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We obtain estimates for the discrepancy of the sequence (xs(“‘(q; n))zso. where 
s’“‘(q; n) denotes the sum of the dth powers of the q-ary digits of the nonnegative 
integer n and x is an irrational number of linite approximation type. Furthermore 
metric results for a similar type of sequences are given. f’ 1987 Academic Press. Inc. 

1. INTRODUCTION 

A sequence (x,):2, of real numbers is said to be uniformly distributed 
mod 1 (u.d. mod 1) if and only if the number A(Z, N) = card { 0 < n < N: 
{x,} E I} is asymptotically N times the length II) of I (where Z denotes an 
arbitrary subinterval of [0, 1); the fractional part it} is defined by {t ) = 
f - [r] and [t] is the greatest integer dr). As a quantitative measure of the 
distribution behaviour of (x,) the discrepancy 

D&n) = SUP 
I 

%!gL ,I, / 

can be introduced and it is well known (cf. the monographs [S] and [S]) 
that (x,) is u.d. mod 1 if and only if 

lim DN(xn) = 0. 
N-r 

In several papers [ 1, 2, 31 Coquet (et al.) investigated the distribution 
behaviour mod 1 of some sequences of the form (xcp(n)),“_,, where x is an 
irrational number and q(n) is a number-theoretic function that is additive 
with respect to a given digit representation (and cp(O)=O). In the case of 
the usual q-ary representation 

n= f  Ekqk (432, nZO), 
k=O 

0 d Ek = &k(q; n) ,< q- 1 
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the most interesting type of an additive function is the sum of dth powers 
of the digits 

q(n) = s’“‘(q; n) = 2 (&/Jq; n))d (d,q>2 integralwithd>l,q>2). 
k=O 

(It is obvious that p(n) = Crz0 (p(ek(q; n) qk), i.e., cp is additive.) It follows 
from [l] that (xs”‘(q; n))Fro is uniformly distributed mod 1 if (and only 
if) x is an arbitrary real irrational. 

For a special type of irrationals we prove a quantitative version of 
Coquet’s result. We consider real numbers x of finite approximation type 9, 
i.e., irrationals x such that for every E > 0, 

for all positive integers h; c(x, E) is a positive constant only depending on x 
and E and lltll is defined by lltll = min( t { ), 1 - it}). In Section 2 we prove 

THEOREM 1. Let x he of finite approximation type q. Then for every 
E > 0, 

C(‘A X, E) 
wxs’d’(q; n)) G (log N)‘,2ql-r 

for all integers N > 1. lfx is not of approximation type q’ for any q’ < q then 
.for every E > 0 and infinitely many N 

1 
D,&@‘(q; n)) 3 (log N)l,2q+c. 

Furthermore for every irrational x and infinitely many N 

In Section 3 we consider sequences (x,( t))rco (0 < t < I) of the form 
x,(t) = xslp)(q; t) + a,, where x is an irrational number, (a,):=, an 
arbitrary sequence of reals, and (for real d > 0 and integral q 2 2) 

SLd’(q; t)= i (Ek(q; t))d for t= 2 Ek(q; t)q-k 

k=l k=l 

(0 G &k(% t) < 4). 
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Note that the q-ary representation of r is assumed to be infinite. We prove 
that (x,(r)),X=, is u.d. mod 1 for almost all real numbers IE [0, 1) (in the 
sense of the Lebesgue measure). If x is of finite approximation type we 
obtain the following more precise result. 

THEOREM 2. Let x be of finite approximation type r] and let (a,)zCO be 
an arbitrary sequence of real numbers. Then for almost all t E [O, 1) and 
every E > 0, 

D,(XsL’)(q; t) + a,) d c(t, q, x, E) NP(‘IZV’+’ 

for all positive integers N. 

This result has the following curious consequence: There exists a non- 
decreasing sequence (s,)z= 0 of integers with 0 <s, <n such that the 
sequence (fi s, + 7~~) is u.d. mod 1. 

2. PROOF OF THEOREM 1 

We will use the inequality of Erdiis and Turan for proving our upper 
bound for D,(xsCd’(q; n)). Hence we begin to investigate the exponential 
sums 

f “2’ e(hxs’“‘(q; n)) (h = 1, 2,...) 
II=0 

where e(t) = e2nir for real t. By the next Lemma we may restrict ourselves to 
the case N = qk. 

LEMMA 1. Let g: No-C be a function such that g(O)= 1, [g(n)1 d 1, 
and 

dn) = fi dEk(% n) qk) (for nEfV). 
k=O 

Assume that 

1; 1:; n(n)1 +) for k = 1, 2,..., 

where f: [ 1, ~0) --* (0, CO) is continuous nondecreasing, and f (u) < u. Then we 
have 

1; rz,: g(n)1 <s for N= 1, 2,.... 
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Proof of Lemma 1. Let m be the largest index such that 
E, = c,,,(q; N) # 0, and define 

N(j)= f Ek(q; N) qk. 
k=j 

Then 

N-1 N(m)- 1 m-l N(J)- 1 

,I = 0 r=O n =N( j+ 1) 

where 

N(m)- 1 cm-1 (/+lJp-l Em ~~ 1 (/“’ .~ ] 

“lx0 s(n)= c c g(n)= c g(V) 1 g(n) 
/=O n = ky /=O n = 0 

and 

N(j)-1 t,#- 1 

1 g(n)=g(N(j+l)) C s(n) 
n=N( j+l) ?I=0 

c,- 1 i-1 

= g(N(j+ 1)) 1 g(W) C g(n). 
I=0 ?I=0 

Hence 

r- 1 1 
<c cjq’+f Ejqj- 

N 
- 

,=o j=r f(qY 
Gq’+ f(qr) 

for arbitrary r E N. Let t be the unique real number such that (t/q) f( t/q) 
= N, then t/q 3 fi because of f(t/q) < t/q. 

Choosing r such that q’+ ’ > t 3 qr we obtain 

N 
G(q+ 1) -, 

A,/% 

thus proving the lemma. 
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We want to apply the lemma to g(n) = c,(hss’d’(q; n)). In order to verify 
the assumptions on g(n) in Lemma I it remains to prove an inequality of 
the form 

I ~ “*cl R(n) &-) (k= 1, 2,...). 
,1 = 0 

We have 

(/A I I ~ , y-l l/A I 4-I l/h ~ I 
c g(n)= c c dh?“+d= ,To g(j). n;. g(n) 

n=O j=O n=O 

and so 

y g(n) = (‘cl g(j))k = (1:; e(h.xj”))*. 

,z = 0 ,=o 

For estimating jC$“=Pd g(n)/ we will apply the following simple 

(*) 

LEMMA 2. For reals CI and d> 0 and integral q 3 2 we have 

Proqf qf Lemma 2. A simple argument shows 

4-l 
I I 1 e(@) <q-2+2 ~COS~CMI for q32. 

j=O 

Next we observe that lcos 7~~11 =cos 7tllcl)l. Hence the result of the lemma 
immediately follows from the inequality cos .Y 6 1 - (x2/z) for 1.~1 d n/2 
which is valid since 

cos x = 1 - 

Thus we obtain 

d(q-2z Ilh~ll~)~<(q-4 llhxl12)k. 

Now we choose the function f in Lemma 1 such that 
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i.e., 

Since q - 4 (Ihx(12 > 1 (for q > 2; for q > 3 we could work with the bound 
q - 27c IIhxll 2), we have f(u) < q’Ogu”Ogq = ZJ for u >, 1; obviously f is non- 
decreasing. Hence Lemma 1 and the well-known inequality (1 - (l/u))” < 

l/e give 

=(q+l) l-g/4 ,;hx,,2) ( 

~9/4I/h-~ll*~‘~logN~l~‘9log9/4 llhxll2) 

<(q+ 1)exp 
( 

2 llW12 log 
- 

4b3q 7 
(exp t = e’). 

NOW we apply the inequality of Erdos and Turan (cf. [6, p. 1121) and 

make use of IIhxlJ 2 c,(x, E) hP7-’ (E > 0), 

D,(xP’(q; n)) 

~6 ;+I 
( 

H q+l 

h=l 

h exp( -2c,(x, .z)~ h-2’1P2c log N/(q log q)) 
> 

~6 ~+(1+logH)(q+1)exp(-c,(q,x,s)H-2~-2ElogN) . 
> 

We put H= [(log N)(1/2V)-c ] for 0 <E < 1/4q and sufficiently large N and 
obtain (with positive constants cl, c2, c3, c4 depending on q, x, and E) 

(1+logH)exp(-c,H-2qP2”logN) 

<t log log Nexp( -c,(log N))E+2E+2’2) 
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(‘1 sexp 2rl i d- log log N - c?( log N)‘, 
i 

thus D,(xP”(q; n)) < c,/H < c(q, .Y, s)/(log N)lizV “, 
In order to prove the lower bounds we note that 

jIk.ul) < c//r” for infinitely many h E N (**) 

with K = r] - c: (v > t; > 0 arbitrary) if x is not of approximation type ‘7’ (for 
any q’ < ri) and with x = 1 for arbitrary .Y (by Dirichlet’s approximation 
theorem). Applying Koksma’s inequality (cf. [6, Theorem 5.1, p. 143 and 
Example 5.1, p. 1441) to the function r~exp(2rriht) (of variation 27rh), we 
obtain for all positive integers h, N, 

’ c N 
exp(2nihd”‘(q; n)) ,< 2zhD,(.dd’(q; n)). 

0 < II < N 

By (*) we have for N=ql‘ 

k 
a- 

+ 
cos(27rhxn”) 1 cos(2?rn~ @xl~) k. 

0 < )I < ‘, I I 
= i 

O<tr<y 

Since, by (**), ljhxll < ch ‘, < l/(rc &(q - l)d) for infinitely many h, the 
inequality cos t > 1 - t’/2 yields 

; c cos(27rn” Ilh-Yll) k 
O<ncy 

( 
k = - 1 c cos(2nn” llhsll ) OCn<y > 

3 cos(27r(q - 1 )I’ /lh.Xj )k 
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hence 

D,(xP(q;n))+-$ (1 -2nyq- l)2dCZhP2h-)k, 

for infinitely many h. Choosing k = [II’“] yields 

D,(xs’“‘(q; n)) > - exp( -2n’(q - 1 )2rl c2), 

75 

for infinitely many h, thus establishing both lower bounds in Theorem 1. 

Remark 1. Lemma 1 is a quantitative refinement of [2, Lemme 11. 

Remark 2. By the theorem of Thue-Siegel-Roth every irrational real 
algebraic number x is of approximation type q = 1; in this case 

D,(xs’d’(q; n)) < 
4% 4 8) 

log N’/* - E 

and $ cannot be replaced by a larger exponent. 

3. PROOF OF THEOREM 2 

Our main tool will be the method of Gal and Koksma [4]. For this pur- 
pose we have to establish an upper bound for 

l ’ U%k+~,(~)))‘d~ (x,(t) = .xsLd’(q; t) + a,) 
0 

uniformly in A4 = 0, 1, 2,... . We need the following lemma. 

LEMMA 3. For m > n, real a and d > 0, we have 

s ’ e(a(sz’(q; t) - $$(q; f))) dt = 
( 
f yz’ e(c#) 

> 

m-n 
. 

0 I 0 

Proof of Lemma 3. We observe that for j< M the function ej(q; .) is 
constant on every open interval Z, = (k/q”‘, (k + 1)/q”) (0 d k < 4”‘). Hence 
for t E I,, k = CyzPoo’ c,(k) qi, we obtain 

Ei(q; t)=&,(q; (k+ (l/q))q-“)=sj(q; (qk+ l)qempl)=Cm-j(k). 
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Thus 

.r 

I 

e(cr(s:‘(q; t) - s;“(q; r))) dr 
0 

From the inequality of Erdijs and Turan we derive (applying the inequality 
of Cauchy-Schwarz), 

The inner integral is equal to 
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where the last step follows from Lemma 3. Applying Lemma 2 we obtain 

Hence we derive 

i 

I 

N2D,(s,+,(t))2dt<72 
0 

N+ (Nqln Il~xl12) 

Since x is of finite approximation type q, we have for every E 10 

d co( x, E) H” - ’ + c’2 (cf. C6, p. 1231). 

and so we obtain with H = [ N”2r1] for every E > 0, 

I 
1 

N2D,(X ,,+M(t))*df~c,(qtx,&) 
0 

$+N(~o~H~W+“‘~) 
> 

L!Ld+c 
dc,(q,x,c)N 7 . 

By the following lemma this yields 

N’D,(x,( t))2 = 0( N- + ‘) 

for almost all t and this completes the proof of Theorem 2. 

LEMMA 4 (Special case of [4, Thkortime 31). Put F(M, N; t) = 
ND,& n+M(f)). If 

I ’ F(M, N; t)’ dt = 0($(N)) 
0 

unl~0rmI.v in M= 0, 1, 2 ,.., 
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und $( N)/N is nondecreusing then ,fbr almost all t and ever), t: > 0 there 
exists u positive constant c( t, I:) such thut 

Remark 3. In the proof of Theorem 2 we have shown that 

1’ dt6 N 1 ( +A) (h= 1,2,...) 

for every irrational number x. By the theorem of Davenport, Erdiis and 
Le Veque (cf. [6, p. 33, Theorem 4.21) we conclude that (x,( t))zzo is u.d. 
mod 1 for almost all t E [0, 1). 

Remark 4. Let x be an irrational number and let (a,);=, be an 
arbitrary sequence of reals. Then there exists a nondecreasing sequence (s,) 
of integers with OGS, dn such that (xs, + a,);=, is u.d. mod 1. (This 
follows immediately from the previous remark for d= 1 and q = 2, since 
s,, = sj,“(2; t) is nondecreasing and $“(2; I) d n.) 
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