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eletal muscle cells is the major cause of congenital muscular dystrophy. Here we
show that the zebrafish lost-contact mutant, that lacks a functional integrin-linked kinase (ilk) gene, suffers
from mechanical instability of skeletal muscle fibres. With genetic and morpholino knock-down experiments
we demonstrate that: 1) laminin, itgα7, Ilk and β-parvin are all critical for mechanical stability in skeletal
muscles. 2) Ilk acts redundantly with the dystrophin/dystroglycan adhesion complex in maintaining
mechanical stability of skeletal muscles. 3) Ilk protein is recruited to the myotendinous junctions, which
requires the ECM component laminin and the presence of itgα7 in the sarcolemma. 4) Ilk, unexpectedly, is
dispensable for formation of the adhesion complex. Ilk, however, is required for strengthening the adhesion
of the muscle fibre with the ECM and this activity requires the presence of a functional kinase domain in Ilk.
5) We identified a novel interaction between Ilk and the mechanical stretch sensor protein MLP. Thus, Ilk is
an essential intracellular component downstream of laminin and itgα7, providing strengthening of skeletal
muscle fibre adhesion with the ECM and therefore qualified as a novel candidate gene for congenital
muscular dystrophy.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Human muscular dystrophy is an inherited myogenic disorder
characterized by progressive muscle wasting (Emery, 2002). The
disease can be subdivided into several groups, e.g. Duchenne muscular
dystrophy and congenital muscular dystrophy. Duchenne muscular
dystrophy is caused by mutations in the sarcolemmal protein, dys-
trophin (Hoffman et al., 1987), which is part of the dystrophin glyco-
protein complex. The dystrophin glycoprotein complex also contains
dystroglycan, a transmembrane protein complex that interacts via its
α-subunit with laminin-α2 (lama2) in the extracellular matrix (ECM)
and with its β-subunit to dystrophin in the cytoplasm (Lisi and Cohn,
2007). Congenital muscular dystrophy is a heterogeneous group of
autosomal recessively inherited muscular disorders characterized with
hypotonia and weakness at birth or within the first few months of life
(Emery, 2002). These maladies can be caused by mutations in either
collagen VI, lama2, integrin-α7 (itgα7) or in genes encoding for proteins
involved in the glycosylation of α-dystroglycan (Lisi and Cohn, 2007).
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Collagen and laminin are structural proteins present in the ECM
forming the basement membranes to which muscle fibres will attach.
Laminins are cross-shaped, heterotrimeric, extracellular proteins
consisting of one α, one β and one γ laminin chain. Besides lama2,
also lama4 and lama5 are present in the basement membrane of
skeletal muscles (Sorokin et al., 2000). Lama2-deficient mouse and
zebrafish models have been generated that display severe muscular
dystrophy phenotypes, which, in the case of the zebrafish lama2
mutant, was characterized by muscle fibre detachments from the
basement membrane without sarcolemmal rupture (Hall et al., 2007;
Miyagoe et al., 1997).

At the plasma membrane, dystroglycan and itgα7β1 are the major
receptor for laminins in skeletal muscles (von der Mark et al., 1991).
Integrins are a family of heterodimeric transmembrane proteins
composed of α and β subunits that mediate interactions between the
cell and the ECM (Danen and Sonnenberg, 2003). As expected, itgα7-
deficient mice display symptoms of progressive muscular dystrophy
starting soon after birth (Mayer et al., 1997). This was attributed to an
impaired function of the myotendinous junction (MTJ), which
provides structural stability between the muscle fibre and the ECM.
Although initially independent functions for itgα7 and the dystrophin
glycoprotein complex in muscle integrity was suggested (Mayer et al.,
1997), a later study demonstrated a genetic interaction between itgα7
and dystrophin pointing to complementary roles in maintaining mus-
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Fig. 1. Skeletal muscle detachments in loc/ilk mutant embryos. (A,B) Transmitted light
images of tail regions in wt (A) and loc/ilk mutant embryos (B) at 4.5 dpf. Muscle fibre
retractions are indicated with arrowheads. (C,D) Phalloidin staining and confocal
images of wt sibling embryo (C) and of loc/ilkmutant embryo (D) at 4.5 dpf. Muscle fibre
detachments are apparent in 50% of the loc/ilk mutant embryos (arrowheads). (E,F) α-
actinin antibody staining of wt sibling (E) and loc/ilk mutant embryo (F) at 4.5 dpf.
Regions of muscle fibre detachments are indicated by arrowheads. (G–J) Phalloidin
staining and confocal images of uninjected control embryo (G), uninjected loc/ilk
mutant embryo (H), dystroglycan MO injected wt embryo (I) and a dystroglycan MO
injected loc/ilk mutant embryo (J). Tail regions of 2 dpf embryos are shown.
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cle integrity (Rooney et al., 2006). Although a role for the itgα7β1
complex in muscle cell integrity has been recognized for some time
now, there is little understanding of the intracellular components
interacting with the integrin receptor complex, required to provide
mechanical stability to the skeletal muscle.

The focal adhesion protein Integrin-linked kinase (ILK) was first
identified because of its ability to bind to the intracellular domain of
the β1-integrin subunit (Hannigan et al., 1996). ILK also interacts with
paxillin, PINCH and β-parvin, connecting it to the actin cytoskeleton
(reviewed in (Legate et al., 2006). Previous studies showed that ILK
protein can localize to costameres in cardiac cells (Chen et al., 2005)
and the sarcolemma in skeletal muscle cells (Yamaji et al., 2001).
Furthermore, we and others showed that ILK deficiencies in mouse
and zebrafish results in reduced cardiac contractility and altered
cardiomyocyte cell shapes resulting in a dilated cardiomyopathy
(Bendig et al., 2006; Knoll et al., 2007; White et al., 2006). In addition
we identified functionally relevant mutations in the integrin-binding
domain of lama4 and in ILK of patients with a severe dilated
cardiomyopathy (Knoll et al., 2007). A recent study demonstrates
that loss of ILK in skeletal muscle fibres of 9-month-oldmice leads to a
muscular dystrophy phenotype (Gheyara et al., 2007). The mechan-
ism, however, by which ILK regulates skeletal muscle fibre stability in
this model, remains unclear. Earlier studies in C. elegans and
Drosophila demonstrated an essential role for ILK in respectively
bodywall muscle and flight muscle function and integrity (Mackinnon
et al., 2002; Zervas et al., 2001). Furthermore, these studies
demonstrated that ILK does not require any kinase activity for its
function suggesting that ILK is mainly acting as a scaffold protein.
Several in vitro studies however, have suggested that ILK mediates
signalling via its kinase activity downstream of integrin receptors
(Dedhar, 2000; Delcommenne et al., 1998; Persad et al., 2001).

We previously isolated from a forward genetic screen the zebrafish
lost-contact (loc) mutant, which harbours a premature stop codon
mutation in the ilk gene, resulting in a complete loss of Ilk function
(Knoll et al., 2007). Here we show that the loc/ilk mutants are
characterized by consistent skeletal muscle fibre detachments along
the zebrafish body. Ilk protein is recruited to the MTJ, the sites at the
somite boundaries where skeletal muscle fibres attach to the base-
ment membrane. This recruitment of ILK protein requires the
presence of lama4 and itgα7. Mechanistically, our data suggests that
Ilk is dispensable for the assembly of the MTJ complex but is required
for strengthening the adhesion of themuscle fibreswith the basement
membrane when mechanical forces increase, which is dependent on
the presence of a functional kinase domain. Furthermore we show
that Ilk act redundantly with the dystrophin glycoprotein complex
during skeletal muscle fibre adhesion, highlighting the suitability of
the zebrafish model to uncover the molecular mechanisms linking Ilk
activity and congenital muscular dystrophy.

Results

Zebrafish Ilk is required for skeletal muscle integrity

Although zebrafish loc/ilk mutant embryos initially exhibit normal
swimming behaviour, they become progressively paralysed by 4 days
post fertilization (dpf), which was accompanied by retraction of
skeletal muscle fibres at various locations in the trunk and the tail
(Figs. 1A,B). Despite this, muscle differentiation markers such asmyoD
and myoC, were expressed normally in loc/ilk mutants (Supplemen-
tary Fig. 1). To investigate the integrity of the actin cytoskeleton in the
skeletal muscle fibres, we used phalloidin-TRITC to stain filamentous
actin in embryos at 4.5 dpf. In 50% of loc/ilk mutant embryos (n=69),
we observed the retraction of the actin cytoskeleton in a proportion of
skeletal muscle fibres (Figs. 1C,D). Using an antibody recognizing
sarcomeric α-actinin we observed a similar retraction of the cyto-
skeleton in loc/ilk mutant embryos (Figs. 1E,F). The progressive para-
lysis of the loc/ilk mutant embryos suggests that the muscle
detachments are induced by mechanical stress. Indeed, raising Ilk
deficient embryos under anesthetizing conditions (see Materials and
methods) rescues the muscle detachments completely (ilk MO
injected embryos, 77% muscle detachments (n=70; ilk MO injected
embryos raised under anesthetizing conditions, 0% muscle detach-
ments (n=65)).

The late defects in muscle fibre attachments to the ECM observed
in the loc/ilk mutants (day 4.5) compared to the much earlier defects
reported for the lama2 mutant candyfloss (day 1.5) (Hall et al., 2007),



Table 1
Rescue of the skeletal muscle detachments upon injection of various concentrations of
wt and mutant ilk RNA

Injection n Wildtype
embryosa (%)

Embryos with muscle
detachmentsa (%)

Uninjected loc/ilk 138 74 26
gfp–ilk (20 pg) in loc/ilk 69 90 10
gfp–ilk (80 pg) in loc/ilk 68 95 5
gfp–ilk (160 pg) in loc/ilk 47 96 4
gfp–ilk–K220M (80 pg) in loc/ilk 63 70 30
gfp–ilk–K220M (160 pg) in loc/ilk 66 73 27
gfp–ilk–K220A (160 pg) in loc/ilk 60 74 26

a Visualized by phalloidin staining.
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suggest that parallel pathways play redundant functions in adhesion
of the muscle fibre to the ECM. Previous studies have shown that both
the laminin–integrin interaction as well as the laminin–dystroglycan
interaction are required to anchor the sarcolemma to the ECM and
that both pathways act redundantly (reviewed in Jimenez-Mallebrera
et al., 2005). To determine whether Ilk and dystroglycan have
redundant functions we injected dystroglycan MOs in wild type and
loc/ilk mutant embryos. Injection of a dystroglycan MO in wild type
embryos resulted in skeletal muscle detachment starting at day 4
(Supplementary Fig. 2). In addition, we observed much earlier and
severe muscle fibre detachments in embryos deficient for both
dystroglycan and Ilk, which were not observed in single dystroglycan
MO knock-down embryos or loc/ilk mutant embryos (Figs. 1G–J). In
embryos deficient for both dystroglycan and Ilk, muscle fibre
detachments were already apparent at day 2 (12/12) (Figs. 1J). These
results demonstrate a cooperative function of Ilk and the dystrophin
glycoprotein complex in muscle fibre attachment.

Ilk localizes to the myotendinous junctions

Ilk mRNA is abundantly present in the somites of the developing
zebrafish embryo (Figs. 2A,B). To study how the observed phenotypes
correlate with the presence of the Ilk protein in skeletal muscles, we
generated a GFP–Ilk fusion construct. Injection of synthetic ilk–gfp
mRNA in loc/ilk mutant embryos resulted in an efficient rescue of the
loc/ilk mutant phenotypes (Table 1), demonstrating that the GFP–Ilk
fusion protein is fully functional. Upon injection of ilk–gfp mRNA we
Fig. 2. Ilk–GFP cellular localization. (A,B) Whole mount ISH with dig-labelled antisense ilkmR
mRNA encoding GFP–ILK (C and D) or memGFP (E and F). Images were taken at the 10-so
predominant cytoplasmic localization at this stage. (G,H) Uninjected wt embryo (G) and a w
localization at the somite boundaries is indicated by arrowheads. (I,J) Anti-paxillin antibody
observed GFP–Ilk in the cytoplasm of the myoblasts at the 10-somite
stage (15 hpf) (Figs. 2C,D), which could be easily distinguished from a
membrane–GFP protein localization (Figs. 2E,F). At 24 hpf, the
localization of the GFP–Ilk protein changes from cytoplasmic into a
very specific accumulation of the GFP–Ilk fusion protein at the somite
boundaries (Figs. 2G,H). Using an Ilk-specific antibody we confirmed
the localization of Ilk at the somite boundary (Supplementary Fig. 3).
Ilk localization occurs after somite boundaries are established (Holley,
2006) and we did not observe any visual defects in somite boundary
formation in the loc/ilk mutants (data not shown), suggesting that
zygotic Ilk is not required for somite boundary formation. Laminin
deposition occurs at the somite boundaries after boundary formation
and at the time of Ilk recruitment from the cytoplasm to the somite
NA at 15-somite stage (A and inset) and 24 hpf (B). Wt embryos injected with synthetic
mite stage (15 hpf) at the region of the forming somites. The GFP–Ilk protein shows a
t embryo injected with synthetic mRNA encoding GFP–Ilk (H) at 24 hpf. GFP–Ilk protein
staining and confocal images of a wt embryo (I) or loc/ilk mutant embryo (J) at 3 dpf.



Fig. 3. Knock-down of zebrafish itgα7 results in muscle fibre detachments. (A) Phylogenetic tree of the itgα6 and itgα7 sequence of several species. itgα1 of C. elegans and Drosophila
was used as an outer group. (B,C)Wholemount ISHwith dig-labelled antisense itgα7mRNA at 15-somite stage (B) and 24 hpf with cross section (C). (D–F) Compared towt embryos at
4 dpf (D) injections of itgα7-splice MO (E) or itgα7-ATG MO (F) result in muscle fibre detachments.
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boundary (Crawford et al., 2003). Laminins at the somite boundary
form the basement membrane to which the skeletal muscle fibres are
attached by their MTJs (Hall et al., 2007). Paxillin and vinculin are focal
Fig. 4. GFP–Ilk and paxillin protein localizations in itgα7 and lama4 morphant embryos. (A–C
MTJ at the somite boundaries in 24 hpf embryos (A). Reduced GFP–Ilk protein localization
paxillin antibody staining on wt embryos (D). Reduced paxillin localization to the MTJ at
24 hpf.
adhesion proteins present in MTJs. Their localization to the MTJ is not
dependent on Ilk, since they localize normally in loc/ilk mutant
embryos (Figs. 2I and J and data not shown). Together these data
) Injection of gfp–ilk mRNA in wt embryos results in GFP–Ilk protein localization to the
in embryos co-injected with an itgα7–ATG MO (B) or lama4–ATG MO (C). (D–F) Anti-
the somite boundary in itgα7–ATG MO (E) or lama4–ATG MO (F) injected embryos at
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demonstrate that Ilk is recruited from the cytoplasm to sarcolemma at
the MTJ during early stages of muscle fibre formation but is not
required for the assembly of the MTJ protein complex.

Ilk recruitment to the MTJ requires lama4 and the itgα7 receptor

To address the question whether integrin receptors are required
for the recruitment of Ilk to the MTJ, we first identified a zebrafish
skeletal muscle specific itgα7 gene (Figs. 3A–C). To perform loss of
function analysis on the zebrafish skeletal muscle-specific itgα7 we
designed an itgα7-splice MO, which prevented the splicing of intron 1
upon injection of the MO at the 1-cell stage (Supplementary Figs. 4A,
B). Injection of the itgα7 MO resulted in normal embryos that were
indistinguishable from uninjected control embryos during the first
Fig. 5. Plasma membrane retractions of skeletal muscle fibres. (A,B) Double labelling with a
mutant embryos (B) at 4.5 dpf when muscle fibres detach (arrow). Inset shows vinculin stain
staining for phalloidin (red) and memGFP (green) as separate images or as an overlay take
embryo (I–K) in a region where muscle fibres detached (arrow) at 4.5 dpf.
2 days of development. Starting on day 3, itgα7 morphant embryos
became paralysed with an accompanying retraction of the actin
cytoskeleton in skeletal muscle fibres (32 out of 44 embryos, Figs. 3D,
E). Similar results were obtained with a second independent itgα7
ATG MO (Fig. 3F). To address whether a reduction in itgα7 levels
would affect localization of Ilk to the MTJs, the itgα7 MO was co-
injected with the ilk–gfp mRNA. While localization of ILK to the MTJ
was observed in control embryos (Fig. 4A), a cytoplasmic localization
of Ilk with reduced Ilk protein at the MTJ was observed in the itgα7
MO knock-down embryos (Fig. 4B). Additionally, we observed a strong
reduction in paxillin localization to the MTJs in itgα7 embryos (Figs.
4D,E). Since lama4 is present in the basement membrane of skeletal
muscles and we previously showed a strong genetic interaction
between lama4 and Ilk (Knoll et al., 2007), we studied Ilk localization
nti-vinculin antibody (green) and phalloidin (red) in wt sibling embryos (A) and loc/ilk
ing at the tip of the f-actin filaments (inset in panel B; white arrowheads). (C–K) Double
n from a wt embryo (C–E), an itgα7 MO injected embryo (F–H) and an ilk MO injected
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in lama4 MO knock-down embryos. We observed a loss of Ilk at the
MTJ in lama4 MO knock-down embryos (Fig. 4C). Also paxillin is no
longer recruited to the MTJs in lama4 MO knock-down embryos (Fig.
4F). Together these results demonstrate that Ilk recruitment to the
MTJs requires the presence of itgα7 at the sarcolemma and lama4 in
the basement membrane.

Ilk is required for strengthening of the MTJ

To address whether it is exclusively the actin cytoskeleton
retracting in loc/ilk mutant embryos or whether other components
of the cell adhesion complex also retract, we stained 4.5-day-old loc/
ilk mutant zebrafish larvae with an antibody recognizing vinculin.
Before muscle retractions are visible in loc/ilk mutant embryos,
vinculin localizes normally to the MTJ. We only observed a loss of
vinculin from the myotendinous junctions at regions where the actin
filaments had retracted (Figs. 5A,B). Higher magnification of the
retracting fibre revealed that the vinculin remained attached to the
f-actin fibres (inset in Fig. 5B). This suggested that Ilk is involved in
more than simply anchoring the actin cytoskeleton with the integrin
receptors in the membrane. It is conceivable that Ilk may be required
for extracellular adhesion of the muscle fibre with the ECM by, for
example, modifying integrin adhesion to the ECM. To investigate
this hypothesis we made use of a transgenic line expressing mem-
branous GFP in all tissues including the sarcolemma of muscle fibres.
In wt embryos, the f-actin filaments of skeletal muscle cells are
properly surrounded by the sarcolemma, visualized by the memGFP
(Figs. 5C–E). In itgα7 MO knock-down embryos, however, we
observed a complete retraction of both the actin cytoskeleton and
the sarcolemma of the affected muscle fibres (Figs. 5F–H and
Supplementary Fig. 5A). Interestingly, upon loss of Ilk we also ob-
served a similar and complete retraction of the sarcolemma from the
ECM (Figs. 5I–K and Supplementary Fig. 5B), demonstrating a
Fig. 6. Lysine 220 is essential for in vivo Ilk function. (A) Phosphorylation of Akt/PKB at ser 47
wt sibling embryos and loc/ilkmutant embryos at 3 dpf show identical amounts of phosphor
473 or an anti-phospho GSK-3β ser 9 antibody. Western blotting with a non-phospho spec
present in both samples. Anti-GAPDH was used as an additional loading control. (B) Relativ
ilkK220M and gfp–ilkK220AmRNA injected embryos. (C–F) An uninjected control embryo wit
encoding wt GFP–Ilk (D), GFP–Ilk E359K (E) or GFP–Ilk K220M (F) all show a normal localiz
detachments are obvious in loc/ilk mutant embryos (G). The phenotypes including muscle d
encoding wt Ilk (H) or Ilk E359K (I). No rescue was observed in loc/ilk mutant embryos inje
requirement for Ilk in strengthening adhesion of the MTJ complex
with the ECM.

Ilk K220M cannot rescue loc/ilk mutant phenotypes

Although in vitro studies have suggested that ILK can phosphor-
ylate GSK-3β and Akt/PKB (Dedhar, 2000; Delcommenne et al., 1998;
Persad et al., 2000), rescue experiments in Drosophila and C. elegans
demonstrated that ILK in vivo kinase activity is dispensable for proper
development in these organisms (Mackinnon et al., 2002; Zervas et al.,
2001). Therefore, we examined the phosphorylation of Akt/PKB and
GSK-3β in loc/ilk mutant embryos. We observed, however, no
difference in the phosphorylation levels of Akt/PKB on ser 473 and
GSK-3β on ser 9 in loc/ilk mutant embryos compared to their wt
siblings (Fig. 6A). Next we addressed the question whether ILK
variants, which have been associated with reduced in vitro kinase
activity, are still able to rescue the loc/ilk phenotypes in vivo. We
replaced glutamic acid 359, a conserved residue located in sub domain
VIII (Hanks and Hunter, 1995), to a lysine (E359K). We also mutated
Lys 220, which is located in the ATP binding site of the kinase sub-
domain II. This lysine residue is conserved among all other serine/
threonine kinases and is essential for kinase activity (Hanks and
Hunter, 1995; Snyder et al., 1985). To investigate in vivo functionality
we introduced these pointmutations in the GFP–Ilk fusion protein and
expressed the protein in zebrafish embryos. Introduction of the
E359K, K220M and K220A missense mutations had no effect on
protein levels (Fig. 6B). Furthermore, we observed that these mutant
GFP–Ilk proteins all localized to the MTJ comparable to the wt form of
the protein (Figs. 6C–F). To address whether the E359K, K220M and
the K220A variants are functional in vivo, we expressed the mutant Ilk
proteins in loc/ilk mutant embryos. Loc/ilk mutant embryos were
injected with synthetic mRNAs encoding the different Ilk variants and
scored for phenotypic rescues, including skeletal muscle detachments
3 and GSK-3β at ser 9 is not altered in loc/ilk mutant embryos. Whole embryo lysates of
ylated Akt/PKB and GSK-3β byWestern blot analysis using an anti-phospho Akt/PKB ser
ific Akt/PKB antibody using the same lysates shows identical levels of Akt/PKB protein
e expression levels of Ilk in embryonic extracts of uninjected (control) or gfp–ilk, gfp–
h aweak and non-specific autofluorescence (C). Embryos injected with synthetic mRNA
ation of the GFP–Ilk protein to the MTJs located at the somite boundary. (G–J) Muscle
etachments of loc/ilk mutant embryos were rescued by injection with synthetic mRNA
cted with mRNA encoding Ilk K220M (J).
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(Figs. 6G–J and Table 1). While injecting wt ilk and ilk E359K mRNA
rescued the loc/ilk mutant phenotypes including the skeletal muscle
detachments, injection of 4× the concentration of either the ilk K220M
Fig. 7. In vitro interaction of ILK withMLP and β-parvin. (A) Yeast two hybrid analysis of ILK in
recombinant expressed MLP and the full-length β-parvin. Below the human MLP are the fu
interaction between ILK andMLP. Schematic representations are as follows Control empty pla
full-length β-parvin. Quantification of the interactionwas based on beta-galactosidase activit
methods section and Supplementary Table 1). (B–D) In situ hybridization with dig-labelled a
mlp mRNA expression in the heart. (E–G) In situ hybridization with dig-labelled antisense β
expression in the heart (G). (H,I) Phalloidin staining of f-actin in 5 dpf wt non-injected em
observed in mlp/crp3 MO injected embryos. (J,K) Phalloidin staining of f-actin in 4 dpf wt no
fibre detachments were observed in β-parvin morphants.
or ilk K220A mRNA was ineffective (Table 1). In conclusion, these
results demonstrate that lysine 220 of zebrafish Ilk is required for its in
vivo function during skeletal muscle adhesion.
teractionwithMuscle lim protein (MLP) and β-parvin: Schematic diagram illustrates the
ll-length and the deletion mutants of mouse origin that were generated to assess the
smid pGBKT7, hMLP (full-length), mMLP (full-length) and various regions of mMLP, and
y with growth on medium (+) and stringent (++) selection media (see also Materials and
ntisense mlp probe at 15 somite stage (B), 24 hpf (C) and 48 hpf (D). Arrowhead marks
-parvin probe at 12 somite stage (E), 30 hpf (F) and 48 hpf. Arrowheads marks β-parvin
bryo (H) compared to mlp/crp3 MO injected embryo (I). No muscle fibre defects were
n-injected embryos (J) compared to β-parvin-MO injected embryos (K). Severe muscle
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Ilk interacts with β-parvin and MLP

Muscle cells can sense their mechanical load and upon
mechanical stress they can respond with changes in gene expres-
sion. One of the key regulators for the stretch sense response in
cardiac muscles is the sarcomeric muscle LIM protein CRP3 (MLP/
CRP3) (Knöll et al., 2002). It is believed that upon the stretch sense
response MLP/CRP3 is able to activate the pro-hypertrophic gene
program, thereby stabilizing striated muscle cells during mechanical
stress (reviewed in (Ehler and Perriard, 2000). Since MLP/CRP3 and
Ilk can both be located at the Z-disc in cardiomyocytes and both
have been suggested to play a role in the cardiac mechanical stretch
sensor (Bendig et al., 2006; Knöll et al., 2002), we analyzed whether
both proteins can interact in vitro. By yeast-two hybrid analysis we
indeed observed a strong interaction between the Ilk and MLP/CRP3
proteins. We found that human wildtype ILK as well as K220M–ILK
interacts with human MLP/CRP3 and mouse MLP/CRP3 (Fig. 7A).
Using deletion constructs, we observed that ILK interacts with MLP/
CRP3 amino acids 82–140. This interaction was found while the
yeast colonies were grown on stringent selection plates, pointing to
strong interaction of both proteins (Supplementary Table 2). We
next identified a zebrafish homologue of the mouse MLP/CRP3 gene
(ENSDART00000053404). We found that in zebrafish mlp/crp3 is
expressed ubiquitously including the somites at early stages and
more specifically in the heart at 48 hpf (Figs. 7B–D). To address
whether MLP/CRP3 is required to maintain skeletal muscle integrity
we injected a splice-MO targeting the boundary of exon 3 to intron
3 in mlp/crp3. Injection of the mlp/crp3 splice MO efficiently
blocked splicing of intron 3, introducing a premature stop codon
upstream of the second LIM domain (Supplementary Fig. 4).
Embryos injected with the mlp/crp3 MO and stained with
phalloidin, did however not show any skeletal muscle detachments
(Figs. 7H,I).

β-parvin/affixin is also located at the Z-disc and binds to Ilk in vitro
(Yamaji et al., 2001). The reported interaction between Ilk and β-
parvin is of particular interest since the phosphorylation of β-parvin
by Ilk is required for β-parvin binding to α-actinin in vitro (Yamaji et
al., 2004). Using the yeast two-hybrid system, we confirmed the
interaction of β-parvin with Ilk. Zebrafish β-parvin is strongly
expressed in the somites and only weakly in the heart (Figs. 7E–G).
To address whether β-parvin is important for maintaining skeletal
muscle identity we injected a MO targeting β-parvin. The β-parvin
morphant embryos look normal up to day 4. Starting at 4.5 dpf the β-
parvin morphant embryos become paralyzed, which is accompanied
by severe muscle fibre detachments (Figs. 7J,K). Together these results
demonstrate the interaction of Ilk with both MLP and β-parvin. While
MLP seems to be dispensable for skeletal muscle adhesion, β-parvin is
essential for this process.

Discussion

Although the role of integrins in the formation of adhesion
complexes at the MTJ has been recognized for a long time, there is
only little understanding of the intracellular components of this
specialized adhesion complex in skeletal muscles. A very recent report
demonstrated that Ilk deficiency in skeletal muscles results in
muscular dystrophy phenotypes in mice resembling those observed
in case of itgα7 deficiencies (Gheyara et al., 2007). It remained,
however, unclear how ILK can be placed in the previously identified
laminin, integrin and dystroglycan pathways and whether vertebrate
ILK has similar functions in skeletal muscles as ILK has inmuscle fibres
of invertebrates. Here we show that zebrafish loc/ilk mutants, with a
loss of function allele in the ilk gene, develop with severe skeletal
muscle detachments similar to what was observed in lama2 (Hall et
al., 2007) or lama4 and itgα7-deficient embryos (this study). The
muscle detachments in loc/ilk mutants appear however rather late
when compared to those found in lama2-deficient embryos due to a
redundancy of the integrin–Ilk pathway with the dystrophin/
dystroglycan complex acting in parallel. In addition, we have
demonstrated that Ilk is recruited to the MTJ during early embryonic
development, which requires laminins in the ECM and the presence of
itgα7 receptor in the sarcolemma. Unexpectedly, Ilk is dispensable for
recruiting other components of the adhesion complex, such as paxillin
and vinculin, but required for strengthening the adhesion of the MTJ
with the ECM. For this, the K220 residue within the Ilk kinase domain
is required. Finally we identified a novel interaction between Ilk and
the mechanical stretch sensor protein MLP and demonstrated that β-
parvin, a known Ilk interacting protein, is required for muscle
adhesion similar to Ilk.

Ilk recruitment to MTJs

Initially Ilk protein resides in the cytoplasm of myoblasts to
become recruited to the somite boundaries at the time when
myoblasts elongate and form the MTJ. Vertebrate Ilk can interact
with the cytoplasmic domain of itgβ1 (Hannigan et al., 1996). In C.
elegans, itgβ1 is required for the recruitment of Ilk to the adhesion
sites in body wall muscles (Mackinnon et al., 2002). Surprisingly in
Drosophila, itgβ1 does not interact with Ilk and Ilk localization to
adhesion sites is not affected in itgβ1 mutants (Zervas et al., 2001).
Sincewe anticipated that analyzing the role of itgβ1 in skeletal muscle
attachment would be difficult due to an early requirement for itgβ1 in
various processes (Fassler and Meyer, 1995; Stephens et al., 1995), we
instead studied itgα7, the major integrin alpha subunit in skeletal
muscles. Here we now demonstrated that itgα7 is also required for Ilk
recruitment to the MTJ. Surprisingly, although itgα7 is abundantly
expressed in myoblasts at early stages (Fig. 3), Ilk localization is
predominantly cytoplasmic (Fig. 2). This is suggestive that Ilk may
only interact with itgα7β1 in the plasma membrane following
activation of integrin receptors by binding to the ECM. Itgα7β1 has
been characterized as a laminin receptor and is activated upon
interaction with laminins in the basement membrane (Givant-
Horwitz et al., 2005) and references therein). Indeed, the redistribu-
tion of Ilk protein in the myoblasts coincides with the deposition of
laminin at the somite boundaries (Crawford et al., 2003) and laminin
in the ECM is required for Ilk recruitment to the MTJ (Fig. 4). Ilk
recruitment to cell adhesion sites by laminins might also occur in
other cell types, since we previously observed a strong genetic
interaction between zebrafish Lama4 and Ilk in endothelial cells and
cardiomyocytes (Knoll et al., 2007).

Ilk and muscle fibre adhesion

Our current study in skeletal muscle demonstrates an essential
role for Ilk in adhesion of the muscle fibre with the basement
membrane. Others have suggested that Ilk predominantly acts as an
adaptor protein physically linking integrin receptors with the actin
cytoskeleton. These conclusions are supported by experiments in C.
elegans and Drosophila. In C. elegans, PAT4/ILK localizes to dense
bodies in body wall muscles and is required for the recruitment of
other components of the adhesion complex such as vinculin and
UNC-89 (Mackinnon et al., 2002). From our data presented here,
however, we conclude that in zebrafish, Ilk is required to strengthen
adhesion between the muscle fibre and the basement membrane
and that Ilk is dispensable for building the MTJ adhesion complex.
We made several observations to support our conclusion. First,
although Ilk is recruited to the MTJ, it is not required for building
the adhesion complex since paxillin and vinculin localize normally
to the MTJ in loc/ilk mutants. Second, muscle fibre detachments
were observed rather late (day 4.5) long after MTJs had formed (day
1). On the contrary, muscle fibre detachments were observed much
earlier in laminin-deficient embryos (day 1.5) (Hall et al., 2007) or in
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itgα7-deficient embryos (day 3). Injecting ilk–ATG MOs targeting ilk
mRNA of maternal origin did not affect the timing of muscle
detachments, excluding the possibility that maternal Ilk is compen-
sating for the loss of zygotic Ilk in the MTJ. Third, in loc/ilk mutant
embryos the entire plasma membrane retracts from the basement
membrane (Fig. 5). If Ilk is only required to link the cytoskeleton to
the integrins in the membrane bound to the ECM, one would expect
only the cytoskeleton to retract when Ilk is removed. This indeed
occurs in Ilk-deficient muscle fibres in Drosophila, again suggesting
a very different role for Ilk in Drosophila and zebrafish during
muscle fibre adhesion. In addition these observations, together with
previous observations made by others (Bendig et al., 2006), suggest
that Ilk is involved in mechanosensing and signalling in muscle
cells. Muscle LIM-domain only proteins are very well known for
their role in mechanosensing and loss of MLP/CRP3 function in both
human and mice results in a dilated cardiomyopathy (Knöll et al.,
2002). Loss of Ilk in the cardiomyocytes also results in a dilated
cardiomyopathy both in zebrafish as in mice (Knoll et al., 2007;
White et al., 2006). The interaction between Ilk and MLP/CRP3 that
we found makes ILK mechanosensor function now very likely and
might be able to link extracellular mediated signalling with intrinsic
(MLP/CRP3 mediated) signal transduction pathways important for
muscle function and performance. The fact that we did not observe
any skeletal muscle detachments in mlp/crp3 knock-down embryos
could be explained by its very low embryonic expression and by a
possible redundancy with other LIM-domain only proteins present
in zebrafish skeletal muscles, which will be investigated in a future
study.

Ilk kinase activity

Integrins are transmembrane proteins that are believed to lack
any endogenous enzyme activity. For intracellular signalling, integ-
rins depend on the association with the non-receptor kinases, FAK
(focal adhesion kinase), ILK and PYK2 (proline rich tyrosine kinase 2).
Although ILK was identified as a serine/threonine kinase based on
some conservation with other kinases and its in vitro kinase activity,
a conundrum remained about the significance of this kinase activity
in vivo. Rescue experiments in Ilk-deficient Drosophila and C. elegans
demonstrated that in these organisms, Ilk kinase activity is dis-
pensable for its in vivo function (Mackinnon et al., 2002; Zervas et al.,
2001). Our data presented here demonstrate that the same Ilk
K220M variant that efficiently and completely rescues Ilk-deficient
Drosophila embryos, does not rescue any of the phenotypes observed
in the zebrafish loc/ilk mutant. These results would be in agreement
with the previous observations that mutations affecting Ilk kinase
activity correlate with reduced contractility of cardiac muscles in
zebrafish and human (Bendig et al., 2006; Knoll et al., 2007).
Alternatively, it could be that the K220 residue is not only required
for kinase activity, but in addition also has an essential structural
function in an Ilk–protein interaction. Recently it has been suggested
that the functionally related FAK is not required for assembling the
focal adhesion complex upon integrin clustering (Schober et al.,
2007). These authors show that FAK is required for focal adhesion
dynamics by regulating disassembly and actin polymerization by
phosphorylation of downstream targets. Our data demonstrate that
in skeletal muscles, Ilk is also dispensable for focal adhesion
assembly but is required for strengthening of the focal adhesion
complex. In addition, our data suggests that phosphorylation of
downstream targets could be the underlying mechanism. Interest-
ingly, others have shown previously that the binding of β-parvin
with α-actinin requires the presence of Ilk with a functional lysine
220. These authors suggested that phosphorylation of β-parvin by Ilk
is required for the binding of β-parvin to α-actinin (Yamaji et al.,
2004). We have now shown that besides Ilk also β-parvin is required
for skeletal muscle adhesion.
Materials and methods
Embryos and adult fish were raised and maintained under standard laboratory
conditions. We used the following lines: Tg(memb:GFP) (Cooper et al., 2005) and
loc/ilkhu801 (Knoll et al., 2007).

Muscle relaxation assay

Embryos were raised in 0.02% tricaine methanesulfonate in E3 mediumwith 0.02%
tricaine methanesulfonate from 48 hpf onwards to prevent muscle contractions.
Treated and untreated embryos were fixed at 4.5 dpf and stained with phalloidin to
visualize skeletal muscles.

Construct and primers

The full-length Ilk sequence was derived from the zebrafish EST Open Biosystems
clone 6796955 (sequence identical to GenBank Acc# BC056593) was described before
(Knoll et al., 2007). Ilk mutations were prepared by site-directed mutagenesis
(Stratagene) in Ilk–pCS2+ vector. For the GFP–Ilk fusion construct, EGFP of the
pEGFP-C2 construct (BD Biosciences) was subcloned (using PCR primers: cgggatccac-
catggtgagcaagggcgaggagc; gcgaattccttgtacagctcgtccatgccg) in the Ilk–PCS2+ vector by
EcoR1/BamH1 digestion. An itgα7 ESTclone containing the entire ORF (Open Biosystems
EXELIXIS2490190 and GenBank Acc# EB781151) was sequenced. An itgα7 dig-
labelled anti-sense probe was synthesized from this EST clone. Part of the itgα7
genomic sequence is annotated on contig Zv7_NA1974 of the zebrafish ensemble. We
used the following RT-PCR primers. For itgα7 we used, F: 5′-cttctccgtggctctacac-3′
(exon 1) and R: 5′-cgagcagcaggaagttg-3′ (exon 4) and for ef1α we used, F: 5′-
ggccacgtcgactccggaaagtcc-3′ and R: 5′-ctcaaaacgagcctggctgtaagg-3′.

The following primers were used to clone the partial zebrafish mlp/crp3 gene
(Ensemble: ENSDART00000053404) atggtttgtcgtaaaggtttgga; ctttaatctccaatg-
gaaagtcgtt, or β-parvin (ENSDARG00000019117): 5′-CGTGAAAGACCTTGAGGAAG-3′ 5′-
TCCGATCATCATTTCTGTTG-3′ in pTOPO. We used the following mlp RT-PCR primers 5′-
GTCGTAAAGGTTTGGACAGC-3′ (exon 3); R: 5′-AGGAGGCAAATACTGACAGC-3′ (exon 6).

Injections and morpholinos

All injections in this study were performed with 1–2 nl in 1-cell stage embryos.
Morpholino antisense oligonucleotides (MOs; Gene Tools, Philomath, OR) were
designed: integrin α7-ATG MO, (5′-gacccacagagacatgaccagctcc-3′), integrin α7-splice
MO (5′-ctcagatcagtgcagactcaccagc-3′) and mlp-splice MO (5′-gtattttgaggacgtactctt-
gagg-3′). ilk splice-MO (Knoll et al., 2007), laminin-α2-MO and laminin-α4-MO (Pollard
et al., 2006), dystroglycan-MO (Parsons et al., 2002), β-parvin MO (Bendig et al., 2006),
were used as described previously. A standard control MO was purchased from Gene
Tools, LLC. All MOs were diluted in Danieu's buffer for injection.

In situ hybridization, immunohistology and staining

Whole mount in situ hybridization (ISH) was performed as described previously
(Thisse et al., 1993). F-actin was stained with phalloidin-TRITC (Sigma; 1:100). The
following antibodies were used: ILK (Upstate; 1:100), vinculin (Sigma; 1:200), α-actinin
(sarcomeric) (Sigma; 1:400), laminin (Sigma; 1:400), paxillin (Transduction Labora-
tories; 1:200). As secondary antibody we used Cy™2/Cy™3 conjugated anti-mouse/
rabbit IgG (Jackson Immuno Research laboratories, 1:1000).

Western blot analyses

Protein extracts generated from 100 embryos were prepared using 1 μl/embryo
extraction buffer (250 mM sucrose,100mMNaCl, 10mM EGTA, 20mMHEPES,1% triton
X-100, 1 mM PMSF, 10 μg/ml leupeptin, 1 μg/ml aprotinin, 1 μg/ml pepstatin A, 10 mM
NaF, 1 mM Na3VO4 mM) at 4 °C, centrifuged and 2× SDS-sample buffer was added (1 μl/
embryo). Samples were subjected to SDS-polyacrylamide gel electrophoresis, trans-
ferred to polyvinylidene difluoride membrane (Amersham Pharmacia Biotech).
Chemiluminescent detection was illuminated with Vistra ECL (Amersham Pharmacia
Biotech). Antibodies used: anti-ILK (Sigma; 1:500), anti-Akt (Cell Signalling; 1:1000),
anti-phospho-Akt (Cell Signalling; 1:1000), anti-phospho-GSK-3β (Cell Signalling;
1:1000), anti-GAPDH (Chemicon; 1:1000).

Yeast two hybrid interaction

The Muscle lim protein (MLP/CRP3) and β-parvin were cloned into pGBKT7 bait
vector and pretransformed into the Saccharomyces cerevisiae AH109 strain. All the
pretransformed bait including the deletion mutants of mouse MLP/CRP3 were allowed
to grow in the tryptophan drop out selection plates. The grown colonies were analyzed
for self-activation of reporter gene and were found to be negative by the filter lift assay.
Further, the pretransformed colonies were cotransformed with human ILK–WT and
ILK–K220M cloned in the prey vector pGADT7. The cotransformants were subjected to
medium selection (triple dropout medium, SD/-His/-Leu/-Trp) and high selection
(quadruple dropout medium, SD/-Ade/-His/-Leu/-Trp) growth conditions to determine
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the strength of the interaction. To confirm the specificity of the interaction beta-
galactosidase activity of each cotransformants was determined according to the
manufacturer's protocol (Clontech, Mountain View, CA, USA).
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