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INTRODUCTION 

This paper is the sequel to [ 14 j’ and we use the same notation and 
definitions given there. The basic motivation for the results of this paper 
arises from the following geometrical considerations. Consider a continuous 
l-parameter family of flows in the plane parametrized by A E [O, I]. Suppose 
that for any given ,l E [0, 1 ] there are two distinct points in the plane A.7 and 
A, which are non-degenerate hyperbolic critical points for the flow at the 
parameter value 1. For simplicity, in this Introduction, we assume that A.: 
and A, do not vary with ,J E [0, I]. Assume that the phase portraits of the 
flow in a neighborhood containing A,* and A, are those given in Figs. la and 
lb for A= 0 and A= 1, respectively. In particular there are no heteroclinic 
orbits from AX to A, for 2 = 0 or A = 1; however, the relative position of the 
local unstable and stable manifolds of AX and A,, respectively, does a flip- 
flop as 1 changes from zero to one. 

It then follows from a simple “shooting” argument or Wazewski’s lemma 
(cf. [2]) that there exists 1 between zero and one so that the phase portrait 
in a neighborhood of A$ and A,l is that of Fig. lc: in particular there is a 
heteroclinic orbit from Af to A,. 

Heuristically, the existence of this heteroclinic orbit can be captured 
algebraically as follows. Think of the local unstable manifold to A.: as the 
vector which it represents when considered as a relative homology class in 
an appropriate topological pair (N,, N3), where N, 3 N, 1 N, is an index 
triple for the repeller-attractor pair (A,:, A,) as shown to exist in [ 14 1. 
Assuming that the same triple (N,, N,. N3) can be used for both ;i = 0 and 
A = 1 (which in general is not the case) schematically the situation is that of 
Fig. 2 where the vectors represented by the unstable manifolds to A-7, 
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FIG. la. The flow at ,I= 0. 

FIG. lb. The flow at I = 1. 

FIG. lc. TheflowatI=%O<j<l. 

A= 0, 1, have been superimposed on the same picture. The difference 
between these two vectors is clearly non-zero. 

Now in [ 14, Sect. 4) it was noted that each of these vectors is the image 
by the splitting map of the same homology class. Hence from the fact that 
the difference is non-zero we conclude that the splitting map is not constant 
along the path of flows. It follows from Theorem 3.3 below that there is 
necessarily a heteroclinic orbit from the repeller to the attractor for some 
value 1 between zero and one. 

The above argument can be carried out in arbitrary finite dimension (in 
fact in infinite dimension if appropriate compactness conditions are present) 
for arbitrary repeller-attractor (R-A) pairs, not just critical points. 

Stated more precisely, the basic aims of this paper are: 

(1) to establish a framework which makes precise the notion of a 
continuous family of R-A pairs (for a continuous family of local semi- 
flows), which is done in Section 1; 

FIG. 2. A schematic of the difference between the local unstable manifolds to A* at 
b = 0, 1 represented as relative homology classes uO, u, respectively in (N,, N,), where N, is 
the large rectangle and N, is the union of the three heavily drawn arcs in the boundary of N, 
The difference u0 - uI is a relative class in (N,, N,), where N, is the union of the right-hand 
square and N,. N, 3 N, IJ N, is an index triple for the R-A pair (A *, A). 
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(2) to show that there are natural equivalences between the index 
sequences of any two R-A pairs along a path of R-A pairs; the proof of 
which occupies most of Section 2 and culminates in Theorem 2.20 and its 
corollaries; 

(3) to show that if the splitting class for the index sequence of an R-A 
pair is defined at each point along a path of R-A pairs, then the 
equivalences mentioned in (2) restrict to natural transformations between the 
splitting classes, which is Theorem 2.24 below; hence, if the equivalences 
mentioned in (2) do not induce a natural transformation between the maps 
on homology induced by the splitting classes of two sequences defined at the 
endpoints of a path of R-A pairs, then at some point on the path the 
splitting class is not defined, implying there is a heteroclinic orbit from the 
repeller to the attractor. This last mentioned fact is Theorem 3.3 below. 

Of course, to show that the equivalences of (2) do not induce a natural 
transformation, it suffices to show that the appropriate rectangle of maps is 
not commutative. In the simple example above, the equivalences of (2) are 
the appropriate identity maps because the path of R-A pairs is the constant 
path. Thus, the non-commutativity of the appropriate rectangle of maps 
follows immediately from the non-zero difference, illustrated in Fig. 2, 
between the maps induced on homology by the splitting classes at the 
endpoints of the path. A more sophisticated example arises in [ 161 where a 
bounded traveling wave to a system of non-linear reaction-diffusion 
equations occurs as a heteroclinic orbit between two steady states forming an 
R-A pair. 

1. THE SPACE OF R-A PAIRS ASSOCIATED TO 
A PRODUCT PARAMETRIZATION 

1.1. DEFINITION OF PRODUCT PARAMETRIZATIONS. A product 
parametrization of a local semi-flow @CT is a homeomorphism o: 
X x /i -+ @ such that for each 1, o(X x (A}) is a local semi-flow. 

The restriction o 1 XX {A) will be denoted (Do and its image @.1. More 
generally, if K c /i, the restriction p 1 X x K will be denoted oK and its image 
QK; it is immediate from 1.2 below that GK is a local semi-flow as @ is. 

Henceforth for any product parametrization (0: XX II + @ it will be 
assumed that @ c r, ; i.e., @ is Hausdorff. It follows that both X and n are 
Hausdorff. Also it will always be assumed that X is locally compact so that 
GA is locally compact for each 1 E/i. Note that it is not assumed that II is 
locally compact so that @ need not be locally compact; however, if K CA is 
compact, then certainly aK is locally compact since XX K is. 
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Before giving the basic motivating example for the definition, let us prove 
one proposition which says that the slices @A behave as one expects. 

1.2. PROPOSITION. Let rp: X x A + @ be a product parametrization of a 
local semi-jlow. Then for each A E A, @,, is both positively and negatively 
invariant relative to @. 

Proof. If y E @A and NE y . [O, t] c #, set N., = Nf7 QA and note that 
because QA is a local flow, CJ 1 N,(y) cannot be less than t without 
contradicting its definition. This shows the relative positive invariance. The 
relative negative invariance follows by applying the same arguments to 
y. -t in place of y whenever y. I--r, 0] c @, since @.,I? @, = IZI if 
Afr. I 

1.3. EXAMPLE. Motivation for the previous definition is provided by the 
class of differential equations depending on a parameter 

where x E R”, A E (0, 11, and f is continuous and locally Lipshitz in x. r is 
taken to be the collection of curves into R” X A with closed graph and open 
domain endowed with the compact-open topology: the flow on r is the tran- 
slation of domain flow; r,, is the set of curves in r with zero in their domain: 
and (o assigns to each point (x, A) the maximal integral curve of (1) with 
initial condition x. Details are given in 12, Chap. II, Sect. 3 1. 

1.4. DEFINITION (The Space of Isolated Invariant Sets of a Product 
Parametrization) [2, Chap. IV, Sect. 21. Given 01: X X A --t @ c r,, as in 
1.1, let Y. = .Y (cp) be the set of ordered pairs (A. S), where A E A and S is a 
@,-isolated invariant set. Sometimes notation will be abused and we shall 
refer to S E <Y’(p) when we mean (A, S) E .;C (9). 

Given a compact subset N of X, let A(N) be the set of A E /i such that 
(Pi is an isolating QP,-neighborhood. Define uN: A(N) + .9 by a,,(A) = 
(A, S), where S is the maximal invariant set of P,~(N). 

It will be shown below that for each compact N c X, ,4(N) is an open 
(possibly empty) subset of X. For the moment accept this, and let .* be the 
collection of sets of the form o,(U), where N c X is compact and U c A(N) 
is open. The collection .9 is a basis for a topology on .9. To show this the 
following lemma is needed. Note that it is immediate from this lemma that 
A(N) is open in A for each compact N c X (take K = N in the lemma). 

1.5. LEMMA. Let (N, K) be a compact pair in X (perhaps N = K) and 
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suppose that v E A(N) n A(K) and that p,(N) and p,(K) have the same 
maximal invariant set. Then there exists W open about v so that W c 
A(N) n A(K) and for 1 E W, qJ(N) and q,(K) have the same maximal 
invariant set. 

Proof: It suffices to show that for A in a neighborhood of v, the minimum 
of the entrance and exit time maps on Q,(N) is finite at each point q.i(x) for 
x E N\int(K). This follows from the upper semi-continuity of the two maps 

defined by 

6*, a’: N x A + [0, co] 

a’* = (u* 1 fi) 0 fp, o’=(aI@)ocp, 

where fi= q(N x /i). These maps are well-defined and upper semi- 
continuous by [ 13, Proposition 2.71 since (&N x 1): A E/i } is an upper 
semi-continuous decomposition of fl by compact sets. 1 

1.6. PROPOSITION. d is a basis for a topology on .j . 

Proof: The proof of this proposition is contained implicitly in the proof 
of [2, Theorem IV. 1.31. It is trivial that .Y? covers .Y (q), and if (A, S) E 
u, ,(U,) n o,JU,), then from Lemma 1.5 it follows that there is an open W 
about A in the intersection of A(N,), /i(N,), and /i(N, n N,) so that 

where U is the intersection of U, and U,. Conley uses 12, Lemma IV.1.2.A] 
instead of Lemma 1.5 to guarantee W above. 1 

Remark. When X is a compact, boundaryless manifold, /1 is the space of 
smooth (autonomous) vectorfields on X, and if v, assigns to (x, A) the 
maximal integral curve of d with initial condition x in a manner similar to 
that of Example 1.3, then .9’(p), as topologized above, is a special case of 
Montgomery’s definition, given in [ 171, of the space of isolated invariant sets 
associated to all the continuous flows on a fixed compact metric space. 

1.7. THEOREM [2, IV.1.31. Define 7~: .Y ((D) -+ A by ~(2, S) = 1. Then 7c is 
a surjective local homeomorphism; in particular, for N compact in X, 
711 u,@(N)) is a homeomorphism with inverse uN. 

Proof: First, because the empty neighborhood isolates the empty 
invariant set, z is surjective; i.e., A(0) =X so 

No&A (0))) = X. 
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The rest of the proof is given by Conley as cited above, or can easily be 
supplied by the reader. I 

Remark. It is straightforward to show that the topology on ,Y~ defined 
by the basis 9 coincides with the finest topology on ,Y which makes each 
u2, continuous where N ranges over compact subsets of X. 

1.8. DEFINITION (The Space of Repeller-Attractor Pairs). The reader is 
referred to [23, pp. 29-301 for the usual definition, functorial construction, 
and universal properties which characterize the pullback of a map p: M-+ B 
by a map q: B’ + B, denoted q*(p): q*M+ B’, which is a morphism in the 
same category in which p and q are morphisms assuming this category 
admits products. 

Letting A: n -+ n x /1 x II be the generalized diagonal map, note that A is 
an embedding, and because the finite product of local homeomorphisms is a 
local homeomorphism, note too that 

ir=nxnx7C:.Y’(9)X.Y((O)X.~.((P)“A x/i xn 

is one. Set 

V(p) 0 P(q) 0 <V(9) = A*(. ;c (q) x .Y (q) x ;c (q)), 

so that we have the commutative diagram 

~~‘(9)0~U-.(9)O.i(9)~~~((p)x~i(yl)x.’j(9) 
A*(F) 

I I 

n 

A -5 ‘4XAXA. 

Clearly, Y (9) @ cU’(9) @ .U’(9) can be naturally identified with the set of 
quadruples (A, S, , S,, S,), where A E /i and (A, Si) E .Y (9) i = 1, 2. 3, and 
we do so henceforth. 

Having carried out the above procedure, define the repeller-attractor space 
of 9, 5?,@‘(9), as all those points 

such that (A *, A) is a repeller-attractor pair in S, and give .~i9,9i(9) the 
relative topology. Let x2 = A*(f) I5?&(9). We wish to show that x2 is a 
surjective local homeomorphism. This will follow from Lemma 1.10 below 
due to Conley. The proof of 1.10 requires the following lemma also due to 
Conley which is a convenient criterion for finding attractor neighborhoods. 
Proofs of these lemmas are given in [2, Chap. II, Proposition 5.1.C and 
Proposition 5.3.C respectively]. More detailed proofs are given in [ 121. 
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. 1.9. LEMMA [2, Chap. II, Sect. 5.11. Let S c r,, be a compact Hausdorff 
invariant set. Suppose U c S is compact and for some i > 0, U . i c int,(iJ). 
Then for some t, > i, 

U. [to, co) c int,(U). 

Hence U is an attractor neighborhood with attractor w(U). 

1.10. LEMMA [2, Chap. II, Sect. 5.31. Let S CT be a compact 
invariant set and (A*, A) an R-A pair in S. Suppose there exist disjoint r- 
open neighborhoods U* 3 A * and U 2 A. Then there exists a r-open 
neighborhood V of S and ifs is a compact invariant set contained in V then 

(w*(u* n s; S), o(Uf-7 3; S)) 

is an R-A pair in $ and 

oyu* n s”; 3) c u*, w(U&S)c u. 

ProoJ Set K = S\U*. Then for some i > 0, K . ic U. To exhibit such a 
i, note that by [ 14, Proposition 1.41 there exists a positively invariant S- 
neighborhood of A, call it P, with P c U. Note that each point of K is moved 
along a flow line in finite positive time into the S-interior of P; hence the 
existence of i follows from the continuity of the flow induced on S and the 
compactness of K. 

It follows that there is W, open in r and containing K so that W, . ic U. 
Set V z U* U IV, and suppose ,!?c V. Claim 

~l~(unS).i~unS. (1) 

To see this, note that as U is disjoint from U* and as SC V, it follows 
that U n s" c W, ; hence 

(UnS). ;cunS (2) 

since W, . i c U and since g is invariant, and in fact (1) holds because if y is 
a limit point of Un 9 in $ c U* U W, , then y 6? U* since U* is open and 
disjoint from Un s; whence y E W, so that y . ic U n ,!? also. By 
Lemma 1.9, (1) shows that clg(UnS) is an attractor neighborhood with 
attractor 2 E o(U n s”; .!?), necessarily contained in U. 

Let J* be the dual repeller of A’ in 3. By choice of i above, for y E 
W, n g, w(y) c2 and note that points of z* are characterized by the 
condition that their o-limit sets in s” be disjoint from 2; hence as SC V, 
.$* c U*. Then the invariance of 2” yields that x* c w*(U* f7 $; 2). The 
reverse inclusion follows because J* is the largest invariant subset of ,!? with 
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w-limit set disjoint from 2 and because w*(U* f7 S; s”> is disjoint from A’ as 
follows from an argument similar to one given in [2, Chap. II, 
Sect. 5.1.A]. 1 

Remark. This proof follows the one given in [2] as cited with some 
expansion and correction. In particular: first, no detail on how to find i is 
given in [2]; second, instead of showing inclusion (1) above, Conley shows 
the inclusion which is stated by replacing U with W, in (2), from which the 
inclusion stated by replacing U with W, in (1) does not in general follow 
although this is what is needed to conclude that w(W, n 9) is an attractor 
and equals o(Un S) as claimed in [2]; third, no remark in [2] is made to 
show that w*(U* n S; $) c J*. Note that the above proof does not require 
that S be Hausdorff. 

1.11. PROPOSITION. x2: .9cd(~) +/i is a 
homeomorphism. 

surjective local 

Proof. Because the empty invariant set has (0,0) as an R-A pair it 
follows that rcl is surjective. 

Because we have that A*(f): cU(q) @ .9’(q) @ .9 (q) -+ n is a local 
homeomorphism being the pullback of one by the embedding A, it suffices to 
show that .5%%‘(o) is an open subset of 

Let (A, S,A*,A) E .3’&‘(o). Because A * and A are disjoint compact 
subsets of the open Hausdorff r,, there are disjoint open neighborhoods lJ,* 
and U, of A * and A, respectively. Then choose N,* and N, compact subsets 
of X so that (J., A *) and (A, A) are in the images of (T,, and u,\,,, respectively, 
and so that 

0 

cp,lW,*) c u,* and P.lW,) = uo. 

By the continuity of v, and the compactness of Nz and N,, choose W, II- 
open, with A E IV,, c/i(N,*) n n(N,), so that 

&Yf x wo> c u$ and cotNo x wo> c u,. 

Then o(int N,* x IV,,) and rp(int N, x IV,) are @-open subsets of U$ and U,,, 
respectively: hence 

cp(int N,* x IV,,) = @ n UT and cp(int N, x IV,,) = Q, n U, , 

where UT and U, are open in r and UT c U,* and U, c U,. As A * c UT 
and A c U, , and as (A *, A) is an R-A pair of S, choose an open VI> S as 
guaranteed by the previous Lemma 1.10. 
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Now choose M cX compact so that q,(M) isolates S and o,(M) c V, 
and choose W, open in /i satisfying I E W, c A(M), and if n E I+‘,, then 
q,(M) c V. Then choose NT c int N,* and N, c int N,,, both compact 
subsets of A4, so that ql(NF) and pl(N1) isolate A * and A, respectively. As 
both rp,(N:) and (o,(N,*) isolate A *, and as both pn(N,) and rp,(N,,) isolate 
A, by 1.5 choose W, open in A, 

so that if q E W,, then both yl,(N,*) and o,,(NT) have the same maximal 
invariant set, and also both p,(N,) and p,(N,) have the same maximal 
invariant set. 

Set W = W,, (7 W, n W, and define Q by 

Note that Q n Y’ @ Y 0 Y is an open neighborhood of (1, S, A*, A) in 
.Y’@ 9 @ 9. To finish we show that QnF @Y’@ Y~c~%‘d’. Let 
(q, S’, A”, A’) E Q n .P’ @ .Y’ @ .Y’. Then q,(M) c V and o,(M) isolates 
S’; whence by choice of V, 

(0*(Sf n uf), CO@’ n u,)) 

is an R-A pair of S’, and w*(S’n U:) c S’ n Up and m(S’ n U,) c 
S’nU,.Also,S’nU~c~,nU,*=(o,(intN,*)andS’nU,c@,nU,= 
q,(int NJ. In particular, w*(S’ n 17:) is an invariant subset of q&N,*); but 
as q E W, p,(N$-) and (o,(N,*) have the same maximal invariant set which is 
A” as (s, A”) E aN;( IF’). It follows that o*(S’ n UT) c A “. 

On the other hand, as Nf c M, the maximal invariant subset of rp,(N:) is 
a subset of the maximal invariant subset of o,(M); i.e., A” c S’; and as 
R,OV) = UT n Gt15 in fact A” c S’n Uf; whence A” c o*(S’ n UT). 
Thus A” = w*(S’ n UT), and similarly, A = o(S’ n U,). It follows that 
(q, S’, A”, A’) E .W,d. 1 

2. CONTINUATION OF y(S;A*,A) ALONG PATHS 

The aim of this section is to be able to relate and compare J?(c(O)) and 
#(c(l)), where c: I+ .9&(q) is a continuous path. The results of this 
section are mostly direct analogues of the results obtained in [2, Chap. IV ] 
for 4(S), the exception being the results on the splitting class p, although 
the use of the language of category theory here, in particular Definition 2.1, 
is new, and hopefully this serves the ideal of clarification rather than the 
bane of obfuscation. 
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2.1. DEFINITION OF THE CATEGORY OF CONNECTED SIMPLE SYSTEMS 
IN A? Let R be a category. Define a category UY.Y’(R) as follows: 

(1) The objects are connected simple systems which are subcategories 
OfX; 

(2) If ,FY and 9 are connected simple systems which are 
subcategories of 3, a morphism from ,d to 9, called a map between 
connected simple systems, is a covariant functor F on the product category 
~2 x .9 to the morphism category of <P satisfying: 

(i) if (A, B) is an object of .d x 9, F(A, B) is a morphism in ,W, 
F(A, B): A + B; 

(ii) iff: A + A’ and g: B + B’ are morphisms in .&’ and ,J, respec- 
tively, F(f, g) is the commutative diagram of morphisms in.F 

A F(A 3) +B 

f 

I I 

R 

A’ F(A’.B’) B, 

(3) If F: & -+ 9 and G: ~8 + %? are maps between connected simple 
systems in ;F” their composite G o F: &’ -+ F is defined as follows: 

(i) G o F(A, C) is the composite G(B, C) o F(A, B), where B is any 
object of X. This definition is independent of the choice of B, for if B’ is 
another object of 9, there is the diagram 

where the vertical arrow is the unique morphism in 9 from B to B’, and it is 
commutative by virtue of the fact that F and G are maps between connected 
simple systems. 

(ii) iff: A -+ A’ and h: C + C’ are morphisms in ,a/” and F’“, respec- 
tively, then G o F(f, h) is the juxtaposition of F(f, g) and G(g, h) where g: 
B -+ B’ is any morphism in 9; i.e., 

A F(A 3) ,B G(B,C) * c 

f 

I I 

K 

I 

h 

A’ F(A’,E’) B, G(B’.C’) + C’. 
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This definition is independent of the choice of g, for if g: B-+ B’ is another 
morphism in 9 there is the commutative diagram 

where all the arrows have been previously defined save for B +B and 
B’ -+ B’ which are the unique morphisms in 9 between the given object 
pairs. The diagram is commutative because F and G are maps between 
connected simple systems and because A? is a connected simple system. 

The straight-forward verification that this composition is associative is 
omitted. 

(4) If &’ is an object of 5Y’ci”Y(J‘), 1 d: x2 + ~8’ is the map between 
connected simple systems defined by: lJ,4, A ‘) is the unique morphism of 
AZ from A to A ‘. Let B be another object of 57PoY(8) and F: d + 9 a 
map. Then Fo l,= F. For if (A, B) is an object pair of x2 X ~8 by (3) 
above 

Fo I,(A,B)=F(A,B)o l,(A,A)=F(A,B)o l,,,=F(A,B). 

Similarly 1, o F(A, B) = F(A, B). Letf: A + A ’ and g: B -+ B’ be morphisms 
in ,d and ~8, respectively. Then F o l&(f, g) = F(f, g) 0 Id(f, f) = F(f, g) 
since the diagram of F 0 l&, g) is 

‘4 A-A-!=!.=+B 

f 

I I 

f 

I 

R 

‘4, t(.4’.8’) A’- A’- B’ 

which collapses to the diagram of F(f, g), i.e., the right-hand square in the 
above diagram. Similarly 1 8 o F(f, g) = F(f, g). Thus for each object .d of 
KY (Y’(P), 1 d serves as an identity morphism. 

This completes showing that @7. Y Y (X) is a well-defined category. 

Remark 1. From the diagram of (2)(“) b 11 a ove, as every morphism of .w’ 
is an equivalence, it follows that F(A’, B’) = go F(A, B) 0 f -‘; hence this 
equation serves to define a map between connected simple systems by having 
the right-hand side define the left. 
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Remark 2. It follows from Remark 1 that if d and 9 are connected 
simple systems in jiF” and F,(A, B): A -+ B, FJA’, B’): A’ -+ B’ are two 
morphisms in SF between two object pairs (A, B), (A ‘, B’) of &’ x A?‘, then 
F,(A, B) and F&4’, B’) define the same map between .rd and 3’ if, and only 
if, the following diagram is commutative: 

FIc‘l.B) 
A------+B 

I I F*(A ‘,I’ ‘) 
A’--------tB’ 

where the vertical arrows are the unique morphisms in A’ and 9, respec- 
tively. 

Our main interest in %~Y’L%(P) is in those morphisms which are 
equivalences, and Remark 1 above is important in the proof of the following 
proposition which characterizes the equivalences. 

2.2. PROPOSITION. A map between connected simple systems in X F: 
d -+ 9 is an equivalence in E7YY(X) if, and only if, for each object pair 
(A, B) of d X 9 F(A, B): A + B is an equivalence in 37 

Proof: If F is an equivalence with inverse G: 3 + s’, then for any object 
pair (A, B), 

l,= l,(A,A)=GoF(A,A)=G(B,A)oF(A,B), 

1, = l,(B, B) = F 0 G(B, B) = F(A, B) 0 G(B, A ). 
(1) 

which shows that F(A, B) has inverse G(B, A). 
Conversely, suppose for each object pair (A, B), F(A, B): A + B has an 

inverse G(B, A): B + A. Then by Remark 1 following 2.1 above, for any 
other pair (A’, B’), F(A’, B’) = gF(A, B)f-‘. wheref: A -+ A’, g: B -+ B’ are 
the unique morphisms of A’ and 9, respectively, from A to A’ and B to B’, 
respectively. Thus 

G(B’,A’)=F(A’,B’)-‘=fF(A,B))‘g-‘=fG(B,A)g-’; 

hence the diagram 

B G(E,A) , A 

8 
i I 

f 

B’ G(B',A ‘) A I 

is commutative. 
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It follows that there is a map G: 3’-+d so that for each object pair 
(A, B) of d x 9 G(B, A) is the inverse of F(A, B); hence the equalities (1) 
above hold and it follows that G is an inverse for F as regards object pairs. 

It remains to show that G is an inverse for F with respect to morphism - - 
pairs. Accordingly, suppose that f: A + A ’ and f: A + A’ are morphisms 
of ~6’. Then for any morphism g: B + B’ of 59 

GoF(f,f)=(l,oG)oF(f,f)=(l,oG)(g,f)oF(f,g) 

= ls,(L J;, 0 G( g+ .I-> 0 FU-. 8) 

and this last composition is the commutative diagram 

A F(A,E) $ B G(B.A) 
- 

tA-A 

f 

I 

R 

I I 

f 

I 

T 

A’ F(A’.E’)+ B, GW’.A’i A’ -1 , A 

where ,4 --+ A, A’ -+ 2’ are the unique morphisms in xZ’. As this diagram is 
commutative and since 

G(B,A)oF(A,B)=l, 

and 

G(B’,A’)oF(A’,B’)= l,,, 

this diagram collapses to itsLight-hand square which is precisely 1 & 7). 
Similarly if g: B + B’ and 8: B -+ B’ are morphisms of ,-9’, then F 0 G( g, 2) = 
l,(& $3. I 

Remark. The proposition coupled with Remark 1 following 2.1 shows 
that F: .~d --t .3 is an equivalence if, and only if, for some pair (A, B), 

F(A,B):A+B 

is an equivalence. 
Recall [cf. 18, I.71 that the fundamental groupoid of a space E, IT(E), is 

the category whose objects are the points of E, and for x, y E E, the set of 
morphisms from x to y, x(x, y), is the set of homotopy classes of paths in E 
with initial point y and endpoint x. If x, y, z E E and c2 E z(x, y), c, E 
rr(y, z) the composition c, * c, is the usual multiplication of paths, 

c, * C,(f) = c,(W, O<t,<f, 

= c,(2t - 1). +<<t< 1. 
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With this and Definition 2.1 we can restate our goal, namely, to define a 
contravariant functor on the fundamental groupoid, L!(sM(9)), of 5?,&(9) 
which assigns to an object (S,; A;, A,) E 5%‘&‘(9) the connected simple 
system /(S, ; A,*, A’,) and which assigns to the homotopy class of a path 
c: I -+ L@&(9) a map from j(c(0)) to b(c( 1)). As any path can be traveled 
backwards (i.e., every morphism in n(.GP.&‘(cp)) is an equivalence), this map 
must be an equivalence. To enable us to define these maps several lemmas 
are needed. Several of these as noted are proved in [ 21 and we give only the 
statements here. 

In the remainder of Section 2, 9: X x rl + r,, will always denote a product 
parametrization of a local semi-flow @, and recall our standing assumption 
that for each L E /1, @A is locally compact. Also recall that as a consequence 
of 1.2, for every K c A, Qp, is a local semi-flow. Finally recall that for any 
map rr: E + B, a map u: K + E for Kc B is called a section of rc over K (or 
more loosely, a section of E when rr is understood from context) if, and only 
if, 7cou= 1,. 

2.3. LEMMA [2, IV.2.1.B]. Let KC A be compact. Then S c @,, is an 
isolated invariant set relative to @,,., if and only if, for some continuous 
section u: K + P(9) of 71: .U(9) + A, 

S = u {u(A): ,I E K). 

Remark. Note the abuse of notation S = lJ (a@): L E K), for actually 
u(L) = (A, S,), S, being @,-isolated, and S is the union over K of these S , . 

When S is isolated the section u is defined by 

U(A) = (A, s n @.J, 

and note that 1.2 guarantees that S n @A is invariant-it is trivial to verify 
that it is @,-isolated since S is @,-isolated and K is compact. 

Note that Conley tacitly uses Proposition 1.2 throughout [2, Chap. IV 1, in 
particular for the proof of 2.3 above, in the instance already mentioned, and 
also, given the section u, in proving that S is @,-isolated. Namely, having 
constructed a compact @,-neighborhood N of S so that N n @.1 is an 
isolating @,-neighborhood of u(L) for each A E K, if y . R c N then y . R c 
Nn an for some L Hence y . R c u(L) c S, which shows that N isolates S. 

Note that if u: K + L@&(9) c ,Y(9) @ .V(9) @ Y(9) is a section of 7~~: 
..&‘(9) + LI over K c A, then u defines three sections uO, u, , u2: K +,? (9) 
by projecting u onto the factors-in the notation of 1.8, ui = pi+, 0 do u. 
where pi+,:.F x .Y‘x.Y’-t.Y is a projection onto the (i + 1)st factor. 
i=O, 1,2. 
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2.4. COROLLARY. Let KC A be compact. Then S c Qp, is an isolated 
invariant set relative to QK and (A*, A) is an R-A pair of S if, and only 13 
for some continuous section o: K -+ .53’,~3(rp) of x2: .9?zl(q) -+ A, 

S = u {u,(L): 1 E K) 

and 

and 

A * = u (al(n): /I E K} 

A = u (a,(l): ,I E K}. 

Proof. Suppose S is @,-isolated and (A*, A) is an R-A pair of S. Then 
both A * and A are also @,-isolated. By 2.3 there are three sections uO, O, , 
uz: K -+ Y(o) giving S, A*, and A as in the statement of the corollary. 
Hence defining 

u is a section of A*(f): Y @ 9 0 9’ -+/i over K. Writing for A E K, Sl = 
S I? Qn, A, = A n Cp,, A,* = A * n @A by the remark following 2.3, a&) = 
(A, S,), u,(n) = (1, A,*), u,(l) = (A, A,), and because for each A E K, S., is 
closed in S, it follows from the definition of an R-A pair [2, Chap. II, 
Sect. 51 that (AX, A,) is an R-A pair of S, for 1 E K. 

For the converse, note that by 2.3, S, A*, and A are isolated invariant sets 
relative to QK, and A * and A are disjoint because (A$, A,) is an R-A pair 
of S, for J E K. Let N be an isolating @,-neighborhood ofA. Suppose y E 
NnS and y-R-cN. Then for some unique AEK, YES, and w*(y)c 
Nn Q1, but N n GA isolates A, so that 

o*(y)cA, = {VE s,:~~*(q)nA,* =0}; 

hence y E A, c A. It follows that if y E a,(N n S) then y . R- & N. Then by 
[ 14, Lemma 1.41 (N n S)’ is an attractor neighborhood, and as N isolates 
A c S, the attractor is A. Because the dual repeller of A is 

{rES:w(y)nA=0}= U {pxq+~(~)n~,=cz~} 
lEK 

=u {A,*:lEK)=A*, 

(A *, A) is an R-A pair of S. 1 
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2.5. DEFINITION AND PROPOSITION (Maps between Connection Indices 
over a Compact Pair in A). Let Kc n be compact, let S be an isolated 
invariant set relative to QK, and let (A *, A) be an R-A pair of S. Suppose 
N, 3 N, 1 N, is a nested index triple for (A *, A). 

For each compact K’ c K, define 

S,r-snco,,,, A;,=A*n@ K’r A,,-AnGfi,, 

and 

Ni,Kc s N, n QKs. 

Then for each compact K’ c K, 

6) Nl,Kf 3 N,,K’ = N,,,, is a nested index triple for the R-A pair 
(A;,,A,,) ofS,,. 

(ii) The commutative diagram of functorial inclusion induced maps 

N2,K ‘lN3,K’ - Nl.K’/N3.K’- N,.K~INLK’ 

I I I (1) 
NdN, - N,IN, - N,IN2 

induces a map between connected simple systems 

and the definition of F(K’; S; A *, A) is independent of the choice of index 
triple used to define it. 

(iii) If (K’, K”) is a compact pair in K, then 

F(K”;S;A*,A)=F(K’;S;A*,A)oF(K”;S,.;A;c,A,r). 

(iv) If S = A* U A, so that the splitting class ,U of %(S; A*, A) of 
[ 14, Definition 4.31 is defined, then also the splitting class ,u~’ of 
$(S,, ; Ai,, A, ,) is defined, and the splittings ,U and ,uK’ are natural relative 
to F(K’; S; A *, A); i.e., 

S’F(K’, S)(N,,,,/NJqK,, N1/N3) 0 S’p”’ 

= Sip 0 S'F(K',A*)(N,.,,/N,,,,.N,/N,) 

(i = 0, 1, 2,...), where F(K’, S) and F(K’, A*) are, respectively, “slices” of 
F(K’; S; A*, A) mapping .Y(S,,) to 9(S) and .Y(A,*,) to Y(A*) (see 2.6 
below for the explicit definition) and where S’F and Sip denote the ith 
iterated suspensions. 



HOMOTOPY INVARIANTS OF R-A PAIRS. II 291 

Proof: Note that by 2.4 there is a section of 9&(q) O: K-+ .5%‘&(o) 
whose three components unioned over K give S, A *, and A, respectively. 
Then as u ( K’ is a section over K’, again by 2.4, (AZ,, AK,) is an R-A pair 
of s,,. Then (i) follows immediately from 1.2 since N, IN, 2 N, is an 
index triple for (A *,A). Note that it is important that K’ be compact 
otherwise QKI need not be closed relative to GK, so S,, need not be closed 
relative to S and so not compact-analogous remarks hold for Ai,, A,,, and 
NiqK, i = 1, 2, 3. By the functorial construction of the long coexact sequence 
of an index triple given in [ 14, Theorem 3.21, the diagram (1) embeds in an 
infinite homotopy commutative ladder between the long coexact sequences 
extending the top and bottom rows of (l), and by Remark 1 after 2.1 this 
defines a map between connected simple systems F(K’; S;A *,A): 
,y(SK’;AX*“AK’)+ ,JqS;A*,A). 

To see that the definition of F(K’; S; A *, A) is independent of the nested 
index triple used in defining it, let N; 3 N; 2 N; be another index triple for 
(A *, A) relative to QK. By Remark 2 after 2.1 and the argument of the 
preceding paragraph, it sufftces to show that there is a homotopy 
commutative (three-dimensional) diagram 

where the top and bottom faces of the prism induce the unique morphisms in 
fl(Sk, ; A 2,) AK ,) and Z(S; A *, A), respectively, and where all vertical 
arrows are functorial inclusion induced maps. By an argument analogous to 
that given in Section 2 in the Appendix to this paper, which corrects the 
proof given in [ 14, Theorem 3.21 of the naturality of the long coexact 
sequences of ,$(,!$;A *, A) relative to the Morse indices, it can be assumed 
that N; c N,, i = 1,2,3. Then all the arrows of (2) can be assumed to be 
induced by inclusions of pairs and it is immediate that (2) is commutative. 

Because the functorial inclusion induced diagram 

N2.K”/N3.K’, - N~,~dN~,~,r - N,,KdN2,K” 

i I I 

NJN, - N,IN, - N,IN2 
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factors into the commutative diagram of functorial inclusion induced maps 

itfollowsthatF(K”;S;A*,A)=F(K’;S;A*,A)oF(K”;S,,;A,*,,A,,);the 
tedious but straight-forward details are omitted. 

For (iv), if S = A * U A then by [ 14, Sect. l-21 for some t > 0 and N,- 
open U, A c U c N,, ,ul,u is defined, and regarding N,,,JN,,,, as embedded 
in N,/N, , by 1.2 the restriction ,uu,,, 1 N,,,,/N,,,, can be regarded as a map 
into N, ,K JN3 ,KI embedded in NJN,. In particular the factor 

(N,\U)'I(N,\U)~N,IN;' 

of pr,u restricts to 

where U’ = U n GK, so that A,, c U’ c N,,,, and U’ is N, ,I ,-open. Thus by 
[ 14, Sect. 4.1-21 &, is defined and clearly 

J'F'; W%,,JN,,,~~ NJNd v:.;~, 
=iu f.C' 0 W'; A *Wt., n/N,,,,, N,IN,), 

where 

and 

are the inclusion induced maps. The functorial construction of the long 
coexact sequences then yields the desired naturality for the non-trivial 
suspensions S’, i > 0. I 

Remark. When K’ = {A} we write F(L; S;A*, A) instead of F((I1}: 
S;A*,A) and also N,,A 13 N,,, 3 N,,,, etc. Also, whenever clear from the 
context we omit the arguments when denoting maps between objects of 
connected simple systems. 
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2.6. DEFINITION AND COROLLARY (Maps between Morse Indices over a 
Compact Pair in A). Let Kc/i be compact, and let S be an isolated 
invariant set relative to QK. Suppose (N,, N,) is an index pair for S relative 
to the isolating neighborhood N. 

For each compact K’ c K, define 

and 

NK, z Nn QK,, Ni,,,-Nin@,, (i= 1,2), 

SK,-Sn@,,. 

Then for each compact K’ c K, 

(i) (L,, N,,,,) is an index pair for S,, relative to NK,. 

(ii) The functorial inclusion induced map 

N,,,~INw -+ N,/Nz (1) 

defines a map between connected simple systems 

F(K’, S): 9(S, 8) + Y(S) 

with F(K’, S)(N,,,,/N,.KI, N,/N,) the inclusion induced map of (1) and the 
definition of F(K’, S) is independent of the index pair of S used to define it. 

(iii) If (K’, K”) is a compact pair in K, then 

F(K”, S) = F(K’, S) 0 F(K”, S, c). 

ProoJ As S is a repeller relative to itself, (S, 0) is an R-A pair of S and 
N, 3 N, 3 N, a nested index triple of (S, 0) for any index pair N, 3 N, of S. 
and those “slices” of the diagrams in 2.5 corresponding to the indices of the 
repellers give a proof of the corollary. Alternatively, the reader can mimic 
the argument replacing index triple by index pair throughout with the 
resulting simplification in diagrams (the number of lattice points decreases 
by two-thirds). 1 

Remark. if II E K we write F(A, S) instead of F( {A}, S). In [2, Chap. IV, 
Sects. 2.2A-B] Conley defined what amounts to F(L, S) though he did not 
make use of the language of category theory. He also shows the indepen- 
dence from the index pair, but his proof is different. 

To continue our saga (and along paths) we now show that whenever 
K c ,4 is compact “small enough,” and contractible in itself, F(K’; S; A *, A) 
defined in 2.5 above is an equivalence between connected simple systems. By 
the remark after 2.2, it suffices to show that each of the vertical arrows in 
diagram (1) of 2.5 above is an equivalence. The desired result will follow 
from the following special case proved by Conley. 
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2.7. THEOREM 12, Chap. IV, Sect. 2.2C]. Let o: W-+ .9,((o) be a section 
of 71: Y(cp) -+ A over W. Then for each A E W there exists a neighborhood 
W, about I relative to W with the following equivalence map property: if 
KC W is compact and contractible in itself and 

then for each v E K, 

F(v; S): 9(S,,) -+ 2(S) 

is an equivalence of connected simple systems. 

2.8. COROLLARY. Let u: W-+9-&((p) be a section of 7~~: .ST.d(rp) + A 
over W c A. Then for each 1 E W there exists a W-neighborhood W., about 
A with the following equivalence map property: if K c W., is compact and 
contractible in itself and 

and 

S = u {q,(v): rl E K}, 

A * = u (a,(q): rl E K), 

where ui is defined as in 2.4, i = 0, 1,2, then for each non-empty compact 
and contractible in itself set K’ c K, 

F(K’;S;A*,A): f(S,,;A,*,.A,.)+ d(S;A*,A) 

is an equivalence of connected simple systems. 

Proof. Let N, 13 N, 3 N, be a nested index triple for the R-A pair 
(A *, A) of S relative to QK, where K is a compact subset of W. We first will 
consider the special case of K’ being a singleton, K’ = (v). Then with K’ so 
restricted, referring to diagram (1) of the proof of 2.5 above, each of the 
vertical arrows, namely, 

Nz, ./NJ, ,. -+ N,iN, 1 N,JN,,,.+N,IN,, N,.,.INz,,. + N,IN, 9 

respectively, defines in the manner of 2.6 maps F(v; A): f(A,.) + $(A ), 
F(v; S): J(S) + fl(S), and F(v, A *): .Y(A,T) + Y(A *). 

Now by 2.7, for each of the sections ui: W -+ .i (9) (i = 0, 1, 2) for each 
,J E W, there are W-neighborhoods W,,, (i = 0, 1,2) about k so that if 
Kc Wi,n is compact and contractible in itself, then in the notation of the 
preceding paragraph, respectively as i = 0, 1, 2, F(v; S), F(v; A *), F(v, A) is 
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an equivalence for each v E K. Set W, = W,,, n W, ,* n W,., . Then each of 
F(v: S), F(v;A *), F(v;A) is an equivalence for v E Kc W,, K compact and 
contractible in itself; hence by 2.2 each of the vertical arrows in diagram (1) 
of 2.5 is a homotopy equivalence; hence by the functorial construction of the 
long coexact Puppe-sequence, the infinite homotopy commutative ladder 
induced by diagram (1) of 2.5 

N,.,.lN,,,. - Nl,JN3.,. - N,.,.INz.,. L SW,.,.lN,,,.) - ... 
I I I I 

N,IN, - NIIN, - N,IN, - W,IN,) - ... 
is an equivalence in the category of long coexact sequences of pointed 

spaces and homotopy commutative infinite ladders. By the remark after 2.2 
and by 2.5, the above ladder defines an equivalence 

F(v; As; A *, A): B(S,,;A,?;, A,.) + .&?;A *, A). 

For the general case of non-empty compact and contractible in itself K’ 
with K’ c Kc W,, choose v E K’; then by 2.5(iii) with K” = (v) 

I;(v;S;A*,A)=F(K’;S;A*,A)oF(v;S,,;A,*,,A,,), 

and by the result of the preceding paragraph F(v; S; A*, A) and F(v; 
S,, ; A$, , A, ,) are equivalences whence F(K’; S; A *, A) is too. 1 

2.9. DEFINITION (Partition of an Arc and Grids for Z X I). Let a be an 
arc and n a positive integer. 

(1) A partition of a with n + 1 partition points is an ordered n-tuple 
of elements of 01, (A,, 1, ,.,., A,), so that for some homeomorphism c: 
[O, l] -+ a, 

o=c-‘(A,) <c-‘(I,) < **a < c-‘(&J= 1. 

and we define 

and call [A,-, , ii] an interval of the partition for i = l,..., n. If (A,, ,..., A,) is a 
partition of a we call 1, the origin and 1, the end of a. 

(2) Suppose Q is a cover of a by subsets with non-void interior. Call a 
partition of a subordinate to Q if, and only if, for each interval of the 
partition there exists an element of Q having the interval as a subset of its 
interior. 
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(3) Let P = (s o,..., s,) and P’ = (t O,..., tn) be partitions of Z with s, = 
0 = C, and s, = 1 = t,. Then P X P’ is called a grid for Z x I. The point 
(si, tj) is called the (i, j)th grid point, the set Z x (tj) is called the jth 
horizontal arc of the grid, and the set {si} x Z is called the ith vertical arc of 
the grid (i = 0 ,..., m; j = l,..., n). The set [si-,, siJ X [fj-, , ti] is called the 
(i, j)th cell of the grid, the set [si- i , si] x (t,} is called the bottom or top arc 
of the cell as r = j - 1 or Y = j, and the set {s,} x [tj-, , t,i] is called the left 
or right arc of the cell as r = i - 1 or r = i (i = l,..., m; j = l,..., n). 

(4) Let P X P’ be a grid for Z X Z and Q a cover of Z x Z by sets with 
non-void interior. Then the grid P X P’ is called subordinate to the cover Q 
if, and only if, for each cell of the grid there exists an element of Q having 
the cell as a subset of its interior. 

2.10. LEMMA (Independence of Partition). Let W c A and let u: 
W+ .9&‘(p) be a section of 9&((p) over W. Suppose { W.,: ,I E W} is a W- 
open cover of W satisfying the equivalence map property of 2.8, and suppose 
a c W is an arc and for some q E W, a c W,, . Then for every partition 
(1 0 ,..., A,) of a, setting ai = [Ai- I, Ai] (i = l,..., n), 

F(~,;S,;A,*,A,)-‘oF(~o;S,;A,*,A,) 

=F~.~oF,_~,,~F~~,.,~,~F,-~,,~,~...~F~.I~F~, . ’ 

where (S, ; AX, A, ) 3 U (o(n): ,I E a} and 

Fi,j_F(~i;S,,;A,*,,A,,) (i = j - 1, j; j = l,..., n). 

Proof: Note that by 2.4, S, is an isolated invariant set relative to CD, and 
(A,*, A,) is an R-A pair of S,. Also since a and ai (i = l,.... n) are compact 
and contractible in themselves defining Fiqa and Fi by 

Fi,, c F(A, ; se ; AX, Aa) for i = O,..., n, 

Fj=F(aj;S,;A,*,A,) for j = l,..., lr, 

we have that Fi,,, Fj, and F, j are equivalences for all indices for which they 
are defined. Then by Proposition 2.5(iii) 

F,,, = F,-’ 0 Fi., (i = j, j - 1; j = l,..., n). (1) 

By induction the proof immediately reduces to the case n = 2. By (1) 



HOMOTOPY INVARIANTS OF R-A PAIRS, II 303 

2.11. PROPOSITION (Maps between Connection Indices over an 
Arc). Let a c A be an arc and suppose u: a -+ 9&(q) is a section over a 
of 7r2: SPd((o) -+ A. Then: 

(1) There exists a cover Q of a by open subsets satisfying the 
equivalence map property of 2.8 and a partition of a subordinate to this 
cover. 

(2) If Q is a cover of a by open subsets satisfying the equivalence map 
property of 2.8, and if P = (A,, ,..., A,,) is a partition of a subordinate to Q, 
deJning ai z [Ii-, , &] and 

and 

(sal;A,*,,A,,)rLJ {U(i):nEaiJ (i = l,..., n), 

Fi,j~F(~i;S,,;A,*,,A,,), 

the composition F(o, P) defined by 

is an equivalence from Y(a(&)) to $(a@,)) with inverse F(u, P), where 

P= (A,, A,- I,..., A,). 

(3) If Q and Q’ are (perhaps equal) covers of a as in (1) with 
corresponding subordinate partitions of a P and P’, then tf P and P’ define 
the same orientation of a, 

F(u, P) = F(u, P’). 

(4) Suppose a’ c A is also an arc and u’: a’ + .~M((D) is a section of 
x2 over a’ so that a U a’ is an arc with partition (A,,, A,, A,) satisfying 

(i) a = [A,,, A,] and a’ = [A,, A,], 
(ii) a@,) = a’@,); 

then u U u’ is a section of z--t2 over a V a’, and tf Q, Q’, Q” are open covers 
of a, a’, and a V a’, respectively, satisfying the equivalence map property of 
2.8 and P, P’, and P” are partitions of a, a’, and a v a’, respectively, subor- 
dinate to Q, Q’, and Q”, respectively, then 

F(u u u’, P”) = F(u’, P’) 0 F(u, P). 

(5) If for each A E a, S, = A.: U A,, , then for each 1 E a, the splitting 
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class ,ua of j(S,; AI, A,,) is defined, and for any open cover Q and 
partition P = (A0 ,..., A,,) of a as in (l), the equivalence 

%J, 0 BW,)) -+ A4,)) 

is natural relative to the splitting classes ,a”’ of f(a(L,.)), i = 0 and i = n. 

Proof. Statement (1) follows by taking a uniform partition of a 
parameter interval for a with mesh fine enough so that its image by the 
parametrization is subordinate to a cover with the equivalence map property. 

Statement (2) is immediate from the definitions, statement (3) follows by 
taking a common refinement of P and P’ and applying Lemma 2.10, 
statement (4) follows from (3) and the definitions after taking a common 
refinement of (A,,, A,, A,) and P”, and statement (5) is immediate from 
2.5(iv). I 

We are almost ready to make J? into a functor from the fundamental 
groupoid of .,?FC@‘(p) to F.U’.U’(Z’9V), where FFF is the homotopy 
category of long coexact sequences of pointed spaces and homotopy 
commutative ladders between them. 

2.12. DEFINITION (The Prototype of 2: fl(ZZ&(rp)) -+ @9’9’(Xyg)). 
Let a c/i be an arc with origin A,, and end A, and let u: a + L@&(p) be a 
section of n2 over a. Define F(o, [&, A,]) by 

F(u, p,, L,]) = F(u, P), 

where P = (qO,..., qn) is a partition of a subordinate to an open cover Q of a 
with the equivalence map property as guaranteed by 2.1 l( 1) and with 
n,, = 1, and q,, = Ai (reverse the partition P if necessary). 

By 2.1 l(3) this definition is independent of the choice of cover satisfying 
the equivalence map property and subordinate partition. 

To help motivate what follows we outline how we define # to be a 
functor on the fundamental groupoid of 9&(q). We have already defined 
3 on points of ,!Z&(rp); so suppose c: I+ 9&(q) is a path. We will 
“reparametrize” the local semi-flow over the image of n, 0 c, by pulling back 
q along the path. In the new parametrization, the graph of c, gr(c), is a 
section of the space of R-A pairs over an oriented arc a = [A,, A,], and 
essentially, x(c) is defined by B(c) = &gr(c), [A,,, A,]). The idea of pulling 
back along the path to get a section is more or less a standard technique. 

2.13. DEFINITION OF THE PULLBACK OF A PRODUCT PARAMETRIZA- 
TION. Let Y be a locally compact Hausdorff space, r’ a space admitting a 
flow, denoted (y’, t) -+ y’ * t, and r/, an open Hausdorff subset of r’. 
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For w: Y x A ’ + Y c r; a product parametrization of a local semi-flow, 
and 

fzA”-+A’ 

a continuous map on a Hausdorff space, make the following definitions: 

(1) Define a flow on r’ x ,4” by (y’, A”) * t = (y’ * t, A”). 
(2) Detinef*Y= YrC,,,,, XII”, and note f * Y is a local semi-flow in 

r; x A U which is an open Hausdorff subset of I” x A “. 
(3) Definef*y/: YxA”+f*Y by 

f*v(Y, A”) = (W(Y,f(il”), A”)), 

and note that f *w is a product parametrization off*Y. f *I+V is called the 
pullback of I// by J 

2.14. PROPOSITION. Let A’ and A” be Hausdorff and 

a commutative diagram of continuous maps where 8 is .;9& or .Y . Then: 

(1) There is a natural homeomorphism, h*P(q) N P(h*rp), where h *Y 
is the pullback of B as in 1.8. 

(2) P((h 0 g)* v> ‘v Qg*@*p)). 
(3) Under the identification of (1). 

gr(H): A ’ + P(h “rp) 

is a section of 

and 

h*n,: P(h*q)-,A’, 

gr(G): /i’ + E((h 0 g)* C,D) 

is a section of 

g*h*z,: &f((h o g)* rp) + A”, 
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where gr(H) and gr(G) are the graph maps of H and G; 

gW)(A’) = (A’, HP’)), gr(G)(L”) = (A”, GQ”)), 

and there is a commutative diagram 

B((h 0 g)* rp)A @(h*cp) 

where h and g are dejked as in 1.8 under the identification of (1) above. 

(4) For each z E B(h*(o) and z’ E F((h 0 g)* cp), h and g induce 
natural equivalences of connected simple systems 

lT* : Z(z) = Lr(h(z)), g*: P(z’) “.F( f(z’)), 

where X is 3 or 3 is 9 depending as P is i or .#,a/. and 

(ho g>*A* 0 g*; 

in particular h, and g* commute with the maps of 2.5 or 2.6 as appropriate. 

Proof: The points of h*.@J(cp) are precisely those 4-tuples 
(A’, S,, A,*, A,) with 1’ E /i’, (S,, A,*, A,) E .5?S&‘(o) and h(1’) = 1. On the 
other hand, if 1 E A’, then S’ is (h*@), ,-isolated if, and only if, S’ = 
S x {A’), where S is QhcnS, -isolated, and (A *, A) is an R-A pair of S if, and 
only if, (A* x (n’},A x {A’)) is an R-A pair of S’. It follows that the 
correspondence 

(A’, S,,A,*, A,) H (S, x (A’}, A:: x (A’), A., x (A’)) 

establishes a natural bijection between h*.%‘L&(q) and .,A.cul’(h*cp), and 
(A’, S,) * (S, x P’l) one between h*.Y‘(p) and Y (h*(D). Because for any 
product parametrization w, X&‘(w) is an open subset of .2 (u/) @ 1 i (w) @ 
.Y (w), it follows that it suffices to show the second correspondence above 
bicontinuous, for then the first is the restriction of 

h*V’((o) 0 .Y (rp) CD .Y ((4)) ‘v h*.Y (q) @ h*.p’((o)@ h*.Y @) 

= ,7 (h*q) @ .;c (h*(o) @ .Y (h*rp). 

Accordingly if, N c X is compact, and U c A(N) open and V c A’ open, 
then h-‘(U)cA’(N) is open and V x o,,,(U)n h*Y(cp) corresponds to 
ah( Vn h ~ ‘(U)), a basic open set in .Y(h *rp); and if U’ c n’(N) is open, 
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then a;(V) in ~Y(h*o) corresponds to I/’ x a&(N)) n h*(Y’(rp)) which is 
open in h*(.Y((o)), which establishes that the bijection is bicontinuous. 

To see (2), apply (1): 

P((h 0 g)* (0) = (h 0 g)” P(q) = g”h”iqrp) 

Y g*P(h*p) 2: 8( g*(h*q)). 

For (3), certainly gr(H): A ’ -+ A ’ x a(o) is continuous and as h = rcz o H, it 
follows that gr(H) has image in h*@ whence gr(H) is certainly a section of 
h*W(q). Similarly, gr(G) is a section of (h o g)* P(p). The commutativity of 
the diagram follows from an elementary chase left to the reader. 

For (4), if A” E A”, then N’ X {A”} c (g*(h*@)),,, isolates if, and only if, 
N’ = (h*@P),,,v, isolates if, and only if, for some N c #,,acn,,, , N isolates and 
N’ = N x { g(A”)}; and similarly for index pairs and triples; whence (4) 
follows. I 

2.15. DEFINITION OF y(c) FOR c:Z+.#.d(~), A PATH. Let c:Z+ 
.H.~‘(rp) be a path. By 2.14(3),(4) there are naturalsequivalences 

05 0 cl* : 2kr@)W) = AC(O)), 

b, 0 cl* : Agr(c)( 1 )I = JWl )I3 

and gr(c): I+ .,8.@‘(o) is a section of c*(nz): .Y.d(o)+ Z. Define f(c): 
d(c(0)) + j(c(1)) to be the map between connected simple systems which 
makes the diagram below commutative: 

Agr(c)(O)) Tigr(C)Y’o~“) f R(gr(c)( 1)) 

)I ?I 

.f(cP)) 
f(C) 

’ o@@(l)) 

where F(gr(c), (0, 11) is defined as in 2.12. 

2.16. PROPOSITION. Zf c: Z + .#.d((p) is a path so that 7~~ 0 c: Z -+ A is a 
homeomorphism onto its image a, then: 

(1) arco(7Qoc)-‘: a+ .~.v’(c+II) is a section of 7c2 over the arc a. 
(2) Setting Ai = x2 0 c(i)for i = 0 and 1, F(u, [A,, I, I) = f(c). 

Proof The proof follows from the naturality of the equivalences (rcZ 0 c).+. 
relative to the maps of 2.5; i.e., by choosing partitions P= (0, t, ,..., t,,-,, 1) 
of Z subordinate to an open cover Q with the equivalence map property and 
P’ of a subordinate to an open cover Q’ with the equivalence map property 
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so that P’ is the image of P by 7c2 0 c with origin A0 and end A, ; whence the 
diagram below is commutative: 

$(gr(c)(O)) “gr(c’3’03’1’ + #(gr(c)(l)) 

2.17. PROPOSITION. Let cl and c2 be paths into .@.cJ(yl) with c,(l) = 

c,(O). Then 29, * cd = $(d 0 A?,). 

Prooj First note that (Z, 0) V (Z, 1) is homeomorphic to Z with 
homeomorphism given by 

g:z-tzx(1}u(o}xz=(z,o)v(z,1). 

t--t (max(2t - 1, O}, min(2t, 1)) 

which maps [0, $1 onto {0} x Z and 14, 1 ] onto Z x ( 1 } preserving orien- 
tation. 

Note too g-‘(s, t) = 2- ‘(s + t). We write Z V Z for (I, 0) V (I, l), and 
make the asignments 

HE cl V c,: Z V I+ .R.d(qo), 

h~nzoczVn2~c,:ZVZ-+A. 

G z cl 4 c2: Z + .R.d(rp) 

and note that Ho g = G. Thus by 2.14 the diagram (1) below commutes: 

Let pi: z x z + z be a projection on the ith factor, i = 1,2. Then note that 
gr(H) = gr(c, 0 pJ U gr(c, 0 P,), where 

zvzx {0) xZ=.%%‘(h*p), 
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I( y(o,(O. 0)) = II 
f(u,(O, I))= &F(o,(O, l))= Ra,(l. 1)) 

FIGURE 3 

are sections of h *(nz) so by 2.1 l(4) setting 

ol = gr@, 0 ~~1, fJ2 = gr(cz 0 P,), 

a1 = [(O, O), 6-l l>], a2 = [(O. 1x (1, l>], a= [(O,O,, (1, l)j, 

we have 

F(gr(H), a) = F(u,, a,) 0 F(a,, a,). (2) 

Then by the commutativity of the diagram at (I), the naturality of g* and 
h-,, Eq. (2), and the definition of $(c, * c2), the diagram of Fig. 3 is com- 
mutative. 

On the other hand, defining a,, a2: I V I + I by 

a,(t) = (6 01, a,(t) = (1, t), 

as ci = H o aj (j = 1, 2), by 2.14 the diagram 

is commutative (j= 1, 2); and from this, Eq. (2), the naturality of (a,)* and 
5, and the definition of /(cj) (j = 1. 2), the diagram of Fig. 4 is 
commutative; whence juxtaposing the diagrams of Figs. 3 and 4 completes 
the proof. 1 
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cli,j*-’ II kFl)< ’ 
II II la?,, 

F(gr’cl’J) ‘m(c,m)) - d(gr(c,)( 1)) = &(pT(C*)(O)) = %(gr(c,)( 1)) 

h*Oti,. II Ii ii, 0 02 II fi, 0 ri: 
B(c,(O)) L=+ /(c,(l)) = J%,(O)) 

bt‘:l 
-4 ‘k(l)) 

FIGURE 4 

2.18. PROPOSITION. For each z E .g&‘(rp), let E, denote the constant 
path at z. Then for each z E 9LtS(cp), 

Proof: Let 1, = 7c2(z) and let sAO be the constant path at A,. Then by 
definition of j(cL) we have the commutative diagram 

2%&,)(O)) a #(gf(Q( 1)) 

M&J* 
II Ii 

(El,) f 

2%) f(EJ ’ - B(z) 

so we must show that (C,t)* F(gr(sJ I)(E.,O);’ = 1 /,;,. Let N, = N, 2 N, be 
an index triple for z, and let s be the associated long coexact sequence. By 
Remark 1 after 2.1, it sufftces to show that 

(1) 

Writing z = (SAO, AA*,, A.In), because cl, is the constant path, in C~.&(~.$,~), 
for each t E I, 

and for each t E I, N, x {t) I N, X (t) ZI N, x (t) is an index triple for 
gr(cZ)(t) with associated long coexact sequence s,. It follows that 
&gr(sL), Z)(s,, s,) is the map induced by the diagram 
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where the vertical arrows are all induced from (y, 0) + (y, 1). The equality of 
(1) then follows by definition of (El,)*. I 

The following Theorem is the last fact needed to make ,$ a functor on 
17(.Zs,d(ql)) to g’. %. i”(RY~). 

2.19. THEOREM. Suppose c,, and c, are two paths into .9?,d(q) which 
are endpoint homotopic with homotopy H; i.e., c:(t) = H(t, i) and H(i, t) = 
H(i, t’) for every t, t’ E I, for i = 0, 1. Then 

@%) = Y(C,)’ 

Proof For j = 0, 1 define I,: I + I x I by zj(s) = (s, j); whence ci = H 0 1,. 
Then where h E rr2 o H by 2.14 we have for j = 0, 1, the commutative 
diagram: 

whence we have the commutative diagram of connection indices: 

f(C,) 
2(cj(o)) _____t ytcj( l)> 

(lioi,)!-IV+’ 

I I 

(I;oi,)!-IV+’ 

Y(gr(c,)(O)) FiBr0.l) Y(gr(cJ( 1)) 

G,,!-‘V 
I I 

Ci,)\-‘y 

Y(gr(H)(O, j)) a S%W)( 1 I A), 

(1) 

where aj = I x {j} and 8j = gr(H) 1 oj, j = 0, 1. 
Let pi = {i} x I and ii = gr(H) \ pi, i = 0,l. Suppose the diagram below is 

commutative: 

B(gr(H)(O, 1)) a 2%r(H)(L 1)) 
RS,, 50) 

I I 

R;csl,51) 

da(gr(H)(O, 0)) - x(gr(H)( 1,O)). 

(2) 
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Then juxtaposing this diagram with the two obtained by taking j = 0, 1 in 
(1) yields the commutative diagram 

G=%,(O)) A cfqc,(l)) 

(K), I I m, 

$(gr(H)(O, 1)) a d(gr(H)(l, 1)) 

Rr0.00) I I RF, ,411 

2(gr(H)(O, 0)) s B(gr(H)( 1,0)) 

vi);’ I I m;l 

es9) - J(ca) d(c,( l)), 

(3) 

and the proof will be complete once we have shown that 

(h)* F(ri 3 Pi) hG ’ = l “(2,) 3 

where zi = co(i) = cl(i) (i = 0, 1). 

(4) 

We begin by showing that the diagram of (2) is commutative. By 2.8, let 
Q be an open cover of Z X Z with the equivalence map property (h*rp: X X Z X 
I+ h *@ is a product parametrization and gr(H) a section of S?&‘(h*~)). 
and let E be a Lebesgue number for Q relative to the standard Euclidean 
metric. Then choose a positive integer n with flln < E, and define a 
partition P of Z with n + 1 partition points by P = (to, t, ,..., fn) with ti = i/n, 
i = 0, l,..., n. Then P x P is a grid for Z X Z which is subordinate to the 
cover Q. Label the (i,j)th point of the grid ,Ii,j, label the jth horizontal arc 
of the grid uj, and label the ith vertical arc of the grid bi (i = O,..., n: 
j = O,..., n). Also, label the (i,j)th cell of the grid erqjr label the bottom and 
top arcs of e,., by aiqj-, and ai,,, respectively, and label the left and right 

a 1.,- I 

FIGURE 5 
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vertical arcs of ei,j by bi- ,,j and bi,j, respectively (i = l,..., n; j = l,..., n). 
(See Fig. 5.) Referring to 2.8, let (S; A *, A) = U { gr(H)(s, t): (s, t) E I X I} 
and to help simplify the notation we purposely confuse ei,j with (Se,,; 
A&,A,J and similarly for the left, right, bottom, and top arcs of the cell: 

Then as Q has the equivalence map property and P X P is subordinate to 
Q by 2.5(iii), we obtain the identities 

(0 Wp,,9 ui,q) = F(ai,qv ei,j)-’ o Wp,,~ ei.jh 

(ii) F(A,,,, bp,j) =F(b,,j~ ei,j)-’ o W,.,Y ei,j)v 

wherep=i-l,i;q=j-l,j;i=l,..., n;j=l,..., n.Thenusingtheseweget 
the identities 

(iii) F(Ai,q, ai J’ oF(~i-l,Ui,4)=F(~i,s,ei,j)-’ oF(1*i-l,q9ei,j)~ 

(iv) F(1p,j9bp~j)pL OF(~p,j-l,bp,j)=F(~p,j,ei, j)-’ oF(~p,,j-~~ei.j)~ 

wherep=i-l,i;q=j--l,j;i=l,.., n;j=l,..., n. Itfollowsthat 

(V) F(Ai,j-,9ai,j-*)-1 oF(~~-,.j-~,ui,j-*)=(F(~i,j-,,bi,j)-’ 

’ F(Ai,jT bi,j)) ’ CFtAi,j, ui,j)-’ ’ F(Ai-l.j7 ui,j>) 

o (F(li-*,j,bi-*,j)-l oF(Ai-,,j-lVbi-l+j)) for i= 1~~~*~~~ 

j = l,..., n. 

Defining 
ui,j E gr(W I ui,j, ri,j E gr(W 1 bi,j9 

the identity of (v) becomes for i = l,..., II, j = l,..., n, 

(vi) F(“i,j- 19 ui,j-l)=F(zi,j,bi,j)-’ oF(ui,j,ui,j)oF(5i-l,j,bi-l,j), 

and by composing the left-hand sides of (vi) it follows that for j = l,..., n, 

(vii) F(u,,j-19 u,,j-l) o *** ’ F(U,,j-*r u,,j-1)=F(f,,j9 b,,j)-’ 

o F(“,,j9 u,,j) ’ *se ’ Ft”l,jT al,j) o FCrO,j’ bO,j)* 

Hence defining for i = 0 ,..., n, j = 0 ,..., n, 

uj = gr(Z-Z) 1 uj, ri s gr(H) 1 b, 

by 2.1 l(4), (vii) becomes 

(viii) ~(~~-~,~~_,)=F(5,,~,b,,~)-’ ~~(uj,uj)~~(r,,j,b,,j); 

hence after n recursive substitutions we get that 

(ix) F(uO, a,) = F(r,, b,)- ’ 0 F(u,, a,) 0 F(ro, b,). 

However, by definition ~,,=a,,, ~,=a,, b,,=/?,,, 6,,=p,, ~,,=6~, u,=6i, 
rO=tO, and t,=t;; whence (ix) says the diagram of (2) is commutative. 

505/49/2-IO 
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It remains to show that (4) holds. Accordingly, for i = 0, 1. Define vi: I--+ 
Z x Z by vi(t) = (i, t), and note that H o vi is the constant path at zi, E,~. Thus 
the diagram 

is commutative for i = 0, 1; hence by 2.14 and the definition of E*,, there is 
the commutative diagram (i = 0, 1) 

J%r@,J(O)) -+ 2W~,i)tl)) 
s;. 

I I 
i;,. 

Y(gr(H)(i, 0)) a J%WW~ 1)) 

K* 
I 

6, 

flizi) 

f(E: ) 
, 

AZ,) 

whence (4) is immediate. 4 

Remark. If in the statement of Theorem 2.19, Sd(rp) and f are 
replaced by Y(rp) and 4, respectively, then the resulting statement is 
[2, Chap:IV, Theorem 2.51 which is given without proof. However, John 
Montgomery does prove a version of the theorem for Y(rp) [22, Theorem 4] 
in the context of flows on compact metric spaces wherein only index spaces 
arising from isolating blocks are admitted. Montgomery’s terminology and 
proof seem to be motivated by techniques of analytic continuation in 
complex function theory, in particular the proof of the monodromy theorem. 
Our proof given above is motivated by standard proofs of Van Kampen’s 
theorem; cf. [ 111. 

2.20. THEOREM. B is a contravariant functor on the fundamental 
groupoid of S&‘(((p) to the category of connected simple systems in 2?ZV 
the homotopy category of long coexact sequences of pointed spaces and 
infinite commutative ladders between them. 

Proof. That 3 is well-defined on homotopy classes of paths is 2.19, and 
2.18 shows j(e,) = 1 b(rj for each z E SS/((P), and 2.17 shows that 
f(c, * cd= ACJ o %(c,). I 
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2.21. COROLLARY. Let z E 9&(v)). Then $ defines an anti- 
homomorphism on 7t1(9&‘(v)), z) into Aut( f(z)), where Aut( f(z)) is the 
group of equivalences from j(z) to itself, each equivalence a morphism in 
QYsp(RY@). 

2.22. COROLLARY. By restriction, 2 defines a contravariant functor 9 
on the fundamental groupoid of Y(p) to the category of connected simple 
systems in RF *. 

ProoJ For any isolated invariant set S, (S, 0) is an R-A pair of S, and 
if (IV,, N,) is a nested index pair for S, (N, , N, , N2) is a nested index triple 
for (S, 0). 9(S) is of course the Morse index of S, and if b is a path in 
.V((p), claim b 0 b @ e is a path in .9&‘(v)), where e is the path at the empty 
invariant set over x2 o b; i.e., e(t) = (x, 0 b(t), 0). Assuming the claim, 9(b) 
is defined to be that “slice” of the diagram for Y(b @ b @ e) corresponding 
to the arrow between the indices of the repellers. 

To show the claim only requires showing e continuous. Accordingly, 
suppose e(t) E uN( U), /i (IV) 3 U open. Then also 

40 = (x2 0 b(t), 0) E q&4 (0)) n %W); 

in particular, x2 o b(t) E un A(0) c II (IV) n /i (0). Whence by 1.5, there is 
an open W about x2 o b(t) so that for ,I E W, (Pi and o,(D) have the 
same maximal invariant set, namely, 0. The continuity of x2 o b then 
guarantees an open 9 about t so that for t’ E ip 

R* 0 b(C) E Wn u; 

hence 

e(f) = (R* 0 b(f), 0) E uN( Wn u) c o,,,(U). 1 

As an aid to the reader’s understanding, there is the following partial 
reformulation of 2.20. 

2.23. COROLLARY (Naturality of the Connection Map). Let /I be a path 
(class) in 9&‘(q). Then for every pair of nested index triples 
(N,(O), N2(0), N,(O)), (N,(l), N,(l), N,(l)) for P(O) and P(l), respectivek 
the diagram below commutes: 

~2W/~,(O) - ~,W~,P) - ~,W/~*(O) - W,(W~,(O)) - ... 
f(4*) 

I 
Y(!AJ) 

I 
.f(4,) 

I I 
~,(1)/~,(1)-~,(1)/N,(1)-~,(1)/~,(1)~S(~,(1)/~,(1))- -** 

(1) 
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where c(0) and c( 1) are the connection maps, where &, p, , and p2 are the 
paths into Y(q) which are the components of p, i.e., /? = & 0 p, 0 &, and 
where every third vertical arrow after the first three is the suspension of the 
one three places to the left. 

In particular for i = 0, 1, 2,..., deleting the arguments, 

s’+’ Jqj3J 0 Sic(O) = Sk(l) 0 s’ Q,); 

i.e., S(/3,) and >(&) define a natural transformation between the 
connection maps at either end of the path. 

Proof If s(O) and s(l) are the long coexact sequences which are the top 
and bottom rows, respectively, of the diagram (l), then the diagram (1) is 
just x(p)(s(O), s(l)) by definition of f(p) as a morphism in 
5999(RY~). 4 

Remark. Conley states 2.23 without proof 12, Chap. IV, 
Proposition 3.11. 

2.24. THEOREM (Naturality of the Splitting Map). Let p be a path class 
in .9&(v)) so that writing /3(t) = (A(t), S(t), A*(t), A(t)) for t E Z, 

S(t) = A *(t) u A(t). 

Then for each t E Z, p(t), the splitting class of /(S(t), A *(t), A(t)) is defined, 
and for i = 0, 1, 2 ,..., 

sis(po) 0 Sip(O) = Sip(l) 0 s’ Q,); 

i.e., if WItA N2tj), N&i)) is a nested index triple for p(j) (j = 0, l), the 
diagram below is commutative; 

~,W~,@) 4 r(o) ~,tw~*to) 
-f(Do) 

I I 
X(4,) 

~dl)P3U)~ u(1) N,(l)/N,(l) 
i.e., #(PO) and Sq!,) define a natural transformation between p(0) and 
p(l), where PO and /3, are as in 2.23 above. 

Proof This follows immediately from 2.1 l(5), 2.12, and the definition of 
duo- fl 



HOMOTOPY INVARIANTS OF R-A PAIRS,11 317 

3. HOMOLOGY OF CONNECTED SIMPLE SYSTEMS IN g.Y‘.p&?'y*) 

It is clear that any reduced homology theory I?* (with coelicients in a 
ring R) on PY* defines a functor on g.Y.cj’(ZY*) to g,Y LU‘(,%R~ R), 
also denoted d,, where &.A is the category of graded left R-modules, by 
applying @, to the objects and morphisms of a 59 E F’Y. Y‘(P.?*). 

It is therefore convenient to make the following definition. 

3.1. DEFINITION (Homology of a Connected Simple System). ’ If g is a 
connected simple system in ~,Y’.Y.(ZY*), by an homology class is of q 
we mean an equivalence class of homology classes of objects of q defined 
by 

a-a’ 

if, and only if, 

R* (f)a = a’, 

where fi A + A ’ is a morphism of %Y and a E H+.(A) and a’ E fi7,(A ‘). It is 
immediate that this is a well-defined equivalence relation and that the 
collection of equivalence classes can be given the structure of a graded R- 
module which is isomorphic to p,(A) for each object A of %Y. This collection 
of equivalence classes with the imposed R-module structure will be denoted 
A,(g). Note that this creates an ambiguity because A,(g) is already being 
used to denote a connected simple system in ELU-.9’(.yR,..R). Any ambiguity 
is resolved in context, although any confluence of the two definitions arising 
in one’s mind is probably helpful. 

Note that the equivalence relation defined above is preserved by 
morphisms of g.4c’Y(.YK’,). Thus if F: 59 + D is a map between connected 
simple systems in X9-*, there is a map on homology F,: k*(g) + l?*(Q). 
Again there is an ambiguity: F, denotes both a map between connected 
simple systems and a graded R-module homomorphism. 

Of course our particular interest in the above situation arises when g and 
G are Morse indices of isolated invariant sets. Specifically, each of the 
arrows in a long coexact sequence for an index triple of an R-A pair (A *, A) 
of S, by Remark 1 after Definition 2.1, defines a map between connected 
simple systems in qYY(ZY*). 

For a connection map c: ~$4 *) + S 9(A) (here SY(A) denotes the 
reduced suspension) passing to homology and composing with the well- 
known isomorphism of degree -1 from the homology of the suspension of a 
space to the homology of the space (apply the axiomatic Meyer-Veitoris 
sequence to the upper and lower reduced cones of the reduced suspen- 

50514912-11 
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sion-cf. [ 18, pp. 190 and 2091) yields the algebraic connection 
homomorphism of degree - 1 

which coincides with the usual algebraic homomorphism 3, of the triple 
(N,/N3, NJN,, *)-this is immediate from the definitions in the case of 
spectral reduced theory, cf. [ 11, 191 and the proof of [ 14, Theorem 3.21, and 
hence follows also for the singular construction as given in [ 11, 191. 

When S = A * U A, any connection map for an index triple of (S; A *, A) 
is inessential and it follows that c* = 0; hence there is the short exact 
sequence 

O--+~*w4) - zT*( 9(S)) -f-k fi*( 9(x4 “)) - 0. 

Moreover this sequence is split as the splitting class ,D of X(S;A *, A) 
induces a map 

P*: ~*w‘f*))+fi*(w)) 

which is a right inverse of p*. 
For convenience we make the following definition after which we give a 

theorem which provides for the convenient exploitation of the splitting class 
for the purpose of proving existence theorems for parametrized families of 
differential equations. 

3.2. DEFINITION. Let cp: X x A -+ To be a product parametrization of a 
local flow @. Suppose /3 =pO @p, @/I, is a path from [0, l] into s&‘(rp), 
and note that we may write P(t) = (A(t), s(t), A *(t), A(t)) as in Theorem 2.24 
above. Suppose for i = 0, 1, S(i) =A *(i) UA(i), so that the splitting class 
,u(i) of >(p(i)) is defined. Then as a map on homology define 

[mo~P1, = 4/&)*Pu(0)* -P(l)* Jv,>*; 

i.e., [ .W), PI* is the difference on homology between the two possible 
compositions afforded by the diagram of Theorem 2.24 from the upper right- 
hand to the lower left-hand lattice point. 

3.3. THEOREM. With a, and /I as in Definition 3.2 above, if 
I~mPl*~~~.f or some a E I?,( 4(A *k(O))), then for some t, 0 < t < 1, 
C(A *(t), A(t)) # 0; i.e., there is a heteroclinic orbit from A *(t) to A(t). 
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Prooj Because [ S(p), ,u]* a # 0, the diagram in the statement of 
Theorem 2.24 does not commute. Hence, the splitting map for #(P(t)) is not 
defined for some t, 0 < t < 1. By [ 14, Proposition 4.11, 

0# C(A*(t),A(t))E S(t)\(A*(t)uA(t)). 

For Y E C(A *(t>, A W), we have w*(y) c A *(t) and w(y) CA(~), for instance, 
by [2, Chap. II, Sect. S.l.A]. The desired heteroclinic orbit is y . R. 1 

4. THE SPACE OF MORSE DECOMPOSITIONS 

The sole purpose of this section is to define the space J(p) of Morse 
decompositions for a product parametrization cp: XX .4 -+ r, and show that 
there is a local homeomorphism x m: J((p) + ,4. The results needed to carry 
this out are generalizations of those appearing in Section 1 for R-A pairs 
and essentially follow from the latter by induction. 

Interesting and important applications of Morse decompositions are given 
in [24, 251. Selgrade studies Morse decompositions for linearized flows on 
the projectivized tangent bundle of a manifold and obtains important results 
on hyperbolic chain-recurrent sets. Young applies Morse decompositions to 
the study of the semi-flow induced by the evolution equation of burning gas 
theory. 

4.1. DEFINITION OF THE SPACE OF MORSE DECOMPOSITIONS. Letq:Xx 
A -+ r,, be a product parametrization with X locally compact. 

(1) For each positive integer n, let 

n+1 
%I+ 1: 0 .W)-,A 

denote the Whitney sum with Li”(p) taken as a summand n + 1 times; i.e., 
0 ‘+’ <V(p) is the pullback by the generalized diagonal of the Cartesian 
product with n + 1 factors of n: .4c((p) --t/i; and let J(p; n) denote the space 
of Morse decompositions of length n defined by (S, M, ,..., M,) is in .y(cp; n) 
if, and only if, for some 1 E/i, S is a @,-isolated invariant set and 
1M , ,..., M,,) is a Morse decomposition of S corresponding to some sequence 
of attractors SXA,X>A,I... ~A.=E$ and let ~,,:&(p;n)+/i be 
d *@,+ 1) I-4% n)* 

(2) Given a sequence of attractors S=A,,xA, I --. 3 A,, =0, the 
sequence can be extended to a sequence of length n + 1 by making 
A n+ 1 = 0. If {M, ,..., M,} is the Morse decomposition of the original 
sequence, the extended sequence has Morse decomposition (M, ,..., M,, ,I, 
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where M,, , = 0. It is straight-forward to check that this results in an 
embedding of M(y1; n) into M(q; n + 1). 

In this manner each A(q; n) can be regarded as a subset of 0” .? (9). the 
pullback by the diagonal of the countable Cartesian product of .9’(o), with 
,H(q; n) c. H(q; n + 1). Define 

and 

.nv(rp) = Fj M(ql; n) 
“-1 

Then M(o) has the relative topology of 0” 9”(o) and rc, is well-defined 
and continuous. 

The following lemma due to Conley was mentioned in [ 141, and is 
implicitly used in 4.3 and 4.4 below. For a proof see [2]. 

4.2. LEMMA [2, Chap. II, Proposition 5.3.D]. Let S be a compact 
Hausdorff invariant set, and suppose A, is an attractor of S and A, is an 
attractor of A,. Then A, is an attractor of S. 

Remark. The interested reader can provide his own proof by choosing U 
to be a compact S-neighborhood of A, disjoint from M, U AT and applying 
[ 14, Proposition 1.41 to show U+ is the required attractor neighborhood, 
where M, is the dual repeller of A, relative to A, and AT the dual repeller of 
A, in S. 

4.3. PROPOSITION. Let S c I, be a compact Hausdorff invariant set with 
Morse decomposition {M, ,..., M,] associated to the sequence of attractors 
S=A,zA,r>... 3 A,, = 0 (n > 1). Suppose W, ,..., W,, are pairwise 
disjoint open sets with Mi c Wi, i = l,..., n. Then there exists V,, open so that 
S c V, c I,, and if S’ c V,, and S’ is a compact invariant set, then, setting 
M,? to be the maximal invariant set of Win S’, {MI ,..., MA/ is a Morse 
decomposition of S’ associated to a sequence of attractors S’ = AA 2 1.. 3 
A; = 0. In particular, along with V,, there exist open sets V, ,..., V, ; 
u i )...) u,; u: )..., LJZ satisfying for i = I,..., n, 

(i) MicU,?cWiandAicUicViandU~r7Ui=0; 
(ii) A;=w(U,nA;_,;AI_,)andMI=w*(Ui*nAl_,;Al_,). 
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ProoJ If n = 1, then M, = S and defining V, = W,, V, = 0, UT = W,, 
and U, E 0, note that (i) is satisfied, and if S’ c I’, is a compact invariant 
set, then MI = S’ and (ii) is trivially satisfied. 

Having disposed of this special case, suppose that n > 1; the proof is a 
construction by induction. Begin the construction by making the following 
assignments: 

u, = 0, u,* = w,, v, = 0, 

U = w,, n--l- q-1 = wn-1, v,-, = Iv,-,. 

Note that (M,, A,) = (A,-, ,0) and is an R-A pair of A,-, , and also, M, = 
co*(U,*fTAA.-,;An_,) and A.=QI=w(U,nA”_,;A._,). Now M,-An-, 
and (M,-, , A,- i) is an R-A pair of Anpz, and as CT,*_, 1 M,, _, and 
U n-l 3An-, and U,*-,n U,-, = 0, by 1.10 there is an open set 
V nPZ 3 A,-, so that if AApz c Vnmz is a compact invariant set, then defining 

MA-, -o*(U,“_,nA:,-,;A:,-,) and A:,-lrw(U,,~lnA:,~2;A:,~z), 

(ML-,, AA-,) is an R-A pair of AA-* with M,!-, c Uzp, and A;-, c U,-, . 
Note that (i) holds for i = n - 1, n. Suppose by induction that the open 

sets V,_, ,..., V, ; U, ,..., U, ; U,* ,..., U,* have been defined satisfying (i) for 
i = k,..., n, where 1 < k < n, so that if Al-, c Vj- , is a compact invariant set, 
then 

is an R-A pair of Ai-, with w*(U,? n A;-, ; A;- ,) c UT and w(Ui n A;-, ; 
Al-,) c Uj, j= k,..., n. Then as Mk-, and Akpl are disjoint compact sets in 
the open, Hausdorff r,, there are disjoint open sets U,*_, 2 M,-. , and 
U L-, I> Akp,, and as Mk-, c W,_, and Ak-, c Vkp,, taking intersections if 
necessary, U,*_, and U,-, can also be chosen to satisfy U,*_, c W,-, and 
U k-l = V&l. Also as (Mk-l.Ak-l) is an R-A pair of A,_,, by 1.10, there 
exists Vkp z open so that if ALe2 c V,_, is a compact invariant set then 

(w*(U~-,nAA;-,;A;_,),w(U,-,nA;~,;A;-2)) 

is an R-A pair of A;-,. 
This completes the construction of the V’s, U*‘s, and Us. If S’ c V,, is a 

compact invariant set, setting Ah = S’ and defining Al, Mf inductively as in 
(ii) for i = l,..., n note that by construction as A( c Ui c V,, (M(+ , , A;+ ,) is 
an R-A pair ofA:. This yields that S’ = A; 3 Ai 3 . .. II AA = 0 is a 
sequence of attractors with Morse decomposition (M; ,..., MA}. Finally M,! is 
the maximal invariant set in W, n S’. For if y . R c Win S’, for some p < q 
w*(y; S’) c MA c W, and o(y; S’) CM; c W,, and hence for some I> 0, 
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ye]-co,--i]cW, and ye [I,co[c IV,. As Wpn w,=rzr if p#q, it 
follows that p = q = i. Hence as 

o(y;S’)cMI=AI_,n(AI)*, 

yE (A;)*, and as w*(y;S’)cA;-,, YEA;-,; i.e., rEMI. 1 

4.4. PROPOSITION. n,,: .H((D; n) + A is a surjective local homeomorphism. 

Proof: The empty invariant set has a Morse decomposition of length n 
associated to the sequence of attractors 0 = A, 2 A, 3 ... 13 An = 0 so that 
each Morse set of the decomposition is empty. It follows that n, is surjective. 

As in 1.11, to show n, is a local homeomorphism it sufftces to show that 
d(fp; n) is open in @“+’ P’(o). Accordingly, suppose (S, M, ,..., M,) E 
.l(q; n), and let S = A O 2 2 . .. I> A, = 0 be the sequence of attractors 
giving rise to this Morse decomposition so that (Mi, Ai) is an R-A pair of 
AimI, i = l,..., n. 

Because M, ,..., M, are pairwise disjoint compact subsets of I-,. there are 
w; )...( WA open and pairwise disjoint subsets of r, with M, c W:. i = l,.... n. 
Then choose N;,..., NA compact subsets of X so that rp,(N() isolates Mi and 
qn(N;) c W:, i = l,..., n. By compactness of N; ,..., N; and by the continuity 
of rp, choose B, A-open so that 

LEB,c fj A(N;) and rp(N; x B,) c W:. 
i=l 

i = l,..., n. 
By definition of the relative topology, there are r-open sets, W, c W( so 

that rp(int N( x B,) = @n Wi, i = I,..., n. Thus 4.3 applies yielding r,-open 
sets 

v 0 ,.**> vu; u I,...’ un; u;” ,,.., u,* 

satisfying the conclusions of 4.3. In particular 

(i) ScV, and AicUicVi and M,cUTc W, and U~nU,=0, 
i= 1 )..., ni. 

(ii) If S’ c V, is compact and invariant, then, for i = l,..., n, defining 
M; s m*(S n Ui; S’) and A; E w(S’ n Ui; S’), (MI, Af) is an R-A pair of 
S’ and M,! c U,?, A,! c Vi. 

By (i) choose compact subsets of X, K, 1 K, 3 ... 1 K, = 0 so that 
rp,(K,) c V,, and qn(Ki) c Ui, i = l,..., II, and yl,(K,) isolates A,, i = 0 ,.... n, 
and then choose compact subsets ofX, N,,..., N, so that N, c K)-, and 
rpA(Ni) c UT and o,(Ni) isolates Mi, i = l,..., n. 
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Because @Vi) c Ujr c Wi, Ni c int NI, and as (o,(Ni) and rp,(Nf) both 
isolate Mi, i = l,..., n, by 1.5 choose B, /i-open so that d E B, c 
fly= i @@‘Vi’) n/i(Ni)) and if q E B, then (p#Vf) and p&Vi) have the same 
maximal invariant set, i = l,..., n. 

Finally by continuity of Ed and compactness of KO,..., K,, choose B, A- 
open so that 2 E B, c nyEO A(Ki) and if q E B,, then q,(K,) c V, and 
cp,(Ki) c Ui, i = I,..., n. 

Set B = B, n B, n B, and define Q by 

Q = B x u,JB) X a,#) x a,>(B) x ... x a,JB). 

Note that Qn@ ‘+ ’ .9’(q) is an open neighborhood of (A, S. M, ,..., M,) in 
0 “I .Y’(yl). To finish it suffices to show that 

flti 
Qn @ .Y c,x(p;n). 

Accordingly, suppose (q, S’, My ,..., M;) E Q n 0”’ ’ .i . Then (q, S’) E 
u,~(B) so that S’ c p,,(K,) c V,. Then with MI and A; defined as in (ii) 
above, (M;, A;) is an R-A pair of S’ and MI c S’ n Uf c cp,(N;). 
However, (p,,(N;) isolates the same invariant set as p,(N,) which is My as 
(q, MI’) E u,,,(B); thus M; c MI’. On the other hand, since N, c K,, it 
follows that My c S’ n UF; whence 

M; c w*(S n U,*; S) = M;. 

Hence MI = My and (MI’, A;) is an R-A pair of S’. Now by (ii), Ai c 
U; c V, so that with Ai playing the role of S’ in (ii), with M; and A; defined 
as in (ii), (MJ, AS) is an R-A pair of A;, and arguing as above gives 
MS = My. Continuing by induction we get a sequence of attractors 

S’=A;IA;Z... TA;=@ 

so that (Mf’, AI) is an R-A pair of A:-, , i = l,..., n. It follows that 

(r,‘, S’, MI’,..., M;) E, 4(rp; n). I 

4.5. COROLLARY. 72,:. H’(q) + A is a surjective local homeomorphism. 

Proof: 7~~ is surjective as each z,, is. Regarding each point of, 4((o) as 
an infinite-tuple (S,, M,,, ,... ), at most a finite number of coordinates are 
non-empty, and each point lies in some X((o; n); i.e., M,, i = 0, i = 1, 2 ,... . 
By 4.4 there is a neighborhood Q’ of (S,, M,,.k ,..., M,,,) in 0”’ ’ .‘r (9). 
Q’ c. Y(q; n), so that z,/ Q’ is a homeomorphism onto its image. Because 
open sets in the Cartesian product are defined by what happens on a finite 
number of coordinates, Q’ defines an open set in 0” .Y (o), again call it Q’, 
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and Q’ n &(cp) c. X(cp; n) since associated to each point of Q’ is a sequence 
of attractors S’ = Ah 1 A i 1 ... 3 A; = 0 determining its first n + 1 coor- 
dinates, and any extension must be by empty sets. Thus z,I Q’ = rr,, 1 Q’ so 
71, ] Q’ is a local homeomorphism since n, 1 Q’ is. I 

APPENDIX: CORRECTION TO “HOMOTOPY INVARIANTS OF 
REPELLER-ATTRACTOR PAIRS. I” 

In the paper named above, the predecessor of the one to which this 
appendix is attached, the author has made the same error twice in two 
different proofs: first in the proof of functoriality of the Pi.ippe sequence of 
an R-A pair (A *, A) of S relative to the Morse indices 9(A), Y(S), +@(A *) 
[ 14, Theorem 3.21, and second, in the proof that the splitting class ,U is 
natural relative to the connection index #(S; A *, A) [ 14, Proposition 4.4 ]. 
However, the idea behind these proofs is sound, and both of these results are 
correct as stated, except for a printing error: the horizontal arrows in the 
first diagram of [ 14, Proposition 4.41 should point in the opposite direction. 

The idea behind these proofs is to reduce the proof of commutativity of a 
diagram relating the index spaces of two arbitrary nested index triples for an 
R-A pair (A *, A) of S to the case where one of the triples is included in the 
other, in which case commutativity of the diagram becomes obvious due to 
the functorial nature of inclusion maps. 

The error that is made in these proofs is the assertion that the reduction 
can, in general, be carried out by using the intersection of corresponding 
members of the two arbitrary triples to get an index triple which mediates 
between them. Precisely, if, for j= 1, 2, (N,.,, N,,j, N3,,) is a nested index 
triple for the R-A pair (4 *, A) of S, and if we define, for i = 1,2,3, 

N,.,=N,,, nNf.2. 

then in general, the nested sets 

do not form an index triple for (A*, A). For in general what happens is that 
the pairs (N,,,, N,,,), (N,,,, N,.,), and (N2,3, N,,,) do not have the exit 
property of an index pair. For instance, N,,, will often be the empty set as in 
the following example of a local flow on R. 

Consider the local flow of the differential equation 1= x(1 - x), and set 
S=[O,l],A*=(O}, and A = (1 }. It is clear that S is an isolated invariant 
set of this local flow and that (A *, A) is an R-A pair of S. Also, forj = 1, 2, 
set 

N,.j= [-j.j+ 119 N,,, = If .j + 11 U {-A, N,,i = i-j). 
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Then it is easy to verify that, for j = 1, 2, (N,, j, N2,j, N,,j) is a nested index 
triple for the R-A pair (A *,A) of S, but taking intersections as described 
above, we get 

N,,, = l-1, 21, N,,, = [+, 21, and N,., = 0, 

and the pairs (N1,3, N,,,) and (N,,3, N,+,) fail to have the exit property. 
However, the following proposition provides index triples which mediate 

between two arbitrary index triples in the desired manner, but three triples 
must be used rather than just one. We assume for the proposition that 
Qi c I-, is a local (semi) flow and S is @-isolated. 

1. PROPOSITION. Suppose (A *, A) is an R-A pair of S, and suppose for 
j=l,2, (N ,.,, N,,j, N,,j) is a nested index triple for (A *, A). Then there 
exists a nested index triple for (A*, A), call it (L,, L,, L3), and s0 > 0 so 
that for s > s0 there is an inclusion of nested index triples 

(L,,L,,L,)c (Nl,jqN,,j’JN<i,N<;)* (AlI 

Hence for j= 1,2, for s>s,, there is a commutative diagram of index 
spaces 

W-b - L,IL, - L,IL, 

’ I .I 
i 

‘S.J 
I I 

LA.,, 642) 

(N,,j U N<S)/N<; - N, .jlNT,S - N, J(N2.j U NY,?) 

with all arrows being functorial inclusion induced maps. The vertical arrows 
are homotopy equivalences since each defines a morphism in the appropriate 
Morse index Y(A), Y(S), or 9(A*), respectively, proceeding from left to 
right. 

Before proving the proposition let us note how it allows us to correct the 
proofs of the aforementioned results. 

2. CORRECTION TO THE PROOF OF [ 14, Theorem 3.21. In the proof given 
in [ 14, Theorem 3.21 it is correctly observed that the functoriality of the 
sequence relative to the Morse indices holds if the diagram 

N,,,IN,,, - N,,,/Nj,, - N,,,INz,I 

h,< 
I 

hs 
I 

hr. 
1 

643) 

NdN,., - N,,,IN,,, - N,,zIN~J 

is homotopy commutative for any choice of nested index triples 
(N,,j, NzSj, N,,j), j = 1, 2, for (A *, A), where h,4, h,, and h,, are the unique 
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morphisms in the appropriate Morse indices. This follows immediately upon 
applying the above proposition by juxtaposing appropriately the diagrams 
(A2) for j = 1,2, with the diagrams 

N2,jlN3,j + N,,jfN,,j - N, .jlNz,j 
04.1 

I 
0S.J 

I I 
DA’.! (A41 

(N2.j ” N<$)INY,: + N, .jlN<; - N, J(N2.j ” N3,j) 

for j = 1, 2, in which all arrows are functorial inclusion induced maps 
(whence the diagrams are commutative) and in which the vertical arrows are 
homotopy equivalences because each defines a morphism in the appropriate 
Morse index. Specifically, by the uniqueness property of morphisms in the 
Morse index [ 13, Proposition 1.21 necessarily, 

hA =Pi.: ’ ‘A.2 ’ Ii.: ’ PA.1 645) 

(equality here is between homotopy classes of maps), and since the 
analogous equalities hold for h, and h,,, (A3) is homotopy commutative 
because the diagrams of (A2) and (A4) are. I 

3. CORRECTION TO THE PROOF OF [ 14, Proposition 4.41. We must show 
that if S =A * VA and if, for j= 1, 2, (N,,j, N,,j, N3.,) is a nested index 
triple for (A *, A), then the diagram 

Nl.LIN3.L +-f!-- N,.,INz,, 
hs 

I I 
h4. 646) 

NL2lN3,2 L NL2IN2.2 

is homotopy commutative, where ,L, and ,u2 are the splitting maps and where 
h, and h, are the unique morphisms in the Morse indices Y(S) and .Y(A*), 
respectively, between the indicated index spaces. 

Although the proof given in ] 14, Proposition 4.41 incorrectly reduces the 
proof of commutativity of (A6) to the case where we have two nested index 
triples (M, , M,, M3) and (N, , N,, N3) for an R-A pair (d *, A) of S which 
satisfy M, c Ni for i = 1,2, 3, in the event we do have two such triples and if 
S = A* VA, then the proof just cited does correctly show that the splitting 
classes pu, and pN defined for the sequence of each triple are appropriately 
related: i.e., there is the homotopy commutative diagram 

N,IN, * N,lN, 

M,IM, z M,/M, 
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with the vertical arrows being the morphisms in the Morse indices induced 
by the inclusions of the corresponding pairs. 

Thus, we can use an argument analogous to that of the previous 
correction, Section 2, to show that diagram (A6) is homotopy commutative. 
That is, via Proposition 1 again chose s > 0 and an index triple (I,, , L *, L 3) 
so that (Al) holds and construct diagrams analogous to those in (A2) and 
(A4). More specifically, construct the diagrams which have the same lattice 
points and vertical arrows as the right-hand squares of those diagrams, but 
replace the horizontal arrows with the appropriate splitting class. Each 
diagram so constructed is homotopy commutative as observed above, and 
the juxtaposition of these diagrams yields that (A6) is homotopy 
commutative since again necessarily 

h, = P,: 0 1.7.2 0 1,: 0 ps.1 

and 

h,* =p,*:, 0 l/4*,2 0 l,‘., o P.c*,,. g 

Proof of Proposition 1. Set N,,J = Ni,, n Ni.2 for i = 1, 2. We will show 
that for s > r > 0 large enough, we can let (L,, L,, L3) be the nested triple 
defined by 

L, =N;,jr L,-(J~,~N,,,)UL,, L, =L,, n (N,,, UN,,,). 

This is carried out by first showing that 

(Nl,3YN1,3n W3.I UN3.2)) C.47) 

is a nested index pair for S. Having shown this, note that for j = 1, 2, since 
N,,, c N,,j, since both N1,3 and N,,j isolate S, and since (N,,j, N,,,ij is an 
index pair for S, by [ 13, Lemma 3.3(4)] there exist s > r > 0 so that for 
j= 1, 2, 

W.3 n (N,., n (N3.1 UN,,,>>-” CC;. 
Hence by the obvious containment relation, also for j = 1,2, 

W.3 n W,., UN,,,) cK,S. WV 
It is an immediate consequence of this inclusion that the inclusion (Al) 
holds, and as a consequence of the fact that (A7) defines an index pair for S, 
in particular that the exit property holds for this pair, it follows easily that 
(L,, L,, LJ is an index triple for (4 *,A). Note that in the case we are Only 
dealing with a local semi-flow, in general, this will not be an isolating index 
triple for (A *, A); i.e., L 1 and L, may not isolate S and A respectively. See 
[ 13, Sect. 41 for an example. 
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Thus we must show that (A7) gives an index pair for S. The isolating 
property and the relative positive invariance property follow easily from the 
fact that these properties hold for the index pair (N,,j, N,.,) for j = 1,2. We 
check the exit property. 

Accordingly, suppose yE N,,,\P ‘(N,.,) so that aIN,.,(y) < co. To the 
contrary suppose 

Because 

and because for j = 1,2. the exit property holds for (N,qi, N3,,) it follows 
that 

Choose E > 0 so that for j = 1, 2, 

uINl,3(Y) + & < alNl.j(Y)a 

Then by definition of u 1 N, ,j(y), 

Y. ~W%,W+~l cN,., f-‘Nt,, =N,.x 

which is impossible by definition of uIN,,,(y). Hence, y 1 aIN,,, E N,,z n 
(Njql UN,,,), and the exit property holds. I 

REFERENCES 

1. R. CHURCHILL, Isolated invariant sets in compact metric spaces, J. Differential Equafions 
12 (1972), 35&352. 

2. C. C. CONLEY, “Isolated Invariant Sets and the Morse Index,” C.B.M.S.-Amer. Math. 
Sot., Providence, RI., 1978. 

3. C. C. CONLEY. “The Gradient Structure of a Flow, I,” I.B.M. Research Report. Yorktown 
Heights. July 1972. 

4. C. C. CONLEY, A new statement of Wazewski’s theorem and an example, in “Proceedmgs 
of the Fourth Conference Held at Dundee, Scotland, March 30-April 2. 1976” (W. 
Everitt and B. 0. Steeman, Eds.), Lecture Notes in Mathematics, Vol. 564, Springer- 
Verlag, New York, 1976. 

5. C. C. CONLEY, Some applications of topology to differential equation, mimeographed 
notes, NSF-CBMS Regional Conference, Boulder, Colo.. May 3 l-June 4, 1976. 

6. C. C. CONLEY AND R. W. EASTON, Isolated invariant sets and isolating blocks. Trans. 
Amer. Math. Sot. 158 (1971). 

7. A. DOLD. “Lectures on Algebraic Topology,” Springer-Verlag. New York, 1972. 



HOMOTOPY INVARIANTS OF R-A PAIRS, II 329 

8. J. DUGUNDJI, “Topology,” Allyn & Bacon, Boston, 1967. 
9. R. W. EASTON, Isolating blocks and symbolic dynamic, J. Differential Equations 17 

(1975). 96-118. 
10. P. C. FIFE, Singular perturbation and wave front techniques in reaction-diffusion 

problems, in “Proceedings of the A.M.S. Symposium on Asymptotic Methods and 
Singular Perturbation, New York, 1976.” 

11. B. GRAY, “Homotopy Theory-An Introduction to Algebraic Topology,” Academic Press, 
New York, 1975. 

12. H. L. KURLAND. “Homotopy Invariants of Repeller-Attractor Pairs with Application to 
Fast-Slow Systems,” Ph.D. dissertation, University of Wisconsin, Madison, May 1979. 

13. H. L. KURLAND, The Morse index of an isolated invariant set is a connected simple 
system, J. D@rential Equations 42 (1981), 234-259. 

14. H. L. KURLAND. Homotopy invariants of repeller-attractor pairs. I. The Piippe sequence 
of an R-A pair, J. Dlfirential Equations 46 (1982), 1-31. 

15. H. L. KURLAND. Solutions to boundary value problems of fast-slow systems by 
continuing homology in the Morse index along a path of isolated invariant sets of the fast 
systems, J. D@zrential Equations, in press. 

16. H. L. KURLAND, A bounded traveling wave for a system of non-linear reaction-diffusion 
equations via the connection index of a repeller-attractor pair, to appear. 

17. J. T. MONTGOMERY, Cohomology of isolated invariant sets under perturbation, J. 
Dzflerential Equations 13 (1973), 257-299. 

18. E. H. SPANIER, “Algebraic Topology,” McGraw-Hill, New York, 1966. 
19. R. M. SWITZER, “Algebraic Topology-Homotopy and Homology,” Springer-Verlag, 

New York, 1975. 
20. T. WAZEWSKI, Sur un principe topologique de I’examen de I’allure asymptotique des 

integrals des equations differentielles, Ann. Sot. Math. Polon. 20 (1947), 279-313. 
21. T. WAZEWSKI, Sur un method topologique de I’examen de I’allure asymptotique des 

integrals des equations differentielles, in “Proceedings, International Congress of 
Mathematicians, Amsterdam, III (1954)” 

22. J. T. MONTGOMERY, On the homotopy index of Conley, J. Dlfirential Equations 32 
(1979) 3240. 

23. S. LANG, “Differential Manifolds,” Addison-Wesley, Reading, Mass. 1972. 
24. J. SELGRADE. Isolated invariant sets for flows on vector bundles, Trans. Amer. Math. 

Sot. 203 (1975), 359-390. 
25. T. G. YOUNG, “Isolated Invariant Sets of Semi-Flows on Compact Metric Spaces,” Ph.D. 

dissertation, University of Wisconsin, Madison, 1975. 

Printed I” B&rum 


