TCT-561
Safety and Efficacy of Carotid Stenting in the Treatment of Carotid Artery Stenosis: Immediate Results and Long Term Follow-up
Cinzia Moncalvo1, Vincenzo Pama2, Giuseppe Celano3, Mario Capri1, Angelo Laurentu1, Giuseppe Carroio1, Paolo Ciolfi1
1Clinica Città di Alessandria, Alessandria, Italy
2Department of Cardiovascular Sciences, Milan, Italy
3Department of Cardiovascular Sciences, Milan, Italy

Background: Carotid artery stenting may be an alternative to surgical endarterectomy for the treatment of athrosclerotic carotid artery stenosis. Aim of our study: to analyze retrospectively the procedures of carotid artery stenting performed in our Centre between January 2004 and December 2012.

Methods: This analysis includes 604 procedures performed in 554 patients (382 men; mean age: 72 years old). Symptomatic patients with carotid artery stenosis >50% were the 45%; we treated asymptomatic patients affected by >70% stenosis. 398 patients (72%) were considered at high surgical risk; 207 (37%) with severe contralateral stenosis; 136 (24%) with severe or unstable angina, poor left ventricular function, left main disease or trivascular coronary artery disease, severe cardiac valve disease; 35 patients (6%) presented restenosis after surgical treatment. 28 (5%) patients were treated with urgent coronary artery by-pass grafting (CABG) immediately after Carotid artery stenting; 108 (19%) patients underwent staged CABG one month after Carotid artery stenting. Distal cerebral protection devices were used in 85% of the procedures. Soft plaques were present in 110 patients (18%). 49 (9%) patients were submitted to Carotid artery stenting for bilateral carotid artery stenosis.

Results: Successful immediate angiographic result in 99% of the patients. Major complications occurred in 11 patient (1.9%) and included: death (1 fatal stroke), major stroke (3), intracerebral hemorrhagic stroke (1), minor stroke (5), acute instent thrombosis (1) and patent contralateral vessel. Puncture site hematoma occurred in 4 patients treated with vascular surgical repair, one patient died for hemorrhagic shock. Complete follow up in 95% of the patients. Instent restenosis occurred in 6 patients (3%) and was successfully treated with a new stenting. 50 patients died (22 for cardiovascular causes, but no one died for causes directly related to Carotid artery stenting.

Conclusions: In our experience Carotid artery stenting is a safe procedure with low complications also in high risk patients; the long term efficacy of Carotid artery stenting is very good with low rate of restenosis.

TCT-562
Internal Carotid Artery “Near-occlusion”: Multi-detector CT Angiography Assessment At Baseline And After Carotid Artery Stenting
piero montorsi1, andrea amoni2, stefano Galli3
1University of Milan, Milan, Italy
2Department of clinical sciences, milan, Italy
3Department of Cardiovascular Sciences, milan, Italy

Background: Carotid “near-occlusion” (NO) is a high-grade stenosis of the internal carotid artery (ICA) with collapse of the distal lumen. No data have been reported regarding ICA flow and lumen diameter recovery after surgical or endovascular treatment.

Methods: Twenty-nine consecutive patients (male 73%, mean age 70±9 years) with NO were submitted to ICA stenting with cerebral protection. Multi-detector CT angiography (MDCTA) was performed before and after CAS in all patients. Diameter of distal target and contralateral ICA were measured at 3 cm interval from carotid bifurcation on both sides. Carotid stenosis was calculated with the ECST method. NO was defined as target ICA/contralateral ICA diameter ratio <0.87 according to our algorithm based on cardiovascular team decision in the all-comers registry.

Results: ICA stenosis was 94±2.9% by MDCTA. One patient was excluded because of tandem intracranial stenosis. CAS was technically and cinically successful in 26/28 (93%) patients. At 271±90 days follow-up in CAS as in all patients. Diameter of target ICA distal diameter was 3.0±0.4 mm and the target ICA/contralateral ICA distal diameter ratio was 0.64±0.10. The ratio raised to 0.97±1.21 (p <0.0001) as a result of target ICA distal diameter increase from 3.0±0.4 mm to 4.0±1.48 mm (p <0.0001) and contralateral ICA distal diameter decrease from 4.7±0.51 mm to 4.1±0.43 mm (p <0.0001). A correlation was found between baseline measures and delta changes after CAS: the smaller the baseline diameter of the target vessel, the greater the increase at follow-up and vice versa for contralateral ICA (R=0.42, p=0.033 for target ICA diameter and R=0.62, p=0.0007 for contralateral ICA diameter). No significant changes occurred in either common or external carotid artery on both sides.

Conclusions: MDCTA is a safe and effective technique to assess the effects of endovascular revascularization. After CAS, target ICA distal diameter increases associated with a decrease of contralateral ICA distal diameter likely due to the disappearance of a of a compensatory phenomenon.

TCT-563
Late Outcomes After Carotid Artery Revascularization According to Cardiovascular Team Consensus
Bartlomiej Orlik1, Adam Janas1, Przemyslaw Nowakowski2, Aleksandra Kolarycz2, Karolina Mozila1, Lukasz Konarski1, Anna Matuszow2, Wojciech Trendel1, Krzysztof P. Milewski1, Buszman E. Pawel3, Piotr P. Buszman1
1American Heart of Poland, Katowice, Poland, 2Małopolska Heart and Vessels Center in Chrzanow, American Heart of Poland S.A., Chrzanow, Poland, 3American Heart of Poland, Ustroń, Poland

Background: Carotid artery stenting (CAS) has an alternative to carotid endarterectomy (CEA) in selected patients. Therefore, we aimed to evaluate results of the optimal revascularization strategy with CAS and CEA, in accordance with other algorithm based on cardiovascular team decision in the all-comers registry.

Methods: In this prospective registry, 296 consecutive patients who underwent 333 carotid artery revascularization procedures were enrolled. Asymptomatic patients with at least 70% stenosis as well as symptomatic with at least 50% stenosis were enrolled. The method was selected by interventional cardiologist and vascular surgeon, based upon plaque morphology and cardiovascular risk.

Results: Stenting was performed in 199 cases, while CEA in 134. There were no significant differences with regard to basic demographic and clinical characteristics between CAS and CEA groups except higher occurrence of coronary artery disease (88.4% vs. 65.7%, p<0.01), diabetes (37.7% vs. 20.9%, p<0.01) and prior MI (32.5% vs 20.3%, p<0.02) in CAS. There were no differences between cardio and cerebro-vascular events at discharge. At long-term (median 660 days) there were no significant differences between CAS and CEA with regard to mortality (8.3% vs. 10.6%, p=0.56) and stroke incidence (7.5 vs. 7.4%, p=0.09). The risk of myocardial infarction was significantly lower in the CAS when compared to CEA (0 vs. 4.2%, p=0.01).

Conclusions: Basing upon cardiovascular team decision, at long term, CAS appears to be equivalent to CEA to stroke and mortality risk, however the odds of myocardial infarction were lower after CAS.

TCT-564
Carotid Artery Stenting In Patients With Contra-lateral Stenosis Or Occlusion. A Single Center Experience Of More Than 1100 Cases
Jürgen Kammel1, Alexander Kopta1, Klaus Kerschers1, Michael Grund1, Thomas Lambert1, Karim Saleh1, Simon Hönig1, Hermann Blessberger2, Clemens Steinwender3
1General Hospital Linz, Linz, Austria

Background: Carotid artery stenting (CAS) is assumed to be associated with a higher complication rate in patients (pts) with a contra-lateral occlusion or stenosis of more than 50%. We retrospectively analyzed data from our center to quantify complication rates in patients undergoing CAS in these subgroups.

Methods: In a series of 1125 consecutive pts undergoing CAS in our center between December 1997 and January 2014, 87 pts (7.7%) had a contra-lateral occlusion of the carotid artery (group 1), and 215 pts (19.1%) had a contra-lateral stenosis of > 50% (group 2), and 823 pts (73.2%) had no contra-lateral stenosis (group 3).

Results: CAS was successful in all patients but 30 (28 of them in group 3 and 2 in the group 2). Stenting was successful in all cases of pts of group 1. The mean degree of stenosis was reduced from 82.7 ± 9.7% to 3.2 ± 7.5% in group 1, 86.3 ± 8.6% to 3.8 ± 8.2% in group 2 and 85.8 ± 10.4% to 3.2 ± 6.5% in group 3, respectively. The mean stent length was 24.1 ± 8.9 mm in group 1, 26.9 ± 9.6 mm in group 2 and 27.7 ± 10.0 mm in group 3. The mean intervention time was 16.8 ± 11.0 min, 16.3 ± 11.3 min and 16.9 ± 10.6 min in these three groups. The rate of major cerebral complications (fatal or non-fatal major stroke, minor stroke, PRIND, TIA) was 8.1% in group 1, 9.8% in group 2 and 8.5% in group 3 (p=ns between all groups). As cerebral protection devices were consecutively used since April 2004, 37 pts of group 1 (42.5%), 124 pts of group 2 (57.7%) and 499 pts in group 3 (60.9%) were stented under cerebral protection, respectively. The use of protection devices was associated with a significant reduction of the complication rate in all 3 groups (5.4% in group 1, 6.5% in group 2 and 6.8% in group 3, respectively) with no significant difference between the groups.

Conclusions: Compared to pts with a patent contra-lateral vessel, CAS in pts with contra-lateral stenosis or occlusion is not associated with an increased risk for peri-interventional cerebral complications. The use of cerebral protection devices for CAS reduces peri-interventional cerebral complication rates in patients with and without a patent contra-lateral vessel.

Aortic Endograft Intervention (not aortic stenosis)
Washington Convention Center, Lower Level, Hall A
Saturday, September 13, 2014, 5:00 PM–7:00 PM
Abstract nos: 565-573

TCT-565
Lessons Learned From Application of the Multilayer Flow Modulator Device Outside the Indications in Patients With Thoracoabdominal Pathologies
Niamh Hynes1, Mohammad Sultan1, Sherif Sultan2
1Western Vascular Institute, Galway, Ireland, 2Western Vascular Institute, Galway, Ireland

Background: To scrutinize registry data on thoracoabdominal repairs performed using the Multilayer Flow Modulator (MFM) outside the indications for use (IFU) and analyze the adverse outcomes.

Abstract nos: 565-573