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1. Introduction

The newly observed resonance-like structures in high-energy 
experiment have intrigued a lot of studies of hadron spectroscopy. 
These structures are notated as “XY Z ” states among which some 
cannot be accommodated in the conventional quark model. It has 
been a critical issue whether these resonance-like structures are 
genuine particles, such as multi-quark states, hybrids, or molecular 
states, or simply kinematic effects. For the latter ones, we specifi-
cally refer to the threshold CUSP effects produced by the two-body 
branch points proposed in the literature. In a recent work, it is 
demonstrated that the S-wave threshold enhancement could be 
related to a pole structure if such a threshold enhancement also 
appears predominantly in its elastic channel [1]. The analysis of 
Ref. [1] provides a possible method for distinguishing a genuine 
pole from the CUSP effects. Meanwhile, it is also pointed out that 
the kinematic singularity, namely, the so-called “anomalous trian-
gle singularity (ATS)”, if located at specific kinematic region, can 
produce resonance-like structures.

The possible manifestation of the ATS of the S-matrix elements 
was first noticed in 1960s and theoretical attempts were made to 
try to clarify the resonance-like structures, i.e. whether they are 
caused by the ATS or they are genuine resonance peaks [2–6]. 
These theories are based on the study of the analytic proper-
ties of the S-matrix. It was pointed out that in certain circum-
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stances the ATS of the scattering amplitude may result in observ-
able resonance-like structures when the singularities approach the 
physical region. Unfortunately, most of those proposed cases have 
lacked the experimental support and our knowledge on how such 
a kinematic singularity should manifest itself was still limited.

In 2012 the BESIII Collaboration published their measure-
ment of the radiative decay J/ψ → γ + η(1405/1475) in the 
exclusive decay channel of η(1405/1475) → f0(980)π → 3π [7]. 
It was found that the isospin-violating decay of η(1405/1475) was 
anomalously large and could not be explained by the a0(980) −
f0(980) mixing. Theoretical interpretation was provided in Ref. [8]
where it was proposed that the triangle singularity should have 
played a crucial role in the enhancement of the isospin-violating 
effects. It can be examined easily that the kinematical condition for 
the ATS is perfectly satisfied in this process and the signature was 
stamped by the narrow peak of the f0(980) which is generated by 
the charged and neutral K K̄ thresholds. A later detailed analysis 
suggests that the BESIII data for the enhancement of η(1405/1475)

may contain a small contribution from f1(1420) in the 3π decay 
channel which can be disentangled by the angular distributions 
of the pion and the recoiled photon [9]. Similar analysis can be 
found in Ref. [10] where the two-body ππ final state interaction 
was considered. It is worth mentioning that the η(1405/1475) de-
cay through the K K̄ ∗(K ) loop is the first clear manifestation of the 
triangle singularity in a physical process. A confirmation of this 
scenario is the observation of signals of a1(1420) at COMPASS in 
π− p → a1(1420)±π∓n → π+π−π0n. This is the isospin-1 chan-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Rescattering process in 3-body decays via the triangle diagram. The internal 
mass which corresponds to the internal momentum qi is mi (i = 1, 2, 3). For the 
external momenta, we define P 2 = s1, (pb + pc)

2 = s2 and p2
a = s3.

nel for the same ATS mechanism which can be recognized via 
a1(1420) → K K̄ ∗(K ) → f0(980)π .1

The recent observations of the charged charmonium-like state 
Zc(3900) in e+e− → Y (4260) → J/ψππ at BESIII [13,14] and 
Belle [15] also provide another example for the ATS mechanism 
to be recognized in physical processes. As studied in Refs. [16,
17], the first open charm S-wave threshold D D̄1(2420) + c.c. 
is located at the mass region of Y (4260). Knowing that the 
D1(2420) dominantly decays into D∗π , we find that the D D̄1(D∗)
loop approaches the ATS kinematics and favors the production 
of the Zc(3900). Similar situation also applies to Y (4260) →
Zc(4020)π → hcππ where the transition amplitude is enhanced 
since the ATS is close to the physic kinematical region. In Ref. [18]
the proposed mechanism for the understanding of the Z(4430) in 
B decay is actually another recognition of the ATS in the physical 
region.

With the availability of high precision data from experiment 
and a lot of observations of threshold structures it motivates us 
to make a systematic study of the ATS in various processes. This 
will be essential for our understanding of the nature of some of 
those resonance-like threshold structures and meanwhile allow us 
to probe the kinematic singularities in physical processes.

This work is organized as follows: In Sec. 2 we present a gen-
eral analysis of the ATS. In Sec. 3 we discuss physical processes 
where the singularities are located in the physical kinematic re-
gion, thus, could manifest themselves with measurable effects in 
experiment. A brief summary is given in Sec. 4.

2. Anomalous triangle singularity

Kinematic singularities may occur due to the rescattering pro-
cesses, and the three-body decays are ideal for creating such an 
environment. We will focus on the triangle diagrams and make an 
analysis of the analytic properties of the rescattering amplitude. 
A typical triangle diagram is illustrated in Fig. 1. Without losing 
generality we consider the scalar 3-point function which takes the 
following form under the Feynman parametrization:

�3(s1, s2, s3)

= 1

i(2π)4

∫
d4q1

(q2
1 − m2

1 + iε)(q2
2 − m2

2 + iε)(q2
3 − m2

3 + iε)

= −1

16π2

1∫

0

1∫

0

1∫

0

da1 da2 da3
δ(1 − a1 − a2 − a3)

D − iε
, (1)

where

1 This mechanism was first pointed out by Q.Z. at Hadron 2013 in Nara. A detailed 
analysis following this idea was presented by Ketzer et al. in Ref. [11] and by Wu 
et al. in a forthcoming analysis [12].
D ≡
3∑

i, j=1

aia j Yi j, Yij = 1

2

[
m2

i + m2
j − (qi − q j)

2
]

.

For this 3-point function �3, there are several kinds of singulari-
ties, and the location of the singularities in the complex plane of 
the external momentum variables can be determined by a set of 
equations, which are usually called the Landau equations [19]. In 
some special kinematic configurations, if all of the three internal 
lines approach their on-shell conditions simultaneously, it will cor-
respond to the leading singularity of the triangle diagram [20] and 
is what we called the “ATS”. Note that the ATS is different from 
those singularities in which only two of the internal lines get on 
shell and such singularities are actually lower-order singularities. 
According to the Landau equations, the leading singularity occurs 
when ∂ D/∂a j = 0 is satisfied for all j, which will lead to the equa-
tion

det[Yij] = 0 , (2)

where det[Yij] is a function of six variables comprising three exter-
nal invariant masses 

√
si and three internal masses mi (i = 1, 2, 3). 

If we fix the internal masses mi , the external invariants s1 and s3, 
we can obtain the solutions of Eq. (2) for s2, i.e.,

s±
2 = (m1 + m3)

2 + 1

2m2
2

[(m2
1 + m2

2 − s3)(s1 − m2
2 − m2

3)

− 4m2
2m1m3 ± λ1/2(s1,m2

2,m2
3)λ

1/2(s3,m2
1,m2

2)], (3)

with λ(x, y, z) ≡ (x − y − z)2 − 4yz. Likewise, by fixing mi , s2 and 
s3 we can obtain the similar solutions for s±

1 , i.e.,

s±
1 = (m2 + m3)

2 + 1

2m2
1

[(m2
1 + m2

2 − s3)(s2 − m2
1 − m2

3)

− 4m2
1m2m3 ± λ1/2(s2,m2

1,m2
3)λ

1/2(s3,m2
1,m2

2)]. (4)

We will learn later that within the physical boundary only the so-
lution of s−

1 or s−
2 corresponds to the ATS of the amplitude and 

we call s−
1 and s−

2 as the anomalous thresholds. For the 3-point 
function �3, there is another kind of singularity, i.e. the second-
type singularity, which is not associated with the Landau equa-
tions [21]. The second-type singularity appears when the three 
external momenta of the triangle diagram lying along a line, which 
is irrelevant with the internal masses, and its contribution is not 
important in the kinematic region that we are interested in. There-
fore, we will not discuss it in this work (see Ref. [21] for detailed 
discussions).

To elaborate how the ATS occurs, it will be convenient to use 
the dispersion relation to represent the 3-point function �3. In the 
kinematic region 0 < s1 < (m2 + m3)

2, 0 < s2 < (m1 + m3)
2 and 

s3 < (m2 − m1)
2, the single dispersion representation of �3 in s2

takes the form

�3(s1, s2, s3) = 1

π

∞∫

(m1+m3)2

ds′
2

s′
2 − s2 − iε

σ (s1, s′
2, s3) , (5)

where the spectral function σ(s1, s2, s3) can be obtained by means 
of the Cutkosky’s rules or equally the formula [22]

σ(s1, s2, s3) = −1

16π

1∫

0

1∫

0

1∫

0

da1 da2 da3 δ(1 − a1 − a2 − a3)δ(D).

(6)

The result reads
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Fig. 2. Trajectory of s±
2 in the complex s′

2-plane with s1 increasing from s1N to ∞. 
The thick line on the real axis from the normal threshold point N to ∞ is the 
contour of integration in Eq. (5). The A+B+ (A−B−) line indicates the trajectory 
of s+

2 (s−
2 ). The points are identified as A±: s1 = s1N , s±

2 = s2C ± iε , B−: s1 = s1c , 
s−

2 = s2N , and B+: s1 = s1c , s+
2 = s2N + m3

m1m2
2
λ(s3, m2

1, m2
2) + iε . The point P indicates 

another singularity of the integrand in Eq. (5), i.e., s2 + iε .

σ(s1, s2, s3) = σ+ − σ−,

σ±(s1, s2, s3) = −1

16πλ1/2(s1, s2, s3)
log[−s2(s1 + s3 − s2

+ m2
1 + m2

3 − 2m2
2) − (s1 − s3)(m

2
1 − m2

3)

± λ1/2(s1, s2, s3)λ
1/2(s2,m2

1,m2
3)]. (7)

The dispersion representation Eq. (5) actually has a larger range of 
validity [23–27]. By analytic continuation, it can be extended into 
the over threshold region

s1 ≥ (m2 + m3)
2, (m1 + m3)

2 ≤ s2 ≤ (
√

s1 − √
s3)

2,

0 ≤ √
s3 ≤ m2 − m1 . (8)

This specific kinematic region is where the ATS should occur and 
it just lie on the physical boundary as part of this region [24,28]. 
We will focus the discussion on the kinematic region of Eq. (8) in 
the following sections to demonstrate how the ATS plays a role. 
For fixed s1, s3 and mi , the spectral function σ(s1, s2, s3) has loga-
rithmic branch points s±

2 , which are just the anomalous thresholds 
by solving Eq. (2). We hope to learn how the logarithmic branch 
points s±

2 move as s1 increases from the threshold of (m2 + m3)
2, 

with s3 and mi fixed. To obtain the correct analytic continuation 
of �3(s1, s2) when s1 exceeds (m2 + m3)

2, it is then necessary to 
make the substitution s1 → s1 + iε . Thresholds s±

2 in the s′-plane 
are then located at

s±
2 (s1 + iε) = s±

2 (s1) + iε
∂s±

2

∂s1
, (9)

and the corresponding trajectories of s±
2 are plotted in Fig. 2. We 

define the normal thresholds and critical values of the anomalous 
thresholds for s1 and s2 as follows,

s1N = (m2 + m3)
2,

s1C = (m2 + m3)
2 + m3

m1
[(m2 − m1)

2 − s3], (10)

s2N = (m1 + m3)
2,

s2C = (m1 + m3)
2 + m3

m2
[(m2 − m1)

2 − s3], (11)

where s1C (s2C ) is obtained under the condition ∂s±
2 /∂s1 = 0

(∂s±
1 /∂s2 = 0). The imaginary part of s+

2 will always be positive. 
When s1 increases from s1N to s1C , s−

2 moves from s2C (point 
A−) to s2N (point B−), and lies infinitesimally below the real axis. 
When s1 exceeds s1C , the imaginary part of s−

2 turns to be posi-
tive. Therefore, only when s1N ≤ s1 ≤ s1C , two singularities of the 
integrand in Eq. (5), i.e. s−

2 and s2 + iε (point P), will pinch the 
contour of integration in the s′

2-plane. This pinch singularity which 
occurs when s2 = s−

2 is a direct manifestation of the ATS of �3. 
Likewise, by fixing mi , s2 and s3 we can derive that only when 
s2N ≤ s2 ≤ s2C , the ATS of �3 will appear at s1 = s−
1 , which lies 

between s1C and s1N .
We define the discrepancy between the normal and anomalous 

thresholds as follows,

�s1 =
√

s−
1 − √

s1N ,

�s2 =
√

s−
2 − √

s2N . (12)

Apparently, when s2 = s2N (s1 = s1N ), we will obtain the maximum 
value of �s1 (�s2 ), i.e.,

�max
s1

= √
s1C − √

s1N ≈ m3

2m1(m2 + m3)
[(m2 − m1)

2 − s3],
�max

s2
= √

s2C − √
s2N

≈ m3

2m2(m1 + m3)
[(m2 − m1)

2 − s3]. (13)

The difference between the normal and anomalous thresholds 
are due to the nonvanishing three-vector momenta carried by the 
rescattering particles. Namely, when those three internal particles 
approach their on-shell conditions simultaneously, they can still 
carry nonvanishing three-vector momenta respectively which will 
contribute to the anomalous threshold in the rescattering.

3. Physical cases recognizing the ATS

3.1. Elastic rescattering processes

We expect that the ATS may lead to some detectable effects in 
the rescattering processes when the ATS kinematic conditions are 
satisfied.

In Ref. [29] it was argued that for the elastic rescattering pro-
cess, when the corresponding resonance-production tree diagram 
is added coherently to the triangle rescattering diagram, the ef-
fect of the triangle diagram is nothing more than a multiplica-
tion of the singularity from the tree diagram by a phase factor. 
Therefore the singularities of the triangle diagram cannot produce 
obvious peaks in the total transition rate. This is the so-called 
Schmid theorem, and we refer to Refs. [6,30,31] for some com-
ments on and further studies of this theorem. The expectation of 
the Schmid theorem needs experimental test and the recent BES-III
measurement of e+e− → D D̄∗π + c.c. at the mass of 4.26 GeV 
turns out to be useful for examining this theorem. As shown by 
the recent analysis in Ref. [1], the pronounced D D̄∗ + c.c. thresh-
old enhancement in the elastic channel of Y (4260) → D D̄∗π + c.c. 
has a non-perturbative feature in the D D̄∗ + c.c. rescattering and 
should imply the presence of a threshold pole structure. It is in-
teresting to recognize that if the Schmid theorem is correct, the 
observed threshold enhancement would favor more to be produced 
by a pole structure in the elastic channel. Otherwise, the ATS will 
still play a role in association with the pole although it should be 
emphasized that such an ATS threshold peak should be different 
from the CUSP effects caused by two-body branch points [32]. Fur-
ther experimental studies of the energy evolution of the threshold 
enhancement, e.g. the Zc(3900), will be useful for disentangling 
how significant these two contributions are in the production of 
the threshold enhancement.

It is important to have a combined analysis of the elastic and 
inelastic scatterings for processes where the ATS is present. Since 
the inelastic channel does not have ambiguities from the tree di-
agram which shares the same on-shell kinematics with the ATS, 
it is argued that the ATS contribution can be identified more eas-
ily in the inelastic channel. We are going to discuss the inelastic 
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Fig. 3. Inelastic rescattering processes in 3-body decays via triangle diagram. X de-
notes some specified initial state with the proper quantum number, and we define 
M2

X = s1. The conventions of the momenta and invariant masses are the same with 
those in Fig. 1.

rescattering processes in detail later but emphasize that the com-
bined analysis of the elastic and inelastic channels are crucial for 
understanding the nature of a threshold enhancement [1].

3.2. Inelastic rescattering processes

We discuss the inelastic rescattering processes in this subsec-
tion. Some examples related to the existing observations are shown 
in Fig. 3 and the detailed discussions are as follows:

3.2.1. Ds1 → Dsππ
In Fig. 3(a) X stands for the Ds1 states that couple to D∗K

in a relative S wave. In experiment two axial-vector states have 
been observed, i.e. Ds1(2460) and Ds1(2536). Various studies have 
shown that the D∗ K open channel has been the most important 
driving mechanism for shifting the quark model bare states to the 
physical ones near the D∗ K threshold.

The process of Fig. 3(a) satisfies the ATS condition. We inves-
tigate the evolution of the ATS in terms of the initial mass near 
the D∗K threshold and the corresponding numerical results are 
displayed in Fig. 4(a). In calculating the rescattering amplitudes, 
we adopt the heavy hadron chiral perturbation theory introduced 
in [33]. The analytic properties of the rescattering amplitudes 
mainly depend on the kinematics. Therefore, we only focus on the 
lineshape behavior of these rescattering processes, but leave the 
explicit value of the coupling constants to be investigated else-
where. As shown by the solid line in Fig. 4(a), at the mass of 
Ds1(2536), there is only an unnoticeable cusp appearing at the 
threshold of MD + MK . This is because the mass of D∗ is very 
close to the Dπ threshold, which makes the corresponding �max

s1
and �max

s2
very small, as displayed in Table 1. Only when M X

nearly equals to MD∗ + MK , the ATS condition will be fulfilled and 
there will be a narrow enhancement in the Dsπ distribution in the 
vicinity of D K threshold as shown by the dotted line. In fact, only 
5 MeV above the D∗K threshold will demolish the ATS enhance-
ment totally as illustrated by the dashed line in Fig. 4(a).

The above analysis identifies the situation that if one would ex-
pect to observe detectable effects caused by the ATS, then �max

s1
and �max

s2
must be as large as possible. This actually enlarges the 

kinematic region where the ATS effects can be observable. Accord-
ing to Eq. (13), this requires that the quantity [(m2 − m1)

2 − s3]
should also be as large as possible. Physically, it means that the 
phase space for a particle with mass m2 decaying into particles 
with masses m1 and 

√
s3 should be large enough. Taking into ac-

count this requirement, one promising rescattering process should 
Fig. 4. Invariant mass distributions of the corresponding rescattering process in 
Fig. 3. The vertical dash lines indicate (a): D K threshold, (b): D K threshold, (c): 
K + K − (left) and K 0 K̄ 0 (right) thresholds, and (d): D∗ D̄ threshold, respectively.

be Fig. 3(b). For this triangle diagram, �max
s1

is about 96 MeV and 
�max

s2
is about 62 MeV, which are sizable. This is because the 

phase space for K ∗ decaying into Kπ is quite large, and the ra-
tios MD/MK ∗ and MD/MK (m3/m2 and m3/m1) are also relatively 
larger. Then, if M X is fixed at a value between MD + MK ∗ and 
MD + MK ∗ +�max

s1
, there will be a pronounced peak appearing be-

tween MD + MK + �max
s2

and MD + MK in the invariant mass 
spectrum of Dsπ . Both Ds1(2860) and Ds1(2700) are good candi-
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Table 1
Kinematic quantities �max

s1
and �max

s2
for the corresponding Feynman diagram in 

Fig. 3. Noticed that, when the internal mass mi (i = 1, 2, 3) and s3 are fixed, �max
s1

and �max
s2

are determined.

[MeV] Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)

�max
s1

0.089 96 49 16
�max

s2
0.087 62 38 15

Fig. 5. Rescattering process in bottomed meson decays.

dates for the initial state X . These two states are very broad, of 
which the decay widths are about 159 MeV and 117 MeV, respec-
tively [34,35]. Although their pole masses are out of the kinematic 
region where the ATS can occur, their shoulder or tail can still fall 
into the kinematic region of the ATS, which may cause some de-
tectable effects.

Similar to Fig. 3(b) the decay of B → K K̄ ∗ D̄(∗) → K D(∗)−
s ππ

also provides access to the K̄ ∗ D̄(∗) rescattering into D(∗)−
s ππ . The 

triangle diagram is illustrated in Fig. 5 and the K̄ ∗ D̄(∗) rescatter-
ing is similar to the process of Fig. 3(b). The branching ratio of B
decaying into K K̄ ∗ D̄(∗) is at the order of 10−4–10−3, which is siz-
able [35]. The advantage of this process compared with Fig. 3(b) 
is that the invariant mass of D(∗)−

s ππ can vary in a certain range 
and one can follow the evolution of the ATS peak continuously.

As discussed for Fig. 3(b), if we fix the invariant mass of 
D(∗)−

s ππ in the energy range from MK ∗ + MD(∗) to MK ∗ + MD(∗) +
�max

s1
, we may find a narrow peak in the D(∗)−

s π distribution as 
shown by the curves in Fig. 4(b). This resonance-like peak has an 
exotic flavor quantum number. An interesting feature arising from 
this energy dependence of the ATS peak evolution is that when the 
invariant mass of D(∗)−

s ππ is fixed at MK ∗ + MD(∗) , the location of 
the peak will be far away from the normal threshold MD(∗) + MK

as shown by the solid line in Fig. 4(b). The energy-dependence of 
the peak position should offer us a criterion to distinguish an ATS 
kinematic effect from a pole structure such as a hadronic molecule 
state.

3.2.2. η(1405)/η(1475) and/or f1(1420)/a1(1420) decays into 3π
The processes η(1405)/η(1475) and/or f1(1420)/a1(1420) de-

caying into 3π are ideal places satisfying the ATS condition. The 
corresponding process is illustrated by Fig. 3(c) where the inter-
mediate K K̄ ∗ + c.c. rescattering by exchanging a K or K̄ satisfies 
the ATS condition perfectly. It should be noted that �max

s1
and �max

s2
are not small in this case. If we take the initial state X within the 
range of 1.385–1.442 GeV, there will be peaks appeared around 
K K̄ threshold in the π+π− invariant mass spectrum as displayed 
in Fig. 4(c). This is the mass region where η(1405)/η(1475) and 
f1(1420) are present and the ATS accounts for their anomalously 
large isospin violations [7].

It was first proposed in Ref. [8] that the ATS can account for the 
anomalously large isospin violations for η(1405)/η(1475) → 3π
measured recently by BESIII [7]. Nevertheless, this mechanism will 
interfere with the tree diagram for η(1405)/η(1475) → ηππ and 
result in different peak positions and lineshapes for the initial state 
which could be either η(1405) or η(1475). This immediately raises 
the question whether the experimental observations of two states, 
η(1405) and η(1475), in different channels should originate from 
one single state [8]. In Ref. [9], a detailed analysis of the BESIII 
data for J/ψ → γ + 3π suggests that the f1(1420) → 3π also sat-
isfies the ATS condition and it implies large isospin violations in 
f1(1420) → 3π channel.

It is natural and interesting to recognize that the ATS will also 
give rise to an enhancement around 1.385–1.442 GeV in the 3π
invariant mass spectrum in the isospin-1 channel. In the S-wave 
the quantum number is I, J PC = 1, 1++ as a partner structure of 
the f1(1420), and in the P -wave the quantum number is either 
I, J PC = 1, 0−+ or 0, 1−− for the neutral states. It should be noted 
that the recent COMPASS observation of an isovector a1(1420) [36]
in π− p → a1(1420)±π∓n → π+π−π0n could be a direct recog-
nition of the ATS. A detailed analysis based on the ATS will be 
presented in Ref. [12].

3.2.3. Y (4260) → J/ψππ
Another kinematic region which has access to the ATS is 

the Y (4260) decays into J/ψππ if it has a large coupling to 
D1(2420)D̄ +c.c. This is the process that the charged charmonium-
like state Zc(3900) was observed [13,15,37]. As pointed out in 
Ref. [16] the D1(2420)D̄ + c.c. threshold is the first S-wave open 
charm threshold with narrow charmed mesons in the vector sec-
tor. The closeness of Y (4260) to the D1(2420)D̄ + c.c. thresh-
old makes it a possible candidate for hadronic molecule state of 
D1(2420)D̄ + c.c. A systematic investigation of such a scenario can 
be found in Refs. [17,38–43].

In the decay of Y (4260) → J/ψππ via the intermediate 
D1(2420)D̄ + c.c. rescattering the quantities �max

s1
and �max

s2
are 

enlarged due to the large value of [(m2 −m1)
2 − s3] in the triangle 

transition displayed by Fig. 3(d). The process of D1(2420) → D∗π
is the dominant decay channel of the D1(2420) and satisfies this 
kinematic requirement. It is interesting to note that for this kind of 
charmed meson loops, the normal thresholds are much larger than 
those corresponding to Figs. 3(b) and (c). As a consequence, the 
quantities �max

s1
and �max

s2
are not very large according to Eq. (13). 

The corresponding values are listed in Table 1. The ATS peak will 
then stay close to the normal threshold, as illustrated in Fig. 4(d). 
In this sense, it would be difficult to distinguish the ATS peak from 
the pole structure in the invariant mass of the J/ψπ . We shall 
come back to the relevant issue later in this Section. It should be 
mentioned that for the solid line in Fig. 4(d), although 4.26 GeV is 
a little bit smaller than the D1 D threshold, it is still very close to 
the ATS kinematic region and the physical rescattering amplitude 
can be enhanced by the singularities to some extent.

Similar to Y (4260) → J/ψππ , other kinematics which satisfy 
the ATS conditions have been explored in both charmonium and 
bottomonium sectors [17,38,41].

In the above discussions, when the kinematic conditions in 
Eq. (8) are satisfied, the particle with mass m2 can then decay into 
two particles with masses m1 and 

√
s3 which allows all the inter-

nal particles to approach their on-shell kinematics simultaneously. 
It should be noted that the width effects from the internal parti-
cles will weaken the ATS peak rather apparently [17,38,41]. Thus, 
our discussions on the ATS phenomena are naturally limited to the 
triangle transitions where only the narrow states are involved, e.g. 
the widths of K and D are rather small, and the K ∗ , D∗ and D1
are also regarded as relatively narrow states. In this paper, we have 
not taken into account the width in the calculations.

3.3. ATS peak and pole structure

There have been a lot of discussions on how to distinguish 
kinematic effects from a dynamical pole structure in the litera-
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ture. Here, we would like to first distinguish the kinematic CUSP 
effects from the ATS effects although both are kinematic effects. 
As pointed out at the beginning, the CUSP effects are caused by 
the two-body branch points while the ATS peak is due to more 
singular conditions required for the triangle transitions. As a con-
sequence, the effects induced by the ATS will be more obvious 
than that induced by the usual two-body branch points at the 
normal thresholds. In Ref. [1] a method was developed for dis-
tinguishing the pole structures from the kinematic CUSP effects. 
As emphasized in Ref. [1], a combined measurement of the elas-
tic and inelastic channels for a threshold enhancement would be 
crucial for disentangling the nature of the threshold enhancement. 
However, the situation would become complicated if the thresh-
old enhancement also falls into the ATS kinematic region. In such 
a case, the key question is whether one can distinguish the ATS 
effects from the dynamic pole structure. Based on what we have 
learned from the ATS, we propose some criteria that can be imple-
mented into further studies of the threshold states:

i) Since the pole position of a genuine state should not depend 
on a specific process, while the ATS peak is rather sensitive to the 
kinematic condition, one would expect that a genuine state should 
still appear in other processes where the kinematic conditions for 
the ATS are not fulfilled, but the ATS peak should disappear.

ii) One can investigate different production processes to check 
how strongly the signal is process-dependent.

4. Summary

In this work we made a detailed analysis of the ATS and 
explored possible channels which allow experimental measure-
ments of this unique mechanism. The ATS can produce observ-
able phenomena which may have important consequences. One 
example is the puzzling η(1405) and η(1475) relation. So far, 
the high-statistic data do not support two states to appear in 
the same channel. Meanwhile, the single state, either η(1405)

or η(1475), appears to have different mass positions and invari-
ant mass lineshapes in different channels. Such a phenomenon 
can be naturally explained by the ATS mechanism. Neverthe-
less, it naturally accounts for the appearance of the a1(1420) in 
π− p → a1(1420)±π∓n → π+π−π0n. We also suggest that the 
bottomed meson decay mode B → K K̄ ∗ D̄(∗) → K D(∗)−

s ππ should 
be a promising process for the study of the ATS. In this process the 
peak structure corresponding to the ATS will be located far away 
from the normal threshold.

We also pointed out that the ATS contribution may mix with 
that produced by a genuine pole near threshold. Such ambigui-
ties can be clarified by studies of the energy-dependence of the 
invariant mass spectrum. Different production processes can also 
provide additional information for the nature of the threshold en-
hancements. For some XY Z particles, the presence of the ATS 
means that a combined study of the ATS mechanism and other 
dynamic processes are necessary. This should be crucial for our 
better understanding of those XY Z threshold enhancements. Fur-
ther experimental studies of the ATS at BES-III, Belle-II and LHCb 
would be extremely valuable for clarifying many existing puz-
zles.
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