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A b s t r a c t - - I n  this study, a decomposition method for approximating the solution of the Pochham- 
mer-Chree equation is implemented. By using this scheme, explicit exact solution is calculated in the 
form of a convergent power series with easily computable components. To illustrate the application of 
this method numerical results are derived by using the calculated components of the decomposition 
series. The obtained results are found to be in good agreement with the exact solutions known for 
some special cases. © 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - D e c o m p o s i t i o n  method, Pochhammer-Chree equation, Traveling wave solution, Soli- 
tary wave solution 

1. I N T R O D U C T I O N  

The generalized Pochhammer-Chree (PC) equation 

utt - u t t ~  - Uzx  - ( f ( u )  ) xx  = O, 

represent a nonlinear model of longitudinal wave propagation of elastic rods [1,2]. In the work of' 
Bogolubsky [1], the author obtained exact solitary wave solutions to equation (1) for f ( u )  = u p 

for the values p = 2, 3, 5, respectively, [3-5]. Li et al. [4] and Zhang e t  al. [5] derived some 
explicit solitary wave solutions of (1) using the method of solving algebraic equations for the 
cases f ( u )  = a l u  + a3 u3 + a b u  5 and f ( u )  = a ] u  + a 2 u  2 + a 3 u  3. 

Finding explicit exact and numerical solutions of nonlinear equations efficiently is of mQor 
importance and has widespread applications in numerical analysis and applied mathematics. In 
this study, we will implement the Adomian decomposition method (in short ADM) [6-8] to find 
exact solution and approximate solutions to the PC equation for a given nonlinear f ( u ) .  

Unlike classical techniques, the decomposition method leads to an analytical approximate and 
exact solutions of the nonlinear equations easily and elegantly without transforming the equation 
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or linearizing the problem and with high accuracy, minimal calculation and avoidance of physically 
unrealistic assumptions. As a numerical tool, the method provide us with numerical solution 
without discretization of the given equation, and therefore, it is not effected by computation 
round-off errors and one is not faced with necessity of large computer memory and time. The 
method has features in common with many other methods, but it is distinctly different on close 
examination and one should not be mislead by apparent simplicity into superficial conclusions [7]. 

In this paper, various PC equations [4] can be handled more easily, quickly, and elegantly 
by implementing the ADM rather than the traditional methods for finding analytical as well as 
numerical solutions. 

2. A N A L Y S I S  O F  T H E  M E T H O D  

In this section, we outline the steps to obtain analytic solution of PC equation (1) using the 
ADM. First, we write the PC equation in the standard operator form 

Ltu - Lx(Ltu) - L~u - L,:f(u) = 0, (1) 

where the notations Lt = ~ and Lx = ~ symbolize the linear differential operators. The 
inverse operator L71 exists and it can conveniently be taken as the twofold integration operator 
L~ -I. Thus, applying the inverse operator L~ -1 to (1) yields 

L~lLtu = LTI(L~(Ltu) + Lxu + Lxf(u)). (2) 

Therefore, it follows that  

u(x, t) = u(x, O) + tut(x, O) + L7l(Lx(Ltu) + L~u + Lxf(u)). (3) 

Now, we decompose the unknown function u(x, t) a sum of components defined by the series 

u(x,t) = E un(x,t). (4) 
n=O 

The zeroth component is usually taken to be all terms arise from the initial conditions, i.e., 

u0 = u(x, 0) + rut(x, 0). (5) 

The remaining components Un(X, t), n > 1, can be completely determined such that  each term is 
computed by using the previous term. Since u0 is known, 

un = L'fl(n~(Ltun_l) + L~un_l + L~A,~_l), n >_ l, (6) 

where f(u) = Y2n~=O An(no, u l , . . . ,  Un). The components An are called the Adomian polynomials, 
these polynomials can be calculated for all forms of nonlinearity according to specific algorithms 
constructed by Adomian [6,9]. In this specific nonlinearity, we use the general formula for As 
polynomials as 

1 [dd-~ ( ~ 2  I ]  An = ~ f £kuk , n _> 0. (7) 
\ k = 0  / ,k=0 

This formula make it easy to set computer code to get as many polynomial as we need in the 
calculation of the numerical as well as analytical solutions. The first few Adomian polynomials 
for the nonlinearity f(u) 

Ao = f(uo), A1 = ulf(1)(uo), A2 = u2f(1)(uO) -H ~..u2f(2)(UO), 

Aa = uaf{1)(uo) + u2ulf(2)(uo) + ~u~f(a)(uo), 
3! 
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and so on, the rest of the polynomials can be constructed in a similar manner.  
A slight modification to the ADM was proposed by Wazwaz [8] tha t  gives some flexibility in 

the choice of the zeroth component  u0 to be any simple t e rm and modify  the t e rm ul  accordingly. 
Since the computat ions  in (6) depends heavily on u0 the whole computat ions  to find the solution 
will be simplified considerably. For example an alternative scheme to (6) might be 

uo = u(x,  0), Ul = rut(x, O) + L t l ( L ~ ( L t u o )  + L~uo + L~Ao), 
(8) 

u ,  = - Z t ~ ( L ~ ( L t u n _ l )  + L~u~_~ + L~A~_I) ,  n > 2, 

Finally an N - t e r m  approximate  solution is given by 

N - - 1  

~N = E u~'  N >_ 1, (9) 
n = 0  

and the exact solution is u(x,  t / = l i m N - ~  4)g. 
Numerical  computa t ions  of the PC equation have often been repeated in the literature. How- 

ever, to show the effectiveness of the proposed decomposit ion me thod  and to give a clear overview 
of the methodology some examples of the generalized PC equation (1) will be discussed in the 
following section. 

3.  A P P L I C A T I O N S  O F  T H E  P C  E Q U A T I O N  

In this section, we will be concerned with the solitary wave solutions of the generalized PC 
equation 

utt - u t t ~  - (alu ÷ a3u 3 -i- asuS)x x --= 0. (10} 

Existence and derivations of such solutions have been discussed for part icular  values of the con- 
stants  [1-5]. 

In the first example,  we will consider equation (10) for the special case a3 = 0 associated the 
initial conditions 

u(x,  O) = x / B  sech(2kx), ut(x,  O) = -v / -Bkcx/sech(2kx)  tanh(2kx) ,  (11) 

where B = V/3(c 2 - al) /a5,  k = X/(c 2 - a~) /c  2. For simplicity, we take a l  = 1, 35 = 1/5. To find 
the solution of the initial value problem (10) and (11), we apply the scheme (8). The  Adomian 
polynomials  Am are computed  according to (7) with f (u )  = u 5 and this gives 

Ao = A1 = = + 

Performing the integration, we obtain the following 

U 0 

U 1 ~- 

U 2 - -  

j s  secht2 x/, 021 

Bk2t2 [ -9  - 36B 2 - 8 cosh(4kx) (13) -v / -Bkct  sech(2kx) 3/2 sinh(2kx) + 

+ 20B 2 cosh(4kx) + cosh(8kx)] sech 9/2 (2kx), 

Bk4t  2 " 
[754 + 11804B 2 ÷ (447 - 9872B 2) cosh(4kx) - (306 - 500B 2) cosh(Skx) 

Bk4t  4 
+ cosh(12kx)] sech13/2(2kx) + 3072v/~[1955 + 20400B 2 + 86768B 4 (14) 

+ (2096 + 7080B 2 - 81472B 4) cosh(4kx) - (164 + 12720B 2 - 6480B 4) cosh(8kx) 

17/2 v ~ k 3 c p  [57 - (304 - 600B 2) cosh(12kx) + cosh(16kx)] sech (2kx) ÷ ~ 4 ~  

+ 404B 2 + (56 - t00B 2) cosh(4kx) - cosh(8kx)] sechU/2(2kx) sinh(2kx),  
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Bk6t 2 . 
u3 = 2 5 6 v ~  [ -204085  - 8070376B 2 - (63364 - 8257772B 2) cosh(4kx)  

+ (132916 - 956632B 2) cosh(Skx) - (7804 - 12500B 2) cosh(12kx)  

Bk4t 4 
+ cosh(16kx)]  sech~/2(2kx) + 6 1 4 4 v ~  [ -471534k2 - 10345608B2k2 

- 74503968B4k 2 + 7896B2c 2 - (401982k 2 cosh(4kx)  + 905184B2k 2 cosh(4kx)  

- 82618736B4k 2 cosh(4kx) - 6208B2c 2) cosh(4kx)  + (194664k 2 

+ 8267424B2k 2 - 12705760B4k 2 - 4000B2c 2) cosh(8kx)  

+ (117309k 2 - l159200B2k 2 + 343440B4k 2 - 2 1 1 2 B 2 c  2) cosh(12kx)  

- (7802k 2 - 200B2c 2) cosh(16kx)  + k 2 cosh(20kx)] sech21/2(2kx) 

Bk6t 6 
+ 1474560v/~[  - 1 3 4 5 0 5 0  - 30125800B 2 - 189007600B 4 - 805302400B 6 

- (1552368 + 20446120B 2 - 6079296B 4 - 943215040B 6) cosh(4kx)  

+ 104655 cosh(8kx)  + (19438048B 2 + 162041280B 4 - 175733632B 6) cosh(8kx)  

+ (421480 + 8297468B 2 - 32170816B 4 + 7625280B 6) cosh(12kx)  

+ (101706 - 1444600B 2 + 874800B 4) cosh(16kx)  - (7800 - 16300B 2) cosh(20kx) 

v ~ k S c t 3 [ - 1 0 4 5 0 -  188940B 2 (8895 + cosh(24kx)]  sech25/2(2kx) + 1 9 ~  

- 96848B 2) cosh(4kx)  + (1554 - 2500B 2) cosh(8kx)  

- cosh(12kx)]  sechlS/2(2kx) s inh(2kx)  + v~kSct5 [ -29795  - 523184B 2 
15360 

- 2760688B 4 - (37136 + 356136B 2 - 1927232B 4) cosh(4kx)  - (5788 - 163248B 2 

+ 110160B 4) cosh(8kx)  + (1552 - 3800B 2) cosh(12kx)  

- cosh(16kx)]  s e c h 1 9 / 2 ( 2 k x )  sinh(2kx),  

(15) 

in this  manner  the componen t s  of the  decompos i t ion  series (4) are ob ta ined  as far as we like. 
This  series is exac t  to the  last te rm,  as one can verify, of the  Taylor  series of  the  exact  closed 
form solut ion u(x, t) = x /B sech[2k(x - ct)], [9]. 

In the second example,  we will consider the  P C  equat ion  (10) wi th  the  initial condit ions 

Dkc sech 2 kx 
u(x, 0) = v /D(1  - t a n h  kx), ut (x, 0) = (16) 

v / D ( 1  - t a n h  kx)'  

where  

~ a  3a~ 2(c 2 - al) c / - J -  al 
c = 1 16a5 ' D = a 3  ~ k ---- V c 2 

Again,  to find the solution of this equat ion,  we subs t i tu te  in the  scheme (8) 

u0 = v / D 0  - t a n h  kx), 

tDkcsech2kx ~ t / ~ t  [ (  
~1 = 2 v / D ( l _ t a n h k x )  + a l u o + a 3 A o + a s A o / .  _ dtdt, 

(17) 

(18) 

lotloti( 1 u ~ =  a l u , - l + a a A n - l + a s A ~ - i  zx-}-(Ltn--1)zztt dtdt ,  n > _ 2 ,  (19) 

where the  A d o m i a n  polynomials  An-1 are given same as in the  first example  and  A , - 1  are given 
a s  

Ao = -0 ~, ~1 = 3 - 1 G  ~i2 = 3u2.0 ~ + 3u~0,  
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the Adomian polynomials are constructed by (7) for the function f ( u )  = a 3 u  a + a s u  5 with al = l, 

a3 = 1, a5 = -1 .  Performing the calculations in (8) using MATHEMATICA and substituti~,g 

into (4) gives the exact solution 

u(x, t) = ~/D(1 - tanh k ( x  - c t ) ,  (2o) 

in a series form [9]. 

4. E X P E R I M E N T A L  R E S U L T S  F O R  T H E  P C  E Q U A T I O N  

The convergence of the decomposition series have investigated by several authors. The theo- 

retical treatment of convergence of the decomposition method has been considered in the litera- 
ture [10-14]. They obtained some results about the speed of convergence of this method. In recent 
work of Abbaoui e t  al. [15] have proposed a new approach of convergence of the decomposition 

series. The authors have given a new condition for obtaining convergence of the decomposition 
series to the classical presentation of the ADM in [15]. 

In order to verify numerically whether the proposed methodology lead to accurate solutions, 
we will evaluate the ADM solutions using the N-term approximation for some examples of the 

PC equations solved in the previous section. First, we consider equation (10) with al = 1, a3 = 0, 
65 = 1/5 with initial conditions (11). The differences between the 5-terms solution and the exact 
solution for some values of the constant c are shown in Tables 1 and 2. 

The solution (20) of equation (10) and initial conditions (16) is evaluated for the values al = 1, 
63 = 1, a5 = - 1  and the differences between the approximate 4-terms solution and the exact 

T a b l e  1. T h e  a b s o l u t e  d i f f e r e n c e  b e t w e e n  t h e  p r e s e n t  s o l u t i o n  ~ 5 ( x ,  t)  a n d  t h e  a n a -  

l y t i c a l  s o l u t i o n  of  t h e  e q u a t i o n  (10)  w i t h  i n i t i a l  v a l u e s  (11) w h e n  c = 1.01. 

ti/xi 

0.1 4 . 6 2 3 4 3 E  - 04 

0 .2  1 . 0 5 6 9 3 E  - 03 

0.3 1 . 6 5 2 7 4 E  -- 03 

0.4 2 , 2 4 7 6 1 E  - 03 

0.5 2 . 8 3 9 1 8 E - 0 3  

0.1 0.2 0.3 0.4 0.5 

6 . 6 1 1 1 6 E  - 04 

1 , 8 6 1 1 1 E  - 03 

3 , 0 7 2 8 9 E  - 03 

4 . 2 9 0 9 1 E  - 03 

5 . 5 0 8 9 2 E - 0 3  

5 . 7 3 2 0 9 E  - 04 

2 . 3 8 6 3 7 E  - 03 

4 . 2 3 2 1 1 E  - 03 

6 . 1 0 0 3 5 E  - 03 

7 . 9 7 9 3 3 E - 0 3  

1 . 6 2 4 4 3 E  - 04  

2 . 5 9 4 0 3 E  - 03 

5 . 0 9 0 6 9 E  - 03 

7 . 6 3 6 5 5 E  - 03 

1 . 0 2 1 2 5 E  - 02 

6 . 2 1 1 0 0 E  - 04 

2 . 4 3 2 2 6 E  - 03 

5 . 5 9 6 8 1 E  - 03 

8 . 8 4 9 5 3 E  - 03 

1 . 2 1 6 2 1 E  - 02 

T a b l e  2. T h e  a b s o l u t e  d i f f e r e n c e  b e t w e e n  t h e  p r e s e n t  s o l u t i o n  ~ 5 ( x ,  t)  a n d  t h e  a n a -  

l y t i c a l  s o l u t i o n  o f  t h e  e q u a t i o n  (10) w i t h  i n i t i a l  v a l u e s  (11) w h e n  c = 1.001.  

ti/xi 

0.1 

0.2 

0.3 

0.4 

0.5 

ti/xi 

0.1 

0.2 

0,3 

0.4 

0.5 

0.1 

3 . 3 2 7 8 0 E  - 05 

6 . 6 5 4 7 4 E  - 05 

9 . 9 7 9 8 3 E  - 05 

1 . 3 3 0 2 1 E  - 04  

1 . 6 6 2 0 7 E  - 04  

0.2 

6 , 6 5 4 5 2 E  - 05 

1 . 3 3 0 7 5 E  - 04 

1 . 9 9 5 6 7 E  - 04 

2 . 6 6 0 0 4 E  - 04 

3 . 3 2 3 6 6 E  - 04 

0.3 

9 . 9 7 9 1 9 E  - 05 

1 . 9 9 5 6 3 E  - 04 

2 . 9 9 2 7 8 E  - 04 

3 . 3 9 8 9 1 E  - 04 

4 . 9 8 4 3 1 E  - 04 

0 .4  

1 . 3 3 0 0 9 E  - 04  

2 . 6 5 9 9 4 E  - 04 

3 . 9 8 9 0 4 E  - 04 

5 . 3 1 7 0 3 E  - 04 

6 . 6 4 3 5 4 E  - 04  

0.5 

1 . 6 6 1 8 7 E  - 04 

3 . 3 2 3 4 8 E  - -  04 

4 . 9 8 4 1 6 E  - 04 

6 . 6 4 3 4 6 E  - 04 

8 . 3 0 0 9 0 E  - 04 

T a b l e  3. T h e  a b s o l u t e  d i f f e r ence  b e t w e e n  t h e  p r e s e n t  s o l u t i o n  ~ 5 ( x , t )  a n d  t h e  ana~ 

l y r i c a l  s o l u t i o n  o f  t h e  e q u a t i o n  (10) w i t h  i n i t i a l  v a l u e s  (16).  

0.1 

3 . 6 9 1 8 7 E  - 04 

2 . 1 4 8 4 5 E  - 04 

5 . 2 7 4 2 6 E  - 05 

1 . 0 6 8 2 8 E  - 04 

2 . 5 4 1 7 3 E - 0 4  

0.2 

1 . 4 4 3 0 2 E  - 03 

8 . 1 5 0 1 9 E  - 04 

1 . 5 7 7 6 4 E  - 04 

4 . 8 7 0 3 0 E  - 04 

1 . 0 8 0 2 1 E - 0 3  

0.3 0.4 0.5 

3 , 1 9 5 5 0 E  - 03 

1 . 7 4 9 0 8 E  - 04 

2 . 4 0 1 2 7 E  - 04 

1 . 2 3 5 4 7 E  - 03 

2 . 5 8 8 0 2 E - 0 3  

5 . 6 3 2 4 6 E  - 03  

2 . 9 8 4 2 9 E  - 02 

2 . 2 9 6 5 4 E  - 04  

2 . 4 5 6 0 3 E  - 03 

4 . 9 0 9 1 7 E  - 03 

8 , 7 9 0 6 2 E  - 03 

4 . 5 0 5 1 3 E  - 03 

5 . 8 8 7 0 2 E  - 05 

4 . 2 6 4 1 0 E  - 03 

8 . 1 9 9 6 0 E  - 03 
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solution are summarized in Tables 3. Tables 1-3 show that  we achieved a very good approximation 

to the actual  solution of the equations by using only 4- and 5-terms of the decomposition series 

solution derived above. It  is evident tha t  the overall errors can be made smaller by adding new 

terms of the decomposition series. 

The solutions are very rapidly convergent by utilizing the ADM. The numerical  results we 

obtained justify the advantage of this methodology. Furthermore,  as the decomposition method 

does not require discretization of the variables, i.e., t ime and space, it is not effected by com- 

puta t ion  round off errors and necessity of large computer memory and time. Clearly, the series 

solution methodology can be applied to various type of linear or nonlinear  ordinary differential 

equations [17,18] and partial  differential equations [19-26], as well. 
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