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Abstract

We review a variety of fractional evolution processes (so de�ned being governed by equations of fractional or-
der), whose solutions turn out to be related to Mittag-Le�er-type functions. The chosen equations are the simplest
of the fractional calculus and include the Abel integral equations of the second kind, which are relevant in typical in-
verse problems, and the fractional di�erential equations, which govern generalized relaxation and oscillation phenomena.
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1. Introduction

The purpose of this review is to outline the fundamental role of Mittag-Le�er-type functions in
fractional evolution processes. By a fractional evolution process we mean a phenomenon governed
by an integro-di�erential equation containing integrals and=or derivatives of fractional order in time.
Particular attention is devoted to the technique of Laplace transforms for treating our equations in a
way accessible to applied scientists, avoiding unproductive generalities and excessive mathematical
rigor.
The plan of the paper is as follows. In the �rst part we recall the main properties of the

Mittag-Le�er function (Section 2) and we introduce the linear operators of fractional integra-
tion and fractional di�erentiation in the framework of the Riemann–Liouville fractional calculus
(Section 3). In the second part, by applying the technique of Laplace transforms, we then consider
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some linear integral and di�erential equations of fractional order, which are associated with evolu-
tion processes of physical interest. For these equations we derive their analytical solutions in terms
of Mittag-Le�er-type functions. In Section 4 we treat Abel-type integral equations of the second
kind which are related to a class of inverse problems. In Section 5 we consider ordinary di�erential
equations of fractional order which are related to generalized processes of relaxation and oscillation,
that we refer to as fractional relaxation and fractional oscillation, respectively.
The present review is essentially based on our original works, to which we shall refer in the

following. For other related reviews of ours, see the invited lectures on applications of the Fractional
Calculus that we have given in recent times in international Advanced Courses and Workshops, i.e.,
[14,15,20,35–38].

2. Mittag-Le�er-type functions

The Mittag-Le�er function is so named from the great Swedish mathematician who introduced
it at the beginning of this century in a sequence of �ve notes [40–44]. In this section we shall
consider the Mittag-Le�er function and some of the related functions which are relevant for their
connection with fractional evolution processes. It is our purpose to provide a short reference-historical
background and a review of the main properties of these functions with particular regard to their
Laplace transforms.

2.1. Reference-historical background

We note that the Mittag-Le�er-type functions, being ignored in the common books on special
functions, are unknown to the majority of scientists. Even in the 1991 Mathematics Subject Classi-
�cation these functions cannot be found. However, in the new AMS classi�cation foreseen for the
year 2000, a place for them has been reserved: 33E12 (“Mittag-Le�er functions”).
A description of the most important properties of these functions with relevant references can be

found in the third volume of the Bateman Project [13], in the chapter XVIII of the miscellaneous
functions. The treatise where great attention is devoted to them are those by Dzherbashyan [11,12].
We also recommend the classical treatise on complex functions by Sansone and Gerretsen [49] and
the recent book on fractional calculus by Podlubny [46].
Since the times of Mittag-Le�er several scientists have recognized the importance of the Mittag-

Le�er-type functions, providing interesting mathematical and physical applications, which unfortu-
nately are not much known.
As pioneering works of mathematical nature in the �eld of fractional integral and di�erential

equations, we like to quote those by Hille and Tamarkin [28] and Barret [2]. In 1930 Hille and
Tamarkin have provided the solution of the Abel integral equation of the second kind in terms of
a Mittag-Le�er function, whereas in 1954 Barret has expressed the general solution of the linear
fractional di�erential equation with constant coe�cients in terms of Mittag-Le�er functions.
As former applications in physics we like to quote the contributions by Cole in 1933 [8] in connec-

tion with nerve conduction, see also [10], and by Gross [26] in 1947 in connection with mechanical
relaxation. Subsequently, in 1971, Caputo and Mainardi [7] have shown that Mittag-Le�er functions
are present whenever derivatives of fractional order are introduced in the constitutive equations of
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a linear viscoelastic body. Since then, several other authors have pointed out the relevance of these
functions for fractional viscoelastic models, see, e.g., [35].
Goren
o and Yamamoto [25] have used asymptotic properties of Mittag-Le�er functions for a

detailed analysis of the transition from the second kind to the �rst kind Abel integral equation, thereby
considering the equation of second kind as a (singular) perturbation of that of �rst kind. Whereas in
applications Mittag-Le�er functions usually occur with real arguments, Witte [53] has extensively
exploited their properties in the complex domain for studying equations of fractional convection and
fractional di�usion–convection and for developing di�erence schemes for their numerical treatment.

2.2. The Mittag-Le�er functions E�(z); E�;�(z)

The Mittag-Le�er function E�(z) with �¿ 0 is de�ned by the following series representation,
valid in the whole complex plane:

E�(z) :=
∞∑
n=0

zn

�(�n+ 1)
; �¿ 0; z ∈ C: (2.1)

It turns out that E�(z) is an entire function of order �= 1=� and type 1. This property is still valid
but with �= 1=Re{�}, if � ∈ C with positive real part, as formerly noted by Mittag-Le�er himself
in [43].
The Mittag-Le�er function provides a simple generalization of the exponential function because

of the substitution of n! = �(n + 1) with (�n)! = �(�n + 1). Particular cases of (2.1), from which
elementary functions are recovered, are

E2(+z2) = cosh z; E2(−z2) = cos z; z ∈ C (2.2)

and

E1=2(±z1=2) = ez[1 + erf (±z1=2)] = ez erfc(∓z1=2); z ∈ C; (2.3)

where erf (erfc) denotes the (complementary) error function de�ned as

erf (z) :=
2√
�

∫ z

0
e−u

2

du; erfc(z) := 1− erf (z); z ∈ C: (2.4)

In (2.4) by z1=2 we mean the principal value of the square root of z in the complex plane cut along
the negative real semi-axis. With this choice ±z1=2 turns out to be positive=negative for z ∈ R+.
A straightforward generalization of the Mittag-Le�er function, originally due to Agarwal in 1953
based on a note by Humbert, see [1,29,30], is obtained by replacing the additive constant 1 in the
argument of the Gamma function in (2.1) by an arbitrary complex parameter �. For the generalized
Mittag-Le�er function we agree to use the notation

E�;�(z) :=
∞∑
n=0

zn

�(�n+ �)
; �¿ 0; � ∈ C; z ∈ C: (2.5)

Particular simple cases are

E1;2(z) =
e z − 1
z

; E2;2(z) =
sinh(z1=2)
z1=2

: (2.6)

We note that E�;�(z) is still an entire function of order �=1=� and type 1. For lack of space we prefer
to continue with the Mittag-Le�er functions in one parameter: since here we shall limit ourselves
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to consider evolution processes characterized by a single fractional order, the more general functions
with two parameters turn out to be redundant. However, we �nd it convenient to introduce other
functions depending on a single parameter which turn out to be related by simple relations to the
original Mittag-Le�er functions, and to consider them as belonging to the class of Mittag-Le�er-type
functions.
In a broad sense the class of Mittag-Le�er-type functions is much larger than that considered

here, since several generalizations have been introduced by mathematicians to take into account more
parameters and variables. In addition to the books [11,46], we would like to cite a few relevant
papers, namely [16,18,27,31,50,51].

2.3. The Mittag-Le�er integral representation and asymptotic expansions

Many of the most important properties of E�(z) follow from Mittag-Le�er’s integral representa-
tion

E�(z) =
1
2�i

∫
Ha

��−1e�

�� − z d�; �¿ 0; z ∈ C; (2.7)

where the path of integration Ha (the Hankel path) is a loop which starts and ends at −∞ and
encircles the circular disk |�|6|z|1=� in the positive sense: −�6arg �6� on Ha. To prove (2.7),
expand the integrand in powers of �, integrate term-by-term, and use Hankel’s integral for the
reciprocal of the Gamma function.
The integrand in (2.7) has a branch-point at �=0. The complex �-plane is cut along the negative

real semi-axis, and in the cut plane the integrand is single-valued: the principal branch of �� is taken
in the cut plane. The integrand has poles at the points �m = z1=� e2�im=�; m integer, but only those of
the poles lie in the cut plane for which −��¡ arg z + 2�m¡��. Thus, the number of the poles
inside Ha is either [�] or [�+ 1], according to the value of arg z.
The most interesting properties of the Mittag-Le�er function are associated with its asymptotic

developments as z → ∞ in various sectors of the complex plane. These properties can be summarized
as follows. For the case 0¡�¡ 2 we have

E�(z) ∼ 1
�
exp(z1=�)−

∞∑
k=1

z−k

�(1− �k) ; |z| → ∞; |arg z|¡��=2; (2.8)

E�(z) ∼ −
∞∑
k=1

z−k

�(1− �k) ; |z| → ∞; ��=2¡ arg z¡ 2�− ��=2: (2.9)

For the case �¿2 we have

E�(z) ∼ 1
�

∑
m

exp(z1=�e2�im=�)−
∞∑
k=1

z−k

�(1− �k) ; |z| → ∞; (2.10)

where m takes all integer values such that −��=2¡ arg z + 2�m¡��=2, and arg z can assume any
value between −� and +� inclusive. From the asymptotic properties (2.8)–(2.10) and the de�nition
of the order of an entire function, we infer that the Mittag–Le�er function is an entire function of
order 1=� for �¿ 0; in a certain sense each E�(z) is the simplest entire function of its order, see
[47]. The Mittag-Le�er function also furnishes examples and counter-examples for the growth and
other properties of entire functions of �nite order (see [4]).
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2.4. The Laplace transform pairs related to the Mittag-Le�er functions

The Mittag-Le�er functions are connected to the Laplace integral through the equation∫ ∞

0
e−uE�(u�z) du=

1
1− z ; �¿ 0: (2.11)

The integral at the LHS was evaluated by Mittag-Le�er who showed that the region of its conver-
gence contains the unit circle and is bounded by the line Re z1=� = 1. Putting in (2.11) u = st and
u�z=−�t� with t¿0 and � ∈ C, and using the sign ÷ for the juxtaposition of a function depending
on t with its Laplace transform depending on s, we get the following Laplace transform pairs:

e�(t; �) :=E�(−�t�)÷ s�−1

s� + �
; Re s¿ |�|1=�: (2.12)

Later we shall show the key role of the Mittag-Le�er-type functions e�(t; �) in treating certain
fractional integral and di�erential equations. In particular, we shall discuss their peculiar characters
for 0¡�¡ 1 and for 1¡�¡ 2 related to fractional relaxation and fractional oscillation processes,
respectively.

2.5. Other formulas: summation and integration

For completeness hereafter we exhibit some formulas related to summation and integration of
ordinary Mittag-Le�er functions (in one parameter �), referring the interested reader to Dzherbashian
[11], Podlubny [46] for their proof and for their generalizations to two parameters.
Concerning summation we outline

E�(z) =
1
p

p−1∑
h=0

E�=p(z1=p ei2�h=p); p ∈ N (2.13)

from which we derive the duplication formula

E�(z) = 1
2 [E�=2(+z

1=2) + E�=2(−z1=2)]: (2.14)

Concerning integration we outline another interesting duplication formula∫ ∞

0
e−x

2=(4t)E�(x�) dx =
√
�tE�=2(t�=2); t ¿ 0: (2.15)

3. Essentials of Riemann–Liouville fractional calculus

Fractional calculus is the �eld of mathematical analysis which deals with the investigation and
applications of integrals and derivatives of arbitrary order. The term fractional is a misnomer, but
it is retained following the prevailing use. This section is mostly based on the recent review by
Goren
o and Mainardi, [20]. For more details on the classical treatments of fractional calculus the
reader is referred to specialized books, e.g., [24,39,45,46,48].
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3.1. The fractional integral J �

According to the Riemann–Liouville approach to fractional calculus, the notion of fractional in-
tegral of order �(�¿ 0) is a natural consequence of the well-known formula (usually attributed to
Cauchy), that reduces the calculation of the n-fold primitive of a function f(t) to a single integral
of convolution type. In our notation the Cauchy formula reads

J nf(t) :=fn(t) =
1

(n− 1)!
∫ t

0
(t − �)n−1 f(�) d�; t ¿ 0; n ∈ N: (3.1)

From this de�nition we notice that fn(t) vanishes at t=0 with its derivatives of order 1; 2; : : : ; n−1.
For convention we require that f(t) and henceforth fn(t) be a causal function, i.e., identically
vanishing for t ¡ 0.
In a natural way one is led to extend the above formula from positive integer values of the index

to any positive real values by using the Gamma function. Indeed, noting that (n− 1)! = �(n), and
introducing the arbitrary positive real number �, one de�nes the fractional integral of order �¿ 0:

J � f(t) :=
1
�(�)

∫ t

0
(t − �)�−1f(�) d�; t ¿ 0; � ∈ R+: (3.2)

For complementation we de�ne J 0:=I (Identity operator), i.e., we mean J 0f(t)=f(t). Furthermore,
by J �f(0+) we mean the limit (if it exists) of J �f(t) for t → 0+; this limit may be in�nite. We note
the semigroup property J �J � = J �+�; �; �¿0, which implies the commutative property J �J � = J �J �,
and the e�ect of our operators J � on the power functions

J �t
 =
�(
+ 1)

�(
+ 1 + �)
t
+�; �¿0; 
¿− 1; t ¿ 0: (3.3)

These properties are of course a natural generalization of those known when the order is a positive
integer.
We note the following rule for the Laplace transform of the fractional integral:

J �f(t)÷ f̃(s)
s�
; �¿0 (3.4)

which generalizes the case of an n-fold repeated integral (3.1).
It may be convenient to introduce the causal function

��(t) :=
t�−1+

�(�)
; �¿ 0; (3.5)

where the su�x + just means that the function vanishes for t ¡ 0. Being �¿ 0, this function turns
out to be locally absolutely integrable in R+. Let us now recall the notion of Laplace convolution, i.e.,
the convolution integral with two causal functions, f(t)∗g(t) := ∫ t0 f(t−�)g(�) d�=g(t)∗f(t). Then
we note from (3.2) and (3.5) that the fractional integral of order �¿ 0 is the Laplace convolution
of ��(t) and f(t), i.e.,

J �f(t) = ��(t) ∗ f(t); �¿ 0: (3.6)
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3.2. The fractional derivatives D�; D�∗

After the notion of fractional integral, that of fractional derivative of order � (�¿ 0) becomes a
natural requirement and one is attempted to substitute � with −� in the above formulas. However, this
generalization needs some care in order to guarantee the convergence of the integrals and preserve
the well-known properties of the ordinary derivative of integer order. Denoting by Dn the operator
of ordinary di�erentiation of order n where n is a positive integer, we �rst note that DnJ n = I ,
J nDn 6= I , i.e., Dn is left-inverse (but not right-inverse) to the corresponding integral operator J n. In
fact, we easily recognize from (3.1) that

J nDnf(t) = f(t)−
n−1∑
k=0

f(k)(0+)
tk

k!
; t ¿ 0: (3.7)

As a consequence we expect that D� is de�ned as left-inverse to J �. For this purpose, introducing the
positive integer m such that m− 1¡�6m, one de�nes the fractional derivative of order �¿ 0 as
D�:=DmJm−�. In fact D�J �=DmJm−�J �=DmJm= I . When �=m we recover the standard derivative
of integer order, whereas when � is not integer we get

D�f(t) :=
dm

dtm

[
1

�(m− �)
∫ t

0

f(�)
(t − �)�+1−m d�

]
; m− 1¡�¡m: (3.8)

Similarly to (3.3), the e�ect of the operator D� on the power functions turns out to be

D�t
 =
�(
+ 1)

�(
+ 1− �) t

−�; �¿0; 
¿− 1; t ¿ 0: (3.9)

Note the remarkable fact that the fractional derivative D�f is not zero for the constant function
f(t) ≡ 1 if � 6∈ N. In fact, (3.9) with 
= 0 teaches us that

D�1 =
t−�

�(1− �) ; �¿0; t ¿ 0: (3.10)

This, of course, is ≡ 0 for � ∈ N, due to the poles of the gamma function in the points 0;−1;
−2; : : : . We now observe that an alternative de�nition of the fractional derivative, originally intro-
duced by Caputo [5,6] in the late 1960s and adopted by Caputo and Mainardi [7] in the framework
of the theory of Linear Viscoelasticity, is D�∗ := J

m−�Dm where m− 1¡�6m, m ∈ N. When �=m
we recover Dm∗ = D

m, whereas when � is not integer we get

D�∗f(t) :=
1

�(m− �)
∫ t

0

f(m)(�)
(t − �)�+1−m d�; m− 1¡�¡m: (3.11)

This de�nition is of course more restrictive than (3.8) in which it requires the absolute integrability
of the derivative of order m. Whenever we use the operator D�∗ we (tacitly) assume that this condition
is met. We easily recognize that in general

D�f(t) :=DmJm−�f(t) 6= Jm−�Dmf(t) :=D�∗f(t); (3.12)

unless the function f(t) along with its �rst m − 1 derivatives vanishes at t = 0+. For this purpose
let us �rst note for m− 1¡�6m and t ¿ 0,

J �D�∗f(t) = J
�Jm−�Dmf(t) = JmDmf(t);
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hence by (3.7)

J �D�∗f(t) = f(t)−
m−1∑
k=0

f(k)(0+)
tk

k!
: (3.13)

Then, by D�J � = I and (3.9), we derive for t ¿ 0

D�f(t) = D�∗f(t) +
m−1∑
k=0

tk−�

�(k − �+ 1)f
(k)(0+); m− 1¡�6m (3.14)

and

D�
(
f(t)−

m−1∑
k=0

tk

k!
f(k)(0+)

)
= D�∗f(t); m− 1¡�6m: (3.15)

The alternative de�nition (3.11) for the fractional derivative thus incorporates the initial values of
the function and of its integer derivatives of lower order.
The subtraction of the Taylor polynomial of degree m − 1 at t = 0+ from f(t) means a sort

of regularization of the fractional derivative. In particular, according to this de�nition, the relevant
property for which the fractional derivative of a constant is still zero can be easily recognized, i.e.,

D�∗1 ≡ 0; �¿ 0: (3.16)

We now explore the most relevant di�erences between the two fractional derivatives (3.8) and
(3.11). We agree to denote (3.11) as the Caputo fractional derivative to distinguish it from the
standard Riemann–Liouville fractional derivative (3.8). We observe, again by looking at (3.9), that
D�t�−1 ≡ 0.
From above we thus draw the following conclusions about functions which for t ¿ 0 admit the

same fractional derivative of order �, with m− 1¡�6m,

D�f(t) = D�g(t)⇔ f(t) = g(t) +
m∑
j=1

cjt�−j; (3.17)

D�∗f(t) = D
�
∗g(t)⇔ f(t) = g(t) +

m∑
j=1

cjtm−j: (3.18)

In these formulas the coe�cients cj are arbitrary constants. For the two de�nitions we also note
a di�erence with respect to the formal limit as � → (m − 1)+. From (3.8) and (3.11) we obtain,
respectively,

�→ (m− 1)+ ⇒ D�f(t)→ DmJf(t) = Dm−1f(t); (3.19)

�→ (m− 1)+ ⇒ D�∗f(t)→ JDmf(t) = Dm−1f(t)− f(m−1)(0+): (3.20)

We now consider the Laplace transform of the two fractional derivatives. For the standard fractional
derivative D� the Laplace transform, assumed to exist, requires the knowledge of the (bounded) initial
values of the fractional integral Jm−� and of its integer derivatives of order k = 1; 2; : : : ; m − 1. In
our notation the corresponding rule reads, see, e.g., [45,46],

D�f(t)÷ s�f̃(s)−
m−1∑
k=0

DkJ (m−�)f(0+)sm−1−k ; m− 1¡�6m: (3.21)
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The Laplace transform of the Caputo fractional derivative requires the knowledge of the (bounded)
initial values of the function and of its derivatives of integer order k = 1; 2; : : : ; m − 1, in analogy
with the case when �= m. In fact, we can prove the corresponding Caputo rule, see, e.g., [6],

D�∗f(t)÷ s�f̃(s)−
m−1∑
k=0

f(k)(0+)s�−1−k ; m− 1¡�6m: (3.22)

Goren
o and Mainardi [20] and Podlubny [46] have recognized and pointed out the major utility
of the Caputo fractional derivative in the treatment of di�erential equations of fractional order for
physical applications. In fact, in physical problems, the initial conditions are usually expressed in
terms of a given number of bounded values assumed by the �eld variable and its derivatives of
integer order, even if the governing evolution equation is a generic integro-di�erential equation and
therefore, in particular, a fractional di�erential equation.

4. Abel integral equation of the second kind

The Abel integral equations of the �rst and second kind are the most simple integral equations
of fractional order. Denoting by u(t) the unknown function and f(t) a given function, they can be
written as

1
�(�)

∫ t

0

u(�)
(t − �)1−� d�= f(t); �¿ 0; (4.1)

u(t) +
�
�(�)

∫ t

0

u(�)
(t − �)1−� d�= f(t); �¿ 0; � ∈ C: (4.2)

Using (3.2) and (3.6) the integral term in (4.1) and (4.2) can be expressed as a fractional integral,
namely

1
�(�)

∫ t

0

u(�)
(t − �)1−� d�= J

�u(t) = ��(t) ∗ u(t): (4.3)

For 0¡�¡ 1 the kernel function ��(t) turns out to be weakly singular.
It is well known that the above integral equations are so named from the great Norwegian mathe-

matician, Niels Henrik Abel, who in 1823–26 was led to his famous equation (4.1), with 0¡�¡ 1,
by the mechanical problem of the tautochrone. The interested reader is referred to Craig and Brown
[9], Goren
o and Vessella [24] and Goren
o [14,15] for historical notes and detailed analysis with
applications concerning the general class of Abel-type integral equations.
Here we limit ourselves to consider the Abel integral equation of the second kind, see (4.2),

showing that its solution can be related in di�erent ways to the Mittag-Le�er-type functions e�(t; �)
:=E�(−�t�) (see (2.12)). We shall use the method of the Laplace transforms, that makes easier and
more comprehensible the treatment and leads to (2.12) in a straightforward way.
Applying the Laplace transform to (4.2) we obtain[

1 +
�
s�

]
ũ(s) = f̃(s) ⇒ ũ(s) =

s�

s� + �
f̃(s): (4.4)
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It is quite natural to choose two di�erent ways to get the inverse Laplace transforms from (4.4),
according to the standard rules. Writing (4.4) as

ũ(s) = s

[
s�−1

s� + �
f̃(s)

]
; (4.4a)

we obtain

u(t) =
d
dt

∫ t

0
f(t − �)e�(�; �) d�: (4.5a)

If we write (4.4) as

ũ(s) =
s�−1

s� + �
[sf̃(s)− f(0+)] + f(0+) s

�−1

s� + �
; (4.4b)

we obtain

u(t) =
∫ t

0
f′(t − �)e�(�; �) d�+ f(0+)e�(t; �): (4.5b)

We also note that, e�(t; �) being a function di�erentiable with respect to t with e�(0+; �)=E�(0+)=1,
there exists another possibility to re-write (4.4), namely

ũ(s) =

[
s
s�−1

s� + �
− 1

]
f̃(s) + f̃(s): (4.4c)

Then we obtain

u(t) =
∫ t

0
f(t − �)e′�(�; �) d�+ f(t) (4.5c)

in agreement with the expression of the solution found by Hille and Tamarkin [28]. We see that the
way (b) is more restrictive than the ways (a) and (c) since it requires that f(t) be di�erentiable
with L-transformable derivative.

5. Fractional di�erential equations

We now analyze the most simple di�erential equations of fractional order, including those which,
by means of fractional derivatives, generalize the well-known ordinary di�erential equations related
to relaxation and oscillation phenomena. Generally speaking, we consider the following di�erential
equation of fractional order �¿ 0:

D�∗u(t) = D
�

(
u(t)−

m−1∑
k=0

t k

k!
u(k)(0+)

)
=−u(t) + q(t); t ¿ 0; (5.1)

where u=u(t) is the �eld variable and q(t) is a given function. Here m is a positive integer uniquely
de�ned by m− 1¡�6m, which provides the number of the prescribed initial values u(k)(0+) = ck ,
k=0; 1; 2; : : : ; m−1. Implicit in the form of (5.1) is our desire to obtain solutions u(t) for which the
u(k)(t) are continuous for positive t and right-continuous at the origin t=0 for k =0; 1; 2; : : : ; m− 1.
In particular, the cases of fractional relaxation and fractional oscillation are obtained for 0¡�¡ 1
and 1¡�¡ 2, respectively.
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5.1. Generalities

We note that when � is the integer m Eq. (3.5) reduces to an ordinary di�erential equation whose
solution can be expressed in terms of m linearly independent solutions of the homogeneous equation
and of one particular solution of the inhomogeneous equation. We summarize the well-known result
as follows:

u(t) =
m−1∑
k=0

ckuk(t) +
∫ t

0
q(t − �)u�(�) d�; (5.2)

uk(t) = J ku0(t); u
(h)
k (0

+) = �kh; h; k = 0; 1; : : : ; m− 1; (5.3)

u�(t) =−u′0(t): (5.4)

Thus, the m functions uk(t) represent the fundamental solutions of the di�erential equation of order
m, namely those linearly independent solutions of the homogeneous equation which satisfy the initial
conditions in (5.3). The function u�(t), with which the free term q(t) appears convoluted, represents
the so-called impulse-response solution, namely the particular solution of the inhomogeneous equation
with all ck = 0, k = 0; 1; : : : ; m− 1, and with q(t) = �(t). In the cases of standard relaxation u′(t) =
−u(t) and standard oscillation u′′(t) =−u(t) we recognize that u0(t) = e−t = u�(t) and u0(t) = cos t,
u1(t) = J u0(t) = sin t = cos(t − �=2) = u�(t), respectively.
Let us now solve (5.1) by the method of Laplace transforms. For this purpose we can use

directly the Caputo rule (3.21) or, alternatively, reduce (5.1) with the prescribed initial conditions
as an equivalent (fractional) integral equation and then treat the integral equation by the Laplace
transform method. We obtain

ũ(s) =
m−1∑
k=0

ck
s�−k−1

s� + 1
+

1
s� + 1

q̃(s): (5.5)

Introducing the Mittag-Le�er-type functions, see (2.12),

e�(t) ≡ e�(t; 1) :=E�(−t�)÷ s�−1

s� + 1
(5.6)

and

uk(t) := J ke�(t)÷ s�−k−1

s� + 1
; k = 0; 1; : : : ; m− 1; (5.7)

we �nd, from inversion of the Laplace transforms in (5.5),

u(t) =
m−1∑
k=0

ckuk(t)−
∫ t

0
q(t − �)u′0(�) d�: (5.8)

For �nding the last term in the RHS of (5.8), we have used the well-known rule for the Laplace
transform of the derivative noting that u0(0+) = e�(0+) = 1 and

1
s� + 1

=−
(
s
s�−1

s� + 1
− 1

)
÷−u′0(t) =−e′�(t): (5.9)

In particular formula (5.8) encompasses the solutions for �= 1 and 2.
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When � is not integer, namely for m−1¡�¡m, we note that m−1 represents the integer part of
� (usually denoted by [�]) and m the number of initial conditions necessary and su�cient to ensure
the uniqueness of the solution u(t). Thus, the m functions uk(t) = J ke�(t) with k = 0; 1; : : : ; m − 1
represent those particular solutions of the homogeneous equation which satisfy the initial conditions

u(h)k (0
+) = �kh; h; k = 0; 1; : : : ; m− 1 (5.10)

and therefore they represent the fundamental solutions of the fractional equation (5.1), in analogy
with the case � = m. Furthermore, the function u�(t) = −e′�(t) represents the impulse-
response solution.
The reader is invited to verify that solution (5.8) has continuous derivatives u(k)(t) for k =

0; 1; 2; : : : ; m− 1, which ful�ll the m initial conditions u(k)(0+)= ck . However, the so-called impulse-
response solution of our equation (5.1), u�(t), is expected to be not so regular as solution (5.8). In
fact, from (5.5), (5.8) and (5.9), one obtains

u�(t) =−u′0(t)÷
1

s� + 1
; (5.11)

and therefore, using the limit theorem for Laplace transforms, one can recognize that, being m −
1¡�¡m,

u(h)� (0
+) = 0; h= 0; 1; : : : ; m− 2; u(m−1)� (0+) =∞: (5.12)

5.2. Fractional relaxation and fractional oscillations

Hereafter, we are going to compute and exhibit the fundamental solutions and the impulse-response
solution separately for the cases (a) 0¡�¡ 1 and (b) 1¡�¡ 2, pointing out the comparison with
the corresponding solutions obtained when �= 1 and 2. We prefer to derive the relevant properties
of the basic functions e�(t) directly from their representation as a Laplace inverse integral

e�(t) =
1
2�i

∫
Br
est
s�−1

s� + 1
ds; (5.13)

in detail for 0¡�62, without detouring on the general theory of Mittag-Le�er functions in the
complex plane. In (5.13) Br denotes the Bromwich path, i.e., a line Re{s}= � with a value �¿1,
and Im{s} running from −∞ to +∞.
For � not integer the power function s� is uniquely de�ned as s�= |s|� ei arg s, with −�¡ arg s¡ �,

that is in the complex s-plane cut along the negative real semi-axis. The essential step consists in
decomposing e�(t) into two parts according to e�(t) = f�(t) + g�(t), as indicated below. In case
(a) the function f�(t), in case (b) the function −f�(t) is completely monotone; in both cases f�(t)
tends to zero as t tends to in�nity, from above in case (a), from below in case (b). The other part,
g�(t); is identically vanishing in case (a), but of oscillatory character with exponentially decreasing
amplitude in case (b). In order to obtain the desired decomposition of e� we bend the Bromwich
path of integration Br into the equivalent Hankel path Ha(1+), a loop which starts from −∞ along
the lower side of the negative real semi-axis, encircles the circular disc |s|=1 in the positive sense
and ends at −∞ along the upper side of the negative real semi-axis. One obtains

e�(t) = f�(t) + g�(t); t¿0 (5.14)
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with

f�(t) :=
1
2�i

∫
Ha(�)

est
s�−1

s� + 1
ds; (5.15)

where now the Hankel path Ha(�) denotes a loop constituted by a small circle |s| = � with � → 0
and by the two borders of the cut negative real semi-axis, and

g�(t) :=
∑
h

es
′
ht Res

[
s�−1

s� + 1

]
s′h

=
1
�

∑
h

es
′
ht ; (5.16)

where s′h are the relevant poles of s
�−1=(s�+1). In fact the poles turn out to be sh=exp[i(2h+1)�=�]

with unitary modulus; they are all simple but relevant are only those situated in the main Riemann
sheet, i.e., the poles s′h with argument such that −�¡ arg s′h ¡ �.
If 0¡�¡ 1, there are no such poles, since for all integers h we have |arg sh|= |2h+1|�=�¿ �;

as a consequence,

g�(t) ≡ 0; hence; e�(t) = f�(t); if 0¡�¡ 1: (5.17)

If 1¡�¡ 2, then there exist precisely two relevant poles, namely s′0 = exp(i�=�) and s′−1 =
exp(−i�=�) = s′0, which are located in the left half-plane. Then one obtains

g�(t) =
2
�
et cos(�=�)cos

[
t sin

(�
�

)]
if 1¡�¡ 2: (5.18)

We note that this function exhibits oscillations with circular frequency !(�) = sin(�=�) and with an
amplitude decaying exponentially with rate �(�) = |cos(�=�)|.
It is now an exercise in complex analysis to show that the contribution from the Hankel path

Ha(�) as �→ 0 is provided by

f�(t) :=
∫ ∞

0
e−rtK�(r) dr (5.19)

with

K�(r) =−1� Im
{
s�−1

s� + 1

∣∣∣∣∣
s=r ei�

}
=
1
�

r�−1 sin(��)
r2� + 2r� cos(��) + 1 : (5.20)

This function K�(r) vanishes identically if � is an integer, it is positive for all r if 0¡�¡ 1, negative
for all r if 1¡�¡ 2. In fact in (5.20) the denominator is, for � not integer, always positive being
¿ (r� − 1)2¿0. Hence f�(t) has the aforementioned monotonicity properties, decreasing towards
zero in case (a), and increasing towards zero in case (b). We also note that, in order to satisfy
the initial condition e�(0+) = 1, we �nd

∫∞
0 K�(r) dr = 1 if 0¡�¡ 1,

∫∞
0 K�(r) dr = 1 − 2=� if

1¡�¡ 2. In addition to the basic fundamental solutions, u0(t) = e�(t) we need to compute the
impulse-response solutions u�(t) =−D1e�(t) for cases (a) and (b) and, only in case (b), the second
fundamental solution u1(t) = J 1e�(t). For this purpose we note that in general it turns out that

J kf�(t) =
∫ ∞

0
e−rtK�;k(r) dr (5.21)

with

K�;k(r) := (−1)kr−kK�(r) = (−1)
k

�
r�−1−k sin(��)

r2� + 2r� cos(��) + 1 ; (5.22)
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where K�(r) = K�;0(r), and

J kg�(t) =
2
�
et cos(�=�) cos

[
t sin

(�
�

)
− k �

�

]
: (5.23)

This can be done in direct analogy to the computation of the functions e�(t), the Laplace transform
of J ke�(t) being given by (5.7). For the impulse-response solution we note that the e�ect of the
di�erential operator D1 is the same as that of the virtual operator J−1.
In conclusion, we can resume the solutions for the fractional relaxation and oscillation equations

as follows:
(a) 0¡�¡ 1,

u(t) = c0 u0(t) +
∫ t

0
q(t − �) u�(�) d�; (5.24a)

where u0(t) = f�(t); u�(t) = J 1f�(t), with u0(0+) = 1; u�(0+) = +∞;
(b) 1¡�¡ 2,

u(t) = c0 u0(t) + c1 u1(t) +
∫ t

0
q(t − �) u�(�) d�; (5.24b)

where u0(t) = f�(t) + g�(t); u1(t) = J 1 f�(t) + J 1 g�(t); u�(t) = J−1 f�(t) + J−1 g�(t), with u0(0+)
= 1; u′0(0

+) = 0; u1(0+) = 0; u′1(0
+) = 1; u�(0+) = 0; u′�(0

+) = +∞.
We now desire to point out that in both cases (a) and (b) (in which � is just not integer), i.e., for

fractional relaxation and fractional oscillation, all the fundamental and impulse-response solutions
exhibit an algebraic decay as t → ∞ ; as discussed below. This algebraic decay is the most important
e�ect of the noninteger derivative in our equations, which dramatically di�ers from the exponential
decay present in the standard relaxation and damped-oscillation phenomena.
Let us start with the asymptotic behaviour of u0(t). To this purpose we �rst derive an asymptotic

series for the function f�(t), valid for t → ∞. Using the identity
1

s� + 1
= 1− s� + s2� − s3� + · · ·+ (−1)N−1 s(N−1)� + (−1)N sN�

s� + 1
in formula (5.15) and the Hankel representation of the reciprocal Gamma function, we (formally)
obtain the asymptotic expansion (for � noninteger)

f�(t) =
N∑
n=1

(−1)n−1 t−n�

�(1− n�) + O(t
−(N+1)�) as t → ∞: (5.25)

The validity of this asymptotic expansion can be established rigorously using the (generalized)
Watson lemma (see [4]). We also can start from the spectral representation (5.19) and (5.20) and
expand the spectral function for small r. Then the (standard) Watson lemma yields (5.25). We
note that this asymptotic expansion coincides with that for u0(t) = e�(t), having assumed 0¡�¡ 2
(� 6= 1). In fact the contribution of g�(t) is identically zero if 0¡�¡ 1 and exponentially small as
t → ∞ if 1¡�¡ 2.
The asymptotic expansions of the solutions u1(t) and u�(t) are obtained from (5.25) integrating

or di�erentiating term by term with respect to t. In particular, taking the leading term in (5.25), we
obtain the asymptotic representations

u0(t) ∼ t−�

�(1− �) ; u1(t) ∼ t1−�

�(2− �) ; u�(t) ∼ − t− �−1

�(−�) ; t → ∞: (5.26)
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In [19] we have carried out a detailed analytical and numerical analysis about the zeros of the
fundamental solutions in case (b) of fractional oscillations, providing illuminating plots and tables.
In this respect we have improved some results by Wiman [52] about the asymptotic position of the
zeros.

6. Conclusions

We have reviewed some simple and basic evolution equations of fractional order to outline the
key role of the Mittag-Le�er-type functions. In the examples treated here these functions reduce to
pure exponentials (of real or complex argument) when the order reduces to a positive integer. But,
when the order is not an integer, the Mittag-Le�er-type functions exhibit a power-law asymptotic
behaviour which shows how the described phenomena can be related to certain scaling laws. Scaling
concepts are nowadays met in di�erent disciplines, including physical, biological and economical
sciences, so we expect that the Mittag-Le�er-type functions will increase their importance along
with the Fractional Calculus which is their natural mathematical framework.
Here we have restricted our attention to processes depending only on time. If space coordinates

are present, the governing equations contain partial derivatives which can be of fractional order as
well. Particular importance is generally attributed to di�usion equations where fractional derivatives
in time or in space are present. In some papers of ours (see, e.g., [17,21–23,32–35]), we have
treated time-fractional di�usion equations where the Mittag-Le�er-type functions are still found but
as Fourier or Laplace transforms of the fundamental solutions, which are now expressed in terms of
Wright-type functions.
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