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Abstract

Phantom cosmology allows to account for dynamics and matter content of the universe tracing back the evolution to the inflationa
considering the transition to the non-phantom standard cosmology (radiation/matter dominated eras) and recovering the today obs
energy epoch. We develop the unified phantom cosmology where the same scalar plays the role of early time (phantom) inflaton an
dark energy. The recent transition from decelerating to accelerating phase is described too by the same scalar field. The (dark) ma
embedded in this scheme, giving the natural solution of the coincidence problem. It is explained how the proposed unified phantom c
can be fitted against the observations which opens the way to define all the important parameters of the model.
 2005 Elsevier B.V.
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1. According to recent astrophysical data the (constant
fective equation of state (EOS) parameterweff of dark energy
lies in the interval:−1.48 < weff < −0.72 [1] (see very re-
cent comparison of observational data from different sou
in [2], and see also[3]). It is clear that standardΛ-CDM cos-
mology is in full agreement with observations. Nevertheles
remains the possibility that universe is currently in its phan
DE phase (for recent study of phantom cosmology, see[4–6]
and refs therein). Despite the fact that it remains unclear
decelerating FRW world transformed to the accelerating
universe, one can try to unify the early time (phantom?) in
tion with late time acceleration[4]. In fact, the phantom infla
tion has been proposed in[7]. The unified inflation/acceleratio
universe occurs in some versions of modified gravity[8] as well

* Corresponding author.
E-mail addresses:capozziello@na.infn.it(S. Capozziello),

snojiri@yukawa.kyoto-u.ac.jp, nojiri@cc.nda.ac.jp(S. Nojiri),
odintsov@ieec.uab.es(S.D. Odintsov).
0370-2693 2005 Elsevier B.V.
doi:10.1016/j.physletb.2005.11.012

Open access under CC BY license.
-

s

t

w

-

as for complicated EOS of the universe[9] (for recent discus
sion of similar (phantom) EOS, see[10] and time-dependen
viscosious EOS[11]).

In the present Letter we consider unified phantom c
mology with the account of dark matter. Due to the pr
ence of scalar dependent function in front of kinetic te
the same scalar field may correspond to the (phantom) i
ton at very early universe, quintessence at the intermed
epoch and DE phantom at the late universe. The recent
sition from decelerating phase to the accelerating phase is
urally described there too. On the same time it is shown
both phantom phases are stable against small perturba
and that coincidence problem may be naturally solved in
unified model. The equivalent description of the same u
fied phenomena via the (multi-valued) EOS is given too
the final section we explain how the proposed unified ph
tom cosmology can be fitted against the observations w
gives the way to define all the important parameters of
model.
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2. Let us start from the following action:

S =
∫

d4x
√−g

{
1

2κ2
R − 1

2
ω(φ)∂µφ∂µφ − V (φ)

}
(1)+ Sm.

Here ω(φ) and V (φ) are functions of the scalar fieldφ and
Sm is the action for matter field. Without matter, such an
tion has been proposed in[12] for the unification of early-time
inflation and late-time acceleration in frames of phantom c
mology. We now assume the spatially-flat FRW metricds2 =
−dt2 + a(t)2 ∑3

i=1(dxi)2. Let the scalar fieldφ only depends
on the time coordinatet . Then the FRW equations are given

(2)
3

κ2
H 2 = ρ + ρm, − 2

κ2
Ḣ = p + ρ + pm + ρm.

Hereρm andpm are the energy density and the pressure of
matter respectively. The energy densityρ and the pressurep for
the scalar fieldφ are given by

(3)ρ = 1

2
ω(φ)φ̇2 + V (φ), p = 1

2
ω(φ)φ̇2 − V (φ).

Combining(3) and (2), one finds

ω(φ)φ̇2 = − 2

κ2
Ḣ − (ρm + pm),

(4)V (φ) = 1

κ2

(
3H 2 + Ḣ

) − ρm − pm

2
.

As usuallyρm andpm satisfy the conservation of the energy

(5)ρ̇m + 3H(ρm + pm) = 0.

As clear from the first equation(2), in case without matte
(ρm = pm = 0), whenḢ is positive, which corresponds to th
phantom phase,ω should be negative, that is, the kinetic te
of the scalar field has non-canonical sign. On the other h
whenḢ is negative, corresponding to the non-phantom ph
ω should be positive and the sign of the kinetic term of
scalar field is canonical. If we restrict in one of phantom or n
phantom phase, the functionω(φ) can be absorbed into the fie
redefinition given byϕ = ∫ φ

dφ
√

ω(φ) in non-phantom phas

or ϕ = ∫ φ
dφ

√−ω(φ) in phantom phase. Usually, at least
cally, one can solveφ as a function ofϕ, φ = φ(ϕ). Then the
action(1) can be rewritten as

(6)S =
∫

d4x
√−g

{
1

2κ2
R ∓ 1

2
∂µϕ∂µϕ − Ṽ (ϕ)

}
+ Sm.

Here Ṽ (ϕ) ≡ V (φ(ϕ)). In the sign∓ of (6), the minus sign
corresponds to the non-phantom phase and the plus one
phantom phase. Then both ofω(φ) andV (φ) in the action(1)
do not correspond to physical degrees of freedom but only
combination given byṼ (ϕ) has real freedom in each of th
phantom or non-phantom phase and defines the real dyna
of the system. The redefinition, however, has a discontin
between two phases. When explicitly keepingω(φ), the two
phases are smoothly connected with each other (kind of p
transitions). Hence, the functionω(φ) gives only redundant de
gree of freedom and does not correspond to the extra degr
freedom of the system (in the phantom or non-phantom ph
-
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It plays the important role just in the point of the transition b
tween the phantom phase and non-phantom phase. By usin
redundancy ofω(φ), in any physically equivalent model, on
may choose, just for example,ω(φ) asω(φ) = ω0(φ −φ0) with
constantsω0 andφ0. If we further chooseω0 to be positive, the
region given byφ > φ0 corresponds to the non-phantom pha
the regionφ < φ0 to the phantom phase, and the pointφ = φ0
to the point of the transition between two phases.

First we consider the case that the parameterwm in the mat-
ter EOS is a constant:wm = pm/ρm. (In principle, such dark
matter may be presented via the introduction of one more s
field.) Then by using(5), one getsρm = ρm0a

−3(1+wm). Here
ρm0 is a constant. Ifω(φ) andV (φ) are given by a single func
tion g(φ) as

ω(φ) = − 2

κ2
g′′(φ) − wm + 1

2
g0e−3(1+wm)g(φ),

(7)V (φ) = 1

κ2

(
3g′(φ)2 + g′′(φ)

) + wm − 1

2
g0e−3(1+wm)g(φ),

with a positive constantg0, we find a solution of(2) or (4) given
by

(8)

φ = t, H = g′(t)
(

a = a0eg(t), a0 ≡
(

ρm0

g0

) 1
3(1+wm)

)
.

Hence, even in the presence of matter, any required cosmo
defined byH = g′(t) can be realized by(7).

More generally, one may consider the generalized EOS
[10]: pm = −ρm + F(ρm). Here F(ρ) is a proper function
of ρm. Using the conservation of the energy(5) gives a =
a0e− 1

3

∫ dρm
F(ρm) . Let us assume the above equation can be so

with respect toρm asρm = ρm(a). Then if we may chooseω(φ)

andV (φ) by a single functiong(φ) as

ω(φ) = − 2

κ2
g′′(φ) − F

(
ρm

(
a0eg(φ)

))
,

(9)

V (φ) = 1

κ2

(
3g′(φ)2 + g′′(φ)

) − ρm

(
a0eg(φ)

)
+ 1

2
F

(
ρm

(
a0eg(φ)

))
,

with a positive constanta0, we find a solution of(2)or (4)again:

(10)φ = t, H = g′(t)
(
a = a0eg(t)

)
.

Hence, any cosmology defined byH = g′(t) can be realized by
(9).

Since the second FRW equation is given by

(11)p = − 1

κ2

(
2Ḣ + 3H 2),

by combining the first FRW equation, the EOS parameterweff
looks as

(12)weff = p

ρ
= −1− 2Ḣ

3H 2
.

Now it is common to believe that about 5 billion years a
the deceleration of the universe has turned to the accelera
We now show that the model describing such a transition c
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be easily constructed in the present formulation. As an exam
we consider the model with constantwm (7). It is also assumed
wm > −1. Choosingg(φ) as

(13)g(φ) = 2

3(wm + 1)
ln

(
φ

ts − φ

)
,

we obtain

ω(φ) = − 4

3(wm + 1)κ2

(
− 1

φ2
+ 1

(ts − φ)2

)

− wm + 1

2
g0

(ts − φ)2

φ2
,

(14)

V (φ) = 1

κ2

{
4

3(wm + 1)2

(
1

φ
+ 1

ts − φ

)2

+ 2

3(wm + 1)

(
− 1

φ2
+ 1

(ts − φ)2

)}

+ wm − 1

2
g0

(ts − φ)2

φ2
.

Then the Hubble rateH is given by

(15)H = 2

3(wm + 1)

(
1

t
+ 1

ts − t

)
.

Since

(16)Ḣ = 2

3(wm + 1)

(
− 1

t2
+ 1

(ts − t)2

)
,

the EOS parameterweff (12)goes towm > −1 whent → 0 and
goes to−2− wm < −1 at large times. The crossingweff = −1
occurs whenḢ = 0, that is,t = ts/2. Note that

(17)
ä

a
= 16ts

27(wm + 1)3(ts − t)2t2

{
t − (3wm + 1)ts

4

}
.

Hence, ifwm > −1/3, the deceleration of the universe turns
the acceleration att = ta ≡ (3wm + 1)ts/4. The energy densit
of the scalar fieldφ and that of the matter are given by

ρ = 4t2
s

3κ2(wm + 1)2(ts − t)2t2
− g0

(ts − t)2

t2
,

(18)ρm = g0
(ts − t)2

t2
.

Then if the coincidence timetc is defined byρ|t=tc = ρm|t=tc ,
we find tc = ts − {2t2

s /3g0κ
2(wm + 1)2}1/4. We may assumets

could be of the order of the age of the universe,ts ∼ 1010 yr ∼
(10−33 eV)−1. On the other handκ ∼ (1019 GeV)−1 ∼
(1028 eV)−1. Then there is a mixing of very large parame
κ and small one 1/ts in (14), which can be unnatural.

We now show that the above problem of the unnaturaln
could be also avoided in the present formulation. We now p
pose the second example in(7) given by

(19)g(φ) = −α ln

(
1− β ln

φ

κ

)
.

Hereα andβ are dimensionless positive constants. As we
plain soon, we chooseβ ∼ O(10−2). Note that the paramete
order of 10−2 is not unnatural since, sayπ4 ∼O(102). Eq.(19)
e,

s
-

-

gives the following expressions forω(φ) andV (φ):

ω(φ) = −2αβ(β − 1+ β ln φ
κ
)

κ2(1− β ln φ
κ
)2φ2

− wm + 1

2
g0

(
1− β ln

φ

κ

)3(wm+1)α

,

(20)

V (φ) = αβ(3αβ + β − 1+ β ln φ
κ
)

κ2(1− β ln φ
κ
)2φ2

+ wm − 1

2
g0

(
1− β ln

φ

κ

)3(wm+1)α

.

Supposingg0 ∼O(κ−2), there does not appear small parame
like 1/ts in (20). Now the Hubble rate is given byH = αβ/(1−
β ln(t/κ))t , which is positive if

(21)0< t < ts ≡ κe1/β,

and has a Big Rip type singularity att = ts (which appar-
ently may not occur due to account of quantum effects[6]).
Since 1061 ∼ e140, with the choiceβ ∼ 1/140, we obtain
ts ∼ κ × 1061 ∼ (10−33 eV)−1, whose order is that of th
age of the present universe. Then now, due to the proper
the exponential function (or logarithmic function), the sm
scale like ts appears rather naturally. We should also n
that if αβ ∼ O(100−2) and t is a present age of the univer
t ∼ (10−33 eV)−1, the observed value of the Hubble rateH ∼
10−33 eV could be also reproduced. Since

(22)
ä

a
= αβ2(ln t

κ
+ α + 1− 1

β
)

(1− β ln t
κ
)2t2

,

the universe turns to the acceleration from the decelera
when

(23)t = ta ≡ κe
1
β
−α−1

< ts.

Since the energy density of the scalar fieldφ and that of the
matter are given by

ρ = 3α2β2

κ2(1− β ln t
κ
)2t2

− g0

(
1− β ln

t

κ

)3(wm+1)α

,

(24)ρm = g0

(
1− β ln

t

κ

)3(wm+1)α

,

the coincidence timetc could be given by solving the followin
equation:

(25)

(
1− β ln

tc

κ

)3(wm+1)α+2

t2
c = 3α2β2

κ2g0
.

One may regardρm as the sum of the energy density of us
matter, like baryons, and that of (cold) dark matter. Ifρ cor-
responds to the energy density of the dark energy, the cu
data indicate thatρ :ρm ∼ 7 : 3. Then in the present universe,
follows

(26)

(
1− β ln

t

κ

)3(wm+1)α+2

t2 ∼ 9α2β2

10κ2g0
.
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Thus, in the model(19), the acceleration of the present unive
and the coincidence problem seem to be explained rather
rally.

Besides the present acceleration of the universe, there w
period of the accelerated expansion of universe, which is th
flation of the early universe. One can further extend the m
(19), as the third example, to explain on the same time also
inflation of the early universe. By introducing a new dimensi
less positive constantγ , the followingg(φ) can be proposed:

(27)g(φ) = −α ln

(
1− β

2
ln

(
γ + φ2

κ2

))
.

As in (19), α andβ are dimensionless positive constants an
is assumedβ ∼ O(10−2). In the limit of larget (t2/κ2 � γ )
being still less thants in (21), g(t) coincides with that in(19).
Since the scale factora is given by a = a0eg(t) as in (8),
the universe is invariant under the time reversalt → −t in
(27). Then the universe is shrinking whent < 0 and expand
ing when t > 0. The scale factor has minimum att = 0 as
a = (1 − (β/2) lnγ )−α . In the model(27), the Hubble rate is
given by

(28)H(t) = αβt

κ2(1− β
2 ln(γ + t2

κ2 ))(γ + t2

κ2 )
.

Since

ä

a
= αβ

κ2(1− β
2 ln(γ + t2

κ2 ))2(γ + t2

κ2 )2

(29)

×
{(

1− β

2
ln

(
γ + t2

κ2

))(
γ − t2

κ2

)
+ β(1+ α)t2

κ2

}
,

if t > 0, there are two solutions of̈a = 0, one corresponds t
late time and another corresponds to early time. The late
solution of ä = 0 is obtained by neglectingγ and coincides
with (23): t = tl ∼ κe1/β−α−1. On the other hand, the early tim
solution could be found by neglectingβ, which is O(10−2),
to be t = te ∼ κ

√
γ . Then the universe undergoes accelera

expansion when 0< t < te andtl < t < ts . Herets is Rip time:
ts = κ

√−γ + e2/β ∼ κe1/β . te may be identified with the time
when the inflation ended. One is able to define the numbe
the e-foldingsNe asNe = ln(a(te)/a(0)). Then we obtain

(30)Ne = −α ln

(
1− β

2 ln(2γ )

1− β
2 ln(γ )

)
.

It is known thatNe should be equal or larger than 60. W
should note that ln-function in(30) cannot be so large natu
rally since this requires(1− (β/2) ln(2γ ))/(1− (β/2) ln(γ )) ∼
e60 ∼ 1025. Then the ln-function in(30) should be of order o
unity, which requires that the parameterα should beα ∼ 102.
For example, since we can rewrite(30) as γ = exp(2/β −
ln2/(1 − e−Ne/α)), we find that, whenα = 1/β = 240, we
haveNe = 60 if we chooseγ asγ = 0.043925. . . . In the same
way one can define number of e-foldings in other similar m
els. For instance, in[12], without matter, the following unified
u-

a
-
l
e

t

e

d

f

-

model has been considered:

(31)f (φ) ≡ g′(φ) = h2
0

(
1

t2
0 − φ2

+ 1

φ2 + t2
1

)
.

Here h0, t0, and t1 are positive constants. It is assum
t0 > t1. It has been found[12] that H has two minima a

t = t± ≡ ±
√

(t2
0 − t2

1)/2 and att = 0, H has a local maxi-
mum. Hence, (early and late) accelerating phantom phas
curs whent− < t < 0 and t > t+. The number of e-foldings
may be defined as

Ne = ln
a(0)

a(t−)
= − h2

0

2t0
ln

(
t0 −

√
t2
0−t2

1
2

t0 +
√

t2
0−t2

1
2

)

(32)+ h2
0

t1

(
Arctan

(
t1

√
2

t2
0 − t2

1

)
+ π

)
.

Since ln and Arctan-functions should be the order of unity,
find h2

0/t1 (Note that we have assumedt0 > t1 > 0.) should be
O(102) so thatNe could be equal or larger than 60. For e

ample, whent0 � t1, we find Ne ∼ h2
0π

t1
. Then if we choose

h2
0π

t1
∼ 60, we findNe ∼ 60. Hence, it is demonstrated th

scalar field may play the role of phantom inflaton in the ea
universe and phantom DE in the late universe even in the p
ence of matter. In the intermediate phase of the universe
lution the scalar has the standard canonical sign for kin
energy.

3. It is interesting to investigate the stability of the soluti
(8). It is easier to work without matter, that is, we putg0 in (7)
or F in (9) to be equal zero. One definesd/dN ≡ (H−1) d/dt ,
X ≡ φ̇, Y ≡ f (φ)/H . Note thatX = Y = 1 in the solution(8).
By using the first FRW equation(2), we find, for the solution
(8),

(33)µ ≡ 1− Y 2

1− X2
= H 2

Ḣ
.

Then by using the FRW equations(2), (3) with (7) or (9), and
the scalar field equation

(34)0= ω(φ)φ̈ + 1

2
ω′(φ)φ̇2 + 3Hω(φ)φ̇ + V ′(φ),

one finds

(35)
dX

dN
= Y − X,

dY

dN
= µX(1− XY).

Consider the perturbations from the solutionX = Y = 1: X =
1+ δX, Y = 1+ δY . From(35), it follows

(36)
d

dN

(
δX

δY

)
= M

(
δX

δY

)
, M ≡

( −1 1
−µ −µ

)
.

If the real parts of all the eigenvalues of the matrixM are neg-
ative, the solutionX = Y = 1 is stable. The eigenvaluesλ± are
given byλ± = {−(1+ µ) ± √

(1+ µ)2 − 8µ}/2. Then the so-
lution (8) is stable if and only ifµ > 0. From(33), it is seen
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the positiveµ means positiveḢ . Hence, in the phantom pha
(Ḣ > 0), the solution is stable.1

One can check what kind of the EOS for the scalar field
pears. For simplicity, the universe without matter is conside
For the solution(8), by using the first FRW equation(2), we
find

(37)
3

κ2
H 2 = 3

κ2
f (φ)2 = ρ, f (φ) ≡ g′(φ),

which may be solved asφ = f −1(κ

√
ρ
3 ). Here f −1 is the

inverse off , that is, if y = f (x), then x = f −1(y). By us-
ing (4) and (7)with ρm = pm = g0 = 0, it follows ω(φ) =
− 2

κ2 f ′(φ) = ρ + p. Combining the above equations, the f
lowing EOS may be obtained

(38)p = −ρ − 2

κ2
f ′

(
f −1

(
κ

√
ρ

3

))
.

Note thatf −1 could be multi-valued function in general. F
example, in case of(13), EOS is

(39)p = −ρ ∓ (wm + 1)ρ

ts

√√√√
t2
s − 8

3(wm + 1)κ

√
3

ρ
.

Similarly, EOS for other types of scalar couplings may be c
structed which shows that scalar field dynamics may be alw
mapped into the (complicated) EOS.

4. The description of unified phantom dynamics in ter
of EOS can be fitted against observations if one selects
able sets of data at low redshift(z ∼ 0–1), medium redshift
(1 	 z 	 100) and extremely high redshift(100	 z 	 1000).
Specifically, observational evidences point out that the ev
tionary history of the universe comprises two periods of ac
erated expansion, namely the inflationary epoch and the pre
day dark energy dominated phase with an intermediate dec
ated phase where a component of cosmic fluid (dark/bary
matter) has given rise to clustered large scale structure. A
have seen, a single (effective) fluid may indeed be respo
ble of both periods of accelerated expansion. At the same t
this fluid should be subdominant during the radiation/ma
dominated epochs to give rise to baryogenesis and structur
mation. In any case, whatever the fluid is, in order to achie
unified model which could be matched with observations,
cosmological energy density has to scale as

(40)ρ(a) =Na−3
(

1+ aI

a

)η(
1+ a

aDE

)χ

1 The scalar model of deceleration/acceleration transition has been co
ered in[13]. As also discussed here, the solution(8) with g0 = 0 is stable in the
phantom phase but unstable in the non-phantom phase. As one of the eig
uesλ± becomes very large when crossingw = −1, the instability is high there
In order to avoid this problem for above toy model, we may consider two sc
model as inAppendix A. In case of one scalar model, the instability becom
infinite at the crossingw = −1 point, which occurs since the coefficient of t
kinetic termω(φ) in (1) vanishes at the point. In the two scalar model, one
choose the corresponding coefficients do not vanish anywhere. Then we
expect that such a divergence of the instability would not occur, which ca
checked inAppendix A.
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with N a normalization constant,(η,χ) slope parameters an
aI 	 aDE two scaling values of the scale factor which lead
early inflationary epoch (I) and late dark energy epoch(DE). It
is convenient to rewrite Eq.(40) in terms of the redshiftz:

(41)ρ(z) =N (1+ z)3
(

1+ 1+ z

1+ zI

)η(
1+ 1+ zDE

1+ z

)χ

.

To match this formalism with the above results, we have
considerz = a0/a − 1, setting, as standard,a0 = 1 with the
subscript 0 denoting quantities evaluated at the present day
z = 0. Immediately, the Hubble rate isH = − ż

z+1. Then, taking
into account Eq.(8), all results in terms of time can be translat
in terms of redshift. However, the phenomenological para
tersη andχ , assigning the slope ofρ, are derived approximat
ing the functiong(t), while the rip timets and the coincidenc
time tc are, for each giveng(t)-model, related respectively t
zI andzDE. In the same way, using(8), the other characteristi
times asta or te can be translated in terms of redshift. Keep
in mind these considerations, the following discussion ho
in principle, for any unified phantom cosmology, compris
dark matter, like those which we have discussed. Essent
g(t) leads the slope ofρ and the transition between the vario
epochs. From Eq.(40), it is easy to see that


ρ ∼ a−(η+3) for a 	 aI 	 aDE,

ρ ∼ a−3 for aI 	 a 	 aDE,

ρ ∼ aχ−3 for aI 	 aDE 	 a.

Such an energy density scales as dust matter in the r
aI 	 a 	 aDE. This means that the fluid follows matter alo
a large part of the universe history, while it scales differen
only during the very beginning(a 	 aI) and the present pe
riod (a � aDE). Moreover, choosingη = −3, the fluid energy
density remains constant fora 	 aI thus behaving as the usu
cosmological constantΛ during the early epoch of the univer
evolution. Finally, the slope parameterχ determines how the
fluid energy density scales witha in the present epoch. Consi
ering an effective EOSweff ≡ p/ρ, we get, in terms of redshift

(42)weff = η

3

(
1+ z

2+ z + zI

)
− χ

3

(
1+ zDE

2+ z + zDE

)
.

It is worth noting thatweff does not depend neither onχ nor on
zDE for high values ofz, that is for early epochs. On the co
trary, these two parameters play a key role in determining
behavior of the EOS over the redshift range(0,100) which rep-
resents most of the history of the universe (in terms of time)
the interesting period for structure formation. The role of
different quantities(η,χ, zI, zDE) is better understood consid
ering the asymptotic limits of the EOS: limz→±∞ weff(z) = η

3,
wherez → −∞ refers to the asymptotic future. Settingη = −3,
the fluid equation of state asymptotically approaches that o
cosmological constant, i.e.,wΛ = −1. In general, if we impose
η < −1, we get a fluid having a negative pressure in the far
so that it is able to drive the accelerated expansion occu
during the inflationary epoch. It is now clear thatzI controls the
transition towards the past asymptotic value in the sense
the larger isz with respect tozI , the smaller is the differenc
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two
betweenweff(z) and its asymptotic limitη/3. This considera
tion suggests thatzI has to take quite high values (indeed,
greater than 103) since, forz � zI , the universe is in its infla
tionary phase. The present day value ofweff is

(43)w0 = η

3(2+ zI)
− χ

3

(
1+ zDE

2+ zDE

)
� −χ

3

(
1+ zDE

2+ zDE

)
,

where we have used the fact thatzI is very large. BeingzDE > 0,
in order to have the present day accelerated expansionw0
should be negative so that we getχ > 0. Moreover, depend
ing on the values ofχ andzDE, w0 could also be smaller tha
wΛ so that we may recover phantom-like models. The p
meterzDE then regulates the transition to the dark energy-
dominated period. It is worth noting that, sinceρ scales with
a as dust matter for a long period, the coincidence proble
naturally solved in any theoretical model endowed with th
features, as the unified phantom ones presented above. M
over, althoughw0 could be smaller than−1 as for a phantom
field, the equation of state asymptotically tends to a value la
than−1 (provided that−3� η � −1) so that the Big Rip is sig
nificantly delayed or does not occur at all. In order to take
account the dust-matter-dominated era, we have to ask fo
EOS(42)of the formweff(zM) = 0, which gives

(44)zM = yDEχ − (2+ yDE)η ± √
yDEZ(η,χ, zDE, zI)

2η

with yDE = 1+ zDE and

(45)
Z(η,χ, zDE, zI) = yDEη2 + 2(2− yDE + 2zI)ηχ + yDEχ2.

It is easy to check that, for reasonable values ofη andzI , zM is
always a complex number and hence the equation of state
vanishes and it is always negative. Thus, even if its energy
sity scales as that of dark matter over the most of the univ
life, dark energy cannot play the same role of matter sinc
equation of state is always significantly different from null. A
result, we have to include also the dark matter in the total en
budget. This intrinsic difference in the behavior of dark ene
and dark matter equations of state is the reason why the for
essentially, contributes to the cosmic acceleration while the
ter gives rise to the clustered large scale structure. This kin
analysis is particularly useful in the case of solution(39)where
the dominance of dark matter or dark energy is ruled by the
rametersts andwm.

Summarizing, we have proposed an unifying approach to
problem of inflation, dark matter and dark energy in the sa
theoretical framework. As we have seen, it is possible to c
structexactphantom-like cosmological models whereall pecu-
liar eras of cosmic evolution are achieved. Such an evolu
can be matched with observations using the approach out
in [9] where it is considered the dimensionless coordinate
tance to gold SNeIa sample[14] and a dataset comprising 2
radio galaxies[16,17], the shift parameter[18,19]and the bary-
onic acoustic peak in the LRG correlation function[20]. By
this approach, it is possible not only to show the viability of
present unifying phantom model, but also to constrain its m
parameters which are, essentially, the times (i.e., the redshi
-
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of

transition between the various epochs. As an independent
check, we can also use a recently proposed method to con
the model parameters with the lookback time to galaxy clus
and the age of the universe thus obtaining consistent estim
for the model parameters[21]. In this case we are not resortin
to distance indicators but to cosmic clocks which allow to
with good accuracy the transition scales (at least the one
dark matter to dark energy dominated eras). Furthermore
unified phantom model can be compared and contrasted
the CMBR anisotropy and polarization spectrum, with the d
of the matter power spectrum and the growth index[15,18,19].
These tests make it possible to check the model over diffe
redshift ranges than the SNeIa and radio galaxies data, o
ing also the possibility to tighten the ranges for the differ
parameters (in particularzI andzDE, or ti with i = {e, c, s, a}
in the above “time” description). As further remark, this u
fied phantom cosmology can be related to fundamental the
as discussed in[12] where generalized holographic dark ene
can be constructed in this scheme. In a forthcoming paper
detailed comparison with observations will be developed
discussed.

Appendix A. Two scalar model

As seen in(33)–(36), the solution(8) with g0 = 0 is stable
in the phantom phase but unstable in the non-phantom p
As one of the eigenvaluesλ± of the matrixM in (36) becomes
very large when crossingw = −1, the instability is very high
there. In order to avoid this problem, we may consider
scalar model like

S =
∫

d4x
√−g

{
1

2κ2
R − 1

2
ω(φ)∂µφ∂µφ

(A.1)− 1

2
η(χ)∂µχ∂µχ − V (φ,χ)

}
.

Hereη(χ) is a function of the scalar fieldχ . The FRW equa-
tions give

ω(φ)φ̇2 + η(χ)χ̇2 = − 2

κ2
Ḣ ,

(A.2)V (φ,χ) = 1

κ2

(
3H 2 + Ḣ

)
.

Then if

ω(t) + η(t) = − 2

κ2
f ′(t),

(A.3)V (t, t) = 1

κ2

(
3f (t)2 + f ′(t)

)
,

the explicit solution follows

(A.4)φ = χ = t, H = f (t).

One may choose thatω should be always positive andη be
always negative, for example

ω(φ) = − 2
2

{
f ′(φ) −

√
α2 + f ′(φ)2

}
> 0,
κ
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(A.5)η(χ) = − 2

κ2

√
α2 + f ′(χ)2 < 0.

Hereα is a constant. We now define a new functionf̃ (φ,χ) by

(A.6)f̃ (φ,χ) ≡ −κ2

2

(∫
dφ ω(φ) +

∫
dχ η(χ)

)
,

which gives f̃ (t, t) = f (t). If V (φ,χ) is given by using
f̃ (φ,χ) as

(A.7)V (φ,χ) = 1

κ2

(
3f̃ (φ,χ)

2 + ∂f̃ (φ,χ)

∂φ
+ ∂f̃ (φ,χ)

∂χ

)
,

not only the FRW equations but also the scalar field equat
are also satisfied:

0= ω(φ)φ̈ + 1

2
ω′(φ)φ̇2 + 3Hω(φ)φ̇ + ∂Ṽ (φ,χ)

∂φ
,

(A.8)0= η(χ)χ̈ + 1

2
η′(χ)χ̇2 + 3Hη(χ)χ̇ + ∂Ṽ (φ,χ)

∂χ
.

In case of one scalar model, the instability becomes infi
at the crossingw = −1 point, which occurs since the coefficie
of the kinetic termω(φ) in (1) vanishes at the point. In the tw
scalar model in(A.1), the coefficientsω(φ) andη(φ) do not
vanish anywhere, as in(A.5). Then we may expect that suc
a divergence of the instability would not occur. We now che
this explicitly in the following.

By introducing the new quantities,Xφ , Xχ , andY as

(A.9)Xφ ≡ φ̇, Xχ ≡ χ̇ , Y ≡ f̃ (φ,χ)

H
,

the FRW and the scalar equations(A.8) are rewritten as follows

dXφ

dN
= − ω′(φ)

2Hω(φ)

(
X2

φ − 1
) − 3(Xφ − Y),

dXχ

dN
= − η′(χ)

2Hη(χ)

(
X2

χ − 1
) − 3(Xχ − Y),

(A.10)
dZ

dN
= κ2

2H 2

{
Xφ(XφY − 1) + Xχ(XχY − 1)

}
.

Hered/dN ≡ H−1 d/dt . For the solution(A.4), Xφ = Xχ =
Y = 1. The perturbations are considered as

(A.11)Xφ = 1+ δXφ, Xχ = 1+ δXχ, Y = 1+ δY.

Then

d

dN

(
δXφ

δXχ

δY

)
= M

(
δXφ

δXχ

δY

)
,

(A.12)M ≡



− ω′(φ)
Hω(φ)

− 3 0 3

0 − η′(χ)
Hη(χ)

− 3 3

κ2

2H2
κ2

2H2
κ2

H2


 .

The eigenvalues of the matrixM are given by solving the fol
lowing eigenvalue equation
s

e

0=
(

λ + ω′(φ)

Hω(φ)
+ 3

)(
λ + η′(χ)

Hη(χ)
+ 3

)(
λ − κ2

H 2

)

+ 3κ2

2H 2

(
λ + ω′(φ)

Hω(φ)
+ 3

)

(A.13)+ 3κ2

2H 2

(
λ + η′(χ)

Hη(χ)
+ 3

)
.

The eigenvalues are clearly finite. Then even if there is an
stability, it could be finite. More complicated models along t
line may be presented as well.
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