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We obtain estimates for the discrepancy of the sequence {xs'*(g;n))7_,, where
5'9(g; n) denotes the sum of the dth powers of the g-ary digits of the nonnegative
integer 7 and x is an irrational number of finite approximation type. Furthermore
metric results for a similar type of sequences are given.  © 1987 Academic Press, Inc.

1. INTRODUCTION

A sequence (x,)*_, of real numbers is said to be uniformly distributed
mod 1 (ud. mod 1) if and only if the number A(l, N)=card{0<n<N:
{x,} €I} is asymptotically N times the length |/| of I (where I denotes an
arbitrary subinterval of [0, 1); the fractional part {¢} is defined by {¢} =
{— [#] and [t] is the greatest integer < 7). As a quantitative measure of the
distribution behaviour of (x,) the discrepancy
A(I, N)

——~—|1|)

DN(xn)zsup N

I

can be introduced and it is well known (cf. the monographs [5] and [6])
that (x,) is u.d. mod 1 if and only if
lim Dg(x,)=0.

N—-x

In several papers [1,2,3] Coquet (et al) investigated the distribution
behaviour mod 1 of some sequences of the form (x¢{n))7_,, where x is an
irrational number and ¢(n) is a number-theoretic function that is additive
with respect to a given digit representation (and ¢(0)=0). In the case of
the usual g-ary representation

X

h= Z Equ (51?2,”20),
k=0
O0<eg=élg:n)<q—1
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the most interesting type of an additive function is the sum of dth powers
of the digits

p(n)=s""(g;n)= z (ex(q; m))* (d, g =2 integral with d = 1, ¢ = 2).
0

k=
(It is obvious that @(n) =Y, @(e.(q; n) ¢), ie., @ is additive.) It follows
from [1] that (xs'"'(g; n))>_, is uniformly distributed mod 1 if (and only
if) x is an arbitrary real irrational.
For a special type of irrationals we prove a quantitative version of

Coquet’s result. We consider real numbers x of finite approximation type 7,
i.e., irrationals x such that for every ¢> 0,

clx, €)

x| > WTEDS
for all positive integers 4; ¢(x, ¢) is a positive constant only depending on x
and ¢ and || is defined by |zl =min({¢}, 1 — {¢}). In Section 2 we prove

THEOREM 1. Let x be of finite approximation type w. Then for every
£>0,

c(q, x, €)

D y(xs'Yq; n)) K ———
wl (g;n)) (logN)l/2n~e

for all integers N> 1. If x is not of approximation type n' for any n' <n then

for every ¢>0 and infinitely many N

1

DN(Xs(d)(q; n)) > W

Furthermore for every irrational x and infinitely many N

c'(q, d, x)

DN(XSM(QQ"))>W-

In Section 3 we consider sequences (x,(¢)}>_, (0<z<1) of the form
x(t)y=xs"q;t)+a,, where x is an irrational number, (a,)*_, an
arbitrary sequence of reals, and (for real d> 0 and integral ¢ >2)

n e8]

siq; 1) =Y, (ex(gs 1)) for t=Y exlg;)g™*
1

k=1 k=
0<edg, 1) <q)
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Note that the g-ary representation of 7 is assumed to be infinite. We prove
that (x,(7))*_, is u.d. mod 1 for almost all real numbers re [0, 1) (in the
sense of the Lebesgue measure). If x is of finite approximation type we
obtain the following more precise result.

THEOREM 2. Let x be of finite approximation type n and let (a,);_, be
an arbitrary sequence of real numbers. Then for almost all te [0, 1) and
every €> 0,

D y(xs'D(g; 1)+ a,)<clt, g, x,e) N2 +e

for all positive integers N.

This result has the following curious consequence: There exists a non-
decreasing sequence (s,)~_, of integers with 0<s,<n such that the
sequence (,/2s,+7n")is ud. mod 1.

2. PROOF OF THEOREM 1

We will use the inequality of Erdds and Turan for proving our upper
bound for D,(xs'(g; n)). Hence we begin to investigate the exponential

sums
N

S o(hxs@(gin))  (h=1,2,.)
=0

n=

1
N
where e(7) = e*™ for real 1. By the next Lemma we may restrict ourselves to
the case N =g~

Lemma 1. Let g:Ny— C be a function such that g(0)=1, |g(n)| <1,
and

g =[] glexla: 1)) (for neN)

Assume that

17!

— 2. gn)< fork=1,2,..,
q n=0

1
g")
where [ [ 1, o0) — (0, c0) is continuous nondecreasing, and f(u) < u. Then we
have

1! g+1
— ( )‘ £—— for N=12,..
‘Nngogn /N
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Proof of Lemmal. Let m be the largest index such that
£, =¢,(q; N)#0, and define

m

N(j)=Y &lg;N)g*

k=j
Then
N—-1 N(m)—1 m—1 N(ji—1
Y gm= Y gm+ Yy Y s,
n=0 n=0 j=0 n=N(j+1)
where
N{m)—1 em— 1 (I+1)g"—1 — q’"-*l
Y ogm=Y Y gn= Z ) Y gl
n=0 =0 n=lg" = n=0
and
N(j)—1 gg — 1
Y, gln)=g(N(j+1)) Z g(n)
n=N(j+1)
L¥1
=g(N(j+1)) Z g(lg’) Z gn).
Hence
g—1 gl —1
Z Y glg)|| Y gn)
Jj=01/=0 n=0
mo e
<Y e ' Z g(n)
i=0 =
r—1 N
<Y eq/+ g +—
P Z o4’ f(q) 1)

for arbitrary re N. Let ¢ be the unique real number such that (z/q) f(t/q)
= N; then t/g > \/IV because of f(t/q)<t/q.
Choosing r such that ¢"*'>¢>g" we obtain

N N gN N
<q"+ <r+

2 & 7@~ T~ o T T

n=0

N
<(g+1) ,
ATV

thus proving the lemma.

641/26/1-6
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We want to apply the lemma to g(n) = e(hxs'“(g; n)). In order to verify
the assumptions on g(») in Lemma | it remains to prove an inequality of
the form

gn) < k=1,2,.)
ngo f(qk)
We have
htd_ g—1 ll“ 1 1 q"fl
gmy=3 Y gljg"+m)=73% g(j) Y gn)
n=0 j=0 n=0 j=0 n=0
and so

T sn=("S gtn) (T ). (+)

n=0 Jj=0

For estimating ]sz;(,‘ g(n)| we will apply the following simple

LEMMA 2. For reals o and d> 0 and integral q =2 we have

qg—1

Y. el

J=0

<q—2m ||af|”.

Proof of Lemma 2. A simple argument shows

g -1

Y e(oy)

j=0

<qg—2+2|cos ny] for g=2.

Next we observe that |cos ma| = cos nfal|. Hence the result of the lemma
immediately follows from the inequality cos x <1 — (x%/r) for |x|<n/2
which is valid since

X ,‘(2 _/2
cosx=l—J‘ sintdt<1~f Srdi=1-2 (mgf),
n

0 o 2

Thus we obtain

7 -1
Y. gln)
n=0

<(g—2m |Ax|) < (g —4 Ithx||*).

Now we choose the function f in Lemma 1 such that

oy q *
i "(:;—4 uhxn2> ’
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ie.,

B q logu/loggq
r0=( =)

Since g —4 ||hx||>= 1 (for ¢ >2; for g =3 we could work with the bound
q—2n ||hx|?), we have f(u)<¢'°®“"*#9 =y for u3> 1; obviously f is non-
decreasing. Hence Lemma 1 and the well-known inequality (1 — (1/u))* <
1/e give

N—-1
il @y,
5 T etha i)
g+1
<
SN
4 \h 2\ (logN)/(2logq)
<14 )
q
1 (g/41ihx}?) - (log N)/(2qlogq/4 || kx|
—(q+1 (1___~)
D\ g
2 [|Ax|? log
<( +1)exp<——-——ﬁ) (expt=e').
1 qlogg P

Now we apply the inequality of Erdés and Turan (cf. [6, p.112]) and
make use of ||hx|| = co(x, &) A 77 (e>0),

D (x5 g; n))

1 2 o4+
<6<—+
H hgl

1
h

exp(—2co(x, &) A"~ * log N/(q log q)))
1
<6 (1—{+ (1+1log H)(g+ 1) exp(—c,(g, x, e) H™ >~ *log N)>,
We put H=[(log N)"*" ] for 0 <& < 1/4n and sufficiently large N and

obtain (with positive constants ¢,, ¢,, 3, ¢, depending on g, x, and &)

(1+log H)exp(—c, H " *1o0g N)

1
< (Z - 6) log log N exp( —c,(log N)~ @m0 +2en +2e%)

1
<2—n log log N exp(—c,(log N) ¢ +2+2%)
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<csllog N) exp(—c,(log N)')

~
"

N
S

1
exp (Z; log log N —¢»(log N)“)

/A
/o

thus D y(xs'“(q; n)) <cs/H< elg, x, 8)/(log N7
In order to prove the lower bounds we note that

Ihx|| < ¢/h™ for infinitely many he N (%)

with k =5 — & (> &> 0 arbitrary) if x is not of approximation type n" (for
any 1’ <n) and with =1 for arbitrary x (by Dirichlet’s approximation
theorem). Applying Koksma’s inequality (cf. [6, Theorem 5.1, p. 143 and
Example 5.1, p. 144]) to the function ¢+ exp(2niht) (of variation 2nh), we
obtain for all positive integers 4, N,

)
l-— Y exp(rihxs'(q; n))

N()Sn<N

< 2nhD (x5 V(g n)).

By (#) we have for N = ¢"

1

’N Y. exp(2mihxs'®(q; n))

Og<na N
1 k
== Y exp(2nihxn?)
Osn<gqg
! L L
>l= Y cosQmixnd)| == ). cos(2nn” |hx|})] .
q0<n<q Osn<yg

Since, by (*x), |[hx| <ch *<V(n \/—Z_(q— 1)) for infinitely many A, the
inequality cos 1= 1 — 1%/2 yields
k

! S cos(2mn? || hx])

q O<n<y

.
:<l Y cos(2nn? Hhx(l))

q Osn<y

> cos(2n(g — 1) [ hx] )*

> (1=2n%(g— 1) 2~ ),
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hence

D y(x5'Y(g; n)) > 2—(1—2n( 2 h ), N=2

for infinitely many A. Choosing k = [#*] yields

1 [loggqg
() >
Dyxs g > 4 (o

1/2k
> exp(_znZ(q_ 1)2d C2)’ qu[hz»;]

for infinitely many A, thus establishing both lower bounds in Theorem 1.
Remark 1. Lemma 1 is a quantitative refinement of [2, Lemme 17].

Remark 2. By the theorem of Thue-Siegel-Roth every irrational real
algebraic number x is of approximation type # = 1; in this case

clg, x, €)

D p(xs"g; n)) < g N °

and 1 cannot be replaced by a larger exponent.

3. PROOF OF THEOREM 2

Our main tool will be the method of Gal and Koksma [4]. For this pur-
pose we have to establish an upper bound for

1
| INDMx, )P (0= x510(g; 1) + a,)
0

uniformly in M =0, 1, 2,.... We need the following lemma.

LEMMA 3. For m>n, real o and d >0, we have

fl e(a(si(g; 1) — s\ (g 1)) di = (é qil e(ajd))mn.

0 =0
Proof of Lemma3. We observe that for j<m the function ¢(q;-) is

constant on every open interval I, = (k/q", (k + 1)/¢™) (0 <k <g™). Hence
for tel,, k=3"'ci{k) q', we obtain

elqt)=¢q; (k+(1/q))g ") =¢/q; (gk+ 1)g~ ") =c,,_ (k).
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Thus

jl e(a(s'D(q; t)—s9q; 1)) dt
0

g™ — 1 m
=Yy J e (O( y 8,-(q;l)d>df

j=n+1
gm—1 1 m
Y Sex 3 )
k=0q J=n+1
LY e elaet

q 0 Qe on- 1 <G

qg--1 q—1 192! e
=q""" Y elacd) Y e(acijnn]):(_q- ) e(ajd)) '

cg=0 Cm-n-1=0 j=0

From the inequality of Erdds and Turan we derive (applying the inequality
of Cauchy-Schwarz),

1
jo N2D(x, , 1(1)) dt

N

Y elhx, , (1))

n=1

etkx, 4 m(t))

N
=1

:

n

) dt )

N

> elhx, (1)

n=1

The inner integral is equal to

[ % el = ) d

O 1<mngN

=N+2Re( Y b ayy )

Isn<m<sN

<[] ettt e 0= 2t )
4]

<SN+2 ) 7

I€sn<m<N

pac!
= 3 elhxj9)
4,20
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where the last step follows from Lemma 3. Applying Lemma 2 we obtain

Logh gt oo 2n ]\
- e(hxjé) (1——————)
1sn<zm<N jg() 2: q

Ng
,2n ||hx|1°\2n x|

Hence we derive

N2 H 1 2
{ N*Dy(x, 1 (1)) di <72 (7,5+( 2 5 VN +(Ng/n ||hxn2)) )
h=1
1 2
N 5 (L++/g/n IIhXI12)> )

PRRALI Y nhxu)>

Since x is of finite approximation type #, we have for every ¢ >0

H
Z % th{f Seolx, e) N1+ (cf. [6, p. 1237).

and so we obtain with H=[N"?"] for every ¢ >0,
2

1 N
f N2D p(x,, w(1))? dt<ceq, x, €) (H2+N(log H 4 Hr = 1+92y2 )
0

2

N
<cz(q,x,s)< +N-NT 8)

Nl/n

2n—-1
Selg.x, )N 7 TE
By the following lemma this yields

—"~+s

ND y(x,(1))* = O(N )

for almost all + and this completes the proof of Theorem 2.

LeMMA 4 (Special case of [4, Théoréme3]). Put F(M,N;t)=
ND p(x, 4 (). If

1
[ FOM N 02 de=0u(N))  uniformiy in M=0, 1, 2,..
0
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and Y(NYN is nondecreasing then for almost all t and every ¢ >0 there
exists a positive constant c(1, &) such that

F(O, N; t)< c(t, &) JY(N) (log N)¥> e,

Remark 3. 1In the proof of Theorem 2 we have shown that

N

Y elhx, (1))

n=1

1

q

TarenN(1+—1
’ (*nuhxuz

> (h=1,2,.)

0

for every irrational number x. By the theorem of Davenport, Erdos and
Le Veque (cf. [6, p. 33, Theorem 4.2]) we conclude that (x,(7)), is u.d.
mod 1 for almost all 7€ [0, 1).

Remark 4. Let x be an irrational number and let (a,)7_, be an
arbitrary sequence of reals. Then there exists a nondecreasing sequence (s,,)
of integers with 0<s,<n such that (xs,+a,)? , is ud. mod 1. (This
follows immediately from the previous remark for d=1 and ¢ =2, since
5, =5(2; 1) is nondecreasing and s{'(2; 1) < n.)
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