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Abstract

Seasonal variation in occurrence is a common feature of many diseases, especially those of infectious origin. Studies of seasonal variation

contribute to healthcare planning and to the understanding of the aetiology of infections. In this article, we provide an overview of sta-

tistical methods for the assessment and quantification of seasonality of infectious diseases, as exemplified by their application to meningo-

coccal disease in Denmark in 1995–2011. Additionally, we discuss the conditions under which seasonality should be considered as a

covariate in studies of infectious diseases. The methods considered range from the simplest comparison of disease occurrence between

the extremes of summer and winter, through modelling of the intensity of seasonal patterns by use of a sine curve, to more advanced

generalized linear models. All three classes of method have advantages and disadvantages. The choice among analytical approaches

should ideally reflect the research question of interest. Simple methods are compelling, but may overlook important seasonal peaks that

would have been identified if more advanced methods had been applied. For most studies, we suggest the use of methods that allow

estimation of the magnitude and timing of seasonal peaks and valleys, ideally with a measure of the intensity of seasonality, such as the

peak-to-low ratio. Seasonality may be a confounder in studies of infectious disease occurrence when it fulfils the three primary criteria

for being a confounder, i.e. when both the disease occurrence and the exposure vary seasonally without seasonality being a step in the

causal pathway. In these situations, confounding by seasonality should be controlled as for any confounder.
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Introduction

Seasonal variation encompasses cyclic change in either dis-

ease occurrence or disease severity over the course of a

year [1,2]. Despite being common, cyclic variation is often

neglected in both aetiological and prognostic research and

health services research. Seasonal variation affects major dis-

eases such as myocardial infarction, stroke, atrial fibrillation,

fracture, and cancer [3–9]. Month of birth may also influence

the occurrence of non-infectious diseases in childhood and

adolescence, such as Crohn’s disease and leukaemia [10–12].

Seasonal variation commonly affects many community-

acquired infectious diseases.

Several mechanisms may contribute to the seasonal varia-

tion of infectious disease [1,13]. First, there are annual cycles

in pathogen appearance or virulence, alternating between the

northern and southern hemispheres for areas sufficiently

remote from the equator. Many of these cyclic patterns are

secondary to annual climatic cycles, which affect tempera-

ture, rainfall, and humidity. The amount of daylight may also

influence the host physiology, affecting immune function and,

consequently, disease occurrence. Another factor fostering

the annual cyclic occurrence of disease is human behaviour.

For example, there is greater crowding of people and sea-

sonal vacation travel during cold and rainy periods, and more

use of air-conditioning during warm periods, all of which are
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phenomena that can be considered to be secondary to

climatic changes. Social activities, however, such as those

related to specific holidays, may be tied to the calendar with-

out being a consequence of climatic cycles [1,13].

Available methods for the study of seasonality range from

simple comparisons across discrete calendar time periods, or

simple models such as fitting monthly counts to a sine curve,

to more complex and flexible statistical models. The need to

control for confounding in studies of seasonal variation is

limited by the fact that many common confounders, e.g. age,

sex, and lifestyle factors, do not change during the seasons

and will therefore not be confounders [14].

In this article, we provide: (i) a brief overview of methods

to study the seasonality of infectious diseases; (ii) examples

of application in the existing literature; (iii) an example of

application of the three methods to the occurrence of

meningococcal disease in Denmark; and (iv) a discussion

about whether seasonality should be considered as a covari-

ate in studies of infectious diseases.

Methods used to Study Seasonal Variation

in Infectious Disease

Several methods have been used to examine seasonal varia-

tion in disease occurrence, but in this article we will focus

on the three most widely used classes of method: compari-

son of discrete time periods, geometrical models, and gener-

alized linear models (GLMs). The characteristics of these

three classes are summarized in Table 1.

Seasonal variation or seasonality is defined as a periodic

variation in the occurrence of disease or disease outcome

with calendar time. Occurrence can be measured either as a

count of cases per unit time, a rate that relates cases to a

denominator of person-time, or an incidence proportion that

relates cases to the number of persons at risk. With a single

annual cycle, there will be a single peak in occurrence during

the year, and ordinarily a single trough, or time of low occur-

rence, often assumed to be 6 months from the peak. The

amplitude of the seasonal pattern is defined as the difference

in occurrence between the peak and the trough times. The

word ‘period’ is used to describe the length of one full cycle,

and the frequency is the inverse of the period [13] (Fig. 1).

Direct comparison of discrete time periods

A simple approach to studying seasonal variation is to com-

pare disease occurrence during specific time intervals during

a cycle, such as months or quarters during a year. The com-

parison may involve choosing a reference time during a cycle

and comparing the other intervals with the reference. Prede-

fined periods can be compared pairwise by calculating simple

risk or incidence rate ratios across time intervals within the

cycle. It is common to test whether seasonal variation is pres-

ent by using statistical significance tests, but such tests are as

ill-advised in this situation as they are elsewhere. In brief, sta-

tistical significance depends on both the strength of the asso-

ciation and the amount of data, and thus does not measure

the strength of seasonal occurrence. Instead, measures that

compare estimates of rates, risks or counts of cases should

be used. In the rare instances in which there is variation dur-

ing the cycle in age, sex, or other possible confounders, these

may be controlled analytically with traditional methods, such

as stratification or regression models. Confounding factors

that vary seasonally are unusual, and as a result it is common

to see seasonal analyses that involve only crude comparisons,

that is, using no adjustment for confounding.

TABLE 1. Characteristics of the three classes of method for the study of seasonal variation

Comparison of discrete time periods Geometrical models (e.g. Edwards’ method) Generalized linear models

Computation Very simple Fairly simple More complicated
Underlying assumption Departure from equal numbers Cyclic pattern following a sine curve Fewer constraining assumptions
Frequency Predefined One Flexible
Secular trend Normally not addressed. Analyses can be

stratified by calendar year
Normally not addressed. Analyses can be stratified
by calendar year

Can be included in the model

Identification of time of peak No Possible Possible
Adjustment for covariates Usually not performed, but possible by

stratification or logistic regression analysis
Usually not performed, but possible by stratification
or regression analysis

Covariates can easily be included
in the model

Examples of test statistics Chi-squared test Edwards’ test or recently proposed test statistics Wald chi-squared test

FIG. 1. The terminology of seasonal variation exemplified by a sim-

ple sine curve.
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Using direct comparison of discrete time intervals,

although straightforward, is limited by the need for prede-

fined definitions of seasons and by the inability to compare

more than two periods at once. This approach also seldom

takes into account any secular trend that may be superim-

posed on the seasonal pattern.

The following are some examples. In a study of antibiotic-

resistant Streptococcus pneumonia in two populations, Dagan

et al. [15] found that more prescriptions were written in the

cold months than in the warm months (291 vs. 222 prescrip-

tions per 1000 children).

Al-Hasan et al. [16] studied the seasonal variation of Esc-

herichia coli bloodstream infection (BSI) in 461 patients

between 1998 and 2007 in a county in Minnesota. Their

hypothesis was that a warm climate would increase the risk

of BSI. They simply compared the four warmest months

(June–September) with the remainder of the year, and found

a 35% increased risk of BSI during the summer (incidence

rate ratio 1.35, 95% CI 1.12–1.66) [16]. The time of the peak

was not examined, which was also pointed out in the accom-

panying editorial [17].

In another example, Reddy et al. [18] compared the sea-

sonal distribution of cases with microsporidial keratitis in a

tertiary centre in India from 2006 to 2008. They identified

30 cases, 20 of which occurred during the monsoon (June–

September), six during the winter (October–January), and

four during the summer (February–May). Their interpretation

was limited by a lack of information about the size of and

seasonal changes in the referral source population, and by

the fact that the authors compared seasons only by means of

statistical tests of significance [18].

Logar et al. [19] compared the rate of positive test results

for acute toxoplasmosis in pregnant women during the four

seasons, and found a lower rate during the summer (0.27%

of tested women; 95% CI 0.17–0.37) than during the winter

(0.48%; 95% CI 0.34–0.62), but they, too, only compared

periods by statistical tests of significance.

Geometrical model assuming a sinusoidal cyclic pattern

The second category of methods is based on harmonic (peri-

odic) regression, an approach that fits a sine curve to a time

series of frequencies by the use of ordinary regression meth-

ods. The most widely used approach is based on the har-

monic technique of Edwards, which assumes that counts of

disease are derived from a non-homogeneous Poisson distri-

bution [20].

The outcome measure is usually the peak-to-low ratio,

interpreted as a measure of relative risk (RR) that compares

the month with the highest incidence (peak) with the month

with the lowest incidence (low or trough).

Relative risk (RR) ¼ Peak-to-low ratio

¼ 1þ hemi amplitude

1� hemi amplitude

¼ 1þ Edwards estimator

1� Edwards estimator

The method of Edwards uses simple formulas to fit the

sine curve; this approach has been modified slightly by

Brookhart and Rothman [20,21] to improve the statistical

performance of the estimator and derive confidence limits

by the use of straightforward formulas.

The main limitation of using a fitted sine curve is the

inability to adjust for covariates, including a secular trend in

occurrence. As with the direct comparison approach, how-

ever, traditional methods to control confounding, such as

stratification, can be applied. As a variant of the method of

Edwards, the geometrical approach can also be applied in a

linear regression model including a sine and a cosine term

[22]. Such a model would allow adjustments for covariates.

The geometrical model can easily be applied by using the

free programmed spreadsheet, Episheet [23], which provides

a graphical presentation of seasonal variation, and estimates

the time of the peak, the peak-to-low ratio, and a confidence

interval for the latter. The only data entry needed is the set

of 12 frequencies measuring the number of cases occurring

in each month of the year; optionally, if the denominator is

known and varies, 12 denominator frequencies may also be

entered [23].

The following are some examples. Akhtar and Mohammad

studied the seasonality of 4608 cases of pulmonary tubercu-

losis among 2.3 million immigrants in Kuwait between 1997

and 2006 [24]. The highest frequency of occurrence was in

late April, and the peak-to-low ratio was 1.51 (95% CI 1.39–

1.65). Seasonal variation was similar in the first and the sec-

ond half of the study period [24]. A study by Yamaguchi

et al. [25] described the epidemiology of measles in a cohort

of 674 measles cases occurring in a city in Malawi between

1996 and 1998. A graphical presentation of the number of

cases per month showed annual peaks in April 1996, Octo-

ber 1997, and June 1998. The exact date of the peaks was

estimated by the method of Edwards. This study underscores

the importance of graphical presentation of data, and demon-

strates the importance of examining the data in each calen-

dar year when feasible [25].

GLMs, including Poisson regression

GLMs are a group of statistical models that provide a flexible

approach in studies of seasonality, because they allow data

to be fitted to various underlying mathematical functions [3].

A log-linear Poisson regression model is a commonly used
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underlying function [21]. The model may include not only

seasonality, but also covariates and secular trends, i.e.

logðdisease occurenceÞ ¼ Seasonal variationþ Secular trend

þ Covariates

The terms in this model are flexible; for example, the sea-

sonal variation term can be considered as several overlapping

sinusoid functions with different frequencies [26]. It allows

several annual peaks and adjustment for covariates [3]. The

method also allows computation of less biased peak-to-low-

ratios than geometrical models [26]. Despite the advantages

of these models as compared with the geometrical models,

their application and interpretation are more complex.

The following are some examples. Eber et al. examined

seasonal variation in the frequencies of Gram-negative BSIs

in a study that included >200 000 blood cultures from hospi-

talized patients in 132 US hospitals. Their Poisson model

accounted for long-term trends, but the estimation focused

on differences between the four seasons. The most pro-

nounced seasonal variation was found for Acinetobacter,

which was 52% more frequent during the summer months

than during the winter months [27]. This comparison of

mean frequencies during seasons will underestimate the

peak-to-low ratio.

A study from The Netherlands examined the secular

trend and seasonality of pertussis in 1996–2006 in age-strati-

fied models including seasonal (monthly) variation and secu-

lar variation, corrected for autocorrelation [28]. They found

seasonal variation with a peak incidence in August, except

for children aged 13–18 years, whose incidence peaked in

November. The peak-to-low ratio of the incidence ranged

from 1.36 (95% CI 1.12–1.66) to 2.86 (95% CI 2.30–3.55) in

the different age groups under study. There was a slight

increase in the occurrence of pertussis during the study per-

iod [28].

A study of 2810 E. coli BSIs during an 8-year period in

northern Israel compared the incidence rate between three

predefined periods by using a GLM that also accounted for

long-term trends in the study period [29]. The incidence rate

was highest during the summer, with an incidence rate ratio

of 1.19 (95% CI 1.12–1.26) as compared with the transitional

season (March, April, and November). The times of peak

and low were not reported, owing to the predefined time

periods [29]. This study also included a time-series analysis.

This kind of analysis takes into account the fact that adjacent

observations may be correlated [30]. A subtype of time-ser-

ies analysis, the autoregressive integrated moving average

(ARIMA) models, includes a component allowing observed

outcomes to depend on previous outcomes (the autoregres-

sive component) varying with lag-time (the moving average

component), and also allows the examination of long-term

trends (the integrative component) [30,31]. Such an ARIMA

model was used in a study of the seasonal variation of sepsis

[32].

An example of application: seasonal variation of meningo-

coccal disease

In this section, we use meningococcal disease in Denmark to

illustrate the application of the three classes of method.

Identification of hospitalizations with meningococcal disease. We

extracted the number of patients hospitalized with a diagno-

sis of meningococcal disease from 1995 to 2011 by using the

Danish National Registry of Patients (DNRP), which covers

all Danish hospitals. The DNRP has recorded >99% of acute-

care hospital admissions in Denmark since 1977 and admis-

sions to outpatient clinic and emergency room visits since

1995 [33,34]. DNRP records include dates of admission and

discharge, one primary diagnosis (main reason for hospitaliza-

tion), and up to 19 secondary diagnoses, treatments, and

procedures, including intensive-care observation/therapy.

Diagnoses were coded according to the International Classi-

fication of Diseases, 8th revision (ICD-8) to 1993, and have

been coded according to the 10th revision (ICD-10) since

1994. We used the ICD-10 code A39x to identify meningo-

coccal disease.

We identified 2407 patients hospitalized with meningococ-

cal disease during this 17-year period. Monthly counts are

plotted in Fig. 2. We weighted the number of monthly

counts to the length of the month by multiplying the count

by 30 divided by the length of the month.

FIG. 2. Example of monthly counts of meningococcal disease

weighted by the length of the month (black dots) and fitted to a sine

curve (red line/linear model) and to a log-linear Poisson model (blue

dashed line/log-linear model).
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Direct comparison of discrete time periods. First, we computed

rate ratio as the sum of time-weighted counts during the

winter (December–February) divided by that for the summer

(June–August), and computed 95% CIs [35]. Including the

entire period, the overall rate ratio was 1.75 (95% CI 1.56–

1.97). There were no major disparities between the included

years, although the estimates were imprecise for individual

years (Table 2).

Application of a geometrical model. Second, we used the geo-

metrical approach, fitting the weighted monthly counts to a

sine curve, using Episheet [23]. This assumes one yearly peak

and one low with 6 months in between [20]. The red line in

Fig. 2 shows such a fitted sine curve. The peak-to-low ratio

was 1.96 (95% CI 1.76–2.18) and the peak was on 18 Febru-

ary. Seasonality was evident for all years, although it was less

pronounced in a few years, e.g. 2002 and 2010 (Table 2).

Application of a GLM. Third, we used log-linear Poisson

regression (a GLM) [26]. The fitted log-linear function is

illustrated by a blue dashed line in Fig. 2. This method

revealed a peak-to-low ratio of 1.94 (95% CI 1.72–2.17) with

a peak on 17 February. Analyses stratified by calendar year

showed a pattern very similar to that obtained with the geo-

metrical model (Table 2).

Summary of the applied methods. In this example, all three

classes of method found seasonality with similar estimated

amplitudes. Although the simple comparison of winter and

summer led to the same overall conclusion, the method

overlooked seasonal variation in 2006 and 2007. The esti-

mated peak-to-low ratios, including CIs, were similar for

both the geometrical model and the GLM when the entire

study period was summed up. However, the geometrical

model overestimated the high peak-to-low ratio in 2001

(4.80 vs. 4.10) and underestimated the low peak-to-low ratio

in 2010 (1.18 vs. 1.33) as compared with the log-linear Pois-

son model, which should provide less biased estimates [26]

(Table 2).

Controlling for Seasonality in Studies of

Infectious Disease

When seasonal occurrence confounds another factor that is

being studied, seasonality should be controlled as for any

confounder. Like any confounder, seasonality will, broadly

speaking, be confounding if it is associated with both the

exposure and the outcome without being in the causal path-

way [36,37]. Thus, confounding must be evaluated for each

separate hypothesis and association studied. For example, in

a study of recent influenza infection as a risk factor for

meningococcal disease, both influenza and meningococcal dis-

ease occurred with seasonal variation, and it would therefore

be relevant to control for seasonal variation when studying

the effect of influenza infection on meningococcal risk [38].

In contrast, it would not be necessary to control for sea-

sonal variation in a study of diabetes as a risk factor menin-

gococcal disease, because the prevalence of diabetes is not

expected to change seasonally and would therefore not be a

confounder of a seasonal risk factor.

If a seasonally varying factor is a confounder, it should be

controlled for as for any confounder, e.g. by stratification,

matching, restriction, or adjustment in regression analyses.

TABLE 2. Output from the three classes of method applied to monthly counts of meningococcal disease in Denmark

Year

Comparison of discrete
time periods Geometrical model (Episheet)

Generalized linear model (log-linear
Poisson model)

Rate ratio,
winter/summer
(95% CI)

Peak-to-low
ratio (95% CI) Day of peak

Peak-to low
ratio (95% CI) Day of peak

1995 1.78 (1.23–2.56) 1.82 (1.31–2.53) 23 January 1.88 (1.31–2.71) 22 January
1996 1.36 (0.93–1.98) 1.46 (1.06–2.00) 20 March 1.55 (1.07–2.23) 17 March
1997 1.88 (1.30–2.71) 2.04 (1.46–2.86) 19 February 2.06 (1.44–2.95) 18 February
1998 2.31 (1.42–3.75) 2.11 (1.40–3.18) 6 February 2.18 (1.41–3.37) 5 February
1999 1.70 (1.09–2.64) 2.26 (1.53–3.35) 6 March 2.32 (1.54–3.50) 5 March
2000 1.69 (1.10–2.61) 1.81 (1.21–2.71) 19 February 1.91 (1.22–2.99) 18 February
2001 3.01 (1.87–4.84) 4.80 (2.60–8.85) 2 March 4.10 (2.60–6.46) 1 March
2002 1.98 (1.05–3.71) 1.36 (1.00–2.21) 23 January 1.53 (0.87–2.70) 22 January
2003 1.85 (1.10–3.13) 2.67 (1.53–4.66) 7 February 2.72 (1.57–4.71) 6 February
2004 1.67 (0.95–2.92) 1.59 (1.00–2.57) 1 January 1.75 (1.02–3.02) 1 January
2005 1.47 (0.85–2.54) 1.71 (1.05–2.79) 7 March 1.88 (1.09–3.26) 6 March
2006 1.13 (0.62–2.08) 1.63 (1.00–2.75) 29 March 1.81 (1.00–3.28) 29 March
2007 1.19 (0.60–2.38) 1.93 (1.08–3.47) 25 March 2.11 (1.11–4.00) 26 March
2008 2.26 (1.17–4.36) 2.09 (1.18–3.69) 30 December 2.26 (1.23–4.16) 29 December
2009 1.44 (0.88–2.37) 1.62 (1.00–2.69) 12 February 1.76 (0.99–3.14) 10 February
2010 1.38 (0.77–2.46) 1.18 (1.00–1.91) 12 February 1.33 (0.76–2.36) 9 February
2011 2.09 (1.19–3.69) 2.18 (1.29–3.69) 19 February 2.31 (1.33–4.03) 18 February
All years 1.75 (1.56–1.97) 1.96 (1.76–2.18) 18 February 1.94 (1.72–2.17) 17 February
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A simple way to address potential confounding would be to

repeat the analyses with stratification by months or seasons.

Conclusion

Seasonal variation commonly affects infectious disease occur-

rence. Studies with the aim of studying seasonal variation

should use appropriate methods to identify and report the

seasonal variation. The simplest class of methods compare

discrete time periods pairwise, but are limited by the need

to predefine seasons. More advanced methods are needed in

order to quantify the seasonal variation, e.g. by a peak-to-

low ratio. The geometrical models, e.g. fitting monthly fre-

quencies of disease to a sine curve, allow estimation of the

peak-to-low ratio and identification of the timing of the peak.

GLMs, such as the log-linear Poisson model, are more com-

plicated to apply, but allow the inclusion of covariates in the

model, and provide more precise estimates of the peak-to-

low ratio and its CI than the geometrical model. In our

example of meningococcal disease, the three methods

reached almost the same conclusion about seasonality, which

may be the case in large studies with moderate seasonal vari-

ation. It is seldom necessary to adjust for confounding in

studies of seasonal variation, because the prevalence of com-

mon confounders rarely changes during the seasons.
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