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Abstract The present article deals with the effects of velocity slip, chemical reaction on heat and

mass transfer of micropolar fluid in expanding or contracting walls with Hall and ion slip currents.

Assume that there is symmetric suction or injection along the channel walls, which are maintained

at nonuniform constant temperatures and concentrations. The governing Navier–Stokes equations

are reduced to nonlinear ordinary differential equations by using similarity transformations then

solved numerically by quasilinearization technique. The effects of various parameters such as wall

expansion ratio, chemical reaction parameter, Prandtl number, Schmidt number, slip parameter,

Hall and ion slip parameters on nondimensional velocity components, microrotation, temperature

and concentration are discussed in detail through graphs. It is observed that the concentration of

the fluid is enhanced with viscosity. Further, the temperature and concentration of the fluid are

increased whereas the microrotation is decreased for an expansion or contraction of the walls.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The flow through porous channels has great applications in

engineering and science. Examples of these were found in the
boundary layer control, the transport of biological fluids
through contracting or expanding vessels, paper manufactur-
ing, ablation cooling, the air circulation in the repository sys-
tem, the regression of the burning surface in solid rocket

motors and MHD power generators, etc. The theory of
micropolar fluids was initiated by Eringen [1] and this theory
constitutes a subclass of microfluids. Si et al. [2–4] analyzed

the problems of flow and heat transfer of micropolar fluids
with expanding or contracting walls and velocity slip and
obtained analytical solution. Srinivasacharya et al. [5] dis-
cussed numerically the flow and heat transfer of couple stress

fluid in a porous expanding or contracting channel. Gabriel
and Chaudry Masood [6] considered the flow and heat transfer
of viscous fluid in a porous expanding or contracting channel

using Lie group analysis. An exact solution was obtained for
the problem of the flow of a viscous fluid in porous channels
by Asghar et al. [7]. Majdalani et al. [8] investigated the two
tracting

https://core.ac.uk/display/82715957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:odelu@diat.ac.in
mailto:odelu3@yahoo.co.in
mailto:nareshkumarn622@gmail.com
http://dx.doi.org/10.1016/j.asej.2015.09.011
http://dx.doi.org/10.1016/j.asej.2015.09.011
http://www.sciencedirect.com/science/journal/20904479
http://dx.doi.org/10.1016/j.asej.2015.09.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.asej.2015.09.011


Nomenclature

t time

a(t) distance between the origin and upper/lower wall
V1 suction/injection velocity
p fluid pressure
�q velocity vector

c specific heat at constant temperature
�l microrotation vector
N microrotation component

Ec Eckert number, ðlþk1ÞV1

qacðT2�T1Þ
k thermal conductivity
k1 micropolar viscosity parameter

u velocity component in X-direction
v velocity component in Y-direction
Pr Prandtl number, lc

k

Re Reynolds number, qV1a
l

j gyration parameter
J current density
J1 nondimensional gyration parameter, qjt

c
B total magnetic field
b induced magnetic field
B0 magnetic flux density

D rate of deformation tensor
E electric field
Ha Hartmann number, B0a

ffiffi
r
l

q
R nondimensional viscosity parameter, k1

l
s1 nondimensional micropolar parameter, k1a

2

c
s2 nondimensional micropolar parameter, cc

a2k

Sl slip parameter,
ffiffiffiffi
k2

p
ar1

T temperature

T1 temperature of the lower wall
T2 temperature of the upper wall
T� dimensionless temperature, T�T1

T2�T1

C concentration

C1 concentration of the lower wall
C2 concentration of the upper wall
C� dimensionless concentration, C�C1

C2�C1

D1 mass diffusivity
_nA mass transfer rate
k3 chemical reaction rate

Kr nondimensional chemical reaction parameter, k3a
2

D1

Sc Schmidt number, t
D1

Greek Letters
k dimensionless y coordinate, y

a

a; b; c gyro viscosity parameters
f dimensionless axial variable, x

a

q fluid density

l fluid viscosity
l0 magnetic permeability
r electric conductivity
bi ion slip parameter

be Hall parameter
g wall expansion ratio, a _a

t
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dimensional unsteady viscous fluid flow between expanding or

contracting walls with permeability and the problem was
solved both numerically and analytically. The problem of
unsteady laminar flow of a viscous fluid in expanding or con-

tracting pipe was examined by Bujurke and Pai [9]. Uchida and
Akoi [10] considered an unsteady incompressible laminar flow
of a viscous fluid in a semi infinite expanding or contracting

pipe. Srinivas et al. [11,12] considered the effects of heat and
mass transfer to symmetric and asymmetric flow through por-
ous channels with expanding or contracting walls and a pertur-
bation solution was obtained for the reduced governing

equations. Dinarvand et al. [13] studied the problem of an
incompressible isothermal viscous fluid flow through expand-
ing or contracting gaps with permeable walls and obtained

an analytical approximate solution by Homotopy Analysis
Method (HAM). Odelu and Naresh [14,15] investigated
numerically the MHD flow and heat transfer of a micropolar

fluid in a parallel plate channel with periodic suction and injec-
tion by considering chemical reaction and Hall and ion slip
currents. The flow of an electrically conducting micropolar
fluid with Hall and ion slip by considering thermal diffusivity

was examined by Motsa and Shateyi [16]. Ziabakhsh and
Domairry [17] obtained an analytical approximate solution
for micropolar fluid flow in a porous channel with mass trans-

fer. The simultaneous effects of soret and ohmic heating on
free convective heat and mass transfer of an electrically con-
ducting micropolar fluid in a porous medium bounded by an

infinite vertical surface were examined by Satyanarayana and
Please cite this article in press as: Ojjela O, Naresh Kumar N, Slip-flow and heat tra
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Sravanthi [18] and they obtained an analytical solution by per-

turbation method. Uddin and Kumar [19] discussed the prob-
lem of a steady incompressible flow of a micropolar fluid
through a wedge with Hall and ion slip effects and the flow

field equations are solved numerically using Runge–Kutta
method. Eldahab and Aziz [20] investigated numerically the
effects of the Hall and ion slip on steady free convective flow

with viscous dissipation and Joule heating by considering the
power law variation of the wall temperature. The flow and
convective heat transfer of viscous fluid through a vertical
plate with Hall and ion slip currents was studied by Ferdows

et al. [21] and a numerical solution was obtained by Runge–
Kutta sixth order method. Nasser [22] considered the effects
of chemical reaction on MHD flow of a viscous fluid with Hall

and ion slip and the reduced nonlinear differential equations
are solved numerically by using the Chebyshev pseudospectral
method. The effects of thermal radiation and chemical reaction

on incompressible flow of an electrically conducting micropo-
lar fluid over an inclined plate have been studied by Das [23].
Pal et al. [24] discussed the problem of oscillatory mixed
convection-radiation of a micropolar fluid in a rotating system

with Hall and chemical reaction effects and obtained an ana-
lytical solution. Bakr [25] investigated the steady as well as
unsteady MHD micropolar fluid with constant heat source

and chemical reaction effect in a rotating frame of reference.
The optimization of energy and cost of heat exchanger for fins
over a plate using genetic algorithm have been studied by

Najafi et al. [26]. Hajmohammadi et al. [27] considered the
nsfer of chemically reacting micropolar fluid through expanding or contracting
.1016/j.asej.2015.09.011
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Slip-flow and heat transfer of micropolar fluid 3
analysis of constructal design of fins with convective heat
transfer. The laminar incompressible flow of nano fluids with
heat transfer characteristics by considering the convective

boundary conditions was analyzed numerically by Hajmoham-
madi et al. [28]. The literature states that the velocity slip could
not be ruled out as a significant element in the understanding

of certain flow characteristics under the porous boundary con-
ditions (Beavers and Joseph [29]). Ramos [30] investigated an
asymptotic analytical solution of two dimensional flows of

incompressible fluids with a velocity slip length that depended
on the axial pressure gradient. However, very few reports were
found in the literature for micropolar fluids with expanding or
contracting walls and slip boundary condition. The three

dimensional flow of nano fluid with heat transfer was consid-
ered in the presence of velocity slip and thermal radiation by
Hayat et al. [31] and obtained an analytical approximate solu-

tion by HAM. Zheng et al. [32] have studied the effects of tem-
perature jump on MHD slip-flow and heat transfer of a
viscous fluid over a porous shrinking surface. Hajmohammadi

and Nourazar [33] have investigated the flow and heat transfer
of a thin gas layer and power law liquid in a cylinder by con-
sidering the slip and the stability analysis is discussed by using

gradient energy method. Recently, Hajmohammadi et al. [34]
have obtained an analytical solution for the two phase flow
of power law liquid and gas between two cylinders with stabil-
ity analysis. Zhang et al. [35] studied the steady Navier–Stokes

equations with first and second order accurate slip boundary
conditions for describing the two dimensional gaseous laminar
flow between two plates. Bhatnagar et al. [36] examined the

steady incompressible laminar flow of viscoelastic fluid
through a porous cylindrical annulus and the reduced flow
field equations are solved numerically using the quasilineariza-

tion method. Hymavathi and Shanker [37] applied quasilin-
earization technique to MHD flow of a visco-elastic fluid in
a porous stretching sheet. A quasilinearization method was

used to solve the convective flow of a viscous fluid in a vertical
channel by Huang [38]. Further, the nonlinear ordinary differ-
ential equations can be solved by semi analytical methods.
Many authors (Hajmohammadi et al. [39,44], Hajmohammadi

and Nourazar [40,43] and Khan et al. [41,42]) used the semi
analytical technique to solve the nonlinear ordinary differen-
tial equations of the forced convective flow and heat transfer

over a plate by considering the thermal conductivity as a func-
tion of temperature.

Motivated by the above work, we considered the effects of

chemical reaction, Hall and ion slip on two dimensional MHD
flow and heat transfer of micropolar fluid with expanding or
contracting walls. The flow field equations are reduced to non-
linear ordinary differential equations by similarity transforma-

tions and the solution is obtained using the quasilinearization
method. The effects of various fluid and geometric parameters
on the velocity components, microrotation, temperature distri-

bution and concentration are studied and shown graphically.

2. Formulation of the problem

The two dimensional laminar incompressible micropolar fluid
flow through an elongated rectangular channel exhibiting a
sufficiently large aspect ratio of height ‘a’ is considered. The

upper and lower walls are assumed to have equal permeability
and expand or contract uniformly at a time-dependent rate in
Please cite this article in press as: Ojjela O, Naresh Kumar N, Slip-flow and heat tra
walls with Hall and ion slip currents, Ain Shams Eng J (2015), http://dx.doi.org/10.
the transverse direction only. Hence, their separation is a func-
tion of time, a(t). Let the fluid be injected or aspirated uni-
formly and orthogonally through the channel walls at an

absolute velocity V1. The lower and upper walls are main-
tained at constant temperatures T1, T2 and concentrations
C1, C2 respectively. The region inside the parallel walls is sub-

jected to a constant external magnetic field of strength B0 per-
pendicular to the XY-plane.

The governing equations of the two dimensional micropo-

lar fluid flow, heat and mass transfer in the presence of Hall
and ion slip currents and in the absence of body forces and
body couples are [46,47] given by

@u

@x
þ @v

@y
¼ 0 ð1Þ

q
@u

@t
þ u

@u

@x
þ v

@u

@y

� �
¼ � @P

@x
þ lþ k1ð Þ @2u

@x2
þ @2u

@y2

� �
þ k1

@N

@y

� rB2
0

ð1þ bi beÞu� bev

ð1þ bi beÞ2 þ be2

 !
ð2Þ

q
@v

@t
þ u

@v

@x
þ v

@v

@y

� �
¼ � @P

@y
þ lþ k1ð Þ @2v

@x2
þ @2v

@y2

� �
� k1

@N

@x

� rB2
0

ð1þ bi beÞvþ beu

ð1þ bi beÞ2 þ be2

 !
ð3Þ

q
@N

@t
þ u

@N

@x
þ v

@N

@y

� �
¼ �2k1Nþ k1

@v

@x
� @u

@y

� �

þ c
@2N

@x2
þ @2N

@y2

� �
ð4Þ

qc
@T

@t
þ u

@T

@x
þ v

@T

@y

� �
¼ k

@2T

@x2
þ @2T

@y2

� �
þ l 2

@u

@x

� �2
 

þ 2
@v

@y

� �2

þ @u

@y
þ @v

@x

� �2
!

þ k1
2

@v

@x
� @u

@y
� 2N

� �2

þ c
@N

@x

� �2

þ @N

@y

� �2
 !

þ rB2
0 u2 þ v2ð Þ

1þ bi beð Þ2 þ be2
ð5Þ

@C

@t
þ u

@C

@x
þ v

@C

@y

� �
¼ D1

@2C

@x2
þ @2C

@y2

� �
� k3 C� C1ð Þ ð6Þ

The coefficients l, k1, a; b; c in the above equations are

related by the inequalities

2lþ k1 P 0; k1 P 0; 3aþ bþ c P 0; c P bj j ð7Þ
Neglecting the displacement currents, the Maxwell equa-

tions and the generalized Ohm’s law are

r � B ¼ 0; r� B ¼ l0J; r� E ¼ @B

@t
;

J ¼ rðEþ q� BÞ � be
B0

J� B
� �þ bebi

B2
0

J� B
� �� B

ð8Þ
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Fig. 1 The geometry of the porous channel with expanding or contracting walls.
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where B ¼ B0k̂þ b; b is induced magnetic field, be is the Hall
parameter, bi is the ion slip parameter and l0 is magnetic per-

meability. Assume that the induced magnetic field is negligible
compared to the applied magnetic field so that magnetic Rey-
nolds number is small, the electric field is zero and magnetic
permeability is constant throughout the flow field.

Following Si et al. [2], we take the velocity and microrota-
tion components as,
Fig. 2 Effect of be on (a) axial velocity, (b) radial velocity, (c) mic

Sl = 0.2, Sc = 0.2, Pr= 0.2, Re = �2, g ¼ 2, R= 2, s1 = 2, s2 = 2,

Please cite this article in press as: Ojjela O, Naresh Kumar N, Slip-flow and heat tra
walls with Hall and ion slip currents, Ain Shams Eng J (2015), http://dx.doi.org/10
uðx; k; tÞ ¼ � tx
a2

F 0ðk; tÞ; vðx; k; tÞ ¼ t
a
Fðk; tÞ;

Nðx; k; tÞ ¼ tx
a3

Gðk; tÞ

Following Srinivas et al. [11], the temperature distribution and
concentration are considered as

Tðx; k; tÞ ¼ T1 þ ðlþ k1ÞV1

qac
/1ðkÞ þ

x2

a2
/2ðkÞ

� �
and
rorotation and (d) temperature for Kr = 2, J1 = 0.02, bi = 0.2,

D�1 = 0.0, Ha = 4.
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Cðx; k; tÞ ¼ C1 þ _nA
at

G1ðkÞ þ x2

a2
G2ðkÞ

� �
ð9Þ

where k ¼ y
aðtÞ and Fðk; tÞ, Gðk; tÞ;/1ðkÞ;/2ðkÞ, G1(k) and G2(k)

are to be determined.
The boundary conditions on the velocity, microrotation,

temperature and concentration are

@u

@y
¼ 0; v ¼ 0; N ¼ 0;

@T

@y
¼ 0;

@C

@y
¼ 0 at k ¼ 0

u ¼ �
ffiffiffiffiffi
k2

p
r1

@u

@y
; v ¼ V1; N ¼ 0; T ¼ T2; C ¼ C2 at k ¼ 1

ð10Þ
The slip boundary condition (10) is the well-known Beavers
and Joseph slip condition (Beavers and Joseph [25]), where
r1 is a dimensionless constant which depends on the pore size

of the permeable material and k2 is the specific permeability of
the porous medium.

Substituting Eq. (9) in Eq. (2)–(6), we have

gkf 000 þ 3gf 00 � Reðff 000 � f 0f 00Þ

¼ Rg00 � ð1þ RÞf 0V þ Ha2ð1þ bebiÞ
ð1þ bebiÞ2 þ be2

f 00 ð11Þ
Fig. 3 Effect of bi on (a) axial velocity, (b) radial velocity, (c) mic

Sl = 0.2, Sc = 0.4, Pr= 0.5, Re = �2, g ¼ 2, R = 2, s1 = 2, s2 = 2,

Please cite this article in press as: Ojjela O, Naresh Kumar N, Slip-flow and heat tra
walls with Hall and ion slip currents, Ain Shams Eng J (2015), http://dx.doi.org/10.
J1ð�kgg0 � 3ggþ Reðfg0 � f 0gÞÞ ¼ s1ð�2gþ f 00Þ þ g00 ð12Þ

/00
1 þ2/2þRePr

4

1þR
f 02þ s2
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f 002
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s2g

02 þ Prgk/0
2
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ð15Þ

G00
2 ¼ ReSc �2f0G2 þ fG0

2 �
g
Re

ð3G2 þ kG0
2Þ

	 

þKrScG2 ð16Þ

where prime denotes the differentiation with respect to k and

fðkÞ ¼ Fðk;tÞ
Re

; gðkÞ ¼ Gðk;tÞ
Re

.

The dimensionless form of temperature from Eq. (9) can be
written as
rorotation and (d) temperature for Kr = 2, J1 = 0.02, be = 0.2,

D�1 = 0, Ha = 15.

nsfer of chemically reacting micropolar fluid through expanding or contracting
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T� ¼ T� T1

T2 � T1

¼ Ecð/1 þ f2/2Þ ð17Þ

C� ¼ C� C1

C2 � C1

¼ ShðG1 þ f2G2Þ ð18Þ

The boundary conditions Eq. (10) in terms of f; g,
/1;/2;G1 and G2 are

fð0Þ ¼ 0; fð1Þ ¼ 1;

f 00ð0Þ ¼ 0; f 0ð1Þ ¼ �Sl f 00ð1Þ;
gð0Þ ¼ 0; gð1Þ ¼ 0;

/0
1ð0Þ ¼ 0; /1ð1Þ ¼ 1=Ec;

/0
2ð0Þ ¼ 0; /2ð1Þ ¼ 0;

G0
1ð0Þ ¼ 0; G1ð1Þ ¼ 1=Sh;

G0
2ð0Þ ¼ 0; G2ð1Þ ¼ 0 ð19Þ
3. Solution of the problem

The nonlinear equations Eqs. (11)–(16) are converted into the

following system of first order differential equations by the
substitution

ðf; f 0; f 00; f 000; g; g0;/1;/
0
1;/2;/

0
2;G1;G

0
1;G2;G

0
2Þ

¼ ðx1; x2; x3; x4x5; x6; x7; x8; x9; x10; x11; x12; x13; x14Þ
Fig. 4 Effect of Sl on (a) axial velocity, (b) radial velocity, (c) mi

bi = 0.6, Sc = 0.4, Pr= 0.5, Re = �2, g ¼ 2, R= 2, s1 = 2, s2 = 2,

Please cite this article in press as: Ojjela O, Naresh Kumar N, Slip-flow and heat tra
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crorotation and (d) temperature For Kr = 2, J1 = 0.02, be = 5,

D�1 = 0, Ha = 15.
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dx9
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¼ x10;

dx10

dk
¼ �RePr 2x2x9 � x1x10 þ 1
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3
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dx14
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Re
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þKrScx13

ð20Þ
The boundary conditions in terms of x1; x2; x3; x4; x5; x6;
x7; x8; x9; x10; x11; x12; x13; x14 are

x1ð0Þ ¼ 0; x3ð0Þ ¼ 0; x5ð0Þ ¼ 0; x8ð0Þ ¼ 0;

x10ð0Þ ¼ 0; x12ð0Þ ¼ 0; x14ð0Þ ¼ 0;

x1ð1Þ ¼ 1; x2ð1Þ ¼ �Slx3ð1Þ; x5ð1Þ ¼ 0; x7ð1Þ ¼ 1=Ec;

x9ð1Þ ¼ 0; x11ð1Þ ¼ 1=Sh; x13ð1Þ ¼ 0 ð21Þ
The system of equations Eq. (20) is solved numerically

subject to the boundary conditions Eq. (21) using the quasilin-

earization method given by Bellman and Kalaba [45].
Let (xn

i , i ¼ 1; 2; . . . ; 14) be an approximate current solution

and (xnþ1
i , i ¼ 1; 2; . . . ; 14) be an improved solution of (20).

Using Taylor’s series expansion about the current solution
by neglecting the second and higher order derivative terms,
the coupled first order system (20) is linearized as
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1 xn
4 þ xnþ1

4 xn
1 � xnþ1

2 xn
3 � xn

2x
nþ1
3 Þ

þRðs1ðxnþ1
3 � 2xnþ1

5 Þ þ J1ðxnþ1
1 xn

6 þ xn
1x

nþ1
6 � xnþ1

2 xn
5

� xn
2x

nþ1
5 � kgxnþ1

6 � 3gxnþ1
5 ÞÞ � 1

1þR
ðReðxn

1x
n
4 � xn

2x
n
3Þ

�RJ1ðxn
1x

n
6 � xn

2x
n
5ÞÞ þ

Ha2ð1þ bebiÞ
ð1þRÞðð1þ bebiÞ2 þ be2Þx

nþ1
3

� gkxnþ1
4

1þR
� 3gxnþ1

3

1þR
;

dxnþ1
5

dk
¼ xnþ1

6 ;
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dxnþ1
6

dk
¼ s1ðxnþ1

3 � 2xnþ1
5 Þ þ J1ðxnþ1

1 xn
6 þ xn

1x
nþ1
6 � xn

2x
nþ1
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2 xn

5 � kgxnþ1
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5Þ;

dxnþ1
7

dk
¼ xnþ1

8 ;

dxnþ1
8

dk
¼ �RePr

8xn
2x

nþ1
2

1þ R
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9
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� � ð22Þ
To solve for (xnþ1

i , i ¼ 1; 2; . . . ; 14), the solution to seven

separate initial value problems, denoted by

xh1
i ðkÞ; xh2

i ðkÞ; xh3
i ðkÞ; xh4

i ðkÞ; xh5
i ðkÞ; xh6

i ðkÞ; xh7
i ðkÞ (which

are the solutions of the homogeneous system corresponding

to (22)) and xp1
i ðkÞ (which is the particular solution of (22)),

with the following initial conditions is obtained by using the

4th order Runge–Kutta method:
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Fig. 5 Effect of g on (a) axial velocity, (b) radial velocity, (c) microrotation, (d) temperature and (e) concentration for Kr = 2, J1 = 0.2,

be = 0.2, bi = 0.2, Sc = 0.2, Pr= 0.2, Re = �2, D�1 = 0, R= 2, s1=2, s2 = 2, Sl = 0.2, Ha = 2.
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xh1
3 ð0Þ ¼ 1; xh1

i ð0Þ ¼ 0 for i– 3;

xh2
4 ð0Þ ¼ 1; xh2

i ð0Þ ¼ 0 for i– 4;

xh3
6 ð0Þ ¼ 1; xh3

i ð0Þ ¼ 0 for i– 6;

xh4
8 ð0Þ ¼ 1; xh4

i ð0Þ ¼ 0 for i– 8

xh5
10ð0Þ ¼ 1; xh5

i ð0Þ ¼ 0 for i– 10
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xh6
12ð0Þ ¼ 1; xh6

i ð0Þ ¼ 0 for i– 12

xh7
14ð0Þ ¼ 1; xh7

i ð0Þ ¼ 0 for i– 14

xp1
1 ð0Þ ¼ 0;

xp1
2 ð0Þ ¼ xp1

3 ð0Þ ¼ xp1
4 ð0Þ ¼ xp1

5 ð0Þ ¼ 0

xp1
6 ð0Þ ¼ xp1

7 ð0Þ ¼ xp1
8 ð0Þ ¼ xp1

9 ð0Þ ¼ xp1
10ð0Þ ¼ xp1

11ð0Þ
¼ xp1

12ð0Þ ¼ xp1
13ð0Þ ¼ xp1

14ð0Þ ¼ 0 ð23Þ
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Fig. 7 Effect of Sc on concentration for g ¼ 2, J1 = 0.2,

be = 0.2, bi = 0.2, Kr = 1, Pr= 0.2, Re = �2, D�1 = 0,

R = 2, s1 = 2, s2 = 2, Sl = 0.2, Ha = 2.
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By using the principle of superposition, the general solution

can be written as

xnþ1
i ðkÞ ¼ C1x

h1
i ðkÞ þ C2x

h2
i ðkÞ þ C3x

h3
i ðkÞ þ C4x

h4
i ðkÞ

þ C5x
h5
i ðkÞ þ C6x

h6
i ðkÞ þ C7x

h7
i ðkÞ þ xp1

i ðkÞ ð24Þ
where C1; C2; C3; C4; C5; C6 and C7 are the unknown con-
stants and are determined by considering the boundary condi-

tions at k ¼ 1. This solution (xnþ1
i , i ¼ 1; 2; . . . ; 14) is then

compared with solution at the previous step (xn
i ,

i ¼ 1; 2; . . . ; 14) and further iteration is performed if the con-
vergence has not been achieved.

4. Results and discussions

The numerical results for the nondimensional velocity compo-
nents, microrotation, temperature distribution and concentra-
tion are calculated correct to six places of decimal for various

parameters in the domain [0,1] (see Fig. 1).
The Hall and ion slip parameters took place due to the

strong magnetic field which is applied in the Z-direction. The

effect of Hall parameter be on velocity components, microro-
tation and temperature distribution is presented in the
Fig. 2. From this it is noticed that as be increases the axial

velocity decreases for 0 < k < 0:5 then increases and the radial
velocity and microrotation are decreasing whereas the temper-
ature distribution is increased towards the upper wall. This
causes the decrease in the effective conductivity which reduces

the damping force on the flow field. Fig. 3 displays the effect of
ion slip parameter bi on velocity components, microrotation
and temperature. As bi increases the profiles of velocity com-

ponents, microrotation and temperature follow the opposite
trend of be. The effect of velocity slip parameter ‘Sl’ on veloc-
ity components, microrotation and temperature is presented in

the Fig. 4. It is observed that as ‘Sl’ increases the axial velocity
decreases near the upper wall. However, the radial velocity,
microrotation and temperature have followed the similar trend

of be. It is due to the fact that the specific permeability
decreases the velocity components and microrotation of the
fluid. The effect of wall expansion ratio g on velocity
components, microrotation, temperature and concentration is

presented in the Fig. 5. As g increases the axial velocity also
increases between k ¼ 0 and k ¼ 0:5 and then decreases.
Fig. 6 Effect of Kr on Concentration for g ¼ 2, J1 = 0.2,

be = 0.2, bi = 0.2, Sc = 0.22, Pr= 0.2, Re = �2, D�1 = 0,

R = 2, s1 = 2, s2 = 2, Sl = 0.2, Ha = 2.
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However, the radial velocity, temperature and concentration

are increased towards the upper wall whereas the microrota-
tion is decreased. Since g is directly proportional to the dis-
tance between the walls which is the function of time, as the

distance increases the velocity in the Y-direction is also
increased. The influence of chemical reaction rate Kr and Sch-
midt number Sc on concentration is shown in Figs. 6 and 7
respectively. It is observed that the concentration increases

as Sc increases, whereas it decreases as Kr increases. This is
because the decrease in mass diffusion rate increases the chem-
ical reaction rate and consequently the concentration of the

fluid decreases. Since Sc is proportional to the kinematic vis-
cosity, the concentration of the fluid is enhanced with viscosity.

5. Conclusions

The effects of chemical reaction, Hall and ion slip currents on
MHD flow and heat transfer of micropolar fluid with expand-

ing or contracting walls and velocity slip are considered. The
reduced governing equations are solved numerically by the
quasilinearization method. The results are analyzed through

graphs for various values of fluid and geometric parameters
and from these we conclude that:

� The velocity slip and ion slip effects are similar for velocity

components, microrotation and temperature distribution.
� When the walls are expanding or contracting the radial
velocity, temperature and concentration of the fluid are

increased whereas microrotation is decreased.
� The concentration of the fluid increases with viscosity of the
fluid.

� The chemical reaction rate reduces the concentration of the
fluid.
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