
Am. J. Hum. Genet. 66:1341–1350, 2000

1341

Detection of Disease Genes by Use of Family Data.
II. Application to Nuclear Families
I-Ping Tu, Raymond R. Balise, and Alice S. Whittemore
Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA

Two likelihood-based score statistics are used to detect association between a disease and a single diallelic poly-
morphism, on the basis of data from arbitrary types of nuclear families. The first statistic, the nonfounder statistic,
extends the transmission/disequilibrium test to accommodate affected and unaffected offspring and missing parental
genotypes. The second statistic, the founder statistic, compares observed or inferred parental genotypes with those
of some reference population. In this comparison, the genotypes of affected parents or of those with many affected
offspring are weighted more heavily than are the genotypes of unaffected parents or of those with few affected
offspring. Genotypes of single unrelated cases and controls can be included in this analysis. We illustrate the two
statistics by applying them to data on a polymorphism of the SDR5A2 gene in nuclear families with multiple cases
of prostate cancer. We also use simulations to compare the power of the nonfounder statistic with that of the score
statistic, on the basis of the conditional logistic regression of offspring genotypes.

Introduction

We have previously considered the use of two likelihood-
based score statistics in the evaluation of chromosomal
regions for the presence of a locus that alters risk for a
disease (Whittemore and Tu 2000). The first statistic,
the nonfounder statistic (NFS), is conditioned on the
observed or inferred distribution of parental genotypes.
This statistic evaluates disequilibrium in the transmis-
sion of alleles from parents to affected and unaffected
offspring, and it does not use data on parental pheno-
types. When all parental genotypes are known and when
genotypes of unaffected offspring are ignored, the NFS
reduces to one of Schaid’s (1996) proposed score sta-
tistics, which include the transmission/disequilibrium-
test (TDT) statistic (Ott 1989; Terwilliger and Ott 1992;
Knapp et al 1993; Spielman et al 1993; Ewens and Spiel-
man 1995; Spielman and Ewens 1996). If not all parental
genotypes are known, then use of the TDT can lead to
bias (Curtis and Sham 1995). Use of the NFS avoids this
problem, since, for each pair of parents, a probability
distribution for the parental genotypes is assigned, con-
ditional on the genotype data observed for the entire
family.

The second statistic, the founder statistic (FS), com-
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pares the observed or inferred parental genotypes with
those in some reference population. In contrast to their
role in the NFS, parental phenotypes, when known, play
an important role in the FS. Moreover, a parent’s con-
tribution to the FS depends not only on his or her phe-
notype (if known) but, also, on the phenotypes of his
or her offspring. Parents with many affected and few
unaffected offspring contribute more to the statistic
than do parents with few affected offspring.

In the present study, we examine these two statistics
when they are applied to nuclear families, with the ob-
jective of evaluating the association between disease and
a single polymorphism. Although the statistics apply to
multiallelic markers, for notational simplicity, we shall
assume that the polymorphism consists of two al-
leles—labeled and —one of which may confer anB B1 2

increased disease risk. We also assume that interest cen-
ters on the etiologic relevance of this polymorphism and
not on that of some nearby unmeasured locus. The fam-
ilies may vary in size, and they may also vary with
respect to the available information on the genotypes
and phenotypes of the family members, with some fam-
ilies having only partial information available. We il-
lustrate the statistics by applying them to data on pros-
tate cancer in nuclear families, in relation to a
polymorphism of the gene encoding the enzyme type II
5a-reductase. Finally, we relate the NFS to the statistic
discussed both by Spielman and Ewens (1998) and
Schaid and Rowland (1998) and known as the “sib
transmission disequilibrium test (STDT) statistic”; we
then use simulations to compare the powers of the two
statistics.
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Score Statistics

Family Genotypes

We wish to use the available data on the genotypes
and phenotypes of members of N unrelated nuclear fam-
ilies, to test the null hypothesis that the polymorphism
with alleles and is unrelated to disease risk. WeB B1 2

assume that the genotypes of the offspring are known
but that the parental-genotype information may be in-
complete. In addition, the phenotypes of some family
members may be unknown. We shall assign a numerical
count to each of the three possible genotypes for an
individual. Let denote the count assigned to genotypecg

g, where , or 2 denotes the number of allelesg = 0, 1 B1

in the genotype. As discussed in the companion article
that appears in this issue of the Journal (Whittemore
and Tu 2000), all of the statistics are invariant under
linear transformations of the three genotype counts.
Therefore, we arbitrarily assign and , so thatc = 0 c = 10 2

the genotypes and receive counts of 0 and 1,B B B B2 2 1 1

respectively. Our assignment for the count then reflectsc1

the weight we give to heterozygotes, relative to weights
of 0 and 1 for the two homozygotes. For example, the
count gives heterozygotes a weight that is in-c = 1/21

termediate between the two, and the count givesc = 11

heterozygotes the weight of the genotype, whereasB B1 1

the count gives them the weight of thec = 0 B B1 2 2

genotype.
Let denote the probability that, in the nth familyxnrs

, the mother has genotype r and the father hasn = 1,...,N
genotype s, given the genotype information available for
the entire family . For example, if the parentsr, s = 0,1,2
are untyped but two of their offspring have genotypes

( ) and ( ), then . We denoteB B g = 2 B B g = 0 x = 11 1 2 2 n11

the corresponding marginal probabilities that the mother
has genotype r and that the father has genotype s as

and , respectively. Appendix(1) 2 (2) 2x = � x x = � xnr s=0 nrs ns r=0 nrs

A shows the joint probabilities , which depend onxnrs

the prior probabilities that a parent has genotype s,hs

. Under the null hypothesis of no associations = 0,1,2
with the disease, these probabilities are those of the ref-
erence population, which we denote as . How-u ,u ,u0 1 2

ever, if the polymorphism is associated with the disease
and if the families have been selected to contain multiple
cases of the disease, then the probabilities are h ,h ,h0 1 2

and the two sets of probabilities differ. We shall use the
method of maximum likelihood to estimate , ash ,h ,h0 1 2

described in Appendix A.

Family Phenotypes

We label the members of the nth family asnn

. Indices 1 and 2 denote the mother1,2,...,n , n = 1,...,Nn

and father, respectively, and indices denote the3,...,nn

offspring. Following the discussion of the companion

article (Whittemore and Tu 2000), we assign to individ-
ual i the phenotypic value

1 if i is affected
a = �w if i is unaffectedni {0 if i’s phenotype is unknown .

Here w is a specified number that determines the relative
contributions of affected and unaffected individuals to
the test statistics. For example, w might be chosen as the
odds of disease in the general population. Thus, for rare
diseases, , so that, in comparison with affectedw K 1
individuals, the unaffected individuals contribute little.
In contrast, choosing places equal weights on af-w = 1
fected and unaffected individuals, whereas choosing

ignores unaffected individuals.w = 0

NFS

The NFS of equation (17) in the companion article
(Whittemore and Tu 2000) is as follows:

N� Sn=1 NFn
T = . (1)NF N�� Vn=1 NFn

For this NFS, the summand for the nth family,S n =NFn

, is given by equation (11) of the companion ar-1,...,N
ticle (Whittemore and Tu 2000). In Appendix B, we
show that

nn

S = a c � a m . (2)�NFn ni g n nni
i=3

In this expression, is the sum of the offspring-nna = � an i=3 ni

phenotype scores, and denotes the null expectation ofmn

the count of any one offspring, given the available in-
formation on the parental genotypes. Also in equation
(1), represents the null variance of , conditionalV SNFn NFn

on the available genotype information for the parents
of the nth family. From equation (2), we see that, under
the assumption of independence of parental genotypes
(i.e., no assortative mating),

2 2V = b j � (a � b )y . (3)NFn n n n n n

Here , represents the null variance of then 2 2nb = � a jn i=3 ni n

genotype count of one offspring, and yn is the null co-
variance of the genotype counts of two offspring, for
offspring in the nth family.

The null mean , null variance , and null covariance2m jn n

yn of the offspring-genotype scores are as follows:
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Table 1

Mean and Variance of Genotype Count for One Offspringa and Distribution of
Genotypes for n Offspring, Given the Parental Mating Type

Parental Mating Type ( )r # s
Mean
(mrs)

Variance
( )2jrs

Genotype Probability
for n Offspringb

( )f [n ,n ,n ]rs 11 12 22

( )B B # B B 2 # 21 1 1 1 1 0
1 if n = n = 012 22{0 otherwise

( )B B # B B 2 # 11 1 1 2
1 (1 � c )12

1 2(1 � c )14

nn 1( ) if n = 0( ) 22n 212{0 otherwise

( )B B # B B 2 # 01 1 2 2 c1 0
1 if n = n = 011 22{0 otherwise

( )B B # B B 1 # 11 2 1 2
1 1� c14 2

1 2(4c � 4c � 3)1 116
n n n11 12 22n! 1 1 1( ) ( ) ( )n !n !n ! 4 2 411 12 22

( )B B # B B 1 # 01 2 2 2
1 c12

1 2c14

nn 1( ) if n = 0( ) 11n 222{0 otherwise

( )B B # B B 0 # 02 2 2 2 0 0
1 if n = n = 011 12{0 otherwise

a With and .c = 0 c = 10 2
b nij is the number of offspring with genotype with .B B , i, j = 1,2, n � n � n = ni j 11 12 22

2 2

m = x m ;��n nrs rs
r=0 s=0

2 2

2 2j = x j � y ;��n nrs rs n
r=0 s=0

2 2

2 2y = x m � m .��n nrs rs n
r=0 s=0

Here and denote the mean and variance2 2m = m j = jrs sr rs sr

for an offspring whose parents have genotypes r and s,
as shown in the Mean and Variance columns of table 1.
When parental genotypes are known, the covariance of
offspring genotypes is 0, since parental meioses for any
two offspring are independent. Notice that, in the Var-
iance column of table 1, when both parents are2j = 0rs

homozygous. This implies that, for these parental gen-
otypes, the observed offspring genotype always equals
its mean value. From equations (2) and (3), we see that

for families in which both parents knownS = V = 0NFn NF

to be homozygous and that, therefore, these families do
not contribute to the test statistic.

Under the null hypothesis, has, asymptotically, aTNF

Gaussian distribution with a mean of 0 and a variance
of 1. In the special case that parental genotypes are
known, , and , is the statistic for thew = 0 c = 1/2 T1 NF

TDT (Spielman and Ewens 1996). When andw = 0
or 1, is the statistic proposed both by Schaidc = 0 T1 NF

(1996) and Schaid and Li (1997).

FS

The FS described in equation (17) of the companion
article (Whittemore and Tu 2000) is as follows:

N� Sn=1 Fn
T = .F

N ˆ�� Vn=1 Fn

The summand is given by equation (13) in the com-SFn

panion article (Whittemore and Tu 2000). In Appendix
B, we show that

2

(1) (2)S = c [a (x � u ) � a (x � u )] � a (m � m ) .�Fn g n1 ng g n2 ng g n n R
g=0

(4)

In this instance, and are the(1) 2 (2) 2x = � x x = � xng s=0 ngs ng r=0 ngr

probabilities that the mother and father, respectively,
have genotype g, given the genotypes observed for the
family. Also, is the expected count2 2m = � � m u uR r=0 s=0 rs r s

for an offspring of a random pair of parents in the ref-
erence population. Note that each family member with
a known phenotype contributes a term to the founder
score. Parents contribute the difference between their
observed or inferred genotype count and the observed
or inferred genotype count of a random individual in
the reference population. Offspring, in contrast, con-
tribute the difference between their expected count,
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Table 2

Distribution of 126 Nuclear Families with Multiple Cases of
Prostate Cancer, According to Family Structure and Phenotype

NO. OF SONS

AFFECTED/UNAFFECTED

NO. OF INSTANCES OF

FATHER’S PHENOTYPE

Affected Unaffected Unknown Total

1/1 10 7 0 17
1/2 2 7 0 9
2/0 11 23 3 37
2/1 9 12 0 21
2/2 3 4 1 8
2/3 1 0 0 1
2/4 1 0 0 1
3/0 3 14 2 19
3/1 3 2 0 5
3/2 0 2 0 2
3/3 0 1 0 1
4/0 0 4 0 4
4/1 0 0 1 1

Total 43 76 7 126

given the observed or inferred genotypes of their parents,
and the expected count, given that their parents were
randomly selected from the reference population. When

, reduces toc = 1/2 S1 Fn

21 (1)S = (a � a ) c (x � u )�Fn n1 n g ng g2 g=0

21 (2)�(a � a ) c (x � u ) .�n2 n g ng g2 g=0

In this instance, is the difference between the observedSFn

or inferred parental counts and their null expectation,
summed over the two parents. Moreover, the difference
between each parent’s count and its null expectation is
weighted by his or her phenotype value plus half the
sum of the phenotype values for his or her offspring.
The null variance of is , which we shall2S V = E[S ]Fn Fn Fn

estimate with the use of . Under the null hy-2V̂ = SFn Fn

pothesis, has, asymptotically, a Gaussian distributionTF

with a mean of 0 and a variance of 1, provided that the
reference-genotype probabilities , , correctly rep-u u u0 1 2

resent those of the parental population.

Total Score Statistic

Unlike the NFS, the FS is vulnerable to bias resulting
from misspecification of the parental-genotype distri-
bution, particularly that of the reference-genotype prob-
abilities , , and . Separate evaluation and com-u u u0 1 2

parison of the two test statistics may help to quantify
how much of an apparent association between parental
and reference genotypes is the result of association in
the absence of linkage disequilibrium. Presence of a sig-
nificantly positive or negative FS, in the absence of an
NFS with the same sign, suggests that the FS may be
biased as a result of misspecification of the parental-
genotype distribution. When both statistics have the
same sign, it may be desirable to combine them to form
the total score statistic

N� (S � S )n=1 NFn Fn
T = ,

N 2�� (V � S )n=1 NFn Fn

where , , and are given by formulas (2), ( 4),S S VNFn Fn NFn

and (3), respectively. T has an asymptotic Gaussian dis-
tribution with a mean of 0 and variance of 1 under the
null hypothesis, provided that the reference-genotype
probabilities correctly represent those of the parental
population.

Application to Prostate Cancer

We illustrate the test statistics by applying them to
genotypes in 126 nuclear families ascertained because

of multiple cases of prostate cancer. The genotypes
give the number of T (versus A) alleles at a diallelic
polymorphism of the steroid 5a-reductase (SRD5A2)
gene. This example is taken from an unpublished
study (C.-L. Hsieh, I. Oakley-Girvan, R. R. Balise, R.
Gallagher, L. N. Kolonel, A. Wu, and A. S. Whitte-
more, unpublished data). The polymorphism isA/T
the result of a missense mutation, known as “A49T,”
that replaces alanine (A) at codon 49 with threonine
(T). It has been suggested that this mutation increases
the risk of prostate cancer by increasing steroid 5a-
reductase activity, thereby increasing the rate at which
testosterone is converted to its active metabolite dih-
ydrotestosterone (Makridakis et al. 1998; Reichardt
et al. 1998).

Table 2 shows the distribution of family structures
and phenotypes for the 126 families. Because prostate
cancer is a disease of late onset (median age at diagnosis
72 years), only seven fathers and four mothers were
available for genotyping. Females with known geno-
types were included in the analysis and were assigned
a phenotype value . These females contribute in-a = 0n

formation about the parental-genotype distribution.
The T allele was found in 11/126 families. This subset
of families included 27 typed affected sons, who had
frequencies of 6, 10, and 11 for genotypes TT, AT, and
AA, respectively, and 7 typed unaffected sons, who had
corresponding frequencies of 0, 3, and 4. There were
no typed fathers in the 11 families segregating the T
allele. We assumed random mating of parents, with re-
spect to the genotypes of the A/T polymorphism, and,
for the founder statistic, we assumed the values u =2

, , and for the reference-genotype.02 u = .04 u = .941 0

frequencies. These values were obtained from a sample
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Table 3

NFS, FS, and Total Score Statistics for Association between Prostate
Cancer and the T Allele of the A49T Polymorphism of the SRD5A2
Gene in 126 Nuclear Families

WEIGHT ANDc1

WEIGHT W

(p)TNF

NFSa FS Total

1:
1 .02 (.45) .50 (.31) .30 (.38)
.11 �.94 (.83) .71 (.66) .02 (.68)

1/2:
1 .90 (.18) 1.10 (.14) 1.39 (.08)
.11 �.00 (.50) .87 (.19) .72 (.24)

0:
1 2.50 (!.01) 2.10 (.02) 3.27 (!.01)
.11 2.40 (!.01) 1.28 (.10) 2.63 (!.01)

a One-tailed p value, by means of Gaussian approximation.

of 191 white males without prostate cancer (J. Rei-
chardt, personal communication). We treated these ge-
notype frequencies as known constants.

Table 3 summarizes the values of the FS, NFS, and
total test statistic, for the and 0 weight spec-c = 1, 1/2,1

ifications for heterozygotes and for the andw = 1
weight specifications for unaffected individ-p/(1 � p)

uals. We took p to be the prevalence of prostate cancer
in the population, which we assumed was 10%. As
shown in table 3, the NFS is significantly elevatedTNF

( , one-tailed test) when , regardless of howp ! .01 c = 01

the unaffected individuals are weighted. The c = 01

weight assignment for heterozygotes compares preva-
lences of the TT genotype in affected and unaffected
sons. Thus, the statistical significance of these NFSs re-
flects the higher prevalence of TT homozygotes among
affected sons, compared with unaffected sons.

The FS also is positive when , but itT c = 0F 1

achieves statistical significance only when . Forw = 1
both values of w, however, the total score statistic is
significant ( ). The FS did not vary appreciably,p ! .01
with respect to choice of the reference-genotype fre-
quencies . For example, when we usedu ,u ,u0 1 2

the FS for changedu ,u ,u = .01, .03, .96, c = 00 1 2 1

from 2.19 to 1.96 and from 1.17 to 1.64 for w = 1
and respectively. In summary, evaluation ofw = .11,
both the FSs and NFSs suggests an association be-
tween prostate-cancer risk and homozygosity for the
TT allele.

Comparison with Other Statistics

We consider the analysis of genotypes in sibships when
all parental genotypes are missing, either by design or
as a result of the disease having a late onset. Several
authors have proposed ways to use the genotype infor-
mation of offspring when parental genotypes are par-
tially or completely missing. Curtis (1997) and Knapp
(1999) have suggested (a) inclusion, in the analysis, of
the types of sibships for which parental genotypes can
be reconstructed from genotypes of the offspring and (b)
avoidance of bias in the test statistic (Curtis and Sham
1995) by means of conditioning its null distribution on
the types of sibships included. However, this approach
ignores the information from sibships for which parental
genotypes are only partially reconstructable. Martin et
al. (1998) have proposed the same type of parental-ge-
notype reconstruction considered in the present study,
with the additional assumption that the marker alleles
are in Hardy-Weinberg equilibrium. Spielman and Ew-
ens (1998), Schaid and Rowland (1998), and Horvath
and Laird (1998) have proposed variants of the score
statistics obtained from conditional logistic regression of
genotypes of affected and unaffected sibs. These statistics
are conditioned on the observed genotypes of the sibs
in each family. Such conditioning has several advantages:

it avoids the need for parental genotypes; it allows for
the inclusion of other covariates, such as exogenous ex-
posures and other genes; and it can be implemented by
use of standard software. However, it also has disad-
vantages: it requires the presence of both affected and
unaffected sibs in each sibship, thereby losing all infor-
mation from, for example, affected sib pairs or trios,
and it does not apply to extended families.

In the present study, we compare the theoretical basis
and power of the NFS test to those of the test described
as an “STDT” by Spielman and Ewens (1998) and
Schaid and Rowland (1998). The STDT is based on a
standardized difference between genotype counts of af-
fected sibs and counts expected under the null hypoth-
esis of no transmission disequilibrium, conditional on
the genotypes observed in the entire sibship. Because of
this conditioning, the STDT uses only those sibships
with at least one affected sib and at least one unaffected
sib. The NFS, in contrast, conditions only on the pa-
rental-genotype information provided by the sibs’ gen-
otypes. This weaker conditioning implies that the NFS
includes data from sibships with a common phenotype
(e.g., affected sib pairs).

A second implication of the different types of con-
ditioning that characterize the two statistics concerns
their treatment of information from genotype-concor-
dant sibships. Specifically, the NFS includes a term for
such sibships, whereas the STDT does not. Consider,
for example, a sibship with one affected sib and k 1 0
unaffected sibs, all with the genotype . Given theB B1 1

event that all sibs have this genotype, the affected sib
has the genotype with a probability of 1 (as ob-B B1 1

served); therefore, this sibship does not contribute to
the STDT. In contrast, for the NFS, the sibs’ expected
genotype counts are obtained by conditioning only on
the fact that the parental genotypes could have been
either and , and , or andB B B B B B B B B B1 1 1 1 1 1 1 2 1 2

. The contribution to the NFS from this sibship isB B1 2
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Table 4

Power (%) of NF and STDT Tests of Size to Detect Association between Disease and aa = .001
Diallelic Polymorphism, with the Use of Genotypes for 100 Sib Pairs

FREQUENCY

OF B1 TEST STATISTIC

POWER FOR

(%)

TRUE

MODELa

100 Discordant
Sib Pairs

80 Discordant
Sib Pairs and
20 Affected

Sib Pairs

b c1 c = 11 c = 1/21 c = 01 c = 11 c = 1/21 c = 01

.2 .25 1 NF, W = 1 81 63 1 78 60 20
NF, bW = K/(1 � K) 87 69 1 84 60 17
STDT 81 68 0 61 40 0

.2 .5 1/2 NF, W = 1 84 90 22 81 85 20
NF, W = K/(1 � K) 90 92 22 82 83 17
STDT 82 87 5 61 71 0

.4 .3 0 NF, W = 1 2 70 93 1 70 91
NF, W = K/(1 � K) 1 75 95 1 71 93
STDT 0 53 81 0 29 62

.1 .3 1 NF, W = 1 72 66 1 81 71 1
NF, W = K/(1 � K) 77 69 2 83 67 1
STDT 72 65 0 69 60 0

.1 .3 1/2 NF, W = 1 83 86 9 86 88 13
NF, W = K/(1 � K) 84 83 9 86 86 11
STDT 81 81 0 68 70 0

.3 .3 0 NF, W = 1 1 39 79 0 47 85
NF, W = K/(1 � K) 1 45 83 1 49 84
STDT 1 20 58 0 15 44

.05 .35 1 NF, W = 1 72 67 0 78 68 1
NF, W = K/(1 � K) 66 61 1 71 60 2
STDT 63 61 0 38 32 0

.05 .8 1/2 NF, W = 1 86 88 5 77 78 7
NF, W = K/(1 � K) 80 79 7 69 68 5
STDT 77 76 0 44 50 0

.2 .4 0 NF, W = 1 0 26 61 0 34 81
NF, W = K/(1 � K) 0 18 67 0 34 83
STDT 0 4 24 0 11 31

a , where y is an indicator for disease, g = number of B1 alleles in genotype,P(y = 1 dg = i) = 0.1 � c bi
and , .c = 0 c = 10 1

b K is the population prevalence of the disease.

, where m is the expected count for an(1 � kw)(1 � m)
offspring, given that his or her parents have one of these
three mating types. Thus, unless , this sibshipw = 1/k
makes a contribution to the NFS.

Since the NFS uses information on the geneological
relationship of the sibs and since the STDT does not do
so, one can expect the NFS to have greater power than
the STDT, provided that the parental-genotype distri-
bution is modeled correctly in the NFS. In principle, the
modeling assumptions (e.g., random mating and a com-
mon distribution for all parents) could be examined by
use of likelihood-ratio statistics and, if necessary, could
be relaxed by use of a richer model. There is a need to
evaluate the trade-off in power, robustness, and bias
associated with various model assumptions.

We conducted a small simulation study to compare

the power of the NFS and STDT when applied to 100
sib pairs without typed parents. We assumed various
values both for the parameters in the models used to
generate the sibs’ genotype data and for the parameters
used to analyze the data. For some of the simulations,
we assumed that all 100 sib pairs had discordant phe-
notypes, and, for others, we assumed that 80 sib pairs
had discordant phenotypes and that 20 sib pairs were
affected. A detailed description of the simulations ap-
pears in Appendix C.

Simulations under various null models (data not
shown) indicated that the type I–error rates for both
test statistics closely agree with the nominal rates de-
termined by means of the Gaussian approximation. Ta-
ble 4 shows power comparisons, under various alter-
native models, for the two tests. Several outcomes are



Tu et al.: Detection of Disease Genes by Use of Family Data 1347

noteworthy. The first outcome concerns the power of
the NFS with the unaffected weight w equated to the
disease odds in the population (as prescribed by the
likelihood theory discussed in the companion article
[Whittemore and Tu 2000]), compared with that of the
NFS with equal weights for affected and unaffected sibs
( ). The population-odds NFS is slightly more pow-w = 1
erful than the equal-weights NFS, when the penetrance
of the deleterious allele is low. (In table 4, the penetrance
is specified by the parameter b, which represents the
increase in disease risk among homozygotes com-B B1 1

pared with that of homozygotes.) This findingB B2 2

agrees with the asymptotic local optimality properties
of the score statistic (Cox and Hinkley 1974). However,
for a deleterious allele with high penetrance, as mea-
sured by b, the equal-weights NFS does better than the
population-odds NFS. In any case, the differences in
power are small.

The second noteworthy outcome concerns the impact
of misspecification of the mode of inheritance, as de-
termined by , on the power of both test statistics.c1

Choosing the weight results in considerablyc = 1/21

more robustness than does choosing either the dominant
weight or the recessive weight The weightc = 1 c = 0.1 1

performs acceptably only when the true model isc = 01

recessive, and performs reasonably well for ad-c = 11

ditive and dominant models but performs badly for a
recessive model.

The third noteworthy outcome concerns the relative
power of the NFS and the STDT for discordant sib pairs.
In virtually all cases, the NFS outperforms the STDT,
although the gain in power is usually small. Both tests
do well when the data are generated according to a
dominant or an additive model, provided that they are
also analyzed with the use of one of these two models.
If a recessive model is incorrectly applied to data gen-
erated according to a dominant or additive model, then
both tests do very poorly. By contrast, when the data
are generated by a recessive model ( ), the NFSc = 01

does considerably better than the STDT, provided that
neither assumes a dominant model. Finally, as expected,
the NFS does considerably better than the STDT when
it is applied to a mixture of discordant sib pairs and
affected sib pairs. The STDT pays a high price in power
loss for exclusion of the affected sib pairs.

In conclusion, use of the NFS is preferable to use of
the STDT for analysis of data that include some sibships
with only affected individuals or for instances in which
a recessive model cannot be excluded. In addition, if
parental phenotypes are known and if one has reliable
data from a reference population for comparison of pa-
rental-genotype distributions, even more power can be
gained by computation of the FS and the total score
statistic. The STDT performs relatively well when it is
applied to discordant sib pairs without parental geno-

types, provided that one is reasonably confident that a
recessive model is inappropriate. Its advantages include
its ease of application with the use of standard software
and its freedom from model assumptions. We plan to
evaluate the relative performances of the STDT, the
NFS, and the reconstructed parental-genotype statistic
of Knapp (1999), for sibships of various sizes and
phenotypes.

Discussion

We have applied the two score statistics proposed in the
companion article (Whittemore and Tu 2000), to eval-
uate the relationship between a binary disease and a
single diallelic polymorphism, by use of data from nu-
clear families. This application illustrates several features
of the statistics. The NFS extends the TDT and the score
statistics of Schaid and Sommer (1994) and Schaid
(1996), to allow for unaffected offspring and missing
parental genotypes. Missing parental genotypes are re-
placed by a probability distribution that is conditional
on the genotypes observed in the family. The parameters
in this distribution are estimated by means of maximum
likelihood. This approach provides a set of likelihood-
ratio statistics for the testing of various assumptions
about parental-genotype frequencies, including random
parental mating or Hardy-Weinberg proportions, (i.e.,

, and , where is the frequency2 2h = p , h = 2p p h = p p2 1 1 1 2 0 2 i

of allele in the parental population).Bi

The FS reflects the deviation between observed (or
inferred) and expected genotype counts in the parental
population. At one extreme, if phenotypes have been
specified only for parents, then the total score statistic
reduces to that for case series and case-control com-
parisons (Whittemore and Tu 2000). In effect, the par-
ents are the subjects in a case-control study. Since
spouses typically share the same ethnic background, this
feature could be exploited to avoid bias resulting from
population stratification. At the other extreme, if phe-
notypes have been specified only for offspring, then the
FS reflects additional information that is available in the
genotypes of parents of offspring with the given phe-
notypes. If independent data can be used to estimate
the marker-allele frequencies in the parental population,
then the total score statistic can gain power relative to
the NFS, by use of information on the deviations of
parental-genotype frequencies from null expectations.

The two proposed statistics have some limitations.
First, the FS could be biased by inappropriate assump-
tions on the parental-genotype distribution (e.g., ran-
dom mating). In principle, serious departures from these
assumptions could decrease the power of the NFS; this
issue requires evaluation. The FS can also be biased by
a failure to adjust for differences in ethnic distribution
between the test families and the reference population.
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Comparison of FS and NFS provides a check on such
bias; the presence of a statistically significant FS in the
absence of a similar NFS would be grounds for suspi-
cion. Finally, because the proposed statistics use more
of the family data than do other statistics discussed in
the Comparison with Other Statistics section, they are
more complicated to compute. Software for use in the
application of the statistics to data from nuclear families
and from unrelated cases and controls is available from
the authors.

The two statistics can be extended to multiallelic
polymorphisms, to single and multiple markers in sit-
uations where the marker and disease locus is distinct
from the marker(s) and where the recombination
fractions and disequilibrium coefficients among them
can be specified, and to more-complex family struc-
tures. Extension of the statistics to markers with

alleles is conceptually straightforward, al-m 1 2
though notationally it is more cumbersome. Now the
allele counts are vectors of dimension , thec m � 1g

components of which represent the allele count for
the ith allele, , where the alleles arei = 1,...,m � 1
placed in arbitrary order and where the last allele is
omitted. A family’s contributions to the nonfounder
and founder scores are now vectors of dimension

and their variances arem � 1, (m � 1) # (m � 1)
matrices.

The simulations done in the present study suggest that
choosing for the heterozygote weight is morec = 1/21

robust against model misspecification than is choosing
either the dominant model or the recessive modelc = 11

. When the disease locus is near the marker locusc = 01

but is distinct from it, then there is another advantage
to the specification . For this choice, both thec = 1/21

NFS and FS are independent of both the extent of ga-
metic disequilibrium and the probability of recombi-
nation (v) between trait and marker loci, and, thus, they
have the same form, regardless of whether marker and
trait loci coincide. This is not true of any choice c (1

, nor is it true of the total score statistic. For the1/2
latter, the factor determines the weight attached1 � 2v

to the contribution from transmission disequilibrium in
the offspring, relative to that from association in the
parents’ genotypes. Misspecification of v will not ad-
versely affect the validity of the test statistic; however,
it can decrease power by placing inappropriate weight
on the parent-offspring transmission of the marker
alleles.
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Appendix A

Parental-Genotype Probabilities

We wish to describe the joint parental-genotype prob-
abilities for the mother and father in a nuclear family,xrs

conditional on all genotype information observed for the
family. To do so, suppose that the family contains n �

offspring, the genotypes of which are summarized by2
the vector , where denotes the number of(n ,n n ) n11 12, 22 ij

offspring with genotype , andB B i, j = 1, 2, n �i j 11

. Letn � n = n � 2 f (n ,n ,n ) = f (n ,n ,n )12 22 rs 11 12 22 sr 11 12 22

denote the null probability of these genotypes when the
parents have genotypes r and s. These probabilities are
shown in the Genotype Probability for n Offspring col-
umn of Table 1.

If both the mother and the father have been typed
with genotypes a and b, respectively, then

1 if r = a and s = b
x = .rs {0 otherwise

If one parent (e.g., the mother) has been typed with
genotype a, then

h f (n ,n ,n )s as 11 12 22 if r = a2� h f (n ,n ,n )t=0 t at 11 12 22x .rs= {
0 if r ( a

In this instance, is the prior probability that a parenthr

has genotype r, . If neither parent has beenr = 0,1,2
typed, then

h h f (n ,n ,n )r s rs 11 12 22x = .rs 2 2� � h h f (n ,n ,n )t=0 =0 t t 11 12 22v v v

The prior probabilities could be taken ash ,h ,h0 1 2

the reference probabilities , or they could beu ,u ,u0 1 2

estimated from the data. To estimate them, we shall
apply the method of maximum likelihood to all N
families. To do so, we need to know each family’s
contribution to the likelihood—that is, the probability
of the observed genotype data for the offspring and
their parents. If the maternal and paternal genotypes
are known to be a and b, respectively, then this prob-
ability is If one parent is knownh h f (n ,n ,n ).a b ab 11 12 22

to have genotype a, then the contribution to the like-
lihood from this family is . If2� h h f (n ,n ,n )t=0 a t at 11 12 22

neither parent has been typed, then the contribution
is The likelihood function2 2� � h h f (n ,n ,n ).r=0 s=0 r s rs 11 12 22

is the product of the contributions from the N fam-
ilies. The maximum-likelihood estimates for , ,h h0 1

and are the values that maximize this likelihoodh2

function.
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Appendix B

Nonfounder and Founder Scores for One Family

In this section, we shall omit the family subscript n.
Nonfounder score.—For a nuclear family typed at a

single diallelic marker, the nonfounder score described
in equation (11) of the companion article (Whittemore
and Tu 2000) becomes

2 2 2 2

S = w x � w v . (B1)��� ���NF rsh rsh rsh hFrs
r=0 s=0 hFrs r=0 s=0 hFrs

Here r and s denote the maternal and paternal genotypes;
denotes the genotypes of the off-h = (h ,...,h ) n � 23 n

spring; is the conditional probability that the familyxrsh

genotypes are , given the family-genotype informa-rsh
tion available; is the null probability of the offspringvhFrs

genotypes h, conditional on the parental genotypes r and
s; and denotes summation over all offspring gen-� hFrs

otypes compatible with parental genotypes r and s.
Finally,

n

w = a C , (B2)�rsh i irshi
i=3

where is the expected allele count at the trait locusCirshi

for offspring i, given the marker genotypes for thersh
family. Expression (B1) simplifies in the current appli-
cation, wherein the trait and marker loci coincide. First,

, so that (B2) becomesC = cirsh hi i

n

w = a c , (B3)�rsh i hi
i=3

which is independent of the parental genotypes. More-
over, since genotypes of the offspring are observed to
be, for example, we haveg ,...,g ,3 n

x if h = g ,...,g ,rs 3 nx = (B4)rsh {0 otherwise.

Substitution of (B3) and (B4) into the first summand of
(B1) and summing it over r and s gives the first summand
as . The independence of parental meioses impliesnS a ci=3 i gi

that factors asvhFrs

n

v = � v , (B5)hFrs h Frsi
i=3

where is the null probability that parents with gen-vhFrs

otypes r and s transmit genotype h to any offspring.
Substitution of (B3), (B4), and (B5) into the second sum-
mand of (B1) gives the second summand as follows:

2 2 2 2 n

)x v v a c .�� � � �rs i hh Frs h Frs i3 n
r=0 s=0 h =0 h =0 i=33 n

After rearranging terms, this becomes ,2 2aS S x mr=0 s=0 rs rs

where is the total phenotype score for the off-na = � ai=3 i

spring and where is the expected geno-2m = � c vrs g=0 g gFrs

type count for an offspring of parents with genotypes r
and s. By combining the two summands of (B1) and by
letting denote the family’s expected2 2m = � � x mr=0 s=0 rs rs

offspring count, conditional on the genotype informa-
tion available for the parents, we obtain the nonfounder
score , in agreement with equationnS = S a c � amNF i=3 i gi

(2).
Founder score.—When trait and marker loci coincide

and when the family consists of parents and offspring,
the founder score described in equation (13) of the com-
panion article (Whittemore and Tu 2000) is as follows:

2 2

—w (x � u u ) . (B6)�� rs rs• r s
r=0 s=0

Here denote the genotype frequencies in theu ,u ,u0 1 2

reference population, and

2 2

—w = a c � a c v . (B7)� �rs i f h hFrsi
i=1 h=0

Substitution of (B7) into (B6) gives expression (4).

Appendix C

Simulations

When the NFS is applied to typed sib pairs with un-
typed parents, the sibs’ genotypes serve two functions.
First, they define one of the six family-genotype struc-
tures (FGSs) that determine six probability distributions
for the unobserved parental genotypes. An FGS for a
nuclear family consists of the number of offspring in the
family plus the genotypes of all typed family members.
For example, a sib pair with genotypes and un-(g ,g )1 2

typed parents has one of six possible FGSs, which cor-
respond to the six possible sets : {2,2}, {2,1}, {2,0},{g ,g }1 2

{ 1,1}, {1,0}, and .{0,0}
Second, when linked to the sibs’ phenotypes, the sibs’

genotypes contribute to the numerator of the NFS, which
is conditioned on the FGS-specific parental-genotype dis-
tributions. To accommodate this conditioning, we per-
formed the simulations in two nested steps. In step 1,
we generated an FGS for each of the 100 families, and
we then computed the corresponding 100 FGS-specific
parental-genotype distributions, with use of the methods
described in Appendix A. Each of the six FGSs deter-
mines a parental-genotype distribution.
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In step 2, we generated sib genotypes for each family,
conditional on its parental-genotype distribution and
conditional on the sib phenotypes. Specifically, if a fam-
ily had and sib phenotypes , where ifFGS = i y ,y y = 11 2 j

the jth sib is affected and where otherwise,y = 0 j =j

, we generated sib genotypes and , with the1,2 g g1 2

probability

P(g ,g Fy ,y ,FGS = i)1 2 1 2

2 2

= z f (g Fy )f (g Fy ) .�� rs : i rs 1 1 rs 2 2
r=0 s=0

In this instance, denotes the probability that thezrs : i

mother has genotype r and that the father has genotype
s, given that the FGS is of type i, and denotesf (gFy )rs j j

the probability that a sib with phenotype and withyj

parents with genotypes r and s inherits genotype ,g j =j

. We then used these genotypes to compute the NFS1,2
for various choices of and w.c1

To evaluate the performance of the STDT statistic for
affected-unaffected sib pairs, in step 2, we assigned one
of the two genotypes of the ith FGS to the affected sib,
and we assigned the other to the unaffected sib, with
probabilities conditional on the sibs’ phenotypes. For
each set of FGSs generated in step 1, step 2 was repeated
100 times. We then repeated step 1 (and its nested rep-
etitions of step 2) for a total of times. Thus, forT = 101

each sib-pair phenotype (discordant sib pairs and a mix-
ture of discordant and affected sib pairs) and for each
set of parameter values shown in table 4, we performed

trials. In each trial, we rejected the nullT # T = 10001 2

hypothesis when a test statistic exceeded 3.09, which is
the critical value for a one-tailed test of size .a = .001
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