On the Discrepancy of Some Special Sequences

Robert F. Tichy and Gerhard Turnwald
Department of Mathematics, Technical University Vienna, Wiedner Hauptstrasse 6-10, A-1040 Vienna, Austria
Communicated by E. Hlawka
Received March 24, 1986

We obtain estimates for the discrepancy of the sequence $\left(x s^{(t)}(q ; n)\right)_{n=0}^{x}$, where $s^{(d)}(q ; n)$ denotes the sum of the d th powers of the q-ary digits of the nonnegative integer n and x is an irrational number of finite approximation type. Furthermore metric results for a similar type of sequences are given. 1987 Academic Press, Inc.

1. Introduction

A sequence $\left(x_{n}\right)_{n=0}^{\infty}$ of real numbers is said to be uniformly distributed $\bmod 1($ u.d. $\bmod 1)$ if and only if the number $A(I, N)=\operatorname{card}\{0 \leqslant n<N$: $\left.\left\{x_{n}\right\} \in I\right\}$ is asymptotically N times the length $|I|$ of I (where I denotes an arbitrary subinterval of $[0,1$); the fractional part $\{t\}$ is defined by $\{t\}=$ $t-[t]$ and $[t]$ is the greatest integer $\leqslant t]$. As a quantitative measure of the distribution behaviour of $\left(x_{n}\right)$ the discrepancy

$$
D_{N}\left(x_{n}\right)=\sup _{I}\left|\frac{A(I, N)}{N}-|I|\right|
$$

can be introduced and it is well known (cf. the monographs [5] and [6]) that $\left(x_{n}\right)$ is u.d. $\bmod 1$ if and only if

$$
\lim _{N \rightarrow \infty} D_{N}\left(x_{n}\right)=0
$$

In several papers [1,2,3] Coquet (et al.) investigated the distribution behaviour mod 1 of some sequences of the form $(x \varphi(n))_{n=0}^{\infty}$, where x is an irrational number and $\varphi(n)$ is a number-theoretic function that is additive with respect to a given digit representation (and $\varphi(0)=0$). In the case of the usual q-ary representation

$$
\begin{gathered}
n=\sum_{k=0}^{\infty} \varepsilon_{k} q^{k} \quad(q \geqslant 2, n \geqslant 0) \\
0 \leqslant \varepsilon_{k}=\varepsilon_{k}(q ; n) \leqslant q-1 \\
68
\end{gathered}
$$

the most interesting type of an additive function is the sum of d th powers of the digits

$$
\varphi(n)=s^{(d)}(q ; n)=\sum_{k=0}^{\infty}\left(\varepsilon_{k}(q ; n)\right)^{d} \quad(d, q \geqslant 2 \text { integral with } d \geqslant 1, q \geqslant 2)
$$

(It is obvious that $\varphi(n)=\sum_{k=0}^{\infty} \varphi\left(\varepsilon_{k}(q ; n) q^{k}\right)$, i.e., φ is additive.) It follows from [1] that $\left(x s^{(1)}(q ; n)\right)_{n=0}^{\infty}$ is uniformly distributed mod 1 if (and only if) x is an arbitrary real irrational.

For a special type of irrationals we prove a quantitative version of Coquet's result. We consider real numbers x of finite approximation type η, i.e., irrationals x such that for every $\varepsilon>0$,

$$
\|h x\| \geqslant \frac{c(x, \varepsilon)}{h^{\eta+\varepsilon}}
$$

for all positive integers $h ; c(x, \varepsilon)$ is a positive constant only depending on x and ε and $\|t\|$ is defined by $\|t\|=\min (\{t\}, 1-\{t\})$. In Section 2 we prove

Theorem 1. Let x be of finite approximation type η. Then for every $\varepsilon>0$,

$$
D_{N}\left(x s^{(d)}(q ; n)\right) \leqslant \frac{c(q, x, \varepsilon)}{(\log N)^{1 / 2 \eta-\varepsilon}}
$$

for all integers $N>1$. If x is not of approximation type η^{\prime} for any $\eta^{\prime}<\eta$ then for every $\varepsilon>0$ and infinitely many N

$$
D_{N}\left(x s^{(d)}(q ; n)\right) \geqslant \frac{1}{(\log N)^{1 / 2 \eta+\varepsilon}}
$$

Furthermore for every irrational x and infinitely many N

$$
D_{N}\left(x s^{(d)}(q ; n)\right) \geqslant \frac{c^{\prime}(q, d, x)}{(\log N)^{1 / 2}}
$$

In Section 3 we consider sequences $\left(x_{n}(t)\right)_{n=0}^{\infty}(0 \leqslant t<1)$ of the form $x_{n}(t)=x s_{n}^{(d)}(q ; t)+a_{n}$, where x is an irrational number, $\left(a_{n}\right)_{n=0}^{\infty}$ an arbitrary sequence of reals, and (for real $d>0$ and integral $q \geqslant 2$)

$$
\begin{aligned}
s_{n}^{(d)}(q ; t)= & \sum_{k=1}^{n}\left(\varepsilon_{k}(q ; t)\right)^{d} \text { for } t=\sum_{k=1}^{\infty} \varepsilon_{k}(q ; t) q^{-k} \\
& \left(0 \leqslant \varepsilon_{k}(q, t)<q\right)
\end{aligned}
$$

Note that the q-ary representation of t is assumed to be infinite. We prove that $\left(x_{n}(t)\right)_{n=0}^{\infty}$ is $u . d$. mod 1 for almost all real numbers $t \in[0,1)$ (in the sense of the Lebesgue measure). If x is of finite approximation type we obtain the following more precise result.

TheOrem 2. Let x be of finite approximation type η and let $\left(a_{n}\right)_{n=0}^{\infty}$ be an arbitrary sequence of real numbers. Then for almost all $t \in[0,1)$ and every $c>0$,

$$
D_{N}\left(x s_{n}^{(d)}(q ; t)+a_{n}\right) \leqslant c(t, q, x, \varepsilon) N^{-(1 / 2 \eta)+\varepsilon}
$$

for all positive integers N.
This result has the following curious consequence: There exists a nondecreasing sequence $\left(s_{n}\right)_{n=0}^{\infty}$ of integers with $0 \leqslant s_{n} \leqslant n$ such that the sequence $\left(\sqrt{2} s_{n}+\pi^{n}\right)$ is u.d. mod 1 .

2. Proof of Theorem 1

We will use the inequality of Erdös and Turan for proving our upper bound for $D_{N}\left(x s^{(d)}(q ; n)\right)$. Hence we begin to investigate the exponential sums

$$
\frac{1}{N} \sum_{n=0}^{N-1} e\left(h x s^{(d)}(q ; n)\right) \quad(h=1,2, \ldots)
$$

where $e(t)=e^{2 \pi i t}$ for real t. By the next Lemma we may restrict ourselves to the case $N=q^{k}$.

Lemma 1. Let $g: \mathbb{N}_{0} \rightarrow \mathbb{C}$ be a function such that $g(0)=1,|g(n)| \leqslant 1$, and

$$
g(n)=\prod_{k=0}^{\infty} g\left(\varepsilon_{k}(q ; n) q^{k}\right) \quad(\text { for } n \in \mathbb{N})
$$

Assume that

$$
\left|\frac{1}{q^{k}} \sum_{n=0}^{q^{k}-1} g(n)\right| \leqslant \frac{1}{f\left(q^{k}\right)} \quad \text { for } k=1,2, \ldots
$$

where $f:[1, \infty) \rightarrow(0, \infty)$ is continuous nondecreasing, and $f(u) \leqslant u$. Then we have

$$
\left|\frac{1}{N} \sum_{n=0}^{N-1} g(n)\right| \leqslant \frac{q+1}{f(\sqrt{N})} \quad \text { for } N=1,2, \ldots
$$

Proof of Lemma 1. Let m be the largest index such that $\varepsilon_{m}=\varepsilon_{m}(q ; N) \neq 0$, and define

$$
N(j)=\sum_{k=j}^{m} \varepsilon_{k}(q ; N) q^{k}
$$

Then

$$
\sum_{n=0}^{N-1} g(n)=\sum_{n=0}^{N(m)-1} g(n)+\sum_{j=0}^{m-1} \sum_{n=N(j+1)}^{N(j)-1} g(n),
$$

where

$$
\sum_{n=0}^{N(m)-1} g(n)=\sum_{l=0}^{\varepsilon_{m}-1} \sum_{n=l q^{m}}^{\left(l+1, q^{m}-1\right.} g(n)=\sum_{l=0}^{\varepsilon_{m}-1} g\left(l q^{m}\right) \sum_{n=0}^{q^{m}-1} g(n)
$$

and

$$
\begin{aligned}
\sum_{n=N(j+1)}^{N(j)-1} g(n) & =g(N(j+1)) \sum_{n=0}^{\varepsilon_{j} q^{j}-1} g(n) \\
& =g(N(j+1)) \sum_{l=0}^{\varepsilon_{j}-1} g\left(l q^{j}\right) \sum_{n=0}^{q /-1} g(n) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\sum_{n=0}^{N-1} g(n)\right| & \leqslant \sum_{j=0}^{m}\left|\sum_{l=0}^{\varepsilon_{j}-1} g\left(l q^{j}\right)\right| \sum_{n=0}^{q^{\prime}-1} g(n) \mid \\
& \left.\leqslant\left.\sum_{j=0}^{m} \varepsilon_{j} q^{j} \frac{1}{q^{j}}\right|_{n=0} ^{q^{\prime}-1} \sum_{n} g(n) \right\rvert\, \\
& \leqslant \sum_{j=0}^{r-1} \varepsilon_{j} q^{j}+\sum_{j=r}^{m} \varepsilon_{j} q^{j} \frac{1}{f\left(q^{r}\right)} \leqslant q^{r}+\frac{N}{f\left(q^{r}\right)}
\end{aligned}
$$

for arbitrary $r \in \mathbb{N}$. Let t be the unique real number such that $(t / q) f(t / q)$ $=N$; then $t / q \geqslant \sqrt{N}$ because of $f(t / q) \leqslant t / q$.

Choosing r such that $q^{r+1}>t \geqslant q^{r}$ we obtain

$$
\begin{aligned}
\left|\sum_{n=0}^{N-1} g(n)\right| & \leqslant q^{r}+\frac{N}{f\left(q^{r}\right)} \leqslant t+\frac{N}{f(t / q)}=\frac{q N}{f(t / q)}+\frac{N}{f(t / q)} \\
& \leqslant(q+1) \frac{N}{f(\sqrt{N})},
\end{aligned}
$$

thus proving the lemma.

We want to apply the lemma to $g(n)=e\left(h x s^{(d)}(q ; n)\right)$. In order to verify the assumptions on $g(n)$ in Lemma 1 it remains to prove an inequality of the form

$$
\left|\sum_{n=0}^{q^{k} \ldots 1} g(n)\right| \leqslant \frac{q^{k}}{f\left(q^{k}\right)} \quad(k-1,2, \ldots)
$$

We have

$$
\sum_{n=0}^{4^{k+1}-1} g(n)=\sum_{j=0}^{4-1} \sum_{n=0}^{4^{k}} g\left(j q^{k}+n\right)=\sum_{j=0}^{4-1} g(j) \cdot \sum_{n=0}^{u^{k}-1} g(n)
$$

and so

$$
\begin{equation*}
\sum_{n=0}^{q^{k}} g(n)=\left(\sum_{i=0}^{q} g(j)\right)^{k}=\left(\sum_{j=0}^{4} e\left(h x j^{d}\right)\right)^{k} \tag{*}
\end{equation*}
$$

For estimating $\left|\sum_{n=0}^{d^{k}-1} g(n)\right|$ we will apply the following simple
Lemma 2. For reals α and $d>0$ and integral $q \geqslant 2$ we have

$$
\left|\sum_{j=0}^{q-1} e\left(\alpha j^{d}\right)\right| \leqslant q-2 \pi\|\alpha\|^{2}
$$

Proof of Lemma 2. A simple argument shows

$$
\left|\sum_{j=0}^{4-1} e\left(\alpha j^{d}\right)\right| \leqslant q-2+2|\cos \pi \alpha| \quad \text { for } q \geqslant 2
$$

Next we observe that $|\cos \pi \alpha|=\cos \pi\|\alpha\|$. Hence the result of the lemma immediately follows from the inequality $\cos x \leqslant 1-\left(x^{2} / \pi\right)$ for $|x| \leqslant \pi / 2$ which is valid since

$$
\cos x=1-\int_{0}^{x} \sin t d t \leqslant 1-\int_{0}^{x} \frac{2}{\pi} t d t=1-\frac{x^{2}}{\pi} \quad\left(|x| \leqslant \frac{\pi}{2}\right) .
$$

Thus we obtain

$$
\left|\sum_{n=0}^{q^{k}-1} g(n)\right| \leqslant\left(q-2 \pi\|h x\|^{2}\right)^{k} \leqslant\left(q-4\|h x\|^{2}\right)^{k}
$$

Now we choose the function f in Lemma 1 such that

$$
f\left(q^{k}\right)=\left(\frac{q}{q-4\|h x\|^{2}}\right)^{k}
$$

i.e.,

$$
f(u)=\left(\frac{q}{q-4\|h x\|^{2}}\right)^{\log u / \log q}
$$

Since $q-4\|h x\|^{2} \geqslant 1$ (for $q \geqslant 2$; for $q \geqslant 3$ we could work with the bound $q-2 \pi\|h x\|^{2}$), we have $f(u) \leqslant q^{\log u / \log q}=u$ for $u \geqslant 1$; obviously f is nondecreasing. Hence Lemma 1 and the well-known inequality $(1-(1 / u))^{u} \leqslant$ 1/e give

$$
\begin{aligned}
& \left|\frac{1}{N} \sum_{n=0}^{N-1} e\left(h x s^{(d)}(q ; n)\right)\right| \\
& \quad \leqslant \frac{q+1}{f(\sqrt{N})} \\
& \quad=(q+1)\left(1-\frac{4\|h x\|^{2}}{q}\right)^{(\log N) /(2 \log q)} \\
& \quad=(q+1)\left(1-\frac{1}{q / 4\|h x\|^{2}}\right)^{\left(q / 4\|h x\|^{2}\right) \cdot(\log N) /\left(2 q \log q / 4\|h x\|^{2}\right)} \\
& \quad \leqslant(q+1) \exp \left(-\frac{2\|h x\|^{2} \log N}{q \log q}\right) \quad\left(\exp t=e^{t}\right)
\end{aligned}
$$

Now we apply the inequality of Erdös and Turan (cf. [6, p. 112]) and make use of $\|h x\| \geqslant c_{0}(x, \varepsilon) h^{-\eta-\varepsilon}(\varepsilon>0)$,

$$
\begin{aligned}
& D_{N}\left(x s^{(d)}(q ; n)\right) \\
& \quad \leqslant 6\left(\frac{1}{H}+\sum_{h-1}^{H} \frac{q+1}{h} \exp \left(-2 c_{0}(x, \varepsilon)^{2} h^{-2 \eta-2 \varepsilon} \log N /(q \log q)\right)\right) \\
& \quad \leqslant 6\left(\frac{1}{H}+(1+\log H)(q+1) \exp \left(-c_{1}(q, x, \varepsilon) H^{-2 \eta-2 \varepsilon} \log N\right)\right) .
\end{aligned}
$$

We put $H=\left[(\log N)^{(1 / 2 \eta)-\varepsilon}\right]$ for $0<\varepsilon<1 / 4 \eta$ and sufficiently large N and obtain (with positive constants $c_{1}, c_{2}, c_{3}, c_{4}$ depending on q, x, and ε)

$$
\begin{aligned}
(1+ & \log H) \exp \left(-c_{1} H^{-2 \eta-2 \varepsilon} \log N\right) \\
& \leqslant\left(\frac{1}{2 \eta}-\varepsilon\right) \log \log N \exp \left(-c_{2}(\log N)^{-(\varepsilon / \eta)+2 \varepsilon \eta+2 \varepsilon^{2}}\right) \\
& \leqslant \frac{1}{2 \eta} \log \log N \exp \left(-c_{2}(\log N)^{-\varepsilon+2 \varepsilon+2 \varepsilon^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant c_{3}(\log N)^{i} \exp \left(-c_{2}(\log N)^{r}\right) \\
& \leqslant \frac{c_{3}}{H} \exp \left(\frac{1}{2 \eta} \log \log N-c_{2}(\log N)^{i}\right) \\
& \leqslant \frac{c_{4}}{H}
\end{aligned}
$$

thus $D_{N}\left(x s^{(d)}(q ; n)\right) \leqslant c_{5} / H \leqslant c(q, x, \varepsilon) /(\log N)^{1 / 2 \eta--v}$.
In order to prove the lower bounds we note that

$$
\|h x\| \leqslant c / h^{\kappa} \text { for infinitely many } h \in \mathbb{N}
$$

with $\kappa=\eta-\varepsilon\left(\eta>\varepsilon>0\right.$ arbitrary) if x is not of approximation type η^{\prime} (for any $\eta^{\prime}<\eta$) and with $\kappa=1$ for arbitrary x (by Dirichlet's approximation theorem). Applying Koksma's inequality (cf. [6, Theorem 5.1, p. 143 and Example 5.1, p. 144]) to the function $t \mapsto \exp (2 \pi i h t)$ (of variation $2 \pi h$), we obtain for all positive integers h, N,

$$
\left|\frac{1}{N} \sum_{0 \leqslant n<N} \exp \left(2 \pi i h x s^{(d)}(q ; n)\right)\right| \leqslant 2 \pi h D_{N}\left(x s^{(d)}(q ; n)\right) .
$$

By (*) we have for $N=q^{k}$

$$
\begin{aligned}
& \left|\frac{1}{N} \sum_{0 \leqslant n<N} \exp \left(2 \pi i h x s^{(d)}(q ; n)\right)\right| \\
& \quad=\left|\frac{1}{q} \sum_{0 \leqslant n<4} \exp \left(2 \pi i h x n^{d}\right)\right|^{k} \\
& \geqslant\left|\frac{1}{q} \sum_{0 \leqslant n<q} \cos \left(2 \pi h x n^{d}\right)\right|^{k}=\left|\frac{1}{q} \sum_{0 \leqslant n<4} \cos \left(2 \pi n^{d}\|h x\|\right)\right|^{k} .
\end{aligned}
$$

Since, by $(* *),\|h x\| \leqslant c h^{k} \leqslant 1 /\left(\pi \sqrt{2}(q-1)^{d}\right)$ for infinitely many h, the inequality $\cos t \geqslant 1-t^{2} / 2$ yields

$$
\begin{aligned}
& \left|\frac{1}{q} \sum_{0 \leqslant n<u} \cos \left(2 \pi n^{d}\|h x\|\right)\right|^{k} \\
& \quad=\left(\frac{1}{q} \sum_{0 \leqslant n<u} \cos \left(2 \pi n^{d}\|h x\|\right)\right)^{k} \\
& \quad \geqslant \cos \left(2 \pi(q-1)^{d}\|h x\|\right)^{k} \\
& \quad \geqslant\left(1-2 \pi^{2}(q-1)^{2 d} c^{2} h^{-2 \kappa}\right)^{k}
\end{aligned}
$$

hence

$$
D_{N}\left(x s^{(d)}(q ; n)\right) \geqslant \frac{1}{2 \pi h}\left(1-2 \pi^{2}(q-1)^{2 d} c^{2} h^{-2 \kappa}\right)^{k}, \quad N=2^{k}
$$

for infinitely many h. Choosing $k=\left[h^{2 \kappa}\right]$ yields

$$
D_{N}\left(x s^{(d)}(q ; n)\right) \geqslant \frac{1}{4 \pi}\left(\frac{\log q}{\log N}\right)^{1 / 2 \kappa} \exp \left(-2 \pi^{2}(q-1)^{2 d} c^{2}\right), \quad N=q^{\left[h^{2 \kappa}\right]}
$$

for infinitely many h, thus establishing both lower bounds in Theorem 1.
Remark 1. Lemma 1 is a quantitative refinement of [2, Lemme 1].
Remark 2. By the theorem of Thue-Siegel-Roth every irrational real algebraic number x is of approximation type $\eta=1$; in this case

$$
D_{N}\left(x s^{(d)}(q ; n)\right) \leqslant \frac{c(q, x, \varepsilon)}{\log N^{1 / 2-\varepsilon}}
$$

and $\frac{1}{2}$ cannot be replaced by a larger exponent.

3. Proof of Theorem 2

Our main tool will be the method of Gál and Koksma [4]. For this purpose we have to establish an upper bound for

$$
\int_{0}^{1}\left(N D_{N}\left(x_{n+M}(t)\right)\right)^{2} d t \quad\left(x_{n}(t)=x s_{n}^{(d)}(q ; t)+a_{n}\right)
$$

uniformly in $M=0,1,2, \ldots$ We need the following lemma.

Lemma 3. For $m>n$, real α and $d>0$, we have

$$
\int_{0}^{1} e\left(\alpha\left(s_{m}^{(d)}(q ; t)-s_{n}^{(d)}(q ; t)\right)\right) d t=\left(\frac{1}{q} \sum_{j=0}^{q-1} e\left(\alpha j^{d}\right)\right)^{m-n}
$$

Proof of Lemma 3. We observe that for $j \leqslant m$ the function $\varepsilon_{j}(q ; \cdot)$ is constant on every open interval $I_{k}=\left(k / q^{m},(k+1) / q^{m}\right)\left(0 \leqslant k<q^{m}\right)$. Hence for $t \in I_{k}, k=\sum_{i=0}^{m-1} c_{i}(k) q^{i}$, we obtain

$$
\varepsilon_{j}(q ; t)=\varepsilon_{j}\left(q ;(k+(1 / q)) q^{-m}\right)=\varepsilon_{j}\left(q ;(q k+1) q^{-m-1}\right)=c_{m-j}(k)
$$

Thus

$$
\begin{aligned}
& \int_{0}^{1} e\left(\alpha\left(s_{m}^{(d)}(q ; t)-s_{n}^{(d)}(q ; t)\right)\right) d t \\
&=\sum_{k=0}^{q^{m} \cdot 1} \int_{I_{k}} e\left(\alpha \sum_{j=n+1}^{m} \varepsilon_{j}(q ; t)^{d}\right) d t \\
&=\sum_{k=0}^{q^{m}-1} \frac{1}{q^{m}} e\left(\alpha \sum_{j=n+1}^{m} c_{m-j}(k)^{d}\right) \\
& \quad=\frac{q^{n}}{q^{m}} \sum_{0 \leqslant c_{0} \ldots, \ldots c_{m \cdot n-1<}<q} e\left(\alpha c_{0}^{d}\right) \cdots e\left(\alpha c_{m-n-1}^{d}\right) \\
&=q^{n-m} \sum_{c_{0}=0}^{q-1} e\left(\alpha c_{0}^{d}\right) \cdots \sum_{\epsilon_{m-n-1}=0}^{q-1} e\left(\alpha c_{m-n-1}^{d}\right)=\left(\frac{1}{q} \sum_{j=0}^{q-1} e\left(\alpha j^{d}\right)\right)^{m-n}
\end{aligned}
$$

From the inequality of Erdös and Turan we derive (applying the inequality of Cauchy-Schwarz),

$$
\begin{aligned}
\int_{0}^{1} & N^{2} D_{N}\left(x_{n+M}(t)\right)^{2} d t \\
& \leqslant 36 \int_{0}^{1}\left(\frac{N}{H}+\sum_{h=1}^{H} \frac{1}{h}\left|\sum_{n=1}^{N} e\left(h x_{n+M}(t)\right)\right|\right)^{2} d t \\
& \leqslant 72\left(\frac{N^{2}}{H^{2}}+\sum_{1 \leqslant h, k \leqslant H} \frac{1}{h k} \int_{0}^{1}\left|\sum_{n=1}^{N} e\left(h x_{n+M}(t)\right)\right|\left|\sum_{n=1}^{N} e\left(k x_{n+M}(t)\right)\right| d t\right) \\
& \leqslant 72\left(\frac{N^{2}}{H^{2}}+\left(\sum_{h=1}^{H} \frac{1}{h} \sqrt{\int_{0}^{1}\left|\sum_{n=1}^{N} e\left(h x_{n+M}(t)\right)\right|^{2} d t}\right)^{2}\right) .
\end{aligned}
$$

The inner integral is equal to

$$
\begin{aligned}
\int_{0}^{1} & \sum_{1 \leqslant m, n \leqslant N} e\left(h\left(x_{m+M}(t)-x_{n+M}(t)\right)\right) d t \\
= & N+2 \operatorname{Re}\left(\sum_{1 \leqslant n<m \leqslant N} e\left(h\left(a_{m+M}-a_{n+M}\right)\right)\right. \\
& \left.\times \int_{0}^{1} e\left(h x\left(s_{m+M}^{\{d)}(q ; t)-s_{n+M}^{(d)}(q ; t)\right)\right) d t\right) \\
\leqslant & N+2 \sum_{1 \leqslant n<m \leqslant N}\left|\frac{1}{q} \sum_{j=0}^{q-1} e\left(h x j^{d}\right)\right|^{m-n},
\end{aligned}
$$

where the last step follows from Lemma 3. Applying Lemma 2 we obtain

$$
\begin{aligned}
\sum_{1 \leqslant n<m \leqslant N}\left|\frac{1}{q} \sum_{j=0}^{q-1} e\left(h x j^{d}\right)\right|^{m-n} & \leqslant \sum_{m=2}^{N} \sum_{n=1}^{m}\left(1-\frac{2 \pi\|h x\|^{2}}{q}\right)^{m-n} \\
& \leqslant \sum_{m=2}^{N} \frac{q}{2 \pi\|h x\|^{2}} \leqslant \frac{N q}{2 \pi\|h x\|^{2}}
\end{aligned}
$$

Hence we derive

$$
\left.\left.\begin{array}{rl}
\int_{0}^{1} N^{2} D_{N}\left(x_{n+M}(t)\right)^{2} d t & \leqslant 72\left(\frac{N^{2}}{H^{2}}+\left(\sum_{h=1}^{H} \frac{1}{h} \sqrt{N+\left(N q / \pi\|h x\|^{2}\right.}\right)\right.
\end{array}\right)^{2}\right) .
$$

Since x is of finite approximation type η, we have for every $\varepsilon>0$

$$
\sum_{h=1}^{H} \frac{1}{h\|h x\|} \leqslant c_{0}(x, \varepsilon) H^{\eta-1+\varepsilon / 2} \quad \text { (cf. [6, p. 123]) }
$$

and so we obtain with $H=\left[N^{1 / 2 n}\right]$ for every $\varepsilon>0$,

$$
\begin{aligned}
\int_{0}^{1} N^{2} D_{N}\left(x_{n+M}(t)\right)^{2} d t & \leqslant c_{1}(q, x, \varepsilon)\left(\frac{N^{2}}{H^{2}}+N\left(\log H+H^{\eta-1+\varepsilon / 2}\right)^{2}\right) \\
& \leqslant c_{2}(q, x, \varepsilon)\left(\frac{N^{2}}{N^{1 / \eta}}+N \cdot N^{\frac{\eta-1}{\eta}}+\varepsilon\right) \\
& \leqslant c_{3}(q, x, \varepsilon) N^{\frac{2 \eta-1}{\eta}+\varepsilon}
\end{aligned}
$$

By the following lemma this yields

$$
N^{2} D_{N}\left(x_{n}(t)\right)^{2}=O\left(N^{\frac{2 n-1}{n}+\varepsilon}\right)
$$

for almost all t and this completes the proof of Theorem 2.
Lemma 4 (Special case of [4, Théorème 3]). Put $F(M, N ; t)=$ $N D_{N}\left(x_{n+m}(t)\right)$. If

$$
\int_{0}^{1} F(M, N ; t)^{2} d t=O(\psi(N)) \quad \text { uniformly in } M=0,1,2, \ldots
$$

and $\psi(N) / N$ is nondecreasing then for almost all t and every $\varepsilon>0$ there exists a positive constant $c(t, \varepsilon)$ such that

$$
F(0, N ; t) \leqslant c(t, \varepsilon) \sqrt{\psi(N)}(\log N)^{3 / 2+\varepsilon}
$$

Remark 3. In the proof of Theorem 2 we have shown that

$$
\int_{0}^{1}\left|\sum_{n=1}^{N} e\left(h x_{n}(t)\right)\right|^{2} d t \leqslant N\left(1+\frac{q}{\pi\|h x\|^{2}}\right) \quad(h=1,2, \ldots)
$$

for every irrational number x. By the theorem of Davenport, Erdös and Le Veque (cf. [6, p. 33, Theorem 4.2]) we conclude that $\left(x_{n}(t)\right)_{n=0}^{x}$ is u.d. $\bmod 1$ for almost all $t \in[0,1)$.

Remark 4. Let x be an irrational number and let $\left(a_{n}\right)_{n=0}^{\alpha}$ be an arbitrary sequence of reals. Then there exists a nondecreasing sequence (s_{n}) of integers with $0 \leqslant s_{n} \leqslant n$ such that $\left(x s_{n}+a_{n}\right)_{n=0}^{\infty}$ is u.d. mod 1. (This follows immediately from the previous remark for $d=1$ and $q=2$, since $s_{n}=s_{n}^{(1)}(2 ; t)$ is nondecreasing and $s_{n}^{(1)}(2 ; t) \leqslant n$.)

References

1. J. Coquet, Sur certaines suites uniformément équiréparties modulo 1, Acta Arith. 36 (1980), 157-162.
2. J. Coquet, Répartition de la somme des chiffres associée à une fraction continue, Bull. Soc. Roy. Sci. Liëge 51 (1982), 161-165.
3. J. Coquet, G. Rhin, et Ph. Toffin, Représentations des entiers naturels et indépendance statistique 2, Ann. Inst. Fourier 31 (1981), 1-15.
4. L. S. Gál et J. F. Koksma, Sur lordre de grandeur des fonctions sommables, Indag. Math. 12 (1950), 192-207.
5. E. Hlawka, "Theorie der Gleichverteilung," B.I. Mannheim/Wien/Zürich, 1979.
6. L. Kuipers and H. Niederreiter, "Uniform Distribution of Sequences," Wiley, New York, 1974.
