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Abstract

It is proved that a Perron type theorem holds for positive maps with bilinear components
whose defining matrices satisfy a maximality assumption with respect to certain entry ratios.
The result is applied to a life history model which includes sexual reproduction.
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1. Introduction

The common proof of the Perron–Frobenius Theorem, which gives insights into
the behavior of the successive iterates of any positive square matrix as a function on
the positive real cone of corresponding dimension, is an algebraic one. However, a
large part of this theorem can be readily proved analytically using the theorem of
Birkhoff, [1] and [2–pp. 383–385], which states that such a matrix induces a con-
traction mapping on the projective quotient of the cone with respect to the Hilbert

∗ Corresponding author.
E-mail address: jcrrll@cox.net (J.E. Carroll).

0024-3795/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2004.09.021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82716013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:jcrrll@cox.net


260 J.E. Carroll et al. / Linear Algebra and its Applications 396 (2005) 259–272

projective metric. With coauthors, Kohlberg [3,4–and unpublished work with Pratt]
has further investigated this metric. In addition, Kohlberg [5] and other investigators,
e.g., [6], have established that some functions on the positive cone which share cer-
tain properties with positive matrices, including nonnegativity and homogeneity of
degree one, are contraction mappings in the same sense and, therefore, have associ-
ated Perron theorems. Here, we study positive mappings defined on the product of
two positive cones with bilinear vector component functions, and their compositions
with some homogeneous maps on each of the two vector coordinates separately. As
we shall see, such mappings can be useful in the description of life histories of some
simple populations which reproduce sexually.

2. The basic bilinear model

The motivation for this paper is a reproductive model. We consider a two sex
population with m (pheno)types of females and n types of males, and assume type
inheritance as follows. For i = 1, . . . , m and j = 1, . . . , n, let for k = 1, . . . , m,
σkij � 0 be the proportion of female offspring from a mating between a type i female
and a type j male which are of type k and, for k = 1, . . . , n, τkij � 0 be the proportion
of male offspring from the same mating which are of type k. Phenotypic inheritance
of this sort might occur for traits determined by multiple genes or might be simply
all that is observable if the genotypes which determine the phenotypes are unknown.
Clearly, for any (i, j),

∑m
k=1 σkij = 1 = ∑n

k=1 τkij . For k = 1, . . . , m, let Sk be the
m × n matrix whose (i, j)th term is σkij and for k = 1, . . . , n, let Tk be the m × n

matrix whose (i, j)th term is τkij . Then
∑m

k=1 Sk = ∑n
k=1 Tk is the constant m × n

matrix with all entries 1.
For any positive integer m, let Rm+ = {(x1, . . . , xm) ∈ Rm − {0} | xi � 0 for

i = 1, . . . , m}, the nonnegative cone in Rm. Let | · | denote the l1 norm on Rm, i.e.,
|x| = |x1| + · · · + |xm|, and observe that for x ∈ Rm+, |x| = x1 + · · · + xm. Let
Hm−1+ = {x ∈ Rm+ | |x| = 1}, the space of nonnegative stochastic vectors in Rm, a
compact subset of an m − 1 dimensional hyperplane. Initially, we shall track the
phenotypic proportions, rather than the absolute numbers, of the female and male
populations. Then, female vectors lie in Hm−1+ and male vectors in Hn−1+ , so the space
of population vectors is H+ = Hm−1+ × Hn−1+ . Mating is assumed to be random and
the offspring become the next generation. Therefore, if x(t) represents the female
vector of the t th generation and y(t) the male vector, the transformation on H+
which carries one generation to the next uses the Sk and Tk as bilinear forms, namely

xk(t + 1) = x(t)TSky(t), k = 1, . . . , m, (1a)

yk(t + 1) = x(t)TTky(t), k = 1, . . . , n. (1b)

The summation conditions on the Sk’s and Tk’s imply that (x(t + 1), y(t + 1)) ∈
H+, as we wish, so our model is that of a discrete dynamical system on H+. Let
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us define bilinear maps B1 : H+ → Hm−1+ and B2 : H+ → Hn−1+ by B1(x, y) =
(xTS1y, . . . , xTSmy) and B2(x, y) = (xTT1y, . . . , xTTny). Then let B : H+ → H+
be defined by B(x, y) = (B1(x, y), B2(x, y)). Eqs. (1) state that (x(t + 1), y(t +
1)) = B(x(t), y(t)) for t � 0, so (x(t), y(t)) = Bt (x(0), y(0)).

3. Hardy–Weinberg equilibrium

There is a classic instance of this model. One of the simplest sets of phenotypes is
that of the three genotypes associated with a diploid autosomal gene locus with two
codominant alleles, A and B. The phenotypes are AA, AB, and BB, which we num-
ber 1, 2, and 3 respectively, for both females and males, and it is easily calculated
that

S1 = T1 =



1 1
2 0

1
2

1
4 0

0 0 0


 , S2 = T2 =




0 1
2 1

1
2

1
2

1
2

1 1
2 0


 ,

S3 = T3 =



0 0 0

0 1
4

1
2

0 1
2 1


 .

The Hardy–Weinberg Law states that if x(0) = (x1, x2, x3) = (y1, y2, y3) = y(0),
then for all t � 1, x(t) = y(t) = (p2, 2pq, q2), where p = x1 + 1

2x2 and q = 1
2x2 +

x3 are the allele frequencies for A and B. This is easily verified by directly calcu-
lating (x(1), y(1)) = B(x(0), y(0)), and then noting that the allele frequencies for
(p2, 2pq, q2) are again p and q. In fact, even if x(0) /= y(0), the vectors of phenotype
proportions stabilize in two generations since the fact that Sk = Tk for k = 1, 2, 3
implies that x(1) = y(1). Therefore, (x(t), y(t)) is constant for t � 2, but its value
depends on the initial condition, (x(0), y(0)) ∈ H+. Our main results will be of a
different sort and will not apply in cases, like this one, where any of the Sk’s or Tk’s
has a zero entry.

4. The Hilbert projective pseudometric and Birkhoff’s theorem

Let m � 2 and let Rm++ = {(x1, . . . , xm) ∈ Rm | xi > 0 for i = 1, . . . , m}, an abe-
lian group under coordinatewise multiplication, with identity 1 = (1, . . . , 1). We
define a norm, ‖‖ : Rm++ → [1, ∞), which will be manipulated multiplicatively
rather than additively, by ‖x‖ = max1�i�m xi

min1�i�m xi
= max1�i,j�m

xi

xj
. One can easily verify

the following four observations, the first three of which are analogous to additive prop-
erties of real vector space norms. For all x, x′ ∈ Rm++, ‖x‖ = 1 if and only x is
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constant or scalar, i.e., x = (x, . . . , x) for some x > 0; ‖x‖ = ‖x−1‖; ‖xx′‖ �
‖x‖‖x′‖; for all c > 0, ‖cx‖ = ‖x‖, i.e., ‖‖ is homogeneous of degree zero.
Using the group structure, we define a distance d on Rm++, again in analogy to the
vector space case, by d(x, x′) = ‖xx−1‖. By the norm properties, (i) d(x, x′) � 1
and d(x, x′) = 1 if and only if x = cx′ for some c > 0; (ii) d(x, x′) = d(x′, x); (iii)
d(x, x′′) � d(x, x′)d(x′, x′′); (iv) d(ax, bx′) = d(x, x′) for all a, b > 0. The Hilbert
projective pseudometric δ on Rm++ is defined by δ(x, x′) = log d(x, x′). He intro-
duced it in 1903 [7], applying it to Bolyai-Lobachevsky geometry. By (i), (ii), and
(iii), it satisfies the definition of a metric except that δ(x, x′) = 0 if and only if
x = cx′ for some c > 0.

Let Pm−1 denote real m−1 dimensional projective space, let Pm−1+ = {x ∈ Pm−1 |
x has projective coordinates in Rm+}, and let Pm−1++ = {x ∈ Pm−1 | x has projective
coordinates inRm++}. We observe that properties (i) and (iv) of d above imply that
δ induces metrics both on Pm−1++ and on Hm−1++ = Hm−1+ ∩ Rm++. We shall return to
the former, and more important of these, later.

We can define a distance on H++ = Hm−1++ × Hn−1++ which we again call d, by
d((x, y), (x′, y′)) = d(x, x′)d(y, y′), and the corresponding Hilbert metric δ by
δ((x, y), (x′, y′)) = log d((x, y), (x′, y′)) = δ(x, x′) + δ(y, y′). Our goal is to prove
that when certain conditions on the Sk and Tk are satisfied, then B is a contraction
mapping on H++ with respect to this δ. We shall require the following result, which
is part of a theorem due to Birkhoff. Proofs may be found in [2–pp. 383–385], [8–pp.
100–110], [9], and, with this notation, in [10].

Theorem 1 (Birkhoff). Let k, l � 2 and let A be an k × l matrix with positive entries,
so that A : Rl+ → Rk++. For i = 1, . . . , k, let ai be the ith row vector of A, and let
d(A) = max1�i,j�kd(ai , aj ). Then for any x, x′ ∈ Rl++, δ(x, x′) = 0 or d(A) = 1
implies that δ(Ax, Ax′) = 0. Otherwise, δ(Ax, Ax′) < T (A)δ(x, x′), where T (A) =√

d(A)−1√
d(A)+1

is minimal with this property.

5. Iterated bilinear maps

Armed with the machinery of the last section, we return to the model of Section
2, but we do not require the summation conditions on the Sk’s and Tk’s for our argu-
ments. After noting that for any (x, y) ∈ R+ = Rm+ × Rn+, the 1×1 matrix xTSky =
(xTSky)T = yTST

k x and, similarly, xTTky = (xTTky)T = yTTT
k x, we define matrices

B1(x) ∈ Rm×n+ , B1(y) ∈ Rm×m+ , B2(x) ∈ Rn×n+ , and B2(y) ∈ Rn×m+ and observe that

B1(x, y) = B1(x)y =




xTS1
·
·
·

xTSm


 y = B1(y)x =




yTST
1·

·
·

yTST
m


 x, (1a′)
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B2(x, y) = B2(x)y =




xTT1
·
·
·

xTTn


 y = B2(y)x =




yTTT
1·

·
·

yTTT
n


 x. (1b′)

If it happens to be the case that the Sk’s and Tk’s satisfy the summation conditions
of Section 2 and (x, y) ∈ H+, then B1(x), B1(y), B2(x), and B2(y) are all transpose
stochastic, i.e., their column vectors lie in Hm−1+ or Hn−1+ . The following two lemmas
are found in any treatment of the Hilbert projective pseudometric.

Lemma 1. Let m, n � 2 and S be a positive m × n matrix with rows r1, . . . , rm and
columns c1, . . . , cn. Then max1�i,h�md(ri , rh) = max1�j,l�n d(cj , cl ).

Proof. If S = (sij ), then both of these maxima are equal to max1�i,h�m;1�j,l�n
sij shl

sil shj
.

�

Lemma 2. For all c, c′ ∈ Rm++ and x ∈ Rm+, x·c
x·c′ � max1�i�m

ci

c′
i

.

Proof

x · c
x · c′ =

∑m
i=1 xici∑m
i=1 xic

′
i

=
m∑

i=1

xic
′
i
ci

c′
i∑m

i=1 xic
′
i

which is a weighted average of the terms ci

c′
i

, and so can be no greater than their

maximum. �

Lemma 3. Let S be as in Lemma 1 and let x ∈ Rm+. Then ‖xTS‖ � max1�i�m ‖ri‖.

Proof. For some pair of columns of S, say c and c′, ‖xTS‖ = x·c
x·c′ , and for each

i = 1, . . . , m,
ci

c′
i

� ‖ri‖. The result then follows from Lemma 2. �

Theorem 2. Assume that all the Sk and Tk are positive matrices, not necessar-
ily satisfying the summation conditions, but with B defined as in Section 2. Let γ

be the maximum of all the row and column norms of all the Sk and Tk, let η =
max

{
maxi,j,k,l

σkij

σlij
, maxi,j,k,l

τkij

τlij

}
, and let ϕ = min{γ, η}. Then, for any (x, y),

(x′, y′) ∈ R++ = Rm++ × Rn++, ϕ = 1 or δ((x, y), (x′, y′)) = 0 implies that

δ(B(x, y), B(x′, y′)) = 0. Otherwise, δ(B(x, y), B(x′, y′)) < 2ϕ−1
ϕ+1δ((x, y), (x′, y′)).

Proof. If γ = 1, then all the Sk and Tk are constant matrices, say σkij = σk and
τkij = τk for all i = 1, . . . , m and j = 1, . . . , n. For any (x, y) ∈ R+, xTSky =
σk|x‖y|, xTTky = τk|x‖y|. Therefore, B(x, y) = |x||y|((σ1, . . . , σm), (τ1, . . . , τn)),
and so δ(B(x, y), B(x′, y′)) = 0 for any other (x′, y′) ∈ R+. If η = 1, then the Sk
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are all identical and so are the Tk , so B1(x, y) and B2(x, y) are both constant vec-
tors and, again, δ(B(x, y), B(x′, y′)) = 0. Now suppose that ϕ > 1 and let (x, y),
(x′, y′) ∈ R++. Then, by the triangle inequality,

δ(B1(x, y), B1(x′, y′)) � δ(B1(x, y), B1(x′, y)) + δ(B1(x′, y), B1(x′, y′))
= δ(B1(y)x, B1(y)x′) + δ(B1(x′)y, B1(x′)y′),

where this δ is defined on Rm++. Similarly, for δ defined on Rn++,

δ(B2(x, y), B2(x′, y′)) � δ(B2(y)x, B2(y)x′) + δ(B2(x′)y, B2(x′)y′)

so that for the appropriate δ’s,

δ(B(x, y), B(x′, y′)) = δ(B1(x, y), B1(x′, y′)) + δ(B2(x, y), B2(x′, y′))
� δ(B1(y)x, B1(y)x′) + δ(B1(x′)y, B1(x′)y′)

+δ(B2(y)x, B2(y)x′) + δ(B2(x′)y, B2(x′)y′).

If δ((x, y), (x′, y′)) = 0, then δ(x, x′) = δ(y, y′) = 0 and, by Theorem 1, each of the
four summands on the right above is 0, so δ(B(x, y), B(x′, y′)) = 0. Suppose, then,
that δ((x, y), (x′, y′)) > 0. Again by Theorem 1, for the first of these summands,

δ((B1(y)x, B1(y)x′) � T (B1(y))δ(x, x′)

with equality only if δ(x, x′) = 0 or T (B1(y)) = 0.
By the definition of B1(y) in Eq. (1a) and by Lemma 3, no row norm of B1(y)

exceeds γ , which implies that the maximum value of d on pairs of columns of
B1(y) does not exceed γ 2. Then by Lemma 1 and Theorem 1, T (B1(y)) � γ−1

γ+1 , so

δ(B1(y)x, B1(y)x′) � γ−1
γ+1δ(x, x′) with equality only if δ(x, x′) = 0. After applying

similar reasoning to the other three terms of the sum above and noting that at least
one of δ(x, x′) and δ(y, y′) is positive, we obtain

δ(B(x, y), B(x′, y′)) < 2
γ − 1

γ + 1
δ(x, x′) + 2

γ − 1

γ + 1
δ(y, y′)

= 2
γ − 1

γ + 1
δ((x, y), (x′, y′)).

Next, we reexamine B1(y). For any distinct k, l = 1, . . . , m, let c be the j th col-
umn vector of ST

k and c′ the j th column vector of ST
l . Applying Lemma 2, we con-

clude that d(B1(y)) � η2, allowing us to proceed as above and eventually deduce
that δ(B(x, y), B(x′, y′)) < 2 η−1

η+1δ((x, y), (x′, y′)) as well. �

Next, we shall examine the behavior of the trajectory of B. On Hm−1++ we shall
be using both δ and �, the l1 metric defined by �(x, x′) = |x − x′|. These metrics
are certainly not equivalent, as Hm−1++ is unbounded with respect to δ, but with some
thought, one sees that they induce the same topology on Hm−1++ . One can also see that
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the compact subsets of Hm−1++ in this topology are the closed sets for which all the
coordinates of all the elements are bounded away from zero (but in fact, any closed
subset of Hm−1++ already has this property). Finally, with a little work, one can see
that δ and � are equivalent on such sets. Since we are concerned with the iterates of
B, we can confine our analysis to B(H+). Since B is positive and continuous with
respect to � and H+ is compact with respect to �, B(H+) is a compact subset of
H++.

Corollary 1. Along with the assumptions of Theorem 2 as well as the summa-
tion conditions of Section 2, suppose that ϕ � 3. Then B has a unique fixed point
(x0, y0) ∈ H++, and if (x(0), y(0)) ∈ H+ is arbitrary, then (x(t), y(t)) → (x0, y0)

as t → ∞ with respect to both δ and �.

Proof. First suppose that ϕ < 3. If ϕ = 1, then Theorem 2 implies that B takes a
single value (x0, y0) ∈ H++ for all (x(0), y(0)) ∈ H+ and the corollary is trivial,
so suppose that 1 < ϕ < 3. We then have 0 < 2 γ−1

γ+1 < 1 or 0 < 2 η−1
η+1 < 1. By The-

orem 2, B is a contraction mapping on H++ with respect to δ, so we can apply
the contraction mapping theorem to the compact and, therefore, complete subspace
B(H+).

Now suppose that ϕ = 3. By Theorem 2 (now denoting elements of H+ by single
vectors for convenience), δ(Bz, Bz′) < δ(z, z′) whenever z, z′ ∈ H++ are distinct,
i.e., B is a weak contraction with respect to δ, and it is clearly continuous on H+.
Also, because δ is a pseudometric, as a map H++ → R it is continuous in both vari-
ables. Much of the following argument is adapted from [5]. Let z ∈ H+ be arbitrary.
Since the sequence {Btz}, t � 1, lies in B(H+), it has a convergent subsequence
{Btl z}, say Btl z → v ∈ B(H+). The sequence {δ(Btz, Bt+1z)} is nonincreasing by
weak contractility, so converges to its greatest lower bound and every subsequence
has the same limit. Therefore,

δ(v, Bv) = δ(lim Btl z, B(lim Btl z)) = δ(lim Btl z, lim Btl+1z)

= lim δ(Btl z, Btl+1z) = lim δ(Btl+1z, Btl+2z)

= δ(Bv, B2v)) = δ(Bv, B(Bv)).

Then, by weak contractility, v = Bv, i.e., v is a fixed point of B. Therefore, {δ(v, Btz)}
is nonincreasing and converges to its greatest lower bound, which must be 0 since
δ(v, Btl z) → 0, which means that Btz → v. Finally, again by weak contractility, v is
the unique fixed point of B. �

As observed in Section 4, the pseudometric δ on Rm++ induces a metric, again
called δ, on Pm−1++ and, as in that section, we can generalize δ to a metric on P++ =
Pm−1++ × Pn−1++ . There is also a counterpart of � on P+ = Pm−1+ × Pn−1+ , which may
be viewed as depending on the bijection between H+ and P+ given by the
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restriction to H+ of the natural map R+ → P+. On P+, � is defined by declaring
this bijection an isometry with regard to the two �’s. This definition of � provides
one of the usual equivalent metric space structures to P+. Of course, the further
restriction H++ → P++ is already an isometry with regard to the two δ’s. Finally,
because it is homogeneous in both coordinates, the bilinear map B also induces a
map on P++, which is again called B.

Corollary 2. Along with the assumptions of Theorem 2, suppose that ϕ � 3. Then
B : P+ → P+ has a unique fixed point represented by (x0, y0) ∈ H++, and if
(x(0), y(0)) ∈ P+ is arbitrary, then (x(t), y(t)) = Bt (x(0), y(0)) → (x0, y0) as t →
∞ with respect to both δ and �.

Proof. We can apply Corollary 1, identifying P+ with H+ via the isometry dis-
cussed above, since the summation conditions required in the proof of Corollary 1
were only used to ensure that B : H+ → H+. �

6. Survival, fecundity, and mating preference

The basic model which was introduced in Section 2 and treated in the last section
is only the reproductive portion of a more complete life history model. In this section,
we incorporate some other commonly considered life history parameters, requiring
us to look at a composite map on the bigger space, R+.

As in the basic model, each successive generation completely replaces the last.
We assume that each female can be and is fertilized once and that half the offspring
of each mating is female and half is male. One could allow other proportions of
offspring gender with a little more work. Let x(t) = (x1(t), . . . , xm(t)), respectively
y(t) = (y1(t), . . . , yn(t)), be the vector of numbers of female, respectively male,
types in year t. Let f ∈ Rm++ be the female fecundity vector, i.e., fi is the number
of eggs generated by a type i female. Let p ∈ Hn−1+ be the vector of preferences
for males, i.e., pj is the normalized relative “preference coefficient” exhibited by
all females for type j males. Finally, let r ∈ Rm++ and s ∈ Rn++ be survival vectors
for females and males respectively, i.e., ri and sj are the proportion of fertilized
female eggs of type i and fertilized male eggs of type j respectively which survive to
reproduce. Let B be as in Section 2.

The map F on R+ which transforms one generation into the next is now a com-
position of maps which is only linear in x. For arbitrary c ∈ Rm++, let the function c :
Rm++ → Rm++ be multiplicative translation by the vector c. Clearly c is a bijection and
for x, x′ ∈ Rm++, the definition of d in Section 4 implies that d(x, x′) = d(cx, cx′), so
δ(x, x′) = δ(cx, cx′), and c is an isometry with respect to δ. Just as clearly, c is linear,
in fact diagonal. Let π : Rn+ → Hn−1+ be the projection defined by πv = v/|v|. Then
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F = (r × s) ◦ 1
2 B ◦ (f × π ◦ p).

Each of the maps in this composition commutes with the natural map from R+ to
P+, so F does as well. By Corollary 2, the middle mapping 1

2 B induces a contraction
mapping on P++ with respect to δ if ϕ � 3. Since f, p, r, and s induce isometries on
positive projective space and π induces the identity, F is also a contraction mapping
on P++ with the same contraction coefficient as B.

We shall find it useful to place a simple and intuitive ordering on Rm+. If u =
(u1, . . . , um), x = (x1, . . . , xm) ∈ Rm+, we say u � x if ui � xi and u < x if ui < xi

for i = 1, . . . , m.

Theorem 3. Let F : R+ → R+ be defined as above and suppose that ϕ � 3 for
the B component of F. Then there is a unique (x0, y0) ∈ H++ with the property
that there are κ, λ > 0 such that F(x0, y0) = (κx0, λy0). If (x(0), y(0)) ∈ R+ is
arbitrary and (x(t), y(t)) = Ft (x(0), y(0)) for t � 0, then (x(t), y(t)) → (x0, y0)

in P++ as t → ∞, i.e., x(t) → x0 and y(t) → y0 in direction. Convergence with
respect to � in R+ is as follows. If κ > 1, then (x(t), y(t)) eventually increases
exponentially, i.e., xi(t) and yi(t) increase without bound for all i. If κ < 1, then
(x(t), y(t)) → 0 eventually exponentially. If κ = 1 and ϕ < 3, then there is a µ =
µ(x(0), y(0)) > 0, such that (x(t), y(t)) → µ · (x0, λy0), a fixed point of F in R++,

implying that λ is the male-to-female ratio at equilibrium in this case. In addition, µ :
R+ → R+ is linear in x, so is also monotone in x, and is homogeneous of degree
zero in y.

Proof. As noted above, since ϕ � 3, F induces a contraction mapping on P++ with
respect to δ. By the contraction mapping theorem, this induced map (technically
when restricted to F(P+)) has a unique fixed point to which all trajectories con-
verge. Translating back to R+, this fixed point is represented by a unique (x0, y0) ∈
H++ and, therefore, there are κ, λ > 0 such that F(x0, y0) = (κx0, λy0). Further-
more, if (x(0), y(0)) ∈ R+ is arbitrary and (x(t), y(t)) = Ft (x(0), y(0)), then (x(t),

y(t)) → (x0, y0) in P++ as t → ∞, in analogy to the portion of the Perron–Frobe-
nius Theorem which follows from Theorem 1. If δ((x(0), y(0)), (x0, y0)) = 0, then
(x(0), y(0)) = (ax0, by0) for some a, b > 0 and we can quickly calculate that (x(t),

y(t)) = Ft (ax0, by0) = aκt−1(κx0, λy0), implying the theorem. Therefore, we may
suppose that δ((x(0), y(0)), (x0, y0)) > 0. For t � 0, let µ(t), ν(t) be the largest
positive numbers such that µ(t)x0 � x(t) and ν(t)y0 � y(t). Then x(t) = µ(t)(x0 +
u(t)), y(t) = ν(t)(y0 + w(t)), where u(t) ∈ Rm+ ∪ {0} and w(t) ∈ Rn+ ∪ {0} both
have at least one zero coordinate. Let x0 = (x1, . . . , xm). Then, recalling the defi-
nition of d and noting that x(t) → x0 in δ, we have

1 + max
1�i�m

ui(t)

xi

= max
1�i�m

(
(x0 + u(t))i

xi

)

= d(x0 + u(t), x0) = d(x(t), x0) → 1. (2)
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Therefore, ui(t)
xi

→ 0 for all i, so |u(t)| → 0 as t → ∞. With an identical argument,
we conclude that |w(t)| → 0 as well. Now suppose that κ > 1 and choose any κ ′
such that 1 < κ ′ < κ . Since F1 is continuous at (x0, y0) and F1(x0, y0) = κx0, there
is an ε > 0 such that whenever |x − x0|, |y − y0| < ε, then F1(x, y) � κ ′x0. Now,
let t be so large that |u(t)|, |w(t)| < ε. Then, since F1 is homogeneous of degree one
in x and homogeneous of degree zero in y, we have for such t,

µ(t + 1)(x0 + u(t + 1)) = x(t + 1) = F1(x(t), y(t))

= F1(µ(t)(x0 + u(t)), ν(t)(y0 + w(t)))

= µ(t)F1(x0 + u(t), y0 + w(t))(t) � κ ′µ(t)x0

which implies that µ(t + 1) � κ ′µ(t) since u(t + 1) has at least one zero coordinate.
Therefore, µ(t) eventually increases exponentially and so does x(t). Now, being
continuous with respect to �, each of the n components of F2 takes a minimum on
the compact set H+, and since F2 is positive on H+, there is a y1 > 0 such that
F2(x, y) � y1 for all (x, y) ∈ H+. But since F2 is also homogeneous of degree 0 in
y, this inequality holds on Hm−1+ × Rn+, and since F2 is linear in x as well,

y(t + 1) = F2(x(t), y(t)) = µ(t)F2(x0 + u(t), y0 + w(t))

� µ(t)F2(x0, y0 + w(t)) � µ(t)y1

and y(t) also eventually increases exponentially. An analogous argument works for
κ < 1.

Now suppose that κ = 1 and ϕ < 3, and let ω � ϕ−1
ϕ+1 < 1 be the contraction

coefficient for F. The remainder of the proof is, unfortunately, even more tedious
than what lies above without being enlightening. Taking the logarithm of Eq. (2), we
have for i = 1, . . . , m,

log

(
1 + ui(t)

xi

)
� δ(x(t), x0) � δ((x(t), y(t)), (x0, y0))

= δ(Ft (x(0), y(0)), Ft (x0, y0))

� δ((x(0), y(0)), (x0, y0))ω
t .

We borrow a standard notation and say for any real valued function f that f (t) =
O(ωt ) if there is a c > 0 such that f (t) � cωt for all t. (This does not exclude the
possibility that f takes negative values of large absolute value but, in fact, only the
last application below of this notation concerns f which can take negative values.)

The inequality above implies that log
(

1 + ui(t)
xi

)
= O(ωt ). Since ui(t)

xi
→ 0 for all

i, for sufficiently large t, ui(t)
xi

< 1. Using the first two terms of the Taylor expansion
for log for such t, we see that
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ui(t)

2xi

� ui(t)

xi

(
1 − ui(t)

2xi

)
= ui(t)

xi

− 1

2

(
ui(t)

xi

)2

< log

(
1 + ui(t)

xi

)
= O(ωt )

so ui(t) = O(ωt ) and, summing over i, we conclude that |u(t)| = O(ωt ). Similarly,
|w(t)| = O(ωt ). Then, since F1 is linear in x, homogeneous of degree zero in y, and
positive, we have for any t � 0,

µ(t + 1)(x0 + u(t + 1)) = x(t + 1) = F1(x(t), y(t))

= F1(µ(t)(x0 + u(t)), ν(t)(y0 + w(t)))

= µ(t)(F1(x0, y0 + w(t)) + F1(u(t), y0 + w(t)))

� µ(t)F1(x0, y0 + w(t)). (3)

Since x0 > 0 and F1 is continuous, arguing as earlier, there is a c1 > 0 such that
F1(x, y) � c1x0 for all (x, y) ∈ Hm−1+ × Rn+. Therefore,

F1(u(t), y0 + w(t)) = |u(t)|F1(πu(t), y0 + w(t)) < O(ωt )c1x0 = O(ωt )x0.

Hence, dividing equation/inequality (3) by µ(t), we get

F1(x0,y0 + w(t)) � µ(t + 1)

µ(t)
(x0 + u(t + 1))

= F1(x0, y0 + w(t)) + O(ωt )x0. (4)

Let G1 = r ◦ 1
2B1, so that F1 = G1 ◦ (f × π ◦ p). We will exploit the fact that G1 is

linear in y and is positive. Now,

F1(x0, y0 + w(t)) = G1(fx0, π(py0 + pw(t)))

= G1

(
fx0,

py0 + pw(t)

|py0 + pw(t)|
)

. (5)

Furthermore, since |w(t)| = O(ωt ), so is |pw(t)| = O(ωt ), so let c2 > 0 satisfy
|pw(t)|
|py0| � c2ω

t , implying that

|py0 + pw(t)| = |py0| + |pw(t)| = |py0|
(

1 + |pw(t)|
|py0|

)

� |py0|(1 + c2ω
t). (6)

Since κ = 1, we have F1(x0, y0) = x0. Therefore, since G1 is positive and linear in
y, by Eq. (5) and inequality (6),

(a) F1(x0, y0 + w(t)) � G1

(
fx0,

py0 + pw(t)

|py0|(1 + c2ωt)

)
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� G1

(
fx0,

py0

|py0|(1 + c2ωt)

)

= 1

(1 + c2ωt)
F1(x0, y0) = 1

(1 + c2ωt)
x0,

(b) F1(x0, y0 + w(t)) � G1

(
fx0,

py0 + pw(t)

|py0|
)

= G1(fx0, π(py0)) + G1

(
fx0,

pw(t)

|py0|
)

= F1(x0, y0) + |pw(t)|
|py0| G1(fx0, πpw(t))

= x0 + |pw(t)|
|py0| F1(x0, w(t))

�
(

1 + |pw(t)|
|py0| c1

)
x0 � (1 + c1c2ω

t)x0.

Then, using these two inequalities along with inequality (4), we obtain

1

1 + c2ωt
x0 � µ(t + 1)

µ(t)
(x0 + u(t + 1)) � (1 + c1c2ω

t + O(ωt ))x0.

But, u(t + 1) = O(ωt+1)x0, so from the left inequality we get

1

1 + c2ωt
x0 � µ(t + 1)

µ(t)
(1 + O(ωt+1))x0,

x0 � µ(t + 1)

µ(t)
(1 + O(ωt ))x0,

and from the right inequality,

µ(t + 1)

µ(t)
x0 � (1 + O(ωt ))x0

which imply, not once but m times, that

1 � µ(t + 1)

µ(t)
(1 + O(ωt )), (7a)

µ(t + 1)

µ(t)
� (1 + O(ωt )). (7b)

Then these two inequalities imply that for some c3 > 0,

1

1 + c3ωt
� µ(t + 1)

µ(t)
� 1 + c3ω

t .



J.E. Carroll et al. / Linear Algebra and its Applications 396 (2005) 259–272 271

Applying this inequality t times and multiplying all together, we get

t−1∏
i=0

1

1 + c3ωi
� µ(t)

µ(0)
�

t−1∏
i=0

(1 + c3ω
i).

Then, taking logarithms and using the fact that log(1 + u) < u for u > 0, we deduce
that for t � 1,

−c3

t−1∑
i=0

ωi < log µ(t) − log µ(0) < c3

t−1∑
i=0

ωi.

Since the geometric series converges, {logµ(t)} is bounded above and below, which
implies that {µ(t)} is both bounded and bounded above 0. Then, multiplying inequal-
ities (7) by µ(t), we obtain µ(t) − µ(t + 1) = O(ωt ) = µ(t + 1) − µ(t), so |µ(t +
1) − µ(t)| = O(ωt ), which implies that the series

∑∞
t=0(µ(t + 1) − µ(t)) is abso-

lutely convergent and, therefore, convergent. Then the sequence {µ(t)} is convergent
and since it is bounded above 0, µ(t) → µ for some µ > 0. Therefore, x(t) → µx0
and, since F2 is homogeneous of degree 0 in y and continuous,

y(t + 1) = F2(x(t), y(t)) = F2(x(t), y0 + w(t)) → F2(µx0, y0)

= µF2(x0, y0) = µλy0.

Finally, since F1 is linear in x and homogeneous of degree zero in y, so is µ. �

7. Concluding remarks

Theorem 2 and its corollaries regarding B, a vector valued map with two bilinear
components, are the main results of this paper. We hope these will have applications
extending well beyond the population model studied here. That model has involved
compositions of B with multiplicative translations by fixed vectors in either com-
ponent. Such a translation is the same as multiplication by a diagonal matrix with
positive diagonal entries and is an isometry. More generally, if A is a square matrix
of appropriate size, its composition with either component of B, preceding or suc-
ceeding, is again bilinear. Suppose that B is a contraction with respect to δ. Then,
by Theorem 1, if A is positive, the composition is also a contraction. In fact, if A
is a “row allowable” nonnegative matrix (every row has at least one nonzero entry),
then A preserves positive vectors and, by a continuity argument using Theorem 1, it
is nonexpansive with respect to δ, i.e., δ(Ax, Ax′) � δ(x, x′) for all x, x′. Again, the
composition is a contraction.

In Section 6, we spent an inordinate amount of time proving a result about some-
thing that almost never happens mathematically, namely the case κ = 1 exactly and
ϕ < 3. However, conditions on actual populations often keep them at a steady total
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size which, one might argue, means that the life history parameters might force κ

toward 1.
Although ϕ � 3 is sufficient, it seems far from necessary. Convergence of all tra-

jectories to a single fixed direction occurs in simulations for positive Sk and Tk with
ϕ as high as 70, and such simulations have not yet produced any counterexamples.
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