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In this Letter we present a noncommutative version of scalar field cosmology. We find the noncom-
mutative Friedmann equations as well as the noncommutative Klein–Gordon equation, interestingly the
noncommutative contributions are only present up to second order in the noncommutative parameter.
Finally we conclude that if we want a noncommutative minisuperspace with a constant noncommutative
parameter as viable phenomenological model, the noncommutative parameter has to be very small.

© 2011 Elsevier B.V. Open access under CC BY license.
The initial interest in noncommutative field theory [1] slowly
but steadily permeated in the realm of gravity, from which several
approaches to noncommutative gravity [2] were proposed. All of
these formulations showed that the end result of a noncommuta-
tive theory of gravity is a highly nonlinear theory, finding solutions
to the corresponding noncommutative field equations has been
complicated. Even if working with a full noncommutative theory
of gravity looks like a fruitless ordeal, several attempts were made
to understand the effects of noncommutativity on different aspects
of the universe. In some cases the effects of noncommutativity on
the gravitational degrees of freedom were ignored but imposed in
the matter sector. Interesting results were obtained in connection
to scalar field cosmologies [3].

An interesting proposal concerning noncommutative cosmol-
ogy was presented in [4]. The authors noticed that noncommu-
tative deformations modify the noncommutative fields, and con-
jectured that the effects of the full noncommutative theory of
gravity should be reflected in the minisuperspace variables. This
was achieved by introducing the Moyal product of functions in the
Wheeler–DeWitt equation, in the same manner as is done in non-
commutative quantum mechanics. They analyzed the Kantowski–
Sachs cosmology and the study was carried out at the quantum
level, the authors showed that new states of the universe can be
created from the deformations of the quantum phase space. Sev-
eral works followed with this idea [5,6].
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Although the noncommutative deformations of the minisuper-
space were originally analyzed at the quantum level by an effective
noncommutativity on the minisuperspace, classical noncommuta-
tive formulations have been proposed. In [5], the authors consid-
ered classical noncommutative relations in the phase space for the
Kantowski–Sachs cosmological model and established the classical
noncommutative equations of motion. For scalar field cosmology,
in [6] the classical minisuperspace is deformed and a scalar field is
used as the matter component of the universe. In [7], the study is
focused on the consequences the noncommutative deformation has
on the slow-roll parameter when an exponential potential for the
scalar field is considered, the noncommutative deformation gives
a mechanism that ends inflation. The main idea of this classical
noncommutativity is based on the assumption that modifying the
Poisson brackets of the classical theory gives the noncommutative
equations of motion [4,6,5,7]. The main purpose of this Letter is
to construct the noncommutative Friedmann equations for non-
commutative scalar field cosmology with an arbitrary scalar field
potential and analyze the effects of noncommutativity.

We will work with the FRW universe and a scalar field with ar-
bitrary potential as the matter content. The model has been used
to explain several aspects of our universe, like inflation, dark en-
ergy and dark matter. The main reason for using scalar fields is
their flexibility and the simplicity of their dynamics. Noncommu-
tativity in the minisuperspace will be introduced by modifying the
symplectic structure (Poisson’s algebra of the minisuperspace) in
the same manner as in [6,5,7]. Once this is achieved noncommuta-
tive equivalents of the Friedmann equations are derived. Interest-
ingly the noncommutative deformations only appear up to second
order in the noncommutative parameter. Furthermore, if we want
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to consider noncommutative minisuperspace based cosmology as
a viable phenomenological model the resulting equations seem to
favor two very restrictive possibilities, an extremely small value for
the noncommutative minisuperspace parameter, or a very high de-
gree of fine tuning in the parameters of the scalar field potential.

1. Noncommutative cosmological equations

As already suggested, cosmology presents an attractive arena
for noncommutative models, both in the quantum as well as clas-
sical level. One of the features of noncommutative field theories is
UV/IR mixing, this effectively mixes short scales with long scales,
from this fact one may expect that even if noncommutativity is
present at a small scale, by this UV/IR mixing, the effects might
be present at an older time of the universe. Furthermore the pres-
ence of the noncommutativity could be related to a minimal size,
this idea is from the analogy with quantum mechanics where
uncertainty relation between the momentum and coordinates is
present.

Let us start by introducing the phase space for a homogeneous
and isotropic universe with Friedmann–Robertson–Walker metric

ds2 = −N2(t)dt2 + e2α
[
dr2 + r2 dΩ

]
, (1)

here we consider a flat universe, a(t) = eα is the scale factor of
the universe and N(t) is the lapse function, finally we will use a
scalar field φ as the matter content for the model. The Hamiltonian
function is obtained from the action

S =
∫

dx4 √−g

[
R + 1

2
gμν∂μφ∂νφ + V (φ)

]
, (2)

where we have used the units 8πG = 1.
The Hamiltonian is calculated as usual and is given by

H = e−3α

[
1

12
P 2

α − 1

2
P 2

φ − e6α V (φ)

]
, (3)

where V (φ) is the potential for the scalar field, we also set N(t) =
1, this means that we will be using the cosmic time.

The phase space coordinates for this model are given by
{α,φ; Pα, Pφ}, using Eq. (3), we find the equations of motion

α̇ = 1

6
e−3α Pα, Ṗα = 6e3α V (φ),

φ̇ = −e−3α Pφ, Ṗφ = e3α dV (φ)

dφ
. (4)

From the equations for α and φ and the Hamiltonian we con-
struct the Friedmann equation

3H2 = 1

2
φ̇(t) + V (φ), (5)

the Klein–Gordon equation follows from the Hamilton’s equations
for φ and Pφ

φ̈ + 3Hφ̇ = −dV (φ)

dφ
. (6)

As mentioned in the introduction of this Letter, we want to apply
noncommutativity to this cosmological model. To analyze noncom-
mutative cosmology one should start with a noncommutative the-
ory of gravity, and from this theory derive the equivalent of the
Friedmann equations. Unfortunately this is a very difficult ordeal
due to the highly nonlinear character of noncommutative theories
of gravity [2]. In [4], the authors circumvent this problem by using
an effective noncommutativity in the minisuperspace. They start
by calculating the Hamiltonian from Hilbert–Einstein Lagrangian,
together with the metric for the Kantowski–Sachs cosmology. This
gives a Hamiltonian as a function of the minisuperspace variables
(β , Ω) and their canonical momenta. Furthermore, they propose
that the minisuperspace variables do not commute [β,Ω] = iθ and
derive a noncommutative Wheeler–DeWitt equation. Based on this
idea several papers have introduced this effective noncommuta-
tivity in different cosmological models [5–7]. Following [4], the
introduction of noncommutativity is achieved by a noncommuta-
tive deformation of the minisuperspace spawned by the minisu-
perspace variables (α,φ), which is encoded in the commutation
relation

[α,φ] = iθ, (7)

this is an effective noncommutativity that arises from a funda-
mental noncommutative theory of gravity. If we start with the
Lagrangian derived in [2] (where noncommutativity is derived by
using the Seiberg–Witten map), the noncommutative fields are a
consequence of noncommutativity among the coordinates [1] and
then the minisuperspace variables would inherit some effective
noncommutativity, this we assume to be encoded in Eq. (7).

In order to analyze the classical evolution of the noncommuta-
tive cosmological model, we modify the Poisson algebra [5,7], the
new commutation relations are

{α,φ} = θ, {pα, pφ} = 0,

{α, pα} = 1, {φ, pφ} = 1. (8)

This particular choice of the noncommutative relations is in-
spired and consistent with the effective noncommutativity used
in noncommutative quantum cosmology. Now we use Hamilton’s
equations to find the classical dynamics. We might ask ourselves,
if for the modified Poisson algebra, the equations of motion are
given by ẋi = {x, H}, Ṗ xi = {Pxi , H}, where xi = (α,φ) and Pxi =
(Pα, Pφ). To answer this question, we turn to the symplectic for-
malism where the equations of motion can be easily determined.
Among the advantages of this formalism is the fact that the equa-
tions of motion for a particular algebra can be easily calculated,
also nonconstant deformation parameters can be analyzed, further-
more it is not necessary to do an expansion on the noncommuta-
tive parameters (as when using the Moyal product of functions) to
get a closed equations (details are presented in Appendix A).

Using the new algebra we calculate the deformed equations
that govern the dynamics

α̇ = {α, H} = 1

6
e−3α Pα − θe3α dV (φ)

dφ
,

φ̇ = {φ, H} = −e−3α Pφ + 6θe3α V (φ), (9)

we omitted writing the equations for the momenta and the Hamil-
tonian, as they remain unchanged under the noncommutative de-
formation. In order to arrive at Eq. (9) we used the following
formulas

{
α, f (α,φ)

} = θ
∂ f

∂φ
,

{
φ, f (α,φ)

} = −θ
∂ f

∂α
, (10)

which are calculated from the noncommutative relations (8). Using
Eq. (9) and the Hamiltonian we arrived at the deformed Friedmann’s
equation

3H2 = 1

2
φ̇2 + V (φ) − 6θa3

[
H

dV

dφ
+ φ̇V

]

− 3
(
θa3)2

[(
dV

)2

− 6V 2
]
. (11)
dφ
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The Klein–Gordon equation for this noncanonical 2-form can be
calculated from Eqs. (3) and (9) giving

φ̈ + 3Hφ̇ = −dV

dφ
+ 6θa3

[
φ̇

dV

dφ
+ 6H V

]
, (12)

we clearly see that in the limit θ → 0 we recover the usual equa-
tions of scalar field cosmology. These are the noncommutative
Friedmann equations for scalar field cosmology, these equations
are derived for an arbitrary potential of the scalar field.

Exact solutions to the noncommutative Friedmann equations
are not easy to find for a general potential. In the simplest case,
that of a free scalar field (V = 0), the noncommutative effect dis-
appears and the cosmological equations are the usual ones.

The other example which has an exact solution, is for a con-
stant scalar potential (V = Λ)

3H2 = 1

2
φ̇2 + Λ − 6θa3φ̇Λ + 18θ2a6Λ2,

φ̈ + 3Hφ̇ = 36θΛȧa2. (13)

It is not difficult to find solutions to the above system of equations,
the behavior of the scale factor a and the scalar field φ is given by

a(t) ∼ exp(
√

Λ/3t), (14)

φ(t) ∼ 2θ
√

3Λexp(
√

3Λt). (15)

Unfortunately for this case, the Hubble parameter is a constant
(H = ȧ/a = √

Λ/3) and the solutions do not give the appropriate
dynamics of the universe.

2. Discussion and outlook

In this Letter we have constructed a model of noncommuta-
tive scalar field cosmology. We used a modified Poisson algebra
among the minisuperspace variables, that is consistent with the
assumptions taken in noncommutative quantum cosmology [4–7],
and applied them to scalar field cosmology.

The modified equations have the correct commutative limit
when the noncommutative parameter vanishes. An intriguing fea-
ture is that the corrections only appear up to second order in θ

without any approximations, from this observation we can see that
even if the noncommutative parameter is large the effective non-
commutative equations have rather simple modifications. A sim-
plification arises for the exponential potential, the quadratic term
of θ in Eq. (11) can vanish if we take an exponential potential
V (φ) = V 0e−λφ and choose λ = √

6, the equations are further sim-
plified. Furthermore there would be epochs when the terms in the
brackets multiplied by the noncommutative parameter may vanish,
giving dynamics similar to the commutative universe, but again
this will only be achieved under very particular conditions on the
potential.

To study the effects of noncommutative in dark energy, dark
matter or inflation, we only need to solve Eqs. (11) and (12) for the
particular potential that explains each of the aspects mentioned
before. Even if the noncommutative terms look simple, analyti-
cal solutions to the equations are difficult to find, but a complete
analysis can be done numerically. Unfortunately things are not as
simple as that, taking a closer look on the noncommutative cor-
rections, we see that these are weighted by the product θa3. Be-
ing these terms proportional to the volume of the universe the
noncommutative corrections would dominate the dynamics at late
times. It seems that in order to have some plausible evolution, the
minisuperspace noncommutative parameter should be very small,
of order of the inverse of the current volume of the universe. Tak-
ing this into account the effects of noncommutativity will almost
disappear at the early epochs of the universe and would be rel-
evant to the current epoch. This might seem awkward, but scale
mixing is a feature that appears in noncommutative field theory,
so this might be an effect of the UV/IR mixing.

In conclusion, following [4–7], noncommutative versions of the
Friedmann equations were constructed in accordance with sym-
plectic mechanics (see Appendix A) and argued that the only way
that these equations could be phenomenological sensible is by us-
ing very specific and fined tuned potentials or an extremely small
value of θ , rendering noncommutativity irrelevant at very early
stages of the universe with its effects appearing at older stages
of cosmological evolution. Then in order to believe that minisuper-
space noncommutativity with a constant noncommutative param-
eter is viable phenomenologically we only have one option, that
the noncommutative parameter is almost zero. This might be an
unattractive result, as one would expect that the effects of non-
commutativity be present at early times or scales and disappear
as we go to a larger universe, this picture can be realized if the
noncommutativity parameter changes in time. Research in this di-
rection is being constructed and will be reported elsewhere.
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Appendix A

In order to work with the noncommutative deformations of
the minisuperspace, we start by analyzing deformations of clas-
sical mechanics. In order to find the correct equations of motion
once we modify the Poisson algebra, for this we need an appro-
priate formulation of classical dynamics. For our purposes we will
use the symplectic formalism of classical mechanics.

It is well known that a Hamiltonian classical mechanic can be
formulated in a 2n-dimensional differential manifold M with a
symplectic structure. This means that a differential 2-form ω which
is closed and nondegenerate exists, the pair formed by (M, ω) is
called a symplectic manifold. In the Hamiltonian manifold, Hamil-
ton’s function H satisfies

i XH ω = −dH (A.1)

where XH is called Hamiltonian vector field. Specifying local coor-
dinates on M, xμ = {qi, pi}, the above condition takes an explicit
dependence on the 2-form ω

dxμ(t)

dt
= ωμν ∂H

∂xν
, (A.2)

where ωμν are the components of ω−1 in the local coordinates
xμ .

In the symplectic manifold there is a general expression for the
Poisson brackets between two functions in M based on Hamilto-
nian fluxes { f , g} = ω(X f , Xg), which in local coordinates has the
familiar form

{ f , g} = ∂ f

∂xμ
ωμν ∂ g

∂xν
. (A.3)

It is easy to check that the last equation generates the following
commutation relations {xμ, xν} = ωμν .

If we consider the canonical symplectic structure ωc defined by
ωc = dpi ∧ dqi , where i = 1, . . . ,n, we recover the usual Poisson
brackets and Eqs. (A.2) are just Hamilton’s equations of classical
mechanics.
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Darboux’s theorem states that every symplectic structure can
be driven to canonical one by a suitable choice of local coordinates
in the neighborhood of any point x ∈ M. However it is possi-
ble to find new effects if we consider a noncanonical symplectic
structure, for example a magnetic field can appear considering the
appropriate ω (see [8]).

This formalism of classical mechanics gives the mathemat-
ical framework to construct the noncommutative deformation
of the minisuperspace. Using this formalism we can calculate
the deformed Poisson brackets, from which we will determine
the corresponding equations of motion and the resulting alge-
bra is consistent with NCQM. Being the deformation constructed
in the tangent bundle T M instead of the symplectic mani-
fold M all the original symmetries are left intact. This feature
is attractive because the classical symmetries used to construct
a commutative theory would be present in the deformed the-
ory.

In order to find the effects of noncommutativity on the cosmo-
logical equations of motion, we follow the symplectic formalism
on the phase space to the FRW cosmology with the scalar field.
Let us first consider the following 2-form ωnc = ωc + θ dpα ∧ dpφ ,
evidently if θ is constant, ωnc is closed and invertible, thus ωnc

and the cosmological phase space define a symplectic manifold.
The components of ω

μν
nc are

ω
μν
nc =

⎛
⎜⎜⎝

0 θ 1 0
−θ 0 0 1
−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ . (A.4)

From Eq. (A.3), the Poisson commutation relations are
{α,φ} = θ, {pα, pφ} = 0,

{α, pα} = 1, {φ, pφ} = 1, (A.5)

and because the 2-form ωnc is exact the equations of motions are
given by Eq. (A.2) where xμ = {α,φ, Pα, Pφ}, from which we easily
get α̇ = {α, H}, φ̇ = {φ, H}, Ṗα = {Pα, H}, Ṗφ = {Pφ, H}.
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