Cheeseman and Desai, 2008). The centro-

mere is a unique constitutive chromatin domain that assembles

the kinetochore during mitosis and is essential for mitotic

progression (Allshire and Karpen, 2008). Centromeres are prop-

agated epigenetically, largely independent of any particular DNA

sequence (Warburton et al., 1997; Vafa and Sullivan, 1997;

Warburton, 2004). Key to the structure and maintenance of the

centromere is the specific assembly of the histone H3 variant

Centromere Protein A (CENP-A) into centromeric nucleosomes

(Silva and Jansen, 2009; Olszak et al., 2011; Barnhart et al.,
52 Developmental Cell 22, 52–63, January 17, 2012 ª2012 Elsevier In
2011; Guse et al., 2011). Inheritance and replication of this

mark is essential to ensure epigenetic propagation of centro-

mere identity (Olszak et al., 2011; Barnhart et al., 2011). Indeed,

CENP-A containing nucleosomes are extremely stable and

maintained throughout the cell cycle, being redistributed only

during S phase (Jansen et al., 2007; Hemmerich et al., 2008;

Shelby et al., 2000; Régnier et al., 2005). Importantly, centro-

meric chromatin replication is uncoupled from centromeric

DNA replication and, at least in metazoans, restricted to late

mitosis/early G1 phase of the cell cycle (Jansen et al., 2007;

Hemmerich et al., 2008; Schuh et al., 2007; Bernad et al.,

2011; Moree et al., 2011). Assembly strictly depends on passage

through mitosis (Jansen et al., 2007; Schuh et al., 2007; Bernad

et al., 2011; Moree et al., 2011), which ensures tight coupling of

centromere duplication to cell cycle progression. However, the

mitotic trigger that initiates centromere propagation has not

been identified. Possible candidates for this have been previ-

ously proposed (Figure 1A), including changes in nuclear archi-

tecture (Jansen et al., 2007), anaphase promoting complex/

cyclosome (APC/C)-mediated destruction of a specific inhibitor

of CENP-A assembly (Erhardt et al., 2008), or assembly of

a proper kinetochore-microtubule interface (Mellone and

Allshire, 2003; Jansen et al., 2007; Allshire and Karpen, 2008).

Here, we sought to identify the molecular signal that tempo-

rally controls CENP-A assembly. We find that inhibiting Cdk1

and Cdk2 in any phase of the cell cycle is sufficient to trigger

rapid CENP-A assembly in a canonical fashion. Thus, our results

point to a simple mechanism that excludes the need for any

active involvement of mitosis in subsequent CENP-A assembly,

other than the concomitant downregulation of Cdk activity upon

mitotic exit.

RESULTS

Cdk Inhibition Triggers CENP-A Assembly prior
to Mitosis
In order to identify the molecular mechanism controlling the

unusual timing of CENP-A assembly, we employed SNAP-based

fluorescent quench-chase-pulse labeling (see Experimental

Procedures and Jansen et al., 2007) to uniquely and directly

track the fate of nascent proteins. One defining feature of mitotic

exit is APC/C-mediated destruction of cyclin B and concomitant

loss of associated cyclin-dependent kinase (Cdk) activity. We

therefore hypothesized that the CENP-A assembly process
c.
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might be controlled directly by Cdk activity, without a strict need

for APC/C activation, destruction of APC/C targets apart from

the Cdk activator cyclin B, or any other aspect of mitosis. To

test this hypothesis, we synchronized HeLa cells in G2 phase,

upon which a nascent pool of CENP-A-SNAP, synthesized

during the preceding S phase, was fluorescently pulse labeled.

A brief (1 hr) treatment with the pan-Cdk inhibitors Roscovitine

or Purvalanol A induced CENP-A assembly into the centromere

in nearly half the cyclin B positive (G2 phase) population,

whereas assembly is never observed in control cells at this stage

in which the nascent pool remained diffusely nuclear (Figures

1B–1E; see Figures S1A andS1B available online).We confirmed

these results in nontransformed, hTERT immortalized RPE cells,

without thymidine-mediated cell synchronization (Figure S2).

Assembly under transient Roscovitine-treated conditions in

G2 phase resulted in stable incorporation of CENP-A into chro-

matin, as it is retained at centromeres on condensed mitotic

chromosomes following Roscovitine washout (Figure S1F).

However, a brief, 1 hr induction of CENP-A assembly in this

phase is likely incomplete as normal CENP-A accumulation at

centromeres continues for the duration of G1 phase (�10 hr)

(Lagana et al., 2010).

Roscovitine treatment of G2 cells did not change cell cycle

position as treatment prevents mitotic entry and cyclin B levels

remained high (Figures 1B and 1E; Figure S1C). Preservation of

high cyclin B levels suggests that Roscovitine-treated cells do

not enter a precocious G1-like state by premature activation of

APC/C-mediated protein destruction. Indeed, treatment of cells

with the proteasome inhibitor MG132 or protein synthesis

inhibitor Cycloheximide did not interfere with G2-induced

CENP-A assembly. Therefore, the destruction of a specific

CENP-A assembly inhibitor or de novo synthesis of an assembly

factor is unlikely to be required for CENP-A loading (Figures 1E

and 1F; Figures S1D and S1E). These results suggest that the

CENP-A assembly machinery is present and poised for activa-

tion prior to mitosis. In addition, they argue against a role for

APC/C-mediated destruction of a putative inhibitor of CENP-A

assembly other than the Cdk activator cyclin B.

Cdk1 and Cdk2 Are Sufficient to Maintain Cell Cycle
Control of CENP-A Assembly
Our small molecule inhibitor experiments indicate that, prior to

mitosis, the CENP-A assembly machinery is present but kept

in an inactive state by Cdk activity. The predominant Cdks that

are active during G2 phase and mitosis are Cdk2 and Cdk1,

respectively. Both kinases are naturally deactivated uponmitotic

entry and mitotic exit, respectively (Pines, 2006), and both are

strongly inhibited by Roscovitine and Purvalanol A (Wesierska-

Gadek and Krystof, 2009). However, due to the broad substrate

specificity of these inhibitors (Wesierska-Gadek and Krystof,

2009), we cannot determine which Cdk (if any) is responsible

for controlling CENP-A assembly. To address this directly, we

turned to chicken DT40 cells that harbor defined mutations in

Cdk1 and/or Cdk2. We utilized cells that carry either a homozy-

gous CDK2 deletion (cdk2�/�) and/or express analog-sensitive

Cdk1 in a homozygous cdk1 null background (cdk1as) (Hocheg-

ger et al., 2007). Cdk1as can be selectively inhibited by addition

of the ATP analog 1NM-PP1. 1NM-PP1 does not affect cell cycle

progression of wild-type DT40 cells, underscoring the specificity
Deve
to the cdk1as mutation (data not shown and Hochegger et al.,

2007). These cells were further retrofitted to stably express

subendogenous levels of SNAP-tagged chicken CENP-A, which

results in a centromeric fluorescent signal following pulse

labeling with TMR-Star (Figure 2A and 2A0).
Assembly of nascent SNAP-CENP-A in DT40 cells occurred

only in cells with low cyclin B2 levels and can be fully blocked

when cells are prevented from entry into G1 by nocodazole-

induced mitotic checkpoint arrest (Figures 2A–2B). This demon-

strates that, like in human cells (Figure 1B) (Jansen et al., 2007;

Hemmerich et al., 2008), Drosophila embryos (Schuh et al.,

2007) and Xenopus extracts (Bernad et al., 2011; Moree et al.,

2011), chicken DT40 cells assemble CENP-A at centromeres

only upon mitotic exit. Cdk2 protein is nonessential in DT40 cells

(Hochegger et al., 2007) and mice (Berthet et al., 2003; Ortega

et al., 2003), possibly due to compensation by cyclin A- and

E-mediated Cdk1 activity (Hochegger et al., 2007; Santamarı́a

et al., 2007). Consistently, timing of assembly did not change

in the cdk2�/� mutant background (Figures 2A and 2B), indi-

cating that inhibition of Cdk2 alone is not sufficient to induce

unscheduled CENP-A assembly. To test for the involvement

of Cdk1 we synchronized cdk1as single or cdk1as/cdk2�/�

double mutants in low (1 mM) levels of 1NM-PP1. At this concen-

tration Cdk1 activity is sufficient to drive S phase progression

but not high enough to allow entry into mitosis, resulting in

a G2 arrest (Figure S3A) (Hochegger et al., 2007). These cells

were either maintained in G2 in low inhibitor concentrations,

or released into G1 phase by inhibitor removal, or shifted

to high (10 mM) doses of ATP analog to completely abolish

Cdk1 activity (Figure 2C). While centromeric CENP-A assembly

was detected in G1 phase in cells of either genotype, cdk1as

single mutants showed little centromere assembly in G2

(Figures 2C0 and 2D). Strikingly, G2 arrested cdk1as/cdk2�/�

double mutants readily incorporated CENP-A at centromeres

in virtually all cells in both low and high 1NM-PP1 concentrations

(Figures 2C and 2D). These results were confirmed by pan-Cdk

inhibition using Roscovitine, consistent with our observations

in HeLa cells (Figure S3D). Clearly, loss of both Cdk1 and Cdk2

activities is necessary and sufficient to trigger premature

CENP-A loading, which indicates that these are responsible

for suppressing the CENP-A assembly machinery prior to

mitotic exit.

CENP-A Assembly Can Be Induced in S Phase
We next determined whether CENP-A assembly, induced by the

loss of Cdk activity, was restricted to G2 phase. Randomly

cycling DT40 cells spend up to 60% of their time in S phase

(Zhao et al., 2007). However, Cdk1/2 double inactivation in these

cells resulted in CENP-A assembly in �78% of the population

(Figures 3A and 3A0; Figure S3B) suggesting that CENP-A

loading can be induced also in S phase cells. To directly test

this possibility, we synchronized both cdk1as and cdk1as/

cdk2�/� cells in S phase with Hydroxyurea (HU) and assayed

centromere assembly of a nascent CENP-A-SNAP pool during

HU arrest. In the presence of Cdk2 activity little or no CENP-A

assembly was observed, even when Cdk1 was fully inhibited

(Figures 3B and 3B0; Figure S3C) indicating that Cdk2 is sufficient

to block CENP-A assembly. However, in the absence of Cdk2

�37% of the cells with active Cdk1 (no 1NM-PP1) assembled
lopmental Cell 22, 52–63, January 17, 2012 ª2012 Elsevier Inc. 53



Figure 1. Cdk Inhibition Induces Premature CENP-A Assembly at Centromeres

(A) Schematic representingmitotic passage with key steps during either mitotic entry (green) or mitotic exit (red) that are potential signals for subsequent CENP-A

assembly in early G1.

(B) HeLa CENP-A-SNAP cells were synchronized at the G1/S boundary by double thymidine arrest. S phase synthesized CENP-A-SNAPwas subsequently pulse

labeled in G2 phase, 7 hr after release from thymidine. G2 cells were mock treated (G2 control), treated with Roscovitine for 1 hr, or allowed to cycle through

mitosis (G1 control) prior to fixation. Cells were counterstained for cyclin B and with DAPI to indicate G2 status and DNA, respectively.

(C) Quantification of (B).
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CENP-A, which increased to �80 when Cdk1 was further

inhibited (10 mM 1NM-PP1), indicating that Cdk1 can contribute

but is not sufficient to prevent CENP-A assembly in S phase.

These results demonstrate that cells arrested in S phase are

competent for CENP-A assembly and that assembly at this stage

is prevented primarily by Cdk2 activity. This is consistent with

recent findings highlighting nonredundant roles for Cdk2 in cell

cycle progression (Merrick et al., 2008, 2011).

Cells held in S phase by HU treatment are not actively repli-

cating DNA due to HU-induced stalling of DNA replication. To

test whether CENP-A assembly can occur in actively replicating

cells we synchronized cdk1as/cdk2�/� cells in early S phase by

HU treatment followed by release in the presence of BrdU to

mark actively replicating cells. A nascent CENP-A-SNAP pool

was synthesized and labeled during progression through

S phase in the presence or absence of 10 mM 1NM-PP1. Three

hours following the release from HU, cells were scored for

CENP-A assembly and cell cycle position. Upon inhibition of

Cdk2 and Cdk1, 85% of cells assembled nascent CENP-A at

centromeres under conditions where 70% are in S phase and

BrdU positive (Figures 3C and 3C0). These results demonstrate

that cells undergoing active DNA replication are competent for

CENP-A assembly.

Unscheduled CENP-A Assembly Requires the Canonical
Assembly Factors
We next determined whether unscheduled CENP-A assembly

induced prior to mitosis resulted from the activation of the

canonical CENP-A assembly pathway. To address this, we re-

turned to the HeLa cell system. Mis18a, Mis18b, and the Myb-

domain containing protein Mis18BP1HsKNL2 (collectively named

the Mis18 complex) are essential for CENP-A assembly in

G1 phase and are recruited to centromeres during anaphase,

just prior to the onset of CENP-A assembly (Silva and Jansen,

2009; Fujita et al., 2007; Maddox et al., 2007). Strikingly, inhi-

bition of Cdk activity in G2 cells resulted in rapid recruitment

of GFP-Mis18a and Mis18BP1HsKNL2 to centromeres (Figures

4A–4D). Cells displayed either centromere localized GFP-

Mis18a alone (Figure 4A, red arrow) or both GFP-Mis18a and

nascent CENP-A-SNAP (Figure 4A, green arrow) but never

CENP-A-SNAP alone (Figure 4B). This suggests that, as for

canonical G1 loading of CENP-A, Mis18a arrives prior to, and

is required for subsequent CENP-A assembly under induced

conditions in G2 phase. Consistently, siRNA-mediated deple-

tion of Mis18a, Mis18BP1HsKNL2, or the CENP-A-specific

chaperone HJURP (Dunleavy et al., 2009; Foltz et al., 2009)

resulted in a reduction of both G1 phase assembly of nascent

CENP-A as well as unscheduled assembly in G2 phase (Fig-

ure 4E). Note that partial depletion of assembly factors under

these conditions (to or below 50% of unperturbed levels; Fig-

ure S4) is sufficient to impair CENP-A assembly, indicating

that these are rate limiting for assembly in both G1 phase

and G2 phase.
(D) Nascent CENP-A-SNAP colocalizes with centromeres (CENP-T) after Roscov

(E) Experiment as in (B) but with the inclusion of MG132 or cycloheximide (C

S1C–S1E).

(F) Quantification of (E). Mean and standard error of the mean (SEM) of three replic

CENP-A-SNAP (TMR-Star) signal was scored and represented according to cyc

Deve
Molecular Mechanism Maintaining Cell Cycle Control
of CENP-A Assembly
Our results thus far identify two upstream cell cycle control

kinases that maintain the CENP-A assembly machinery in an

inactive state. Aurora B is a mitotic kinase downstream of Cdk

activity that is responsible for pericentric H3 phosphorylation

from late S through G2 phase into mitosis (Monier et al., 2007)

and phosphorylates CENP-A during mitosis (Zeitlin et al.,

2001), potentially implicating Aurora B in maintaining cell cycle

control of CENP-A assembly. However, treatment of HeLa cells

expressing CENP-A-SNAP with inhibitors of either Aurora A or

Aurora B (Hoar et al., 2007; Ditchfield et al., 2003) did not alter

the G1 phase timing of CENP-A assembly (Figure S5A) nor did

they significantly block Roscovitine-induced CENP-A assembly

in G2 phase (Figure S5B). These observations suggest that the

Aurora kinases are unlikely to be involved in cell cycle control

of CENP-A assembly.

Rapid and early recruitment of members of theMis18 complex

suggests that Cdk activity acts either directly or indirectly on

these components. Indeed, previous phosphoproteome screens

have found that Mis18a, Mis18b, andMis18BP1HsKNL2 are phos-

phorylated on at least 1, 4, and 20 positions, respectively,

including Cdk consensus sites in the latter (Olsen et al., 2006;

Dephoure et al., 2008; Wang et al., 2008; Mayya et al., 2009).

Mutation of all known S/T phosphorylation sites in Mis18a or

Mis18b had no discernible effect on centromere localization

(not shown). Strikingly, however, conversion of 24 S/T sites in

Mis18BP1HsKNL2 to alanine (20 known sites plus an additional 4

S/T residues immediately adjacent to known phospho sites;

Mis18BP1HsKNL2-Ala24; Figure 5A) resulted in a precocious

recruitment of this protein to centromeres in G2 phase and

mitotic cells (Figures 5B and 5C). We find Mis18BP1HsKNL2 to

be phosphorylated in a cell cycle-dependent manner peaking

in cells enriched in mitosis (Figure 5D). Treatment of phosphory-

lated protein by phosphatase in vitro or by mutation of known

sites (Mis18BP1HsKNL2-Ala24) resulted in the loss of high molec-

ular weight species, indicating that most, if not all, phosphoryla-

tion events are removed in this mutant (Figure 5D). These results

strongly suggest that Mis18BP1HsKNL2 is kept in a noncentro-

meric state by phosphorylation, a state alleviated by loss of

phosphorylation during mitotic exit upon diminishment of Cdk

activity. While Mis18BP1HsKNL2-Ala24 targeting did not result in

premature CENP-A assembly (not shown), our results indicate

that Cdk-mediated inhibition of CENP-A assembly is likely ex-

erted through controlling centromere localization of key CENP-

A assembly factors, including Mis18BP1HsKNL2.

DISCUSSION

Our combined results demonstrate that the CENP-A assembly

machinery is present and poised for activity throughout most

of the cell cycle, but is kept in an inactive state by Cdk1 and

Cdk2 activities until after completion of DNA replication and
itine-induced assembly in G2 phase HeLa CENP-A-SNAP cells.

HX) to block proteolysis or protein synthesis, respectively (see also Figures

ates are shown in (C) and (F). Percentage of total cells positive for centromeric

lin B status. See also Figures S1 and S2.
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Figure 2. CENP-A Assembly Is Suppressed by Cdk1 and Cdk2 Activity

(A) DT40 cdk1as/cdk2�/� double mutant cells (i.e., Cdk2 null but active Cdk1) stably expressing SNAP-CENP-A were assayed for assembly of a nascent pulse

labeled pool in either asynchronous cultures or cells prevented from enteringG1 phase by nocodazole treatment. Insets show nascent SNAP-CENP-A (TMR-Star)

colocalization with centromeres (CENP-O).

(A0) as A but for cdk1as single mutant (i.e., active Cdk1 and Cdk2).

(B) Quantification of (A) and (A0). Dotted line represents the maximally expected percentage of cells assembling CENP-A (3.5 hr synthesis/8 hr cell cycle

[Zhao et al., 2007] 3 100 = 44%).
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chromosome segregation (Figure 5E). We further demonstrate

that the only aspect of mitotic passage that is essential for

subsequent CENP-A assembly is the resulting loss of mitotic

Cdk activity. This does not exclude the possibility that other

aspects of mitosis fine-tune CENP-A homeostasis as previously

suggested (Brown and Xu, 2009). Because APC/C-mediated

destruction of proteins, other than the Cdk1 activator cyclin

B, is not required for CENP-A assembly we argue that the

trigger initiating assembly likely depends directly on a phos-

phoswitch mediated by overlapping Cdk1 and Cdk2 kinase

activity. The requirement for exit from mitosis to trigger

CENP-A assembly is broadly conserved across transformed

and untransformed human cells (Figure 1B; Figure S2) (Jansen

et al., 2007; Hemmerich et al., 2008), Drosophila embryos

(Schuh et al., 2007), and Xenopus extracts (Bernad et al.,

2011; Moree et al., 2011), implying cell cycle control is main-

tained in an analogous manner. Intriguingly, however, a recent

study demonstrated that unlike Drosophila embryos, CIDCENP-A

assembly in fly cell lines occurs in metaphase (Mellone et al.,

2011). Possibly, in these cells, CID assembly is held in check

exclusively by cyclin A-mediated Cdk activity during S and

G2 phases. Cyclin A is degraded in early mitosis (den Elzen

and Pines, 2001; Geley et al., 2001), potentially triggering the

centromere targeting of CID in this system.

Phosphorylation of Mis18BP1HsKNL2 is inversely correlated

with its centromere localization as previously observed for the

fission yeast CENP-A assembly factor Smc3 (Pidoux et al.,

2009). We show here that preventing phosphorylation is suffi-

cient to drive Mis18BP1HsKNL2 centromere location. This

suggests that the phosphoswitch controlling CENP-A assembly

mediates CENP-A assembly factor activity or localization that

includes, but is likely not limited to, Mis18BP1HsKNL2.

Two general implications follow from these findings. First, as

outlined in Figure 5E, our results provide a logical explanation

for the cell cycle coupling between DNA replication, mitosis

and CENP-A assembly. CENP-A is redistributed onto sister

centromeres in S phase (Jansen et al., 2007; Dunleavy et al.,

2011) during which histone H3 is assembled at neighboring

positions (Dunleavy et al., 2011). The recently identified

CENP-T/CENP-W complex specifically interacts with chro-

matin containing H3 nucleosomes directly adjacent to

CENP-A nucleosomes (Hori et al., 2008; Ribeiro et al., 2010),

suggesting that neighboring H3 and CENP-A nucleosomes

make up an integral part of the centromeric complex. Impor-

tantly, such a mixed H3/CENP-A mitotic chromatin state can

be achieved by delaying assembly of CENP-A until after

mitosis, providing a possible explanation for the temporal

disconnect between DNA replication and CENP-A loading.

Second, inhibition of CENP-A loading is mediated exclusively

by Cdk1 and Cdk2, which are in turn essential for the initiation

of DNA replication (Bell and Dutta, 2002) and entry into

mitosis. Conversely, loss of Cdk1 activity triggers licensing

of the next round of DNA replication (Mailand and Diffley,
(C) DT40 cdk1as/cdk2�/� cells were synchronized in G2 phase with a low concen

pool. Cells were then either kept arrested in G2 with low (1 mM) or high (10 mM) 1N

FACS (PI: propidium iodide). Cyclin B2 staining indicates G2 phase.

(C0) As in (C) but for cdk1as single mutant cells.

(D) Quantification of (C) and (C0). Mean and SEM of three replicates of each cond

Deve
2005) coinciding with the temporal window during which

CENP-A assembly is permitted (Figure 5E). We hypothesize

that the Cdk-mediated molecular switch that turns the

CENP-A assembly machinery ‘‘ON’’ in early G1 and then

‘‘OFF’’ after S phase entry is one and same. Consistent with

this notion, quantitative live cell measurements have recently

shown that CENP-A assembly in human cells continues until

�10 hr after anaphase, which coincides with late G1/early S

phase (Lagana et al., 2010). This temporal restriction of

CENP-A assembly activity during G1 phase may represent

an important mechanism to maintain a proper centromere

size and architecture.

EXPERIMENTAL PROCEDURES

Cell Lines and Constructs

HeLa cells and their derivatives were cultured in DMEMmedium (GIBCO) sup-

plemented with 10% newborn calf serum (GIBCO) at 37�C 5% CO2. A HeLa

cell line stably expressing both CENP-A–SNAP and LAP-(GFP)-Mis18a was

generated using the previous established stable cell line expressing CENP-

A-SNAP (Jansen et al., 2007). A construct containing LAP-(GFP)-Mis18a (a

gift from I. Cheeseman, MIT, Cambridge, MA) was stably integrated into this

cell line via Moloney murine leukemia retroviral delivery. Cells stably express-

ing CENP-A-SNAP and LAP-(GFP)-Mis18a (referred to as GFP-Mis18a

throughout this paper) were selected by Blasticidin S (5 mg/ml; Invitrogen)

and Puromycin (1.5 mg/ml; Calbiochem) and single-cell sorted by flow cytom-

etry. The resulting monoclonal lines were expanded and selected by fluores-

cence microscopy. DMEM-F12 (GIBCO) medium supplemented with 10%

fetal bovine serum (FBS; GIBCO) and 0.348% Sodium Bicarbonate was

used to culture hTERT-RPE cells stably expressing CENP-A-SNAP at 37�C
5%CO2. This cell line was generated by retroviral delivery of a construct

carrying CENP-A-SNAP-3XHA (Jansen et al., 2007) and selected by Blastici-

din S (10 mg/ml; Invitrogen) analogous to HeLa cell lines described above.

A 3xHA-SNAP-CENP-A construct named pLJ404 was generated by insert-

ing a PCR-generated fragment carrying the chicken CENP-A open reading

frame (gift from T. Fukagawa, NIG, Mishima, Japan) flanked by BamHI and

XbaI sites into corresponding sites of pSS26m (Covalys) containing an addi-

tional triple HA tag at its N terminus. The resulting 3xHA-SNAP-CENP-A fusion

protein (referred to as SNAP-CENP-A throughout this paper) was subcloned

into p3XFLAG-CMV-14 (Sigma) resulting in pLJ410 (including a STOP codon,

excluding FLAG from the ORF). DT40 cell lines were cultured in RPMI1640

medium (GIBCO) supplemented with 50 mM b-mercaptoethanol, 10% FBS

and 1% chicken serum (GIBCO) at 39�C 5%CO2. Stable lines expressing

SNAP-CENP-A were created in DT40 cdk1as and cdk1as/cdk2�/� cells

(Hochegger et al., 2007) by electroporation with a Gene Pulser apparatus (Bio-

Rad) at 550 V and 25 mF as previously described (Sonoda et al., 1998). Puro-

mycin (0.5 mg/ml, Calbiochem) and Zeocin (500 mg/ml, Invivogen) were used to

select cdk1as and cdk1as/cdk2�/� cell lines, respectively. Clonal lines

expressing SNAP-CENP-A at subendogenous levels were selected by fluores-

cence microscopy after TMR-Star labeling and by western blot using an anti-

chicken CENP-A antibody (gift from T. Fukagawa, NIG, Mishima, Japan).

The Mis18BP1HsKNL2 ORF was amplified from cDNA (kind gift from Paul

Maddox) by PCR and cloned into the XhoI/EcoRI sites of pIC113 (kind

gift from Iain Cheeseman) creating pLJ415 expressing a GFP-TEV-S-tag-

Mis18BP1HsKNL2 fusion protein. The construct expressing the

Mis18BP1HsKNL2-Ala24 mutant (pLJ451) was identical to pLJ415 except that

residues S110, S134, S135, S191, S192, T260, T261, S263, S299, S365,

S541, T653, T821, S824, S914, S991, T992, T993, S1004, S1008, S1086,

S1087, S1089, and S1104 are mutated to alanine.
tration (1 mM) of 1NM-PP1, followed by synthesis of a nascent SNAP-CENP-A

M-PP1 or released into G1 followed by fixation and processing for imaging or

ition are shown in (B) and (D).
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Figure 3. S Phase Cells Are Competent for CENP-A Assembly

(A) Asynchronous cultures of DT40 cdk1as/cdk2�/� SNAP-CENP-A cells were treated with DMSO or 10 mM 1NM-PP1 to induce G2 arrest. During the arrest,

a nascent pool of SNAP-CENP-Awas synthesized and pulse labeled. Cells were then assayed for assembly bymicroscopy (Figure S3B) and for cell cycle position

by FACS. (A0) Percent cells assembling CENP-A at centromeres.

(B) DT40 cdk1as and cdk1as/cdk2�/� SNAP-CENP-A cells were arrested in S phase by HU treatment. A nascent SNAP-CENP-A pool was labeled in the presence

or absence of 1NM-PP1 under continuedHUarrest and scored for centromere assembly (Figure S3C). Samples were collected for FACS analysis before (8 hr) and

after (12 hr) nascent SNAP-CENP-A synthesis to monitor continued S phase arrest.

(B0) Quantification of B. Percent cells assembling CENP-A at centromeres is scored.

(C) Experiment as in B except that cdk1as/cdk2�/� cells were released fromHU-induced S phase arrest in the presence of BrdU tomonitor active DNA replication

during which a new SNAP-CENP-A pool was synthesized. Cells were scored for CENP-A centromere assembly in actively replicating cells in the absence or

presence of 1NM-PP1. Fraction of cells undergoing DNA replication is indicated (boxed region). PI: propidium iodide.

(C0) Quantification of percentage of cells assembling CENP-A. Mean and SEM of 3 replicates of each condition are shown in (A0 ) and (B0). See also Figure S3.
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Cell Synchronization, Transfection, and Drug Treatments

HeLa cells were synchronized by a double thymidine block. Cells were treated

with thymidine (2 mM, Sigma) for 17 hr, washed twice in medium, and released

in medium containing deoxycytidine (24 mM, Sigma) for 9 hr. Subsequently,

cells were treated again with thymidine for 16 hr, and finally released into

medium containing deoxycytidine and assayed.
58 Developmental Cell 22, 52–63, January 17, 2012 ª2012 Elsevier In
HeLa cells were transfected with 250 ng of DNA, 1 ml Plus Reagent and

1.25 ml of lipofectamine (Invitrogen) in Optimem (GIBCO) according to manu-

factures instructions for Figure 5B. For Figure 5D, HeLa cells were transfected

with 400 ng of plasmid DNA using Effectene transfection reagent (QIAGEN) in

Opti-MEM reduced serum media (Invitrogen) according to the manufacturer’s

instructions.
c.



Figure 4. Unscheduled CENP-A Assembly in G2 Phase Occurs through the Canonical Assembly Pathway

(A) CENP-A-SNAP, GFP-Mis18a double-tagged HeLa cells were treated as in Figure 1B. G2 control or Roscovitine-treated cells were counterstained for cyclin B

to confirm G2 status and imaged to determine GFP-Mis18a and nascent CENP-A-SNAP centromere localization.

(B) Quantification of (A).

(C) Experiment as in A but stained using antibodies against endogenous Mis18BP1HsKNL2.

(D) Quantification of (C). Number of cells analyzed is indicated between brackets.

(E) HeLa CENP-A-SNAP cells were treated with siRNAs against indicated targets (GAPDH and CENP-A serve as negative and positive controls, respectively),

synchronized by double thymidine block combined with SNAP quench-chase-pulse labeling. Cells were treated with Roscovitine for 1 hr in G2 to induce CENP-A

assembly or were cycled into the next cell cycle and collected at the next G1/S boundary following canonical CENP-A assembly. Cells were imaged and TMR-Star

centromere intensity was determined. More than 1,200 centromeres were quantified per condition. Mean and SEM of three replicates of each condition are

shown in (B) and (E). See Figure S4 for siRNA efficiency controls.
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Figure 5. Phosphorylation of Mis18BP1HsKNL2 Controls Its Centromere Localization

(A) Schematic of Mis18BP1HsKNL2 protein. Relevant domains and known phosphorylation sites are indicated.

(B) Constructs expressing wild-type GFP-taggedMis18BP1HsKNL2 or Mis18BP1HsKNL2-Ala24 were transfected into asynchronous HeLa cells 32 hr prior to fixation

followed by counterstaining for cyclin B, CENP-T, and with DAPI to indicate G2 status, centromeres and DNA, respectively.

(C) Box and whisker plots of relative GFP-Mis18BP1HsKNL2 fluorescent signal per centromere in G2 phase (high cyclin B) and mitotic cells. CENP-T was used as

a reference for centromere position. More than 300 and more than 90 centromeres were quantified in G2 and mitotic cells, respectively.

(D) Top: HeLa cells transiently expressing GFP-taggedMis18BP1HsKNL2 orMis18BP1HsKNL2-Ala24 for 29 hr were left untreated or were treatedwith nocodazole for

another 12 hr to enrich for mitotic cells, followed by processing for SDS-PAGE and immunoblotting. Endogenous and GFP-tagged Mis18BP1HsKNL2 is detected

by indicated antibodies. High molecular weight species are detected in nocodazole treated cells. Bottom: GFP-tagged Mis18BP1HsKNL2 was pulled down from

mitotic cell extracts that were either untreated (un), treated with calf intestinal alkaline phosphatase (CIP) alone or in combination with sodium orthovanadate

(NaV), followed by SDS-PAGE and immunoblotting for Mis18BP1HsKNL2.

(E) Top: Schematic outlining inverse relationship between DNA replication and CENP-A chromatin assembly driven by the Cdk activity cycle. Bottom: Cartoon

illustrates Cdk1/Cdk2-mediated inhibition of CENP-A assembly, exerted in part through phosphorylation (P) of Mis18BP1HsKNL2 (member of the Mis18 complex)

during S, G2, and M phases. Factors X and Y symbolize the involvement of other, yet to be identified, components. Inhibition is alleviated through APC/C-

mediated loss of Cdk1 activity in anaphase, targeting the Mis18 complex to the centromere (licensing) followed by CENP-A assembly in G1 phase. Canonical

(H3 containing) nucleosomes are shown in green, CENP-A nucleosomes in red. See also Figure S5.
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Roscovitine, Purvalanol A, MG132 and cycloheximide (Sigma) were used at

100 mM, 25 mM, 24 mM, 10 mg/ml, respectively. DMSO (Sigma) was used in

control conditions. TNFa (R&D Systems) was used at 50 ng/ml (Seldon

et al., 2007). MLN8054 (Selleck Chemicals) and ZM447439 (Enzo Life

Sciences) were used at 1 and 2 mM, respectively. DT40 cells were treated

with 1 or 10 mM of 1NM-PP1 (synthesized by Chris Larch and Hansjoerg

Streicher, Sussex University, UK) for partial or strong inhibition of Cdk1as

activity, respectively. DT40 cells were synchronized with 100 ng/ml nocoda-

zole or 2 mM hydroxyurea (HU) (both from Sigma). Following release from an

HU-induced S phase arrest (Figure 3C), DT40 cells were allowed to enter S

phase for 30 min prior to 1NM-PP1 addition to avoid rearrest due to Cdk1

requirement to enter S phase.

SNAP Quench-Chase-Pulse Labeling

HeLa or hTERT-RPE cells expressing CENP-A-SNAP were pulse labeled by

addition of 2 mM BTP (Covalys) in growth medium for 30 min at 37�C, 5%
CO2, for irreversible, nonfluorescent labeling of preexisting SNAP pool. We

refer to this step as ‘‘quench.’’ Following quenching, cells were chased for

6 hr and 30 min to allow synthesis of new, unlabeled CENP-A-SNAP and

were then pulse labeled with 2 mM TMR-Star (New England Biolabs) in growth

medium for 15 min at 37�C, 5% CO2, thereby fluorescently labeling the

nascent SNAP pool, specifically. DT40 cells were quenched as described for

HeLa cells, except that the chase time was 3 hr and 30 min and kept at

39�C 5% CO2 and the cells were pulse labeled with 5 mM of TMR-Star. After

each labeling step (both fluorescent and nonfluorescent), cells were washed

twice with medium and reincubated at the appropriate temperature to allow

excess SNAP substrate to be released from cells. After 30 min, cells were

washed again once in medium.

Immunofluorescence

HeLa or hTERT-RPE cells were grown on glass coverslips coated with poly-L-

lysine (Sigma) and fixed with 4% formaldehyde (Thermo Scientific) for 10 min.

DT40 cells were resuspended in PBS at a concentration of 23 105 cell/ml and

cytospun at 800 rpm during 5 min. Cells were fixed with 4% formaldehyde.

HeLa cells were stained with anti-cyclin B1 (1:50; sc-245, Santa Cruz), anti-

CENP-T (Barnhart et al., 2011) and anti-Mis18BP1HsKNL2 (1 mg/ml; gift from

P. Maddox, Université de Montréal, Montreal, Canada). hTERT-RPE cells

were stained with anti-a-tubulin (1:2500; clone YL1/2, Serotec), anti-HA

(1 mg/ml; clone HA11, Covance). DT40 cells were stained with anti-chicken

CENP-O (1:3000; gift from T. Fukagawa, National Institute of Genetics, Mis-

hima, Japan), anti-chicken cyclin B2 (1:50; gift from E. Nigg, University of

Basel, Basel, Switzerland). Secondary antibodies (Cy5- or FITC-conjugated

anti-mouse, FITC- or Cy3-conjugated anti-rabbit and FITC-conjugated anti-

rat) were obtained from Jackson Immunoresearch Laboratories. Dy680 conju-

gated anti-mouse antibodies were from Rockland Immunochemicals. Cells

were stained with DAPI (40,6-diamidino-2-phenylindole; Sigma) before

mounting in Mowiol.

siRNA Transfection

All siRNAs were obtained from Dharmacon. Smart pools were used to deplete

Mis18BP1HsKNL2, HJURP, and GAPDH. CENP-A and Mis18a were depleted

with siRNAs: 50-ACAGUCGGCGGAGACAAGGdTdT-30 and 50-CAGAAGCU

AUCCAAACGUGdTdT-30, respectively. Sixty picomoles of siRNAs was used

for each depletion in a 24-well format according to the manufacturer’s

instructions.

Flow Cytometry

DT40 cells (106) were harvested and fixed during 1 hr at 4�Cwith 70% ethanol.

Cells were washed twice in PBS containing 3%BSA (Sigma) and incubated for

3 hr at room temperature with 5 mg/ml propidium iodide (PI; Sigma) and

200 mg/ml of RNaseA in PBS containing 3%BSA. Subsequent flow-cytometric

analysis was performed on a FACScan (Becton Dickinson) or FACS Canto

(Becton Dickinson) using CellQuest and FACSDiva software, respectively.

For BrdU staining we used an anti-BrdU antibody (347580, Becton and Dick-

inson). Cells were fixed as described above and processed for staining ac-

cording to manufactures’ instructions. Cells were subsequently stained with

a Cy5 secondary antibody from Jackson Immunoresearch and with PI as

described above. Cells were analyzed on a CyAn ADP (Beckman Coulter).
Deve
Immunoblotting

Extracts of 105 (HeLa) or 2 3 106 (DT40) cells were separated in a 6% (Fig-

ure 5D) or 12% (Figures S1 and S4) SDS-PAGE gel and transferred to

a PVDF membrane. Blots were probed with anti-human-cyclin B1 (sc-245,

Santa Cruz) at 1:500 dilution, anti-Actin (A2066, Sigma) at 1:1,000 dilution,

anti-IkB-a (sc-371, Santa Cruz) at 1:1,000 dilution, anti-HJURP and anti-GFP

(Foltz et al., 2009) at 1:2,000 and 1:10,000 dilution, respectively. For blot shown

in Figure 5D, anti-GFP was used at 1:1,000 dilution overnight at 4�C. Anti-
Mis18BP1hsKNL-2 antibody (A302-824A, Bethyl Labs) was a 1:5,000 dilution

overnight at 4�C. To screen DT40 monoclonal lines stably expressing suben-

dogenous levels of 3xHA-SNAP-CENP-A we used anti-chicken CENP-A (gift

from T. Fukagawa, NIG, Mishima, Japan) and anti-HA (HA11, Covance

Research Products, Inc.) antibodies at dilution of 1:3,000 and 1:1,000, respec-

tively. Anti-mouse and anti-rabbit HRP-conjugated secondary antibodieswere

purchased from Jackson Immunoresearch Laboratories.

Phosphatase Treatment

Lysates were prepared from a HeLa cell line stably expressing LAP-

Mis18BP1HsKNL2 that had been blocked for 12 hr with 100 ng/ml nocodazole.

Cells enriched in mitosis were harvested with 3 mM EDTA-PBS for 10 min at

room temperature. Cells were resuspended in buffer containing 75mMHEPES

(pH 7.5), 1.5 mM EGTA, 1.5 mM MgCl2, 150 mM KCl, 15% glycerol, 0.075%

IGEPAL, 10mM imidazole, 200 mMsodium orthovanadate (NaV), 5mM sodium

fluoride, 50 mM b-glycerophosphate, and Complete EDTA-free Protease

Cocktail (Roche) and sonicated on ice in 30 s cycles for a total of 2min. Lysates

were centrifuged for 10 min at 1,000 3 g at 4�C and the supernatant was

passed five times over a column containing His-tagged GFP binding protein

(GBP) bound to Ni-NTA agarose. Proteins bound to the GBP beads were

washed, resuspended in 30 ml wash buffer and incubated with 10 mM sodium

orthovanadate (MP Biomedicals) and/or 60 units of calf intestinal alkaline

phosphatase (CIP; New England Biolabs) for 1 hr at 37�C. Reactions were

stopped by the addition of SDS sample buffer and separated by SDS-PAGE.

Microscopy

Digital images were captured using a DeltaVision Core system (Applied Preci-

sion) that controls an inverted microscope (Olympus, IX-71), coupled to

a Cascade2 EMCCD camera (Photometrics). Images (512 3 512) were

collected at 13 binning using a 1003 oil objective (NA 1.40, UPlanSApo)

with 0.2 mm z sections scanning the entire nucleus. Images were subsequently

deconvolved and maximum signals were projected as 2D images using soft-

WoRx (Applied Precision). Centromeric TMR intensity was quantified on non-

deconvolved, maximum projection images by placing a 7 3 7 pixel square on

each centromere using an unrelated centromere marker (CENP-T). Local

background corrected intensity values were obtained by subtracting minimum

intensity values from maximum values for each centromere measurement.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and can be found with this
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