Automorphisms of cubic Cayley graphs of order $2pq$

Cui Zhang, Jin-Xin Zhou, Yan-Quan Feng*

Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China

1. Introduction

Let G be a permutation group on a set Ω and $\alpha \in \Omega$. Denote by G_α the stabilizer of α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if $G_\alpha = 1$ for every $\alpha \in \Omega$ and regular if G is transitive and semiregular. Throughout this paper a graph means a finite, simple, connected and undirected one. For a graph X, we use $V(X)$, $E(X)$ and $\text{Aut}(X)$ to denote its vertex set, edge set and full automorphism group, respectively. For $u, v \in V(X)$, $\{u, v\}$ is the edge incident to u and v in X. An s-arc in a graph is an ordered $(s + 1)$-tuple (v_0, v_1, \ldots, v_s) of vertices of the graph such that any two consecutive vertices are adjacent and any three consecutive vertices are distinct. A 1-arc is called an arc for short and a 0-arc is a vertex. A graph X is said to be s-arc-transitive if $\text{Aut}(X)$ is transitive on the set of s-arcs in X. In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A symmetric graph X is said to be s-regular if the automorphism group $\text{Aut}(X)$ acts regularly on the set of s-arcs in X.

Let G be a finite group and S a subset of G such that $1 \not\in S$. The Cayley digraph $\text{Cay}(G, S)$ on G with respect to S is defined to have vertex set $V(\text{Cay}(G, S)) = G$ and arc set $E(\text{Cay}(G, S)) = \{(g, sg) \mid g \in G, s \in S\}$. If $S = S^{-1}$ then $\text{Cay}(G, S)$, called a Cayley graph, is viewed as a graph by identifying two opposite arcs with one edge. It is known that a Cayley digraph $\text{Cay}(G, S)$ is connected if and only if S generates G. Furthermore, $\text{Aut}(G, S) = \{\alpha \in \text{Aut}(G) \mid S^\alpha = S\}$ is a subgroup of the automorphism group $\text{Aut}(\text{Cay}(G, S))$ of $\text{Cay}(G, S)$. Given a $g \in G$, define the permutation $R(g)$ on G by $x \mapsto xg, x \in G$. Then $R(G) = \{R(g) \mid g \in G\}$, called the right regular representation of G, is a permutation group isomorphic to G. The Cayley digraph $\text{Cay}(G, S)$ is vertex-transitive because it admits $R(G)$ as a regular subgroup of the automorphism group $\text{Aut}(\text{Cay}(G, S))$. A Cayley digraph $\text{Cay}(G, S)$ is said to be normal if $R(G)$ is normal in $\text{Aut}(\text{Cay}(G, S))$. Xu [30, Proposition 1.5] proved that $\text{Cay}(G, S)$ is normal if and only if $\text{Aut}(\text{Cay}(G, S))_1 = \text{Aut}(G, S)$, where $\text{Aut}(\text{Cay}(G, S))_1$ is the stabilizer of 1 in $\text{Aut}(\text{Cay}(G, S))$. A graph X is isomorphic to a Cayley graph on G if and only if $\text{Aut}(X)$ has a subgroup isomorphic to G, acting regularly on vertices (see [3, Lemma 16.3] or [26, Lemma 4]).

Received 19 August 2007
Received in revised form 19 May 2008
Accepted 12 June 2008
Available online 26 July 2008

Keywords:
Symmetric graph
Cayley graph
Normal Cayley graph

© 2008 Elsevier B.V. All rights reserved.
the graph is neither the empty graph nor the complete graph. Du et al. [11] and Dobson et al. [9] determined the normality of Cayley graphs on groups of order twice a prime and prime square, respectively. Wang et al. [27] obtained all disconnected normal Cayley graphs. Let Cay(G, S) be a connected cubic Cayley graph on a non-abelian simple group G. Praeger [23] proved that if \(N_{\text{Aut}(\text{Cay}(G, S))}(R(G)) \) is transitive on edges then the Cayley graph Cay(G, S) is normal, and Fang et al. [12] proved that the vast majority of connected cubic Cayley graphs on non-abelian simple groups are normal. Recently, Wang and Xu [28] determined the normality of 1-regular tetravalent Cayley graphs on dihedral groups and Feng and Xu [15] proved that every connected tetravalent Cayley graph on a regular p-group is normal when \(p \neq 2, 5 \). For more results on the normality of Cayley graphs, we refer the reader to [13, 16, 19, 29, 30]. The normality of cubic Cayley graphs of order 2\(p^3 \) and 4\(p \) was determined in [31, 32] and in this paper we determine the normality of cubic Cayley graphs of order 2\(pq \) for distinct odd primes \(p \) and \(q \). Furthermore, all cubic non-symmetric Cayley graphs of order 2\(pq \) are classified, while the classifications of cubic symmetric graphs and vertex-transitive non-Cayley graphs of order 2\(pq \) were given in [33].

Let \(\mathbb{Z}_n \) be the cyclic group of order \(n \), as well as the ring of integers modulo \(n \). Denote by \(\mathbb{Z}_n^* \) the multiplicative group of \(\mathbb{Z}_n \) consisting of numbers coprime to \(n \) and by \(D_{2n} \) the dihedral group of order \(2n \). For two groups \(M \) and \(N \), \(N \leq M \) means that \(N \) is a subgroup of \(M \) and \(N < M \) means that \(N \) is a proper subgroup of \(M \). By elementary group theory, we know that, up to isomorphism, there are six groups of order 2\(pq \) (\(p > q > 2 \)) defined as

\[
\begin{align*}
G_1(2pq) &= \langle a \rangle, \\
G_2(2pq) &= \langle a, b \mid a^p = b^2 = 1, b^{-1}ab = a^{-1} \rangle, \\
G_3(2pq) &= \langle a, b, c \mid a^p = b^2 = c^2 = 1, ab = ba, cac = a^{-1}, bc = cb \rangle, \\
G_4(2pq) &= \langle a, b, c \mid a^p = b^3 = c^2 = 1, ab = ba, ac = ca, cbc = b^{-1} \rangle, \\
G_5(2pq) &= \langle a, b, c \mid a^p = b^3 = c^2 = 1, ac = ca, bc = cb, b^{-1}ab = a' \rangle, \\
G_6(2pq) &= \langle a, b, c \mid a^p = b^3 = c^2 = 1, cac = a^{-1}, bc = cb, b^{-1}ab = a' \rangle,
\end{align*}
\]

where \(r \) is an element of order \(q \) in \(\mathbb{Z}_p^* \).

2. Preliminaries

For a subgroup \(H \) of a group \(G \), denote by \(C_G(H) \) the centralizer of \(H \) in \(G \) and by \(N_G(H) \) the normalizer of \(H \) in \(G \). Then \(C_G(H) \) is normal in \(N_G(H) \).

Proposition 2.1 ([18, I, Theorem 4.5]). The quotient group \(N_G(H)/C_G(H) \) is isomorphic to a subgroup of the automorphism group \(\text{Aut}(H) \) of \(H \).

The following proposition is a basic fact in permutation group theory.

Proposition 2.2 ([29, Proposition 4.4]). Every transitive abelian group \(G \) on a set \(\Omega \) is regular and the centralizer \(C_G(\Omega) \) of \(G \) in the symmetric group \(S_\Omega \) is \(G \).

In view of [7, pp.285, summary], one may extract the following proposition.

Proposition 2.3. Every maximal subgroup of \(\text{PSL}(2, 7) \) is isomorphic to \(\mathbb{Z}_7 \times \mathbb{Z}_3 \) or \(S_5 \). Let \(p = 7, 11 \) or 23. All subgroups of \(\text{PGL}(2, p) \) of order \(p(p - 1) \) are conjugate and isomorphic to \(\mathbb{Z}_p \times \mathbb{Z}_{p-1} \), a Frobenius group of degree \(p \).

The following proposition is known as Burnside’s \(p \)-\(q \) Theorem.

Proposition 2.4 ([25, Theorem 8.5.3]). Let \(p \) and \(q \) be primes and let \(m \) and \(n \) be non-negative integers. Then, any group of order \(p^m q^n \) is solvable.

Let \(p \) and \(q \) be distinct odd primes. The following result gives the number of solutions of the equation \(x^2 + x + 1 = 0 \) in \(\mathbb{Z}_{pq} \).

Lemma 2.5. Let \(p > q \) be odd primes and \(\mathcal{O}_{pq}^3 \) the set of solutions of the equation \(x^2 + x + 1 = 0 \) in \(\mathbb{Z}_{pq} \). Then,

\[
|\mathcal{O}_{pq}^3| = \begin{cases}
2 & \text{if } q = 3, \\
4 & \text{if } (p - 1) \text{ and } 3 \mid (q - 1), \\
0 & \text{otherwise}.
\end{cases}
\]

Proof. Since \(x^2 - 1 = (x - 1)(x + 1) \), a solution of the equation \(x^2 + x + 1 = 0 \) must be an element of order 3 in \(\mathbb{Z}_{pq}^* \), implying that either \(3 \mid (p - 1) \) and \(q = 3 \) or \(3 \mid (p - 1) \) and \(3 \mid (q - 1) \). For \(3 \mid (p - 1) \) and \(q = 3 \), there are two elements...
of order 3 in \mathbb{Z}_p^3, say x_1 and $x_2 = x_1^2$. Then, $x_i = 1$ in \mathbb{Z}_3 for each $i = 1, 2$. Since $(x_i - 1)(x_i^2 + x_i + 1) = x_i^3 - 1 = 0$ in \mathbb{Z}_3, it follows that x_1 and x_2 are solutions of $x^2 + x + 1 = 0$ in \mathbb{Z}_3. That is $|\mathcal{O}_3^2| = 2$. For $3 \mid (p - 1)$ and $3 \mid (q - 1)$, a solution k of $x^2 + x + 1 = 0$ in \mathbb{Z}_p implies that k is an element of order 3 in both \mathbb{Z}_p^* and \mathbb{Z}_q^*. Conversely, for every element, say k_1, of order 3 in \mathbb{Z}_p^* and every element, say k_2, of order 3 in \mathbb{Z}_q^*, there is a unique element k in $\mathbb{Z}_p \times \mathbb{Z}_q$ satisfying the equation $x^2 + x + 1 = 0$ such that $k_1 = k_2$ (mod p) and $k = k_3$ (mod q) and this can be easily proved by Eq. (2) in the proof of Lemma 3.1 in [21] which claims that for any $i \in \mathbb{Z}_p$ and $j \in \mathbb{Z}_q$, $(i + p) \cap (j + q) = 1$, where $P = \{sp \mid s \in \mathbb{Z}_q\}$ and $Q = \{sq \mid s \in \mathbb{Z}_p\}$. It follows that $|\mathcal{O}_p^2| = 4$ because there are exactly two elements of order 3 in \mathbb{Z}_p^* and in \mathbb{Z}_q^*, respectively.

Let $p > q$ be primes such that $3 \mid (p - 1)$ and $3 \mid (q - 1)$. By Lemma 2.5, there are exactly two elements of order 3, say λ and λ^2, in the ring \mathbb{Z}_3p, and exactly four elements, say $\lambda_1, \lambda_2, \lambda_3$ and λ_4, of order 3 satisfying the equation $x^3 + x + 1 = 0$ in \mathbb{Z}_p. Define

$$\mathcal{S}_{6p} = \text{Cay}(D_{6p}, \{b, ba, ba^{-1}\}),$$
$$\mathcal{S}_{2pq} = \text{Cay}(D_{2pq}, \{b, ba, ba^{-1}\}),$$
$$\mathcal{S}_{2pq} = \text{Cay}(D_{2pq}, \{b, ba, ba^{-2}\}),$$

where $D_{2n} = \langle a, b \mid a^n = b^2 = 1, bab = a^{-1} \rangle$ with $n = 3p$ or pq. It is easy to show that \mathcal{S}_{6p}, \mathcal{S}_{2pq} and \mathcal{S}_{2pq} are independent of the choices λ, λ_1 and λ_2.

Take $H_1 = G_6(2 \cdot 5 \cdot 11) = G_6(110)$ and let $S_1 = \{c, abc, (abc)^{-1}\}$ be a subset of H_1. Take $H_2 = G_6(2 \cdot 11 \cdot 13) = G_6(506)$ and let $S_2 = \{c, ab^3c, (ab^3c)^{-1}\}$ be a subset of H_2. In the groups H_1 and H_2 given in Eq. (1), set $r = 3$ because 3 is an element of order 5 in \mathbb{Z}_3^* and an element of order 11 in \mathbb{Z}_{11}^*. Define

$$CF_{110} = \text{Cay}(H_1, S_1),$$
$$\mathcal{S}_{506} = \text{Cay}(H_2, S_2).$$

With the help of software package MAGMA [4], one may easily check $Aut(CF_{110}) \cong \text{PGL}(2, 11)$ and $Aut(\mathcal{S}_{506}) \cong \text{PGL}(2, 23)$. By [5], there is a unique cubic 3-regular graph of order 110 and a unique cubic 4-regular graph of order 506. It follows that these two graphs must be CF_{110} and \mathcal{S}_{506} because $|\text{PGL}(2, 11)| = 1320$ and $|\text{PGL}(2, 23)| = 12144$, of which the first is called Coxeter–Frucht graph (see [6]). Note that $\text{PGL}(2, 11)$ and $\text{PGL}(2, 23)$ have subgroups of order 110 and 506 by Proposition 2.3 and since these subgroups are Frobenius, they are isomorphic to $G_6(110)$ and $G_6(506)$, respectively. A classification of cubic symmetric graphs of order 2pq was given in [33] and one may easily extract those which are Cayley.

Proposition 2.6. Let $X = \text{Cay}(G, S)$ be a connected cubic symmetric Cayley graph on a group G of order 2pq, where $p > q$ are odd primes. Then, X is s-regular for $s = 1, 3$ or 4. Furthermore,

1. X is 1-regular if and only if either $q = 3$ and $3 \mid (p - 1)$ or $3 \mid (p - 1)$ and $3 \mid (q - 1)$. If X is 1-regular then it is isomorphic to \mathcal{S}_{6p} for $q = 3$ and $3 \mid (p - 1)$, or to \mathcal{S}_{2pq} or \mathcal{S}_{2pq} for $3 \mid (p - 1)$ and $3 \mid (q - 1)$;
2. X is 3-regular if and only if it is isomorphic to CF_{110}. In this case, $G = G_6(110), S \equiv \{c, abc, (abc)^{-1}\}$ (take $r = 3$) and $Aut(X) \equiv \text{PGL}(2, 11)$;
3. X is 4-regular if and only if it is isomorphic to \mathcal{S}_{506}. In this case, $G = G_6(506), S \equiv \{c, ab^3c, (ab^3c)^{-1}\}$ (take $r = 3$) and $Aut(X) \equiv \text{PGL}(2, 23)$.

Let $X = \text{Cay}(G, S)$ be a Cayley graph on G and $A = Aut(X)$. It is known that $Aut(G, S) = \{a \in Aut(G) \mid S^a = S\}$ is a subgroup of A. Normal Cayley graphs are those which have the smallest possible automorphism groups.

Proposition 2.7 ([30, Propositions 1.3 and 1.5]). The Cayley graph $X = \text{Cay}(G, S)$ is normal if and only if $A_1 = Aut(G, S)$ if and only if $A = R(G) \rtimes Aut(G, S)$, where A_1 is the stabilizer of 1 in A and $R(G)$ is the right regular representation of G.

By [10, Theorem 1 and Lemma 3.4], we have the following proposition, which can also be deduced from [14, 22].

Proposition 2.8. Let $D_{2n} = \langle a, b \mid a^n = b^2 = 1, bab = a^{-1} \rangle$ be a dihedral group of order $2n$. A cubic Cayley graph $\text{Cay}(D_{2n}, S)$ on D_{2n} is 1-regular if and only if S is equivalent to $\{b, ba, ba^{-k}\}$ for $n \geq 13$ and $k^2 + k + 1 \equiv 0 (\text{mod } n)$. Further, these 1-regular Cayley graphs are normal.

Let X and Y be two graphs. The lexicographic product $X[Y]$ is defined as the graph with vertex set $V(X[Y]) = V(X) \times V(Y)$ such that for any two vertices $u = (x_1, y_1)$ and $v = (x_2, y_2)$ in $V(X[Y])$, u is adjacent to v in $X[Y]$ whenever $(x_1, x_2) \in E(X)$ or $x_1 = x_2$ and $(y_1, y_2) \in E(Y)$. Denote by K_n the complete graph of order n, C_n the cycle of length n, and $K_{n, n} - nK_2$ the graph by deleting a one factor from the complete bipartite graph $K_{n, n}$ of order $2n$. The following proposition gives all non-normal connected Cayley graphs of valency at most 4 on cyclic groups.

Proposition 2.9 ([2, Corollary 1.3]). All connected Cayley graphs with valency at most 4 on a finite cyclic group are normal, except for $G = \mathbb{Z}_4$ and $X = K_4, G = \mathbb{Z}_6$ and $X = K_3, G = \mathbb{Z}_5$ and $X = K_5, G = \mathbb{Z}_{2n}$ and $X = C_m[2K_1](m \geq 3)$, or $G = \mathbb{Z}_{10}$ and $X = K_{5, 5} - 5K_2$.

Given a subset S of a group G with $1 \not\in S$, we call S a CI-subset of G and $\text{Cay}(G, S)$ a CI-graph, if $\text{Cay}(G, S) \cong \text{Cay}(G, T)$ implies that S and T are equivalent, that is, there exists a $\gamma \in \text{Aut}(G)$ such that $S' = T$. The following result is a well-known criterion for CI-subset due to Babai [1].

Proposition 2.10. Let G be a finite group and S a subset of G not containing the identity element 1. Let $X = \text{Cay}(G, S)$ and $A = \text{Aut}(X)$. Then S is a CI-subset of G if and only if for any $\sigma \in S_3$ with $\sigma^{-1}R(G)\sigma \preceq A$, there exists an $\alpha \in A$ such that $\sigma^{-1}R(G)\sigma = \alpha^{-1}R(G)\alpha$, where S_3 denotes the symmetric group on G.

Qu and Yu [24] investigated the CI-property of Cayley graphs on dihedral groups.

Proposition 2.11 ([24, Theorem 3.5]). Let G be a dihedral group of order $2n$ with n odd and S a subset of G not containing the identity 1. If $|S| \leq 3$ then S is a CI-subset.

3. Automorphism groups of cubic Cayley graphs of order $2pq$

In this section, we shall determine the automorphism groups of cubic Cayley graphs of order $2pq$ for two distinct odd primes p and q. First we prove a lemma which will be used later.

Lemma 3.1. Let G be a regular subgroup of $\text{Aut}(\mathcal{C}_{6p})$. Then, $G \cong G_2(6p)$ or $G_6(6p)$. Furthermore, as a Cayley graph on $G_2(6p)$, \mathcal{C}_{6p} is normal and as a Cayley graph on $G_6(6p)$, \mathcal{C}_{6p} is non-normal and $\mathcal{C}_{6p} \cong \text{Cay}(G_6(6p), S)$ with $S \equiv \{c, abc, (abc)^{-1}\}$.

Proof. Let $X = \mathcal{C}_{6p}$ and $A = \text{Aut}(X)$. We first claim that A contains regular subgroups isomorphic to $G_6(6p)$. By definition of the graph \mathcal{C}_{6p}, one may assume that $X = \text{Cay}(G_2(6p), S)$, where $G_2(6p) = \langle a, b \mid a^{6p} = b^2 = 1, b^{-1}ab = a^{-1} \rangle$ and $S = \{b, ba, ba^{-1}\}$ with $k^2 + k + 1 = 0$ in \mathbb{Z}_{3p}. Clearly, k has order 3 in \mathbb{Z}_{3p}. By Proposition 2.8, X is regular and $\text{Cay}(G_2(6p), S)$ is normal. Thus, $A = \text{Aut}(G_2(6p)) \times \langle \alpha \rangle$, where α is an automorphism of order 3 of $G_2(6p)$ induced by $a^\alpha = a$ and $b^\alpha = ba$.

Note that $R(a^\alpha) \not\leq A$. Since each subgroup of $\langle R(a^\alpha) \rangle$ is characteristic in $R(a^\alpha)$, one has $R(a^\alpha) \not\leq A$ and $R(a^\alpha) \not\leq A$. Thus, $R(a^\alpha)$ has order 3. Note that $k^2 + k + 1 = 0$ (in \mathbb{Z}_{3p}) implies that $k = 1$. It follows that $k^2 \equiv 1 \pmod{3}$. Clearly, $k^2 \equiv 1 \pmod{3}$ because $k^2 \equiv 1 \pmod{3}$. Thus, $a^{t-k}b$ has order 3 and since $3 | (p - 1)$, $a^{t-k}b$ also has order 3. Now it is easy to show that $R(a^\alpha)) R(a^\alpha) = R(b^\alpha)$. Furthermore, $R(a^\alpha) R(a^\alpha) = R(a^\alpha)^3 = (R(a^\alpha))^3$ and $R(a^\alpha) R(a^\alpha) = R(a^\alpha)^3 = (R(a^\alpha))^3$. Thus, $H = \langle R(a^\alpha), R(a^\alpha), R(a^\alpha) \rangle \cong G_6(6p)$. If the stabilizer H of the identity 1 in H is not trivial, then $H_1 = \text{Aut}(G_2(6p), S) = \langle \alpha \rangle$, forcing $A = H$, a contradiction. Thus, H is regular on $\text{Aut}(X)$, that is, A contains regular subgroups isomorphic to $G_6(6p)$, as claimed.

Let M be an arbitrary regular subgroup of A. If $M \cong G_2(6p)$ then Proposition 2.8 implies that X, as a Cayley graph on $G_2(6p)$, is normal. Now assume $M \cong G_2(6p)$. Since $|A| = 18p$, one has $A = \text{Aut}(G_2(6p))$, implying that $|M \cap \text{Aut}(G_2(6p))| = 2p$. Since $G_2(6p)$ has no normal subgroups of order 2p, M is not normal in A, namely, X, as a Cayley graph on $M \cong G_2(6p)$, is non-normal. Further, since $|M \cap G_2(6p)| / 2p$ and $R(a^\alpha)$ is a normal Sylow p-subgroup of A, one has $R(a^\alpha) \not\leq M$. As the centralizer $C_A(R(a^\alpha))$ of $R(a^\alpha)$ in A is $\langle R(a^\alpha) \rangle \cong \mathbb{Z}_{3p}$, one has $C_A(R(a^\alpha)) = \mathbb{Z}_{3p} \cap C_A(R(a^\alpha)) = (R(a^\alpha))$. For any given group in Eq. (1), if the centralizer of a Sylow p-subgroup of the group is the Sylow p-subgroup itself then the group must be $G_6(6p)$. It follows that $M \cong G_6(6p)$. Without loss of generality, let $M = G_6(6p) = \langle a, b, c \mid a^{6p} = b^2 = c^2 = 1, cac = a^{-1}, bc = cb, b^{-1}ab = da \rangle$ with r an element of order 3 in \mathbb{Z}_{3p}, and let $X = \text{Cay}(G_6(6p), S)$. Since all involutions of $G_6(6p)$ are conjugate and are contained in (a, c), by the connectivity of X, one may assume $S = \{c, y, y^{-1}\}$, where y has order 3 or 6. If y has order 3 then there is a 3-cycle $(1, y, y^{-1})$, passing through 1, y and y^{-1}, but there is no 3-cycle passing through the vertices 1, c, y, contrary to the symmetry of X. Thus, y has order 6 and one of y and y^{-1} has form a^ib^j, $1 \leq i \leq 6$. Since the map $a \mapsto a^i, b \mapsto b^j, c \mapsto c$ induces an automorphism of $G_6(6p)$, one has $S \equiv \{c, abc, (abc)^{-1}\}$. □

The following is the main result of this section.

Theorem 2.3. Let $p > q$ be odd primes and let $X = \text{Cay}(G, S)$ be a connected cubic Cayley graph of order $2pq$. Then either $\text{Aut}(X) \cong \text{Aut}(G, S)$ or one of the following holds:

1. $G = G_6(6p)$ with $3 | (p - 1)$, $S \equiv \{c, abc, (abc)^{-1}\}$ and $\text{Aut}(X) \cong G_6(6p) / 3$;
2. $G = G_6(110), S \equiv \{c, abc, (abc)^{-1}\}$ (take $r = 3$) and $\text{Aut}(X) \cong \text{PGL}(2, 11)$;
3. $G = G_5(506), S \equiv \{a, b, c \mid (abc)^{-1}\}$ (take $r = 3$) and $\text{Aut}(X) \cong \text{PGL}(2, 23)$;
4. $G = G_4(42), S \equiv \{c, ab, (ab)^{-1}\}$ and $\text{Aut}(X) \cong \text{PGL}(2, 7)$.

Proof. Let $A = \text{Aut}(X)$. Assume that $\text{Aut}(X) > R(G) \times \text{Aut}(G, S)$, that is, $R(G)$ is not normal in A. We deal with two cases depending on the symmetry of X.

Case I: X is symmetric.

By Proposition 2.6, X is isomorphic to $\text{CF}_{110}, \mathcal{C}_{506}, \mathcal{C}_{6p}, \mathcal{C}_{2pq}$ or \mathcal{C}_{2pq}. If $X \cong \mathcal{C}_{6p}$, then by Lemma 3.1, $G \cong G_6(6p)$ and $S \equiv \{c, abc, (abc)^{-1}\}$, that is the case (1) in the theorem. Assume $X \cong \text{CF}_{110}$. Then $\text{Aut}(X) \cong \text{PGL}(2, 11)$, and by Proposition 2.3, one may assume that $X = \text{Cay}(G_6(110), S)$, where $G_6(110) = \langle a, b, c \mid a^{11} = b^5 = c^2 = 1, cac = \rangle$. The remaining cases are similar.
Proposition 2.3

and so there are seven involutions in G. Then $|X| \leq 30$, implying that X cannot be a Cayley graph on $G_i(2pq)$ for $i = 1, 3, 4, 5$ or 6.

Case II: X is non-symmetric.

In this case, the stabilizer A_v of $v \in X$ in A is a 2-group and hence $|A| = 2^f \cdot p \cdot q$ with $f \geq 2$. We claim that A has no normal 2-subgroups. Suppose to the contrary that H is a normal 2-subgroup of A. Let X_H be the quotient graph of X relative to H, that is, the graph with vertices the orbits of H in X and with two orbits adjacent if there is an edge in X between those two orbits. Let K be the kernel of A acting on $V(X_H)$. Then, $H \leq K$ and A/K is transitive on $V(X_H)$. Since $|V(X_H)| = 2pq$, every orbit of H in $V(X)$ has length 2, implying $|V(X_H)| = pq$. As X has valency 3 and $H \leq K$, X_H has valency 2 or 3, and since pq is odd, X_H has valency 2. By the connectivity of X, X_H is a cycle of length pq, say $V(X_H) = \{B_0, B_1, \ldots, B_{pq-1}\}$, where B_i is adjacent to B_{i+1} for each $i \in \mathbb{Z}_{pq}$. If there is no edge in each B_i, then one may assume that each vertex in B_i is adjacent to one vertex in B_0 and two vertices in B_2. By the transitivity of A/K on $V(X_H)$, the length of the cycle X_H must be even, contrary to the fact that pq is odd. If there is an edge in some B_i, then there is an edge in each B_i, $0 \leq i \leq pq - 1$, because of the transitivity of A/K on $V(X_H)$. Since K fixes each orbit of H, K is isomorphic to H and hence $|A : A/K| = 2$, implying $|A/K| \leq 2$, a contradiction.

 fermented. By the transitivity of A/K on $V(X_H)$, since K fixes each orbit of H, K is isomorphic to H and hence $|A : A/K| = 2$, implying $|A/K| \leq 2$, a contradiction.

Assume that N is solvable. Then $N \cong Z_p$ or Z_q, by Proposition 2.4, A/N is solvable. Let $C = C_4(N)$. By Proposition 2.1, $A/C \leq \text{Aut}(N) \cong Z_p$ or Z_q. Clearly, $N \cong C$. There are two subcases: $N = C$ and $N < C$, that is, N is a proper subgroup of C.

Suppose $N = C$. Then $A/N \leq \text{Aut}(N) \cong Z_p$ or Z_q. Since $|N/C| = 2$, one has $N \cong Z_p$ and $A/N \leq Z_p$. Let X_H be the quotient graph of X relative to the orbits of N, and K the kernel of A acting on $V(X_H)$. Then, $N \leq K$ and A/K is transitive on $V(X_H)$. Since N is normal in A, X_H has valency 3 at most, and since $N \cong Z_p$, one has $|V(X_H)| = 2q > 1$, implying that X_H has valency 2 or 3. If X_H has valency 3 then K has trivial stabilizers and hence $K = N$. By Proposition 2.2, A/N is regular on $V(X_H)$ because $A/N \leq Z_p$. It follows that $|A| = 2pq$, forcing $R(G) \not\leq A$, a contradiction. If X_H has valency 2 then X_H is a cycle of length $2pq$ because of the connectivity of X. Let $V(X_H) = \{B_0, B_1, B_2, \ldots, B_{pq-1}\}$ with B_i adjacent to B_{i+1} for each $i \in \mathbb{Z}_{pq}$. If there is an edge of X in each B_i, then the induced subgraph (B_i) of B_i in X must be a cycle of length p because $|B_i| = p$ is odd. In this case, X_H has valency 1, a contradiction. Thus, there is no edge in each B_i, and one may assume that each vertex in B_i connects one vertex in B_0 and two vertices in B_2. It follows that the induced subgraph $(B_0 \cup B_1)$ of $B_0 \cup B_1$ in X is a perfect matching and the induced subgraph $(B_1 \cup B_2)$ of $B_1 \cup B_2$ in X is a cycle of length $2p$ because $|B_i| = p$ is odd. Thus, A/K is not arc-transitive on X_H, and hence $A/K < \text{Aut}(X)/N \cong D_{4pq}$, implying $|A/K| = 2q$ by the vertex-transitivity of A/K on $V(X_H)$. Further, K acts faithfully on B_i and $K < \text{Aut}(B_1 \cup B_2) \cong D_{4pq}$. It follows that $|K| \leq 2p$ and hence $|A| \leq 4pq$. Thus, $R(G) \leq A$ because $|A : R(G)| \leq 2$, a contradiction.

Suppose $N < C$. Take a minimal normal subgroup of A/N, say M/N, in C/N. Since A/N is solvable, M/N is elementary abelian. It follows that either M/N is a 2-group, or $M/N \cong Z_2$ or Z_3. For the former, one has $|M| = 2^f \cdot p$ or $2^f \cdot q$ for some integer $f \geq 1$. Since $M \leq C$, a Sylow 2-subgroup of M is characteristic in M, and hence normal in A because $M \leq A$. This is impossible because A has no normal 2-subgroups. Thus, $M/N \cong Z_2$ or Z_3, and hence $M \cong Z_2$ or Z_3 because $M \leq C$. Clearly, $M \leq C_4(M)$. If $M = C_4(M)$ then, by Proposition 2.1, $A/M \leq \text{Aut}(M) \cong Z_2 \times Z_2$. Since $M \leq A$, one has $M \leq R(G)$, implying $R(G)/M \leq A/M$, that is, $R(G) \leq A$, a contradiction. If $M < C_4(M)$ then $C_4(M)/M$ must be a 2-group. It follows that $C_4(M) = M \times Q$, where Q is a Sylow 2-subgroup of $C_4(M)$. Thus, Q is characteristic in $C_4(M)$ and normal in A because $C_4(M) \leq A$, contrary to the fact that A has no normal 2-subgroups.

Assume that N is solvable. Since $|N| = 2^f \cdot p \cdot q$ and $p > q > 2$, N must be a non-abelian simple and by [17, pp. 12–14], N is one of the following groups:

$$A_5, A_6, PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3, 3) \text{ and } PSU(4, 2).$$

Since $p^2 \nmid |N|$ and $q^2 \nmid |N|$, by checking the orders of the above groups, one has $N = A_5$ or $PSL(2, 7)$. Let $C = C_4(N)$. Then $N \cap C = 1$ because N is simple. It follows that either C is a 2-subgroup or $C = 1$. Thus, $C = 1$ because A has no normal 2-subgroups, and by Proposition 2.1, one has $A \leq \text{Aut}(N)$. If $N = A_5$ then $A = A_5$ or S_5. However, both S_5 and A_5 have no subgroups of order 30, implying that X is a non-Cayley graph, a contradiction. It follows that $N = PSL(2, 7)$ and $A \leq \text{Aut}(N) \cong PGL(2, 7)$. Since X is a Cayley graph, A contains a regular subgroup of order 42 and by Proposition 2.3, $PGL(2, 7)$ has no subgroup of order 42, implying $A = PGL(2, 7)$. By Proposition 2.3, every subgroup of order 42 in $PGL(2, 7)$ is conjugate to $G_2(42)$. Without loss of generality, let $G = G_2(42) = \{a, b, c | a^2 = b^2 = c^2 = 1, cac = a^{-1}, bc = cb, b^{-1}ab = a^b \}$. Clearly, all involutions in G are conjugate and hence one may assume $c \in S$. Note that the centralizer of c in G has order 6 and so there are seven involutions in G, of which all are contained in (a, c). Since S generates G, $S = \{c, y, y^{-1}\}$, where y has
order 3 or 6. If y has order 6 then one of y and y^{-1} has the form $a'bc$, $1 \leq i \leq 6$, and since the map $a \mapsto a'$, $b \mapsto b$, $c \mapsto c$ induces an automorphism of $G_0(6p)$, one may further assume $S = \{c, abc, (abc)^{-1}\}$. If y has order 3, one of y and y^{-1} has the form $a'b$, $1 \leq i \leq 6$, and similarly one may assume $S = \{c, ab, (ab)^{-1}\}$. With the help of computer software package MAGMA [4], $|\text{Aut}(X)| = 3 \cdot 42$ for $S = \{c, abc, (abc)^{-1}\}$ and $\text{Aut}(X) \cong \text{PGL}(2, 7)$ for $S = \{c, ab, (ab)^{-1}\}$. For the former, X is arc-transitive, a contradiction, and for the latter, X is not normal because PGL(2, 7) has no normal subgroup of order 42, which is the Case (4) in the theorem. □

4. Cubic non-symmetric Cayley graphs of order $2pq$

Let $p > q$ be odd primes. In this section we shall classify connected cubic non-symmetric Cayley graphs of order $2pq$. For $x \in \mathbb{Z}_{2pq}$ denote x^2 the inverse of x in the multiplicative group \mathbb{Z}_{2pq}. Let Θ_{pq}^3 be the set of solutions of the equation $x^2 + x + 1 = 0$ in \mathbb{Z}_{2pq}. By Lemma 2.5, $|\Theta_{pq}^3| = 2$ for $3 | (p - 1)$ and $q = 3$, $|\Theta_{pq}^3| = 4$ for $3 | (p - 1)$ and $3 | (q - 1)$, and $|\Theta_{pq}^3| = 0$ otherwise. There are exactly three involutions in \mathbb{Z}_{2pq}^*, denoted by λ_1, λ_2 and λ_3. Set

$$A = \{\lambda_1, \lambda_2, \lambda_3\},$$
$$\Theta = \mathbb{Z}_{2pq} - \{(0, 1), 2^{-1}, \lambda_1, \lambda_2, \lambda_3, 1 - \lambda_1, 1 - \lambda_2, 1 - \lambda_3\} \cup \{-\Theta_{pq}^3\}.$$ (2)

Now we introduce some cubic non-symmetric Cayley graphs of order $2pq$.

Example 4.1. Let $G = \langle a, b | a^p = b^q = 1, b^{-1}ab = a^{-1} \rangle$. Define

$$C_{2pq}^1 = \text{Cay}(G, \{a, a^{-1}\}),$$
$$C_{2pq}^2, C_{2pq}^3 = \text{Cay}(G, \{ba, ba^{-1}\}), \lambda \in \Lambda$$
$$C_{2pq}^3 = \text{Cay}(G, \{ba, ba^\lambda\}), \mu \in \Theta.$$

Then we have the following:

(1) For each $\lambda \in \{2^{-1}, 1 - \lambda, 1 - \lambda | \lambda \in \Lambda\}$, the Cayley graph $\text{Cay}(G, \{ba, ba^\lambda\})$ is isomorphic to one of $C_{2pq}^1, \lambda \in \Lambda$.

(2) The graphs $C_{2pq}^1, C_{2pq}^2, C_{2pq}^3$ are connected cubic non-symmetric Cayley graphs of order $2pq$. Moreover, $\text{Aut}(C_{2pq}^1) \cong \text{Aut}(C_{2pq}^2) \cong G \times \mathbb{Z}_2$ and $\text{Aut}(C_{2pq}^3) \cong G$.

(3) The graphs $C_{2pq}^1, C_{2pq}^2, \lambda \in \Lambda$, are pairwise non-isomorphic.

(4) For $\mu_1, \mu_2 \in \Theta$, $C_{2pq}^{3, \mu_1} \cong C_{2pq}^{3, \mu_2}$ if and only if one of the following holds in the ring \mathbb{Z}_{2pq}: $\mu_1\mu_2 = 1$, $\mu_1 + \mu_2 = 1$.

Proof. The automorphism of G induced by $b \mapsto ba$ and $a \mapsto a^{-1}$ maps $\{ba, ba^\lambda\}$ to $\{ba, ba^{1-\lambda}\}$, and the automorphism of G induced by $b \mapsto ba^{-1}$ and $a \mapsto a^{-2}$ maps $\{ba, ba^{-1}\}$ to $\{ba, ba^{-1}\}$. Since one of λ_1, λ_2 and λ_3 must be $-1, 1$ follows.

Set $S_1 = \{a, a^{-1}\}, S_2 = \{ba, ba^\lambda\}$ and $S_3 = \{ba, ba^{a}\}$, where $\lambda \in \Lambda$ and $\mu \in \Theta$. Since $S_i = G(1 \leq i \leq 3)$, the graphs C_{2pq}^1, C_{2pq}^2 are connected cubic Cayley graphs, which are normal by Theorem 3.2. Thus, $\text{Aut}(\text{Cay}(G, S_i)) = R(G) \rtimes \text{Aut}(G, S_i)$. To prove (2), it suffices to show that $\text{Aut}(G, S_1) \cong \text{Aut}(G, S_2) \cong \mathbb{Z}_2$ and $\text{Aut}(G, S_3) = 1$. Since S_1 contains only one involution, $\text{Aut}(G, S_1) \cong \mathbb{Z}_2$. Since S_1 contains only one involution, $\text{Aut}(G, S_1) \cong \mathbb{Z}_2$ and since the automorphism of G induced by $b \mapsto b$ and $a \mapsto a^{-1}$ fixes S_1, one has $\text{Aut}(G, S_1) \cong \mathbb{Z}_2$. Let $S = \{ba, ba^\lambda\}$ with $k \neq 0, 1$. It is easy to check that $S \cong \text{Aut}(S)$ if and only if there is $a \in \text{Aut}(S)$ such that a permutes $\{ba, ba^\lambda\}$ cyclically if and only if $-k \in \Theta_{pq}^3$. It follows that $\text{Aut}(G, S_3) \cong \mathbb{Z}_2$ because the map $a \mapsto a^{-k}$ and $b \mapsto b$ induces an automorphism of G of order 2 that fixes S_3. Furthermore, $\text{Aut}(G, S) \cong \mathbb{Z}_2$ if and only if there is an element of order 2 in $\text{Aut}(G)$ that fixes one element in S and interchanges the other two in S. Thus, if and only if one of the following holds in \mathbb{Z}_{2pq}: $k^2 = 1$, $k(k - 2) = 0$ and $2k - 1 = 0$. Thus, $\text{Aut}(G, S) = 1$ if and only if $k \in \Theta$, which implies that $\text{Aut}(G, S_3) = 1$.

By Proposition 2.11, any 3-subset of G not containing the identity is a CC-subset. Thus, for each $\lambda \in \Lambda$ we have $C_{2pq}^1 \neq C_{2pq}^2$, because S_1 contains only one involution and S_2 consists of involutions. Also, it is easy to check that $\{ba, ba^\mu\}$, $\{ba, ba^{a}\}$ and $\{ba, ba^{a\mu}\}$ are pairwise non-equivalent. Thus, $C_{2pq}^1, C_{2pq}^2, \lambda \in \Lambda$, are pairwise non-isomorphic.

Note that $\text{Cay}(G, \{ba, ba^{a\mu}\}) \cong \text{Cay}(G, \{ba, ba^{a\mu}\})$ if and only if there exists $\beta \in \text{Aut}(G)$ such that $\{ba, ba^{a\mu}\} = \{ba, ba^{a\beta}\}$. This is true if and only if one of the following holds in the ring \mathbb{Z}_{2pq}: $\mu_1\mu_2 = 1$, $\mu_1 + \mu_2 = 1$, $\mu_1(1 - \mu_1 - 1, \mu_1 + \mu_2 - \mu_1\mu_2 = 0$. The proof is straightforward. For example, there exists an automorphism of G that maps $ba^{a\mu}$ to $ba^{-a\mu}$ and interchanges b and ba if and only if $\mu_1\mu_2 = 1$. □

Example 4.2. Let $G = \langle a, b, c | a^p = b^q = c^2 = 1, ab = ba, cac = a^{-1}, bc = cb \rangle$. Define

$$C_{2pq}^4 = \text{Cay}(G, \{c, ab, (ab)^{-1}\}).$$

Then C_{2pq}^4 is a cubic non-symmetric Cayley graph and $\text{Aut}(C_{2pq}^4) \cong G \times \mathbb{Z}_2$.
Proof. Set $S = \{c, ab, (ab)^{-1}\}$. One may easily show that $\text{Aut}(G, S) = \{\alpha\} \cong \mathbb{Z}_2$, where α is the automorphism of G induced by $a \mapsto a^{-1}$, $b \mapsto b^{-1}$ and $c \mapsto c$. By Theorem 3.2, Cay(G, S) is normal, and hence $\text{Aut}(C_{2p}^4) \cong R(G) \times \mathbb{Z}_2$, implying that C_{2p}^4 is a cubic non-symmetric Cayley graph. □

Example 4.3. Let $G = (a, b, c \mid a^p = b^q = c^2 = 1, cac = a^{-1}, bc = cb, b^{-1}ab = a')$ where r is an element of order q in \mathbb{Z}_p^*, and set $r = 3$ for $(p, q) = (11, 5)$ or $(23, 11)$. Define

$$\begin{align*}
C_{2pq}^{5,\xi} &= \text{Cay}(G, \{c, ab\xi, (ab\xi)^{-1}\}), \\
C_{2pq}^{6,\xi} &= \text{Cay}(G, \{c, ab\xi c, (ab\xi c)^{-1}\}),
\end{align*}$$

where $1 \leq \xi, \zeta \leq \frac{q-1}{2}$. Then we have the following:

1. The graph $C_{2pq}^{5,\xi}$ is non-symmetric. Furthermore,

$$\text{Aut}(C_{2pq}^{5,\xi}) = \begin{cases}
R(G) & \text{if } (p, q) \neq (7, 3), \\
PGL(2, 7) & \text{if } (p, q) = (7, 3);
\end{cases}$$

2. The graph $C_{2pq}^{6,\xi}$ is non-symmetric if and only if $p > q > 3$ and $(p, q, \zeta) \neq (11, 5, 1), (23, 11, 3)$. If $C_{2pq}^{6,\xi}$ is non-symmetric then $\text{Aut}(C_{2pq}^{6,\xi}) = R(G)$;

3. The graphs $C_{2pq}^{5,\xi}$ and $C_{2pq}^{6,\xi}$, $1 \leq \xi, \zeta \leq \frac{q-1}{2}$, are pairwise non-isomorphic.

Proof. Suppose there is an $\alpha \in \text{Aut}(G)$ such that $(ab\xi)^\alpha = (a^rb^s)^{-1}$, where $1 \leq k_1, k_2 \leq \frac{q-1}{2}$ and $\delta = \pm 1$. Since (a) is characteristic in G, one has $a^\alpha = a$ for some $t \in \mathbb{Z}_p^*$. Clearly, $(ab\xi)^{-1} a(ab\xi) = a^{-1}$. It follows that $(a^rb^s)a^{-1}(a^rb^s)^{-1} = a^\alpha$, namely, $a^\alpha = a^r = a^\xi$. Then $k_1 + k_2 = 1(\text{mod } p)$ and hence $q \mid (k_1 + k_2)$ because r is an element of order q in \mathbb{Z}_p^*. This is impossible because $2 \leq k_1 + k_2 < q$. Thus, there is no $\alpha \in \text{Aut}(G)$ such that $(ab\xi)^\alpha = (a^rb^s)^{-1}$ for any $1 \leq k_1, k_2 \leq \frac{q-1}{2}$ and $\delta = \pm 1$.

For each $1 \leq \xi, \zeta \leq \frac{q-1}{2}$, $ab\xi$ has order q and $ab\xi c$ has order $2q$. This implies that $\{a, ab\xi, (ab\xi)^{-1}\} \neq \{a, ab\xi c, (ab\xi c)^{-1}\}$. Let $S = \{c, ab\xi, (ab\xi)^{-1}\}$ and $A = \text{Aut}(C_{2pq}^{5,\xi})$. Note that if $q = 3$ then $\xi = 1$. By Theorem 3.2, if $(p, q) \neq (7, 3)$ then $C_{2pq}^{5,\xi} = \text{Cay}(G, S)$ is normal and if $(p, q) = (7, 3)$ then $\text{Aut}(C_{2pq}^{5,\xi}) = \text{Aut}(C_{42}^{5,\xi}) \cong PGL(2, 7)$. Since $|PGL(2, 7)| = 42 \times 8$, $C_{2pq}^{5,\xi}$ is non-symmetric. Assume $(p, q) \neq (7, 3)$. By Proposition 2.7, $A = R(G)\text{Aut}(G, S)$. Let $\alpha \in \text{Aut}(G, S)$. As c is the unique involution in S, α fixes c. By the first proof there is no $\alpha \in \text{Aut}(G)$ interchanging $ab\xi$ and $(ab\xi)^{-1}$. Thus, $(ab\xi)^\alpha = (ab\xi)$ and since $G = \langle c, ab\xi \rangle$, one has $\alpha = 1$. This implies that $A = R(G)$ and hence $C_{2pq}^{5,\xi}$ is non-symmetric.

By Theorem 3.2, $C_{2pq}^{5,\xi} \cong C_{2q+2,2q}^{5,\xi}$ and $C_{2pq}^{6,\xi}$ are symmetric. Note that if $q = 3$ then $\xi = 1$. It follows that if $C_{2pq}^{5,\xi}$ is non-symmetric then $p > q > 3$ and $(p, q, \xi) \neq (11, 5, 1), (23, 11, 3)$. Conversely, assume $p > q > 3$ and $(p, q, \xi) \neq (11, 5, 1), (23, 11, 3)$. To finish the proof of (2), it suffices to show that $\text{Aut}(C_{2pq}^{6,\xi}) = R(G)$. If $(p, q) = (11, 5)$, with the help of computer software package MAGMA [4], one can compute that $|\text{Aut}(C_{2pq}^{6,\xi})| = 110$ for $\xi = 2$ and hence $\text{Aut}(C_{2pq}^{6,\xi}) = R(G)$. Similarly, if $(p, q) = (23, 11)$ then $\text{Aut}(C_{2pq}^{6,\xi}) = R(G)$ for $\xi = 1, 2, 4, 5$. Thus, one may assume that $(p, q) \neq (11, 5), (23, 11)$. Since $p > q > 3$, by Theorem 3.2, $C_{2pq}^{6,\xi}$ is normal. Let $S = \{c, ab\xi c, (ab\xi c)^{-1}\}$ and $A = \text{Aut}(C_{2pq}^{6,\xi})$. By Proposition 2.7, $A = R(G)\text{Aut}(G, S)$. Let $\beta \in \text{Aut}(G, S)$. Clearly, $\beta^2 = c$. Suppose that $(ab\xi c)^\beta = (ab\xi c)^{-1}$.

Then, $(ab\xi)^\beta = (a^{-1}b^{-1})^{-1} = (a^{-1}b^{-1})^{-1}$, which is impossible because of the argument in the first paragraph. Thus, $(ab\xi c)^\beta = ab\xi c$ and hence $\beta = 1$ because $G = \langle c, ab\xi c \rangle$, which implies that $\text{Aut}(C_{2pq}^{6,\xi}) = R(G)$, as required.

If $q = 3$ then $\xi = \zeta = 1$. To prove (3), one may assume that $p > q > 3$ and $(p, q, \xi) \neq (11, 5, 1), (23, 11, 3)$. Thus, $\text{Aut}(C_{2pq}^{6,\xi}) = \text{Aut}(C_{2pq}^{6,\xi}) = R(G)$. By Proposition 2.10, $C_{2pq}^{6,\xi}$ and $C_{2pq}^{6,\xi}$ are CI-graphs. Since $\{c, ab\xi, (ab\xi)^{-1}\} \neq \{c, ab\xi c, (ab\xi c)^{-1}\}$, it suffices to show that $C_{2pq}^{6,\xi}$ and $C_{2pq}^{6,\xi}$ are pairwise non-isomorphic, respectively. Assume $C_{2pq}^{6,\xi} \cong C_{2pq}^{6,\xi}$ for some $1 \leq \xi_1, \xi_2 \leq \frac{q-1}{2}$. The CI-property of $C_{2pq}^{6,\xi}$ implies that there is an $\alpha \in \text{Aut}(G)$ such that $\{c, ab\xi, (ab\xi)^{-1}\} = \{c, ab\xi, (ab\xi)^{-1}\}$. Clearly, $c^a = c$. By the argument in the first paragraph, $(ab\xi)^a = ab\xi b$. Then $(a^{-1}b^{-1})a = (ab\xi b)^a = a^{-1}b^{-1}b\xi$ and $(a^2)^a = (ab\xi b)(a^{-1}b^{-1}b\xi)^{-1}a = ab\xi b(a^{-1}b^{-1}b\xi)^{-1} = a^{-1}$, implying $a^\alpha = a$. It follows that $(b^{-1}a^2)^a = b^{-1}a^{-1}a$ and since $(b^{-1}a^{-1}a)^{b^{-1}} = b^{-1}a^{-1}$, one may obtain $r^{-1} = 1 = 2\xi_2$. Since r has order q in \mathbb{Z}_p^* and $1 \leq \xi_1, \xi_2 \leq \frac{q-1}{2}$, one has $\xi_1 = \xi_2$.

Thus, $\{c, ab\xi, (ab\xi)^{-1}\} = \{c, ab\xi, (ab\xi)^{-1}\}$ for some $1 \leq \xi_1, \xi_2 \leq \frac{q-1}{2}$ if and only if $\xi_1 = \xi_2$. Similarly, one may show that $C_{2pq}^{6,\xi} \cong C_{2pq}^{6,\xi}$ for some $1 \leq \xi_1, \xi_2 \leq \frac{q-1}{2}$ if and only if $\xi_1 = \xi_2$.

The following theorem is the main result of this section.
Theorem 4.4. Let \(p > q \) be odd primes. A connected cubic Cayley graph of order \(2pq \) is non-symmetric if and only if it is isomorphic to one of the following graphs: \(e^{\frac{1}{2}}_{2pq}, e^{\frac{1}{4}}_{2pq} \), \(e^{\frac{1}{2}}_{2pq} \), \(e^{\frac{1}{4}}_{2pq} \), \((1 \leq \xi \leq \frac{p-1}{2}) \) and \(e^{\frac{1}{2}}_{2pq} \), \((1 \leq \zeta \leq \frac{q-1}{2}, q > 3, (p, q, \zeta) \neq (11, 5, 2), (23, 11, 2)) \), where \(\Lambda \) and \(\Theta \) are given in Eq. (2).

Proof. Let \(X = \text{Cay}(G, S) \) be a connected cubic non-symmetric Cayley graph on a group \(G \) of order \(2pq \). Then \(\notin G, S^{-1} = S \) and \(S = G \). Since \(X \) has valency \(3 \), \(S \) contains an involution, say \(x \). Let \(A = \text{Aut}(X) \) and \(A_1 \) the stabilizer of \(1 \in G \) in \(A \). To finish the proof, by Examples 4.1–4.3, it suffices to show that \(X \) is isomorphic to one of the graphs listed in the theorem.

Recall that \(G \) is one of the groups \(G_1(2pq), G_2(2pq), G_3(2pq), G_4(2pq), G_5(2pq) \) and \(G_6(2pq) \) given in Eq. (1).

Let \(G = G_1(2pq) = \{ e \} \). Then \(S = (x, a^{pq}, y^{pq}, y^{-pq}) \), where \(y \) is an element of order \(pq \) or \(2pq \). By Proposition 2.9, \(X \) is normal, and by Proposition 2.7, \(A_1 = \text{Aut}(G, S) \). Since \(X \) is non-symmetric, \(\text{Aut}(G_1(2pq), S) \subseteq \mathbb{Z}_2 \), and since the automorphism \(\alpha \) of \(G_2(2pq) \) induced by \(a \mapsto a^{-1} \) fixes \(S \) setwise, \(A_1 = (\alpha) \subseteq \mathbb{Z}_2 \) and \(R(G_1(2pq)) \times (\alpha) \). It is easy to show that \((R(a^\alpha), R(a^{pq}\alpha)) \) acts regularly on \(V \), which implies that \(X \) is isomorphic to a Cayley graph on \(G_2(2pq) \).

Let \(G = G_2(2pq) = \{ (a, b) | a^b = b^2 = 1, b^{-1}ab = a^{-1} \} \). Since all involutions of \(G_2(2pq) \) are conjugate, one may let \(x = b \). If \(S = \{ a, a^2 = 1 \} \), then \((i, pq) = 1 \) because \(S = G \). Let \(\alpha_i \) be the automorphism of \(G_2(2pq) \) induced by \(b \mapsto a \) and \(a^i \mapsto a \).

Then \(S^q = \{ a, a^2 \} \) and hence \(X \cong \mathbb{C}_{2pq} \). Since all \(\alpha_i \) are involutions of \(G_2(2pq) \) conjugate by \((a, b) \), and by the connectivity of \(X \), one may assume that \(S = \{ x = c, y^\nu \} \), where \(y \) has order \(pq \). Clearly, there exists an automorphism of \(G_3(2pq) \) which fixes \(c \) and maps \(y \) to \(ab \). It follows that \(S \cong \{ c, ab, (ab)^{-1} \} \), and hence \(X \cong \mathbb{C}_{2pq} \).

Let \(G = G_4(2pq) = \{ (a, b, c) | c^a = 1, c^b = b^2 \} \). By a similar argument to the above paragraph, one may let \(S = \{ c, ab, (ab)^{-1} \} \). By Theorem 3.2, \(X = \text{Cay}(G, S) \) is normal, and hence \(A_1 = \text{Aut}(G, S) \). It is easy to check that \(\text{Aut}(G, S) = (\alpha) \subseteq \mathbb{Z}_2 \), where \(\alpha \) is the automorphism of \(G \) induced by \(c \mapsto c, a \mapsto a^{-1} \) and \(b \mapsto b \). Let \(H = (R(a), R(b), R(c)) \). Direct calculation shows that \(R(G_4(2pq)) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) (the group \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) acts regularly on \(V \) and hence \(X \) is also a Cayley graph on \(G_5(2pq) \), which is discussed in the previous paragraph.

Let \(G = G_5(2pq) \). Then \(c \) is in the center of \(G \). Since \(G \) has no elements of order \(pq \), there is no connected cubic Cayley graph on \(G_5(2pq) \).

Let \(G = G_6(2pq) \). Since all involutions of \(G \) are conjugate and contained in the subgroup \((a, c) \), the connectivity of \(X \) implies that \(S = \{ c, y^\nu \} \), where \(y \) has order \(pq \) or \(2pq \). If \(y \) has order \(2pq \) then \(y = ab^c \) with \(1 \leq i \leq p-1 \) and \(1 \leq k \leq q-1 \). Let \(\alpha_i \) be the automorphism of \(G \) induced by \(a \mapsto a \), \(b \mapsto b \) and \(c \mapsto c \). Then \(S^i = \{ c, ab^c, (ab^c)^{-1} \} \). One may assume \(1 \leq i \leq \frac{pq-1}{2} \) because the map \(\beta_i \) defined by \(a \mapsto a^{-1} \), \(b \mapsto b \) and \(c \mapsto c \) induces an automorphism of \(G \) and \((ab^c)^{-1} = a^{-1}b^{-1}c = b^{-1}a^{-1} \). Thus, \(X \cong \mathbb{C}_{2pq} \) \(1 \leq \zeta \leq 2 \). If \(y \) has order \(2pq \) then \(y = ab^c \) with \(1 \leq i \leq p-1 \) and \(1 \leq k \leq q-1 \). Clearly, \(S_i = \{ c, ab^c, (ab^c)^{-1} \} \), and one may assume \(1 \leq k \leq \frac{pq-1}{2} \) because the map \(\beta_i \) defined by \(a \mapsto a^{-1} \), \(b \mapsto b \) and \(c \mapsto c \) induces an automorphism of \(G_6(2pq) \) and \((ab^c)^{-1} = (ab^{-1})^{-1} \). It follows that \(X \cong \mathbb{C}_{2pq} \) \(1 \leq \zeta \leq \frac{pq-1}{2} \). Since \(X \) is non-symmetric, by Example 4.3, \(p > q > 3 \) and \((p, q, \zeta) \neq (11, 5, 1), (23, 11, 3) \). □

Acknowledgements

This work was supported by the National Natural Science Foundation of China, and the Specialized Research Fund for the Doctoral Program of Higher Education in China (20060004026).

References