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Abstract 

It is shown that an image X of a product of Lindelof C-spaces or of a countably compact 
(even countably protocompact) space II under a continuous M-mapping is N,-cellular in the 
sense of A.V. Arhangel’skti. The same holds if both 17 and X have “good” lattices of 
continuous mappings. Some generalizations of earlier results of V.V. Uspenskii and M.G. 
TkaEenko on continuous images of (dense subspaces of) topological groups are also given. 
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1. Introduction 

The well-investigated class of dyadic compact spaces has the natural extension 
considered in [4], where some interesting traits of compact continuous images of 
a-compact topological groups are mentioned. Obviously, all dyadic compact spaces 
fall under consideration in [4], because the generalized Cantor cube D’ carries the 
natural structure of a compact topological group. This line of investigation was 
continued by considering compact continuous images of (dense subsets of) Lindelof 
Z-groups [301 and products of Lindeldf Z-groups [27]. Later on, Pasynkov [181 
suggested to “separate” the structures of a product space and of a topological 
group. So the basic situations we begin with are the following ones: 

(a) II is a product of Lindelof _&spaces and f : 17 -f X is a continuous mapping 
of II onto a topological group X; 

(b) in addition, g : S + Y is a continuous mapping of a dense subset S of X 
onto a compact space Y. 

In what follows the most of our results will treat essentially more general cases; 
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however, one should keep in mind the original nature of spaces ZZ and X, the 
product space and a topological group respectively. 

The notion of X,-cellularity plays a central role in this paper. Following 
Arhangel’ski’i [4], we call a space X No-cellular if every family y of G,-sets in X 
contains a countable subfamily p G y such that cl( lJ p) = cl( lJ ~1. As far as the 
author knows, it was Efimov [8] who considered this property first (without 
introducing the term) and who proved that D’ is N,-cellular for each r. This easily 
implies that every dyadic compact space is N,-cellular. SCepin [19] defined k- 
metrizable spaces and showed that every k-metrizable compact space is X0-cellu- 
lar. 

By the Ivanovskii-Kuz’minov theorem, a compact topological group is dyadic, 
and so is K,-cellular. On the other hand, every a-compact group has the Souslin 
property [25]. Both results follow from the theorem of Uspenskii [29]: every 
o-compact (Lindeliif 2-I group is K,-cellular. Moreover, a product of arbitrarily 
many a-compact (Lindelof 2-j groups has the same property [27]. This and some 
other results are generalized here in “algebraic” and topological directions (see 
Sections 2 and 3). The majority of our generalizations start from the point (a) 
above. 

In Section 4 we proceed with the consideration of (b), which is inspired by the 
theory of dyadic compact spaces. By the theorem of Esenin-Vol’pin 1111, the weight 
and character of a dyadic compact space Y coincide. For the same Y, the equality 
w(Y) = t(Y) was found out by Arhangel’skii and Ponomarev [51. These results 
were improved by Efimov, Gerlitz and Hagler [9,12,14]: if the cofinality of weight 
of a dyadic compact space Y is uncountable, then there exists a continuous 
mapping of Y onto the Tychonoff cube Z W(y). A similar result was proved in [27] 
for compact spaces Y which are continuous images of (a dense subspace of> a 
product of Lindeliif J$groups. Moreover, the equality X(y, Y) = t(y, Y> holds at 
each point y E Y in this case (to be published in [28]). Recently Pasynkov [18] 
extended some results of [27,30] to the spaces as in (a) and (b). 

Our aim is to show that the main cause of the above equalities is the existence 
of well-structured families of continuous mappings the spaces ZZ and X as in (a>, 
(b) possess. The family _??;, of all projections of the product space ZZ onto 
countable subproducts is a strong a-lattice for 17 (see Definition 3.1) consisting of 
open mappings onto Lindeliif J$spaces. As for X, the family -E”, of all quotient 
mappings of X onto left coset spaces X/N, where N runs through all closed 
uniform G,-subgroups of X, is a weak v-lattice for X (Definition 3.1) consisting of 
open mappings onto submetrizable spaces. Note that under conditions of (a), every 
submetrizable space X/N has countable network. Indeed, it has a G,-diagonal, 
and by a theorem of Engelking [lo], every continuous mapping of 17 to a space 
with G,-diagonal depends on at most countably many coordinates. So X/N is a 
continuous image of a countable subproduct ZZB of ZZ; therefore X/N is a 
Lindeliif z-space with G,-diagonal, which in turn implies nw(X/N) B K,. 

In what follows we substitute the product and group structures of 17 and X by 
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lattices of open (d-open, quotient, etc.) mappings of these spaces onto “good” 
spaces (Lindelof S-spaces, spaces with G,-diagonal, spaces with countable net- 
work). The properties of the lattices we require are somewhat weaker than those 
of the lattices _P’, Px above. 

All spaces are assumed to be completely regular. The symbols w(X), nw(X), 
c(X), X(X), t(X) denote the weight, network weight, cellularity, character and 
tightness of X respectively. The character and r-character of X at a point x are 
denoted by X(x, X) and 7(x, X). If X admits no continuous mapping onto the 
Tychonoff cube I”‘, we write id(X) Q K, and say that X has countable index. 

2. M-mappings and X,-cellularity 

A continuous mapping F : X3 +X is called a Mal’tsev operation on the space 
X [31] if F(x, y, y> = F(y, y, x) =x for all x,y EX. Every topological group and 
every retract of a topological group admits a continuous Mal’tsev operation [17,31], 
i.e., is a Mal’tsev space. The following definition extends the notion of a Mal’tsev 
operation to a mapping between two distinct spaces. 

Definition 2.1. We call f : X* Y an M-mapping if there exists a continuous 
mapping F: X3 + Y such that F(x, y, y) = F(y, y, x) = f(x) for all x,y EX. 

Note that if X or Y admits a Mal’tsev operation, then every continuous 
mapping of X to Y is an M-mapping. Moreover, f : X + Y is an M-mapping if 
there exist a Mal’tsev space Z and continuous mappings g : X -+ Z and h : 2 + Y 
with f = hg. Obviously, X is a Mal’tsev space iff the identity mapping id, is an 
M-mapping. 

It is known [29, Theorem 61 that a Lindelof Sspace X with a Mal’tsev 
operation is X,-cellular. Countably compact spaces also have this property [30]. We 
generalize these results in two directions simultaneously: to products of Lindeliif 
$-spaces and to M-mappings. 

Theorem 2.2. Let X be an image of a product Il of Lindeliif Z-spaces under a 
continuous M-mapping. Then X is Ef ,-cellular . 

The conclusion of Theorem 2.2 remains valid if one requires a strong a-lattice 
of open retractions of II onto its Lindelof Ssubspaces (see Theorem 5.12) instead 
of a product structure on the space IJI. 

A space n is said to be countably protocompact [4] if II contains a dense subset 
S such that every infinite subset A of S has a cluster point in II. Every countably 
compact space is countably protocompact, but not vice versa (the Moore-Mrowka 
space is a counterexample). 

Theorem 2.3. If X is an image of a countably protocompact space under an 
M-mapping, then X is K ,-cellular. 
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One easily sees that a countably protocompact space is pseudocompact, so we 
have the following. 

Problem 2.4. Must an image of a pseudocompact space under an M-mapping be 
K,-cellular? 

A similar problem for pseudocompact Mal’tsev spaces (see [31]) is still unsolved. 
Every compact Mal’tsev space is a Dugundji space, and hence dyadic [31]. There 

are, however, dyadic spaces which are not Dugundji, and since every dyadic space 
is an image of a compact topological group D’ = (Z,Y under a continuous 
M-mapping, we see that the image of a compact dyadic space under an M-mapping 
need not be Dugundji. This leads to the following problem. 

Problem 2.5. If X is an image of a compact space under a continuous M-mapping, 
must X be dyadic? Must the weight and tightness (character) of X coincide? 

3. Lattices of continuous mappings and X,-cellularity 

In Section 2 we have collected the results on Ha-cellularity of algebraic nature. 
In many instances, however, K,-cellularity of X = f(lT) arises as a result of the 
closed interaction between the lattices 4X) and &CL!) of continuous mappings 
of the spaces X and 17. An extremely simple example of this kind is the case when 
LI =X and X has a a-lattice of open mappings onto spaces with countable 
network. For reader’s convenience we give the necessary definitions here. 

We write g +f for f,g E J’(X) if there exists a continuous mapping h : g(X) 
-tf(X> such that f= hg. 

Definition 3.1. A subfamily 9 of J(X) is said to be a o-lattice (a strong u-lattice) 
for X if the following conditions hold: 

(1) _Y generates the topology of X; 
(2) every finite subfamily of 9 has a lower bound in 9’; 
(3) for any decreasing sequence pa >pi tp2 > . * . in _5?, the diagonal product 

p = AyzOpi belongs to _Y (and if a sequence {xi: j E N} CX has the property 
pi(xj) =pi(xi) whenever i <j, then fl # (7 Ts,,p;lpi(xi)). 

The definition of a weak a-lattice for X comes if one replaces (3) by 
(3’) for any decreasing sequence p. >pl +pz > . . . in _P’, there exist 3 E_Y 

and a one-to-one continuous mapping 4 of p(X) to p(X) such that p = c$F where 
p = ATzopi. We denote p = w limT=,pi in this case. 

Obviously, strong a-lattice =. a-lattice * weak a-lattice. Note that (2) and (3’) 
together imply that every countable subfamily of a weak a-lattice _Y has a lower 
bound in 9, i.e., is K,-directed by the partial ordering -c. The part of (3) in 
brackets means that p(X) is homeomorphic to the limit space of the spectrum 
{pi(X), pjp: i <j} where pj,i =pipl:‘. 

Now let X be a space with a a-lattice 9 of continuous open mappings onto 
spaces with countable network. To show that X is K,-cellular, consider an 
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arbitrary family 9 of G,-sets in X. Since _Y is No-directed by -c, we can assume 
that each element FE 9 is of the form F =p;‘pF(F) for some pF ~2’. One 
easily defines mappings p0 >pl + . . . of _Y and countable subfamilies F0 cF1 
_c ... of _Y that satisfy for each IZ EN the conditions: 

(i) p,( U FnI is dense in p,( U 93; 

(ii> I)~+ 1 +pF, and so F =Q;~~~,+JF) for each FE Fn. 
Put Y* = U yCOFn and p = Az=,,pn, p ~9. Then %=p(U 3”) is dense in 

p(U F), and F =p-‘p(F) for all FE 9*. Since p is an open mapping, we have 
cl U F* =p-‘(cl %), which in turn implies U P-~p-~p(lJ 9) ccl U 3”. 

One of the most simple examples of spaces with a strong a-lattice of open 
mappings is a product space 17 = n, E A X, whose m-lattice pn consists of all 
projections pB of II onto countable subproducts nB = n, t BXa. The restrictions 
ps I ir of projections pB to a subspace fi of II constitute a a-lattice of continuous 
mappings for fi. If d is dense in IJT, then this a-lattice consists of d-open 
mappings 1231. 

Another basic example is a k-metrizable compact space, which has, by [19], a 
strong a-lattice of open mappings onto second-countable spaces. Therefore, every 
k-metrizable compact space is K,-cellular (see [19]>. 

The X,-cellularity of Lindelijf Z-groups arises from a different reason. It was 
mentioned in the introduction that a Lindelijf Z-group G has a weak a-lattice of 
open mappings onto spaces with countable network. However, the existence of this 
weak a-lattice itself does not imply K,-cellularity: the presence of a continuous 
algebraic operation on G was used in [291 to conclude that G is X,-cellular. 
Nevertheless, the lattice approach works in this case: every Lindeliif Z-space is a 
continuous image of a Lindelof p-space II and the latter has a strong c-lattice of 
perfect mappings onto second-countable spaces. The existence of such lattices for 
n and G implies Qcellularity of G as we will see below (Theorems 3.3 and 3.4). 

For generality, we use the following definition. 

Definition 3.2. We call X an OD-space (D-space) if X has a weak a-lattice of 
open (d-open) mappings onto spaces with G,-diagonal. 

Every Hausdorff topological group (more generally, a Hausdorff paratopological 
group, i.e., an algebraic group with continuous multiplication) is an OD-space; a 
dense subspace of an OD-space is a D-space. In the following theorems, the union 
of an arbitrary family of G,-sets in X is called a G,,,-set. 

Theorem 3.3. Let an OD-space X be a continuous image of a space II with a strong 
u-lattice of open retractions onto Lindeliif S-subspaces. Then X is K,-cellular and the 
closure of any G,,, -set in X is a G&-set. 

A product of Lindeliif Z-spaces has a strong a-lattice of open retractions onto 
Lindeliif Z-subspaces; more generally, every subspace of this product that contains 
a Z-product Z(p) with a base point p has the requisite a-lattice. 



188 M.G. TkaZenko / Topology and its Applications 57 (1994) 183-207 

Theorem 3.4. Let an OD-space X with the corresponding weak a-lattice Zx be a 
continuous image of a space II with a factorizative strong u-lattice Pn of quotient 
mappings onto Lindeliif Z-spaces. If nw 4(X> < K, for each 4 EP~, then X is 
K,-cellular and the closure of a G,,S-set in X is a G,-set. 

The term factorizative lattice applied to a given lattice -E”, means that for every 
continuous real-valued function h on II there exists p ~_fC?n with p < h. Clearly, 
for any continuous mapping 4 of D’ to a second-countable space one can find 
p E_F~ such that p < 4 (provided that the factorizative lattice _!z&, is Ho-directed). 

Note that Corollary 5.7 reduces Theorem 3.3 to Theorem 3.4. Since every 
paratopological group is an OD-space, Theorem 3.3 implies the following. 

Corollary 3.5. If a paratopological group H is a continuous image of a product of 
Lindeliif Z-spaces, then H is K,-cellular (even r-cellular for each cardinal r > 8,). 

This result implies Theorem 2 of [29] and the first part of Corollary 1.8 of [27]. 

4. Regular mappings onto compact spaces 

The first result concerning compact continuous images of dense subsets of D’ 
was proved in [81: if there exists a continuous mapping of a Z-product Z(p) c D’ 
onto a compact space Y, then Y is metrizable. The same holds if Y is a continuous 
image of an arbitrary dense subset S C_%(P) (see [241). Answering a question of 
Arhangel’skil, Shirokov [21] proved the equality w(Y) = t(Y) for every compact 
continuous image Y of a dense subset of D’. Later on, UspenskiI [30] and the 
author [271 generalized Shirokov’s theorem by showing that the same equality 
remains valid if Y is a compact continuous image of a dense subset of a cT-compact 
(Lindelof Z-) group. We extend Theorem 10 of [30] and the main results of [27, 
Section 21 to compact regular images of subsets of D,-spaces. 

Definition 4.1. A space X is said to be a D,-space if X has a weak o-lattice of 
d-open mappings onto spaces with strict G,-diagonal. 

Obviously, every D,-space is a D-space; a dense subset of a (para)topological 
group is a D,-space. Furthermore, every d-space in the sense of Uspenski1[30] is a 
D,-space. 

We write id,(X) < N, if id(K) < H, for each compact subset K of X. It is clear 
that id,(X) < id(X) and id,(X) < t(X). A gap between id,(X) and id(X) can be 
arbitrarily large; however, id(X) = id,(X) for any Lindelof Z-space X [27, Asser- 
tion 2.121. The following theorem is the main result of this paper. 

Theorem 4.2. Let a D,-space X be a continuous image of a space II that has a strong 
u-lattice of open retractions onto Lindeliif Ssubspaces, and suppose that a space Y 
of pointwise-countable type is an image of a dense subset S of X. Then: 

(a) the set M= {y E Y: t(y, Y) < H,} has countable network, and X(y, Y) =Z K, 
for each y E M; 
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(b) if id,(Y) Q K, then nw(Y> .X(Y) Q K,. 

Theorem 4.2 remains true if the space Y is assumed to be an image of an 
arbitrary subset S of X under a regular with respect to X mapping g. The latter 
means (see [27]) that there exists an operator e assigning to each open subset 0 of 
Y an open subset e(O) of X so that e(O) n S =g-‘(0) and e(O) n e(U) = 0 
whenever 0 f’ U = @. One easily sees that any continuous mapping g : S -+ Y of a 
dense subset S of X is regular with respect to X. Making use of Corollary 5.7 
below, we will reduce Theorem 4.2 to the following. 

Theorem 4.3. Let a space X with a weak a-lattice of d-open mappings onto spaces 
with countable network be a continuous image of a space II that has a factorizative 
strong u-lattice of quotient mappings onto Lindeliif Z-spaces. If a space Y of 
pointwise-countable type is an image of a subset S of X under a regular with respect to 
X mapping, then 

(a) the set M= {y E Y: t(y, Y) G NJ has countable network, and X(y, Y) G K, 
for each y E M; 

(b) if id,(Y) G Et, then nw(Y)*X(Y) G X,. 

It seems surprising that the space X in Theorems 4.2 and 4.3 need not be 
X,-cellular: all earlier results of [4,30] and [27] generalized here depend heavily on 
the X,-cellularity of X. In addition, the assertion (b) in Theorem 4.2, the pointwise 
coincidence of the character and tightness of Y, is new; it generalizes a similar 
coincidence theorem for dyadic compact spaces and may be compared with 
Theorem 9 of [13] on continuous images of product spaces. 

For simplicity, all our results are formulated in the countable case. However, 
one easily extends them to the general case. Keeping this in mind and making use 
of the fact that product spaces and paratopological groups have “good” r-directed 
lattices of open mappings for each T 2 X,, we infer the following corollary of 
Theorem 4.2. 

Corollary 4.4. Let a paratopological group X be a continuous image of a product of 
Lindelof Z-spaces, S CX and suppose that a compact space Y is an image of S under 
a regular with respect to X mapping. Then 

(a> for each r > X,, the set M, = {y E Y: t(y, Y> < 7) satisfies nw(M,) .X(A4,) < 

7, 
(b) w(Y) = t(Y) = id(Y). 

The assertion (a) of Corollary 4.4 has been proved also by Pasynkov [18] in the 
case X is a topological group. 

Our last result is a very special case of Theorem 4.3. 

Corollary 4.5. Suppose that a space X has a u-lattice of d-open mappings onto spaces 
with countable network, S cX and g : S --) Y is a regular with respect to X mapping 
onto a compact space Y with id(Y) G X,. Then Y is metrizable. 
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Indeed, set II =X in Theorem 4.3. Note that the a-lattice 9, for X is 
factorizative by Theorem 1 of [26]. The assumption of Theorem 4.3 that the 
mappings of the lattice yr, for II are quotient is unnecessary in this case, because 
the family -E”, (=_5?“> is assumed to be a u-lattice. 

5. Proofs 

Here we prove the results formulated in Sections 2 and 3. Throughout this 
section the symbol _5?n denotes a strong u-lattice of quotient mappings of 17 onto 
Lindelof Z-spaces. Let f : Il +X be a continuous mapping of n onto a space X 
with a weak g-lattice -I%;, of continuous mappings (onto spaces with countable 
network usually), and F(X) be the family of all sets in X of the form 4-‘(R) 
where 4 ~9~ and R c 4(X>. Choose a subfamily Src 9(X) and denote by J 
the set of all triples (p, 4, 7) where p E_‘?~, 4 ~9~ and y c F, I y I < N,. Define 
the partial ordering < on .&’ by 

(ply &, rl) < (pO, &, yO) if pi <PO, +1 < & and y. ~7~. 
Clearly, every countable subset of (_&‘, <> has a lower bound in &. 

Definition 5.1. A triple (p, 4, y) E J% is called dense if 
(1) F = c#I-~+(F) for each F = y; 

(2) P < 4f; 
(3) the unique continuous mapping f. : pW> -+ +(X1 with fop = 4f (see (2)) 

satisfies 4( lJ ST) cf,(cl pf- ‘(U 7)). 

It is easy to verify that +(U ST) ccl +(lJ r> whenever (p, 4, 7) is a dense 
triple. The following key lemma is used in the proof of most of our results. 

Lemma 5.2. Suppose that 2, is factorizative and that 4(X) has countable network 
for each 4 E_c~?~. Then the set A* of all dense triples of A is cofinal in CM, <I, and 
the greatest lower bound in A@ of any decreasing sequence in M* belongs to A*. 

Proof. The second statement of the lemma immediately follows from Definition 5.1 
and the assumption that all mappings of 9’, are quotient. Only the cofinality of 

J* in _&’ requires proof. Pick an element to = (po, 40, yo) of J with p. -C $of. 
For every integer n define spaces X,,, Y,, Z,, rr,, continuous mappings 4,, f,,, g,, 

pn, qn, r,, u,, v, and a countable subfamily y,, of 9 so that the following diagram 

is commutative 
f 

17 -x- 

Pm+1 4 “+I 

Z 
L’,+1 

-Y 
g,+1 I f ?I+1 I 

n+l n+l -II n+l -x n+l 

I 

fl+i 
‘n 

1 

PI+, 
4” 

I 

n+1 
Pn 

1 

“+I 
Al 

f” 
z ~Yn,lln----X- 
I” +n 

4% (1) 
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(the mapping u,+] :Zn+l +X,+, is not depicted here) and the conditions (11-W 
below are fulfilled: 

(1) w(Z,) G H,, nw<X,> G K,; 

(2) 4, =?x, Pn =P:+lP,+1 EPn; 

(3) U, is a perfect mapping; 
(4) the set u,g-‘p,f-‘CT,) is dense in u,g-lpnf-l(r), where r, = U y,, and 

r= UFT; 

(5) r, = ~-‘+,+,<r,>. 
The mapping 4,0 •2~ and the countable subfamily y0 &F are determined by 

the triple t,. Put X0 = &(X>. It is easy to define spaces 17,, . . . , Z, and mapping 

PO,. . .? u. that satisfy (l)-(4) and the commutativity of the appropriate part of the 
above diagram for IZ = 0. So assume that all requisite spaces, mappings and 
subfamilies of 9 are already defined for some n EN. Since the lattice TX is 
No-directed by + and y, is a countable subfamily of F(X), there exists +n+l ~2~ 
such that &+l < 4, and F = +;~,c/J,+ ,(F) for each F E y,. This implies (5). Put 
X n+l =4,+,(X). Then X,+i has a countable network, so one can find a continu- 
ous bijection j of X,, 1 onto a second-countable space T,,,. Since pr is 
factorizative, there exist P,,+~ E_Y~, pnJrl + p,, and continuous mapping fA+i of 
fl n+1= p,+,UD to T,,, such that f,;+l~n+l =.&+,. Then the mapping fn+l = 

j-‘f;, 1 is continuous, because p, + 1 is quotient. The equality f,, + 1 pn + z = 4, + 1 f is 
immediate. Making use of 4,,+ 1 + 4, and pn+l +p,,, define continuous mappings 
4,“” and pnnfl so that 4, = 4z+‘4n and p, =p,“’ ‘p,+ 1. The following diagram 
illustrates the remaining construction. 

Since II,, r is a Lindelof 2?-space, we can find spaces Y,l+, and ZL,, and 
continuous onto mappings gk + 1 and w; + 1 such that ZA + 1 is second-countable and 
W A + 1 is perfect. One can assume that WA + 1 < f,, + 1 g, + ,; otherwise replace w: + 1 by 
the diagonal product WA + 1 A( f, + 1 g: + 1>, which is perfect because w: + 1 is. Denote 

bY L&+1 a continuous mapping that satisfies u;+~w;+ 1 = f, + lgL+ 1, and put h = 

P,n+ldz+l. 

Now let Y,+l be the fan product (see [l, Addendum to Ch. 11) of the spaces Y, 
and Y,l+, with respect to the mappings h and g,, i.e., Y,,, = {(x, y) E Y, X Ydtl: 
g,(x) = h(y)}. Denote by q,“+’ and k the restrictions to Y,,, of projections of the 
product Y, x Y,l+ 1 onto the first and the second factors respectively. Also put 

g n+1= it h+lk. Obviously, Y,, 1 is closed in Y, X Y,l+ 1; hence the restriction of the 
perfect mapping U, x wL+ 1 to Yn+l, call it v,+i, is perfect. Note that the space 
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Z n+1= vn+l (Y,,,) is second-countable. Denote by r,“+’ and t the restrictions to 

Z n + 1 of projections of the product Z, X ZL + i onto the first and the second factors. 

It remains to put u,+i =z.&+i t. The existence of a countable subfamily y,, + 1 G F 

such that ~,+ig;~ip~+if-~(U yn+i) is dense in vn+lg;:lpn+If-l(U 9) follows 
from w(Z,+,) G N,. This completes our construction at the (n + 1)th step. It is 
important to note that for every IZ EN, the square diagram determined by the 

equality pz+lgn+l = g,q,“+’ is bicommutative in the sense of [20], i.e., 

q;+lg,,+&c) =g;‘p,“+‘(x) for each x ~17,+,. This follows immediately from the 

definition of Y, + 1 as a fan product. 
Put p* = A;=opn, C/J: = A;=,,4,,, II* ~pU7) and X,* =4$X). Then p* =Pfl 

and there exist 4* ~3~ and a continuous bijection j of X* = 4*(X> onto X,* 

such that 4: = j4*. Since _9’= is a strong u-lattice, II* is homeomorphic to the 

limit space II,* = lim{& p,““: n EN}, so one can identify lI* and nz. Denote 
Y = lim{Y,, q,“+‘:‘n N} and Z = lim{Z,, r:“: n EN). Let qn, r,, and p,* : II* 

+ rbe the limit projections, n i. Define continuous mappings g : Y + II* 
and u : Y -+ Z to be the limit mappings of the morphisms {g,: n EN) and Iv,: 
IZ E N}. Since all mappings v, are perfect, so is v [l, Addendum to Ch. 11. Define 

similarly the mappings u;i: = limlu,. - n EN} and fc = lim(f,: n EN). This gives 

the following commutative diGam. 
- 

Here f * = j-‘f,* and u” = j-lug. All mappings are onto. Since 4*f is continuous 

and p* is quotient, the mapping f * is continuous. Similarly, since f *g is 

continuous and u is perfect, u* is continuous. It is easy to see that there exists a 

continuous mapping 4: : X* +X, th a makes the following diagram commutative. t 

(4) 

Note that for each n EN, the mappings g,, qn, g and P,* constitute the 

bicommutative diagram D,, because so are all “nonlimit” diagrams determined by 

the mappings gk + i, qk, qk k+l and pt+l, k an. 
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Put y* = U yzO’yn and r* = U y* LX. Clearly, 1 y* 1 G K,, and by virtue of (51, 

r* = ($*)-‘4*(F*). We claim that the triple t* = (p*, 4*, y*) belongs to A*, 

and t* < t,. Only the first assertion requires a proof. It suffices to show that 

4*(T) zf*(~ln~~*f-~(T*)) where F= IJF. (*) 

Indeed, by (41, the set u,g;lp,f-‘CT*) is dense in u,g;lpnf-‘(l? for each 

n EN. We have u,g-‘pnf-‘W*) = u,(g;‘p,)p*f-‘(r*), and since the diagram 

D,, is bicommutative, the latter set coincides with u,(q,g-‘)p*f-‘CT*) = 

r,,ug- ‘p*f- l(r* >. The same is true for r instead of r*. Thus, for each n E N, the 

set r,u(T*) is dense in r,+(T) where T* =g-‘p*f-‘CT”) and T =g-‘p*f-‘CT). 
By the definition of Z, v(T*) is dense in u(T). Hence the inclusion u(T) c u(cl T*) 
follows from the fact that u is perfect. Consequently, u*u(T) c u*v(cl T”) = 

f*g(cl T*) Cf *( 1 c i g(T*)) = f *(cl p*f-‘CT”)). Making use of the commutativity 

of diagram (4), we come to the equality u* u(T) = 4*(r). This completes the proof 

of (*). Thus, t* is a dense triple, t” E A?‘” and t* <to. 0 

The simplest application of Lemma 5.2 is in the proof of Theorem 3.4. 

Proof of Theorem 3.4. Let 9. be a weak a-lattice of open mappings of X onto 

spaces with countable network. Consider an arbitrary family 9 of G,-sets in X. 

Since 9X is No-directed by <, every G,-set in X is a union of sets of the form 

g-‘(y), where 4 •9~ and y E I#J(X>. Thus, we can assume without loss of 

generality that YTC 7(X) (see the beginning of this section). Pick an element 

t, E_&‘. By Lemma 5.2, there exists a dense triple t E AT”, say t = (p, $, y), with 

t < t,. Put r* = U y and r = U 3. Since t is dense, one can find a continuous 

mapping f0 : p(n) -+ 4(X) so that fop = +f and 4(r) cfO(cl pf-l(T*)). The 

continuity of f,, implies that 4(r) ccl f,,pf-‘(r*) = cl 4(r*). By the choice of t, 
we have r* = $-@(r*), and since 4 is an open mapping, cl r* = cl 4-‘+(r*l= 

+-‘(cl 4(r*)) z+-‘+(r) 2r. Th us,r*= Uyisdenseinr= lJ9aand IyI <R,,. 

This means that X is X,-cellular. 

The second claim of the theorem readily follows from the first one. Indeed, 

using the same notation, we have cl r= cl r* = +-‘(cl 4(r*)). The set F = 
cl 4(r*) is closed in 4(X) and nw 4(X> < K,, so F is a G,-set in #J(X). Being the 

preimage of F under the mapping 4, cl r is a G,-set in X. 0 

We defer the proof of Theorem 3.3, similar to the proof of Theorem 3.4, till 

later, for it requires an additional result on factorization of continuous functions 

(see Lemma 5.5). The following result is known in folklore. 

Lemma 5.3. Let X be a Lindeliif S-space with G,-diagonal. Then X has countable 
network. 

Proof. Obviously, X is Lindelof. Every Lindelijf space with G,-diagonal admits a 

continuous one-to-one mapping onto a second-countable space. Furthermore, a 
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Lindelof Z-space is No-stable in the sense of Arhangel’ski’i [3], i.e., every continu- 
ous image Y of this space that admits a continuous bijection onto a second-counta- 
ble space has countable network. These facts imply the lemma. 0 

For generality, we use the following notion (see [61). 

Definition 5.4. A subset T of 17 satisfies the inequality wl(T, IT) < X1, (I(T, IT) < 
H,) if every open cover y of fl contains a countable subfamily p my such that 

T~cl Up (Tc U/d. 

Obviously, c(T) < N, or c(n) < K, implies wl(T, II) < K,, and l(T) < X0 im- 

plies l(T, II) c H,. 

Lemma 5.5. Suppose a space II has a u-lattice _.Y of open mappings onto Lindeliif 
Z-spaces and that for every p E_Y there exists a subset T c IT such that wl(T, II) < X, 

MT, IT) d X,) and p(T) is dense in p(Il). Then 
(a> the lattice _Y is factorizative; 
(b) every continuous image X of IT with strict G,-diagonal (G,-diagonal) has 

countable network. 

Remark 5.6. Items (a) and (b) without brackets of Lemma 5.5 remain true even if 
one weakens the requirement that the mappings of 9 are open to “quotient and 
d-open”. 

Proof of Lemma 5.5 and Remark 5.6. We first prove (b) in the case wl(T, II) < X, 

and 9 consists of quotient, d-open mappings. Let f be a continuous mapping of 
111 onto a space X with strict G,-diagonal. Then there exists a family {U,: k EN) 
of open neighborhoods of the diagonal Ax in X2 such that ALx = ll Fzocl U,. For 
every integer n define a closed subset Fn of 17, a family Zn of open sets in 17 and 
a mapping p, ~9 that satisfy the following conditions: 

(1) I 9Jn I < X0 and 9n = U z=,Z,Jk); 
(2) f(0) x f(0) c U, for each 0 E9,Jk); 
(3) p,(V,(k)) is dense in p,(IT) where I/,(k) = U 9Jk); 

(4) Pn+l <Pi 
(5) 0 = p;: 1 pn + JO) for each 0 ~9%‘~. 
Let n EN and suppose that we have already defined a mapping p,, : II--f II,,, 

p, E_Y. Then there exists a subset T, LIZ such that wl(T,, IT) < X, and p,(T,) is 
dense in II,,. The family g of all open sets in 17 which are of the form 
0 =p-‘p(O) for some p ~9, constitutes a base for II. By the continuity of f, for 
every k EN there exists a subfamily yk of 9 such that II = U yk and f(0) X f(0) 
c U, for each 0 E yk. Since wl(T,, IT> < X,, one can find a countable subfamily 

9,Jk) c yk with T, c cl(lJ 9Jk)). Put 9’” = U ;=$Z’,Jk). Since 9” ~29 and 2 is 
X,-directed, there exists p,,+ 1 E_Y such that p,+ 1 -xpn and 0 =~;:~p,,+ JO) for 
each 0 ~92~. It is easy to see that the conditions (l)-(5) are satisfied. 
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For each k EN denote 9(k) = U ~=,9,@), V, = lJ &Z(k) and put p = A:+pn, 

p ~9. Then V, =I,-‘p(V,> by (51, and I)@‘~) is dense in II* =p(II) by (3), for all 

k E N. We claim that for any x,y EIJ, p(x) =p(y> implies f(x) =f(y). Suppose 

not; fix x and y so that p(x) =p(y) and f(x) #f(y). Then (f(x), f(y)) P cl U, 

for some k EN. There exist open neighborhoods V,, V, of the points x, y in II 

such that (f(V,> xf(l/,)) f’cl U, = @. Since p is a d-open mapping, p(V,) and 

p(V,> are dense in some open sets IV, and WY in IJT* respectively (see [23]). The 

equality p(x) =p(y> implies W = W, fl WY # (I$. Since p(l/k) is dense in II*, there 

exists 0 EZ(k) such that p(O) f~ W # 0. The latter set is open in II* because of 

the equality 0 =p-‘p(O) and the fact that p is quotient. Therefore, the definition 

of W implies p(V,) np(0) # fl and p(V,> np(O> # @. Making use of the equality 

0 =pP1p(O>, pick two points xi E V, n 0 and y, E V, n 0. Then (f(x,), f(y,)) E 

f(V,) xf(l/,) cX2\cl U,, which contradicts the facts that 0 =9’(k) and f(0) X 

f(O) c u,. 
Thus, we have proved the existence of a mapping q of n* to X such that 

f = qp. Since p is quotient, q is continuous, i.e., p <f. This along with Lemma 5.3 

proves the nonbracket case of (b). Since every second-countable space has strict 

G,-diagonal, (a) is immediate. 

It remains to prove (b) in the case I(T, n) < Et, and X has G,-diagonal (all 

mappings of _Y are assumed open). In this case we carry out a similar construction 

of pn and 9,Jk) that satisfy the same conditions (l)-(5). However, we define 

9Jk) to be a cover of T, for each k E N. Then put R, = II k=OVn(k) and 

R = Uz=,R, where I/,(k) = U gn(k). Then R, =p;ilp,,+I(Rn) by virtue of (51, 

and p,(R,) is dense in II,, because T, c R,, n EN. Therefore, R =p-‘p(R), and 

p(R) is dense in II. It suffices to show that p(x) =p(y) implies f(x) = f(y) for any 

x, y of II. Obviously, this is true for any x,y E R. To complete the proof, use the 

fact that p is an open mapping, whence R =p-‘p(R) is dense in II. q 

Corollary 5.7. Suppose that a space 17 has a o-lattice _Y of d-open (open) 
retractions onto its Lindeltif Z-subspaces. Then _Y is factorizative and every continu- 
ous image of IT with strict G,-diagonal (G,-diagonal) has countable network. 

Proof. Every retraction is a quotient mapping, and it remains to apply Lemma 5.5 

and Remark 5.6. 0 

Corrollary 5.8. Let S be a subset of the product IT = n, t AX, of Lindeliif Z-spaces 

X@ o E A. Suppose that for each countable set B CA, p,(S) = IT, and there exists 
Ts c S such that wE(T,, S> < K, and pe(T,) is dense in IL, (here pg is the projection 
of L7onto ITB=rIaEB XJ. Then every continuous image of S with strict G,-diago- 
nal has countable network. 

Proof. The condition “p&S) = LIB for each countable B GA” implies that the 

restriction of ps to S is open whenever B is countable. Hence the corollary follows 

from Lemma 5.5. 0 
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Corollary 5.9. Let ZZ be a product of Lindeliif &paces, a E 17 and 2;(a) be the 
&product with the base point a. Zf 2:(a) G S & ZZ and a space X with G,-diagonal is a 
continuous image of S, then X has countable network. 

Proof. The family {pB I S: B CA, ( B I G K,} consists of open “retractions” of S. 

Corollary 5.7 implies nw(X> < Et,. 0 

Now we give a reduction of Theorem 3.3 to Theorem 3.4. 

Proof of Theorem 3.3. Suppose that spaces n and X satisfy the conditions of 

Theorem 3.3, and lattices P’,, _5$ for II and X witness this. It suffices to show 

that Pfl is factorizative and $(X> has countable network for each 4 =9X, i.e., 

that Pfl and Px satisfy the conditions of Theorem 3.4. Clearly, the necessary 

properties of 5$, and Px follow from Corollary 5.7. 0 

Let us return to the first result of this paper, Theorem 2.2. We begin with the 

following simple lemma. 

Lemma 5.10. Let X5 I’525 T be continuous mappings. Zf f is an M-mapping, then 

so are fg and hf. 

Proof. Choose a continuous mapping F : Y3 + Z witnessing that f is an M-map- 

ping. Define continuous mappings G : X3 -+ Z and H : Y3 + T by G(x,, x2, x3) = 

F(g(x,), &x2), &x3)) and H(Y,, yz, y3) = h(F(y,, y2, y3)) for all xi EX and 

yi E Y, 1 < i < 3. Clearly, G and H witness that fg and hf are M-mappings. 0 

Suppose we are given the following commutative diagram 

(5) 

where f and h are M-mappings. Let the mappings F: II3 -+X and H: II: +X0 

witness this. 

Definition 5.11. We call f and h parallel M-mappings if 4F = Hp3. Similarly, the 

mappings p and 4 are also called parallel in this case. 

The following generalization of Theorem 2.2 is valid. 

Theorem 5.12. Let 17 be a space with a strong u-lattice 9n of open retractions onto 
its Lindelof 2-subspaces and suppose that X is an image of ZZ under an M-mapping f 
Then X is H ,-cellular. 
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Proof. Denote by 3x the a-lattice of all continuous mappings of X onto second- 

countable spaces. Let F : II3 + X be a continuous mapping witnessing that f is an 

M-mapping. Assume that the space X is not K,-cellular. Then there exists a 

sequence of pairs (K,, V,>, LY < wi, such that 6 Z K, c V, LX, K, is a nonempty 

G,, V, is open, and K, n VP = # whenever (Y < p < wi. Diminishing K, and V, if 

necessary, one can assume that for every (Y < w, there exists a continuous real-val- 

ued function h, on X such that K, = h,‘(O) and X\V, = h,‘(l). 

Now for every integer n, define spaces X,,, Y,, Z,, n,, continuous mappings 

&, f,, ET,,..., u, and an ordinal (Y, < wi in a manner analogous to that of Lemma 

5.2. We put 9= (K,: LY < wi}, r= U ST and 9, = {K,: LY < pl for each p <w,. 

The ordinal (Y, determines the countable family yn = ya, as in the proof of 

Lemma 5.2. Furthermore, we will define for each n EN continuous mappings 

F,:II:-tX,, and U,:Z,’ + X, satisfying the following additional conditions: 

(6) f,, and u, are M-mappings, and F,, U, witness this; 

(7) f and f,, are parallel M-mappings; 

(8) F,g,3 = .!I@,,. 
Only the definition of (Y,, F, and U, need be clarified. This also requires slight 

modifications to the definitions of spaces IIr,, Z, and mappings f,, p,, u,, v,. 

Suppose we have already defined the ordinal LY, < 0,. Put 4, = A{h,: (Y < an) and 

X,, = 4,(X). Then K, = 4;‘4JK,) and V, = +;‘+,<V,> for each a < LY,. Con- 

sider the strong a-lattice 9: = {p3: p EL?$) of open retractions of n3 onto its 

Lindelijf _%subspaces. By Corollary 5.7, the lattices pfl and 9; are factorizative. 

So there exists p, EL?~ such that p, + qb,, f, pn +p,_, (if n > 1) and p, + 4,F. 
Put II, =p,(Il) and denote by Fn the unique continuous mapping of II,, to X,, 

such that F,,pz = 4,F. In turn, since p,, 4 4, f, there exists a continuous mapping 

f,, : II,, +X with f,,p,, = 4, f. Then F, witnesses that f,, is an M-mapping, and f, 
f, are parallel. This implies the first part of (6) and (7). 

Define spaces Y,, Z, and mappings g,, u, and u, as in the proof of Lemma 5.2 

and then “correct” them in the following way. Let 9n be the family of all 

continuous mappings w of Y, onto second-countable spaces, w + L/‘,,. All mappings 

of 9n are perfect because u, is. The space Y, is Lindelof and pn3 is a a-lattice 

for Y,; hence Lemma 1 of [22] implies that there exists u,* ~9, such that 

(v,Yj3 + F,g: and v,* <u,. Put Z,* = v,*<Y,> and denote by uz the continuous 

mapping of Z,* to X, such that uzu,* = f,g,. Since (v,*j3 + Fag:, there exists a 

continuous mapping U, : (Z,*j3 + X,, that satisfies U,Cu,* I3 = F,g:. Obviously, u, is 

an M-mapping, and U,, witnesses this. Now one can replace Z,, and u,, LI,, by Zz 

and u:, v,* to satisfy the conditions (6)-(8). In the sequel we use the earlier 

denotations u,, v,, Z,, instead of uz, vz, ZT. Thus, we have l&v,, = F,g,. It 

remains to choose (Y,, + i, (Y, < cr,, + 1 < wl, to satisfy the condition (4) at step n + 1 

with r,,, = U 3$an+1. This completes our construction. 

Similarly to that in the proof of Lemma 5.2, define the limit spaces X*, II”, Y, 

Z and the limit mappings 4*, f*, p*, g, v, u* (X,* =X* and fc =f *, ug = u* in 

this case). In the same way define limit mappings F* : (lI*j3 +X* and U” : Z3 --) 

X”. Now (7) implies that f and f * are parallel M-mappings, i.e., 
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(a) +*F = F* ~(p*>~. 
In the same way (8) implies 

(b) F* 0 g3 = U* 0 u3. 
Put p = sup{cr,: n EN} and r* = lJ Fp. Denote R =f-l(r), R* =f-‘(I’*) 

and S = ug-‘p*(R), S* = vg-‘p*(R*). By (41, we have 
(c> S* is dense in S; 

and (5) implies 
(dl K, = ($*)-‘$*(K,) and V, = (+*>-‘+*(I$) for all CY < p. 

In particular, r* = (+*)-+*(T*). 
Pick some points xp EX and yp E II so that xp E K, and f(yp) =xp. Let 

yp E Y and yg E II* be points satisfying g( y,) = p*( yp) = y$. Since u is perfect, 
there exists a point ji E Y such that jj E cl g-‘p*(R*) and v(J) = u(JJJ. Put 
y* = g(y) and pick a point y E II so that p*(y) = y*. This is possible because _Ffl 
is a strong a-lattice. We claim that y E cl R*. Indeed, from r* = ($*I-‘+*(r*) 
(see (d)) and f *p” = 4*f follows R* = (p*>- 'p*(R*>. It remains to note that 
y* E cl p*(R*) and p* is an open mapping. 

We have F(t, t, y,) =f(y$ =xP E VP for all t ~17, and in particular, for t =y. 
Since F is continuous and y E cl R*, there exists a point z E R* such that 
F(z, y,y,> E VD. Clearly, f(t) E K, for some (Y < p, and we claim that F(z, y, y,) 
EK,. 

Indeed, the following equalities are valid: 

~*F(z, y, ~p)(a)F*(p*)~( . ..) =F*(z*, y*, y;) =F*g3(Z, ji, j$), 

where z * =p*(z) and Z E Y, g(Z) = z*. Then, by virtue of diagram (41, 

F*g3(Z, y, &$U*L’~(. . .> = U*(L.(f), U(jq> u(Y,)). 

The second and the third arguments of the function U* coincide, so we have 

$*F(z> Y, yp) = u*u(Z) =f*g(Z) =f*p*(z) =4*f(z) E$*(K,), 

for f(z) E K,. Since K, = (c$*)-‘+*(K,) by (d), the point x =F(z, Y, yp) is in 

K,. 
Thus, x E K, n VP # @, which contradicts the choice of the sets K, and I(,@. 

Therefore, X is &-cellular. q 

To prove Theorem 2.3 we need three auxiliary results. A mapping F : IT X II --) Z 
is said to be separately continuous if the functions f,(x) = F(x, a> and g,(x) = 
F(a, x) are continuous for each a E II. The Tech-Stone compactification of 17 is 
denoted by pII. We omit the proof of the following result. 

Theorem 5.13 (E. Reznichenko). Let F: 17 XII+ Z be a continuous mapping, 
where II is pseudocompact and Z is second-countable. Then F extends to a separately 
continuous function F : pII X pII + Z. 
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Lemma 5.14. Suppose that 17 is a countably protocompact space, bll is a compactifi- 
cation of II and F : bLl x bI7 --) R a separately continuous function, F(x, x) = 0 for 
each x E IT. Then F(y, y) = 0 for each y E bIT. 

Proof. Assume for contradiction that F( y, y> # 0 for some y E bL7. Let for 

convenience, F(y, y) = 1. By the assumption, there exists a dense set S in n, 

every infinite subset of which has a cluster point in II. Put U, = {x E bL7: 
F(x, y> > l/2}. Then U, is open in Ii’ and y E U,. Pick a point x, E U, 0 S. Since 

F is separately continuous and F(x,, y) > l/2, there exists an open neighborhood 

IV, of y in bL7 such that F({x,} x WI> L (l/2, m>. Let U, be an open neighbor- 

hood of y in bll such that cl,,U, c W, f~ U,. Pick a point x2 E U, n S, find an 

open set W, in bII with y E W, and F({x,] X WJ c (l/2, m), and so on. 

We have defined the sequences {x,: n E N), IU,: n EN) and {W,: n E N}. Put 

@ = fl ~&I,; CD is a nonempty closed subset of bII. Since x, E S n U, for each 

n EN, the sequence {x,: n EN) has a cluster point x* in @ n II. On the one 

hand, F(x*, x*1 = 0, for x* E II. On the other hand, F(x,, x*> > l/2 for each 

n E N, which contradicts the continuity of (*, x*X q 

Lemma 5.15. Let h : 17 -+ E be a continuous mapping of a pseudocompact space IT 
to a second-countable space E. Suppose that @ : f12 + Z is a separately continuous 
mapping and a subset A of LI satisfies the condition; A + @(a, . > for each a E A. 
Then A -C @(b, . > whenever b E cl A. 

Proof. Assume that @(b, x1 # @(b, y> for some points b E cl A and x,y E II. 

Since 0 is continuous in the first argument, there exists an open subset U of U 

such that b E U and @(U X 1x1) n @(U X {y]> = fl. Pick a point a E U n A. Then 

@(a, x> # @(a, y), whence h(x) # h(y). Therefore, one can find a mapping 4 of 

h(D) to Z such that @(b, y) = +(y) for a given point b E cl A and all y E II. It 

remains to note that 4 is continuous: apply the fact that A is z-closed [7, Lemma 

71 and thereby is R-quotient [161 as a continuous mapping of a pseudocompact 

space to a second countable space. q 

Proof of Theorem 2.3. There exists a continuous mapping F of 113 to X that 

witnesses that f is an M-mapping. Consider an arbitrary family of pairs (K,, I(,>, 

cy < wi, where K, is a nonempty G,-set in X and V, is an open neighborhood of 

K, in X. It suffices to show that K, n V’ f 6 for some (~,p < wi, (Y < p. Diminish- 

ing K, and V,, one can assume that, for each LY < w,, there exists a continuous 

real-valued function h, on X such that K, = h-‘(O) and X\ V, = h-‘(l). For 

every (Y < w1 pick a point x, E 17 so that fCx,> E K,, and put T = Ix,: (Y < oI} 
and TP = Ix,: (Y <PI, p < ol. For every a, /3 < wi with (Y <p put $, = {h,: v G a), 

X, = 1cl,(X) and tip,, = +a 0 1,4i ‘. All spaces X, are second-countable, and since n 
and X are countably protocompact, the X, are compact. By the definition, we 

have $a + h,; hence K, = +;lIcI,(K,) and X\V, = $;~I,/JJX\ V,). Since X is 

pseudocompact, $, takes zero sets to closed sets [7]. Therefore, U, = (cr,(V’) =X, 
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\*,(X\ V,> is open in X,, and V, = $; ‘(UJ for each LY < wi. For every 

(Y,V < w1 define the continuous mapping c$,,, of II to X, by 4,,,(x) = 

ICr,Rx,, x,, x1, x E17. 

Now we proceed to the following inductive construction. Let A, be a mapping of 

II to a one-point space E,, and a(O) = 0. Suppose we have already defined a 

continuous mapping A, of 17 onto a metrizable compact space E, and an ordinal 

&z) < w1 for some n E N. Denote by A,, r the diagonal product of the mapping 

A,, and the family of mappings c$,,, for cr,v G c&z). Put E,, 1 = A,+,(~); E,, 1 is a 

metrizable compact space. There exists an ordinal C&Z + 11, a(n) < c&r + 1) < wi, 

such that A, + i(TaCn + i,) is dense in A, + i(T). 

Now put A = ATCOA,, E = A(Il) and p = sup,a(n). Then E is compact metriz- 

able and p < wi. By the construction, A(Tp) is dense in A(T) and A < 4,,, for all 

CY,V < p. Extend A to a continuous mapping A: PII- E where pn is the tech- 

Stone compactification of II. Since A is a closed mapping, there exists a point 

x* E pn such that x* E clpnTp and A<x*> = A(xJ. 

Define the continuous mapping VP : Ii2 -+X0 by the rule: 9Jx, y) = 

$@F(x, y, x0>, x,y E 17. Since X0 is compact metrizable, Theorem 5.13 implies 

that q0 extends to a separately continuous mapping @b : (/?Ilr>* +X0. We have 

$<x, x> = &lpF(x, x, xp> = rCrpf(X/J f or all x E II; therefore Lemma 5.14 implies 

y&x*, x*> = rlrpf(x& Obviously, f(xJ E Z$ L VP and &J(xp) E Us. Hence 

14$(x*, x*) E Up and the continuity of Ffi in the first argument implies 

that there exists an ordinal (Y < /3 such that y, = @p(x,, x*> E Up. 

We claim that the point y, = ~)~,~(y~) belongs to $,(K,). Indeed, it follows 

from the construction that A -C +,,, for each v < p; hence A -C $,,, where 

&,V is the continuous extension of $,,, to PII, v < p. Define the continuous 

mapping A, : II* +X, by the rule: A,(x, y) = 4aF(x,, x, y>, x,y ~17. By 

Theorem 5.13, A, extends to a separately continuous mapping A’,: pnX pn 

-+x,. Note that A,(x,, y) = 4,,,(y) for all v < p and y en; hence 

4,(x”, . ) = $,,, for each v < p. Since x” E cl Tp, Lemma 5.15 implies 

A -C &(x*, . >. By the choice of x*, 

&(x*, x*> = A&x*, 

we have &x*) = /I(x,>, whence 

x0). By Lemma 5.14, &(x*, x*> = $,f(x,), and it 

is easy to verify that A,<x*, xp> = $&@O(xa, x*1 = t+hpJyp) = Y,. Consequently, 

Y, = &f(X,) E +,KJ. 
Pick a point y E X so that I,!J~(Y) = yp. Then y E K, I? VP # @. Indeed, from 

r,$(y) = yp E Up and I$ = I)F ‘CU,> follows y E VP. Furthermore, 4,,(y) = Iclp,,$,Jy) 

= $O,,(yp) = y,. Since K, = $;l$,(Ka), the inclusion y, E $,(K,) implies y E K,. 

Hence y E Ka I-I Up, as is required. Thus the theorem is proved. 0 

We conclude this section with two remarks concerning Theorems 3.3 and 3.4. 

Remark 5.16. Suppose that the space X in Theorems 3.3 and 3.4 satisfies the 

following weaker condition: there exists a weak a-lattice _& for X that consists of 

skeletal mappings onto the corresponding spaces. Then the cellularity of X is 

countable (even if the a-lattice -Ej;T is not assumed to be strong). 
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Recall that a mapping 4 : X + Y is skeletal if 4 _ l(N) is nowhere dense in X 

whenever N is a nowhere dense subset of Y. To prove the above assertion 

consider a disjoint family y of open sets in X. One can assume that every element 

I/E y is of the form V= 4-‘(U,> for some 4V~_5?’ and an open set lJ,c 4,(X>. 

Similarly to that in the proof of Lemma 5.2, define a countable subfamily y* c y 

and the following commutative diagram, 

f n-x 
P* dJ* (6) 

L A* f*x* 
in which p* ETA, 4* EL& and the conditions (l)-(3) below are satisfied: 

(11 4* + 4v for all VE y*; 
(2) I/= (4*)-‘4*(V) for all VE y*; 

(3) 4*(I? cf*(clp*f-‘(r*)), where r= U y and r* = lJ y*. 

Then r* = (4*)-‘4*(r*) by virtue of (21, so 4*(I’*) is open in X* (use (1)) and 

dense in 4*(T) by (3). Consequently, 4*(T\T*) is a nowhere dense subset of X* 

lying in cl 4*(,* )\4*(r* > (apply (2) and (3)). Since y is a disjoint family, the set 

r\r* is open in X, and the fact that 4* is skeletal implies r\r* = @. Thus, 

Y=Y*, i.e., y is countable. 

Remark 5.17. Now weaken the conditions of Theorem 3.3 and 3.4 on X by 

assuming that X is a D-space, i.e., suppose that an appropriate weak a-lattice 9” 

consists of d-open mappings. Then Px is factorizative (even if the u-lattice -En 

for II is not assumed to be strong), and X is perfectly k-normal, i.e., the closures 

in X of open sets are zero sets. 

Indeed, every d-open mapping is skeletal, so c(X) < K, by Remark 5.16. Now 

apply an argument of [23] as follows. Let h : X + Y be a continuous mapping of X 

to a second-countable space Y. Choose a countable base 9 for Y. Since c(X) G N,, 

one can find for every U ~9 a mapping 4u ~2~ and an open subset I’,, of 

4,JX> so that 4;‘<Vu> zh-‘(U) ccl 4-‘<Vu>. Apply the fact that 4u is d-open 

to deduce the equalities cl h-‘(U) = cl 4p1(Vu) = 4-‘(cl Vu>. Therefore, the set 

K, = cl h-‘(U) satisfies the condition K, = 4;‘4JK,), and 4,(K,l= cl V, is 

closed in 4,(X>. Since IS’ I < K,, there exists 4 ~9” such that 4 < 4u for all 

U ~9. One easily verifies that 4 + h. 
To conclude that X is perfectly k-normal, consider an open subset 0 of X and 

choose 4 •2~ so that cl 0 = 4-‘cl 4(O). Since 4(X> has countable network, 

cl 4(O) is a zero set in 4(X>, whence follows that the set cl 0 is so in X. 

6. Proofs of Theorems 4.2 and 4.3 

It is clear that Theorem 4.3 and Corollary 5.7 together imply Theorem 4.2. 

Therefore, only Theorem 4.3 requires a proof. Furthermore, the proof of Theorem 
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2.18 of [27] gives an approach to a proof of Theorem 4.3(b); all necessary 
supplementary results may be found in Sections 5 and 6 here. So we focus our 
attention on item (a) of Theorem 4.3. 

It is not known whether a space X that satisfies the conditions of Theorem 4.3 
(or Theorem 4.2) must be &-cellular. However, such spaces have a somewhat 
weaker property. 

Lemma 6.1. Suppose two spaces II and X and their lattices of continuous mappings 
9n and Px satisfy the conditions of Theorem 4.3. Also, let (4,: (Y < wl} be a 
sequence in Px and { Fa: (Y < ol) be a sequence of closed sets in X that satisfy the 
following conditions : 

(1) +p + 4, and F, c Fe whenever (Y < p < wl; 

(2) F, = 4, ‘&( F,), and dr,(F,) is closed in 4,(X> for each (Y < wl; 

(3) +p = w lim,,&, f or each limit ordinal p < o, (see Definition 3.1). 

Then the sequence IF,: (Y < wl) stabilizes at some step p < wl. 

Proof. Let j be the diagonal product of mappings $,, LY < wr. Put 8= j(X) and 

Xa =&(X>, a < wr. Then for any (Y < wr there exists a continuous mapping 
4, : X+X, such that 4, = 4, j. Clearly, 8 is a continuous image of IZ and the 
family 9% = {i,: (Y < wr} is a weak a-lattice for X. Therefore, one can assume 
X=X and 92 =px. Apply Lemma 5.2 to find a dense triple (p, +p, y) where 
p ~2’n, p < w1 and y = {F,: CY < p}. Since F, G Fe for all (Y < /3, +t&FP> is dense in 
$p(r) where r= U(F,,: I/ < wl). However, FP = ~$p’4e(F~), and $t&FP) is closed 
in Xp, whence r= Fe. 0 

Remark 6.2. The proof of Lemma 6.1 did not use the assumption that the 
mappings in -En, are d-open. 

Let p.Z be the Tech-Stone compactification of Z, and 9 a family of closed 
sets in PZ. We say that .J?- separates points of Z from the points of pZ\Z if for any 
z~Zandx~PZ\ZthereisanF~gwithz~Fandx~F.Weomittheproof 
of the following simple lemma. 

Lemma 6.3. Suppose a space II and its strong o-lattice -E;;, satisfy the conditions of 

Theorem 4.3. Let pO k-p1 > . . . be a sequence in Pu and suppose a family Fn of 

closed sets in II, =p,UI) separates points of II,, from the points of pII,,\II,,, 
n EN. Then the family 9* = {fi(fi,)-l(F>: FE Fm, n E NJ separates points of 
II* =p(II> from the points of PIP/II*, where p = A:=Opn, and 6, I?,, are 
continuous extensions of p, p, over pII. 

Lemma 6.4. Suppose R 1s a G,,z -set in a space Y of pointwise-countable type and 
y E cl,R = B. If rrX(y, B) < N, then there exists a countable r-base u for Y at y 
such that UnB## forall UE~. 

Proof. By assumption, there exists a countable r-base A for B at y. Then for any 
U E A, U n R is a nonempty G,,,- set in Y. Since Y is of pointwise-countable type, 
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one can find a nonempty compact set K, c U n R so that X(K,, Y) < K,. Let yu 

be a countable base for Y at K,. It is easy to see that the family p = U(yr,: U E Al 

is as required. q 

The following lemma is a generalization of [27, Lemma 2.151 to d-open 

mappings. 

Lemma 6.5. Let $ : X + Z be a d-open mapping of X onto a space Z with countable 
network, and 77 be a family of open sets in Xsuch that cl,lJ = I,!-‘(clz~+!~(U>) for all 
U E 7. Then for any filter 2? on the set 77, the upper limit set F = (7 R E ,,cl,( lJ {U E 
q: U E R}) is a G,-set in X; moreover, F = *-‘I/I(F), and $r(F) is closed in Z. 

Proof. Apply the argument of [27, Lemma 2.151 along with the fact that cl $-l(V) 

= I/-‘(cl V> for any open subset I/ of Z. 0 

Thereafter to the end of the proof of Theorem 4.3 we use the following 

notation. The spaces IT, X, Y and lattices 9n, -E”, for n and X are assumed to 

satisfy the conditions of Theorem 4.3. Let pn and PX be the tech-Stone 

compactifications of 17 and X. Denote by f” the continuous extension of f over 

pII. Let e be a lifting operator witnessing that g : S + Y is an M-mapping. One 

can assume that e is monotone, i.e., e(U) &e(O) whenever U c 0 (see [27, Section 

21). Denote by y(y) the family of all open neighborhoods of a point y E Y. Put 

F, = n(cl,e(O): 0 E y(y)}. Note that S n F, =g-‘(y). Indeed, pick a point 

z E Y, z # y. There exist disjoint open sets U and 0 in Y such that z E U and 

y E 0. Then e(U) n e(O) = fl and g-‘(y) zg-‘(0) c e(O) n S; hence F, c 
cl,e(Ol cX\g-l(z). Consequently, S n F, = g-‘(y). 

For a subset P of Y, denote by F a union of all G,-sets in Y lying in P. If _%? is 

a family of sets in pn, put z(x) = {K E 3: x E K} for each x E PII; put also 

S, = S/F,. 

Lemma 6.6. Let 3 be a countable family of sets in /3II such that f-‘(S,) c lJ 3. If 
X(y, Y) > K, then there exists a point x Efel(Sy) such that y E cl p, for all 
KEY? wherep,=cl g(f(K)nS). 

Proof. Assume for contradiction that the lemma is false for some family x. Then 

for every x E f-l@,) there exists K(x) E&X) with y Pp,,,,. Put 5 = {P_.): 

x E f-‘(S,)); clearly, I tJ 1 c I Z I G K,. Since Y\(y) =g(S,) and gf(x) E PKCx, for 

each x Ef-l(S), we have Y\(y) c U 5. If y @ U 5 then $(y, Y) < 15 I G K,; since 

Y is of pointwise-countable type, X(y, Y) 6 K,, a contradiction. So Y= U e. For 

every PEG choose Vp~%y> so that V,np=@. Then G= n{V,: PEG} is a 

G,-set in Y. Since Y is of pointwise-countable type, one can find a compact G,-set 

G’ in Y so that y E G’ !E G. By Lemma 2.16 of [271, there exists a nonempty G,-set 

H in Y such that H 2 G’ and for every P E 5 either H (7 P = # or H c P. Since 5 is 

cover of Y, P* n H # @ for some P* E 5. Now the definition of H implies H c P*, 
whence H G P*. 
v,,nF*=pl. 0 

The last inclusion contradicts the facts that H c G c V,, and 
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If p is a family of open sets in Y, we put V,(k) = U {e(U): U E p, U _c 0) for 

each 0 E y(y) and then define the set F&1 = n(cl&J~L): 0 E 9(y)}. Clearly, 

FJ&L) GF~ for any family k of open sets in Y. The following key lemma incorpo- 

rates the most difficult technical details. 

Lemma 6.7. Suppose 9 is a base for Y, y E Y, and K, = t(y, Y> <x(y, Y>. Then 
for any countable family p ~$8’ there exists a countable family ,x* ~9 and a mapping 

C#I ~9~ such that 
(a) ,u _c ,u* and F,(p) is a proper subset of Fy(p* 1; 
(b) F&J*) = 4-‘4(F&*)), and c#J(F$*)) is closed in 4(X>. 

Proof. Let B be an arbitrary closed subset of Y, and y E B n M. Then B is of 

pointwise-countable type, so one can find a compact set B, with y E B, c B and 

x(B,, B) G K,. By a theorem in [15], rrX(y, B,) G t(y, B,). Lemma 1 of [2] implies 

rrX(y, B) =z rx(y, B,) . x(B,, BJ Since t(y, B,J G t(y, Y) G K,, we have 

rX(y, B) G it,. Thus, the hereditary r-character of Y at any point y of M is 

countable. 

By Remark 5.17, X is perfectly k-normal and the lattice 9x is factorizative. 

Hence for each U E F there exists &, in 9x such that cl,e(U) = 4-‘(cl &e(V)>. 

Choose +,, ~9~ so that & < +r/ for all U E p. Then the above equality is valid 

for +0 instead of (bu, so Lemma 6.5 implies that the set F = F,(p) satisfies 

F = &‘&(F) and that C&(F) is closed in X, = &(X>. Since nw(X,) < K,, there 

exists a countable family h of closed sets in X0 such that X,\&(F) = U A. 
Furthermore, X, admits a continuous bijection onto a second-countable space. 

This fact and the factorizative property of the lattice prr imply that there exists 

pO E_.S?~ with pO 4 &, f; now one can find a continuous mapping f,, of n, =p&lIlJI) 
*I 

onto X, such that fop0 = &f. Let f,, : p& + PX, and &, : pn + PII0 be contin- 

uous extensions of fO and pO. Put h^ = IclpxOQ: Q E A) and 0 = I(&ri,J’(L): 

L E A}. Then the equalities F = &‘&(F> and fop0 = &,f imply 

(0) nn (U f3) = fl\f-l(F) and K= (&-‘$,(K) for any KE 8. 

Since p,, E_I,?~, II, is a Lindelijf C-space. Therefore [27,301, one can find a 

countable family To of closed sets in pnO which separates points of nt, from the 

points of pn,\n,. Denote by _ZO the minimal family of closed sets in pn 

containing the family 0 u ((jO)-‘CL): L ~9~) and closed under finite intersec- 

tions. Put p0 = CL. 

Let 12 EN and suppose we have already defined for all k <II the mappings 

4k E_!?~, pk ~9~ and the countable families pk, Tk, A$ satisfying the following 

conditions: 

(I) I)k < &f; 
(2) Pk separates points of IIk =p,UO from the points of pn,\17,; 

(3) zk = {t&-‘CL>: L l pkl; 

(4) Cl,e(U) = +;‘(cl~,+@(u>) for all u E pk, where Xk = 4k(X); 
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(5) if KEZk_, and y E cIpk, then, for every 0 E y(y), there exists II E pu, 

such that UcO and UnP,##. 

Obviously, the conditions (l)-(5) for k = 0 are fulfilled. Put Fn = {f(K): K E Zn} 

and 5, = {cl,g(F n S): F E 9,). Then the families y, and 5, are countable and 

the inclusion II c lJ Zjj implies X & lJ 5,. Put & = (P E 5,: y E clp}. Making use 

of Lemma 6.4, choose for every P E 5, a countable r-base vp for Y at y so that 

U n P # fi for each U E up. Then the countable family p,, + 1 = p,, U ( U {v,: P E c,J) 

satisfies the condition (5) for k = n + 1. An argument similar to that for IZ = 0 is 

applied to define a mapping 4n+ 1 EL?” satisfying (4) and a mapping p,+ 1 ~_5?~ 

satisfying (1). One can choose these mappings to satisfy the natural conditions 

4 n+l + 4, and P,+I +P,. Now define countable families pn + , and Zn + 1 satisfy- 

ing (2) and (3) such that Zn c Zn + 1 and Zn + 1 is closed under finite intersections. 

Put 4 = w limn+n, p = AyEOpn, p* = U zzopUn and Z= UyzOZn. We claim 

that p*, 4 and F,(p*) = F* are as required. Note that 4 •2~ and p E_Y~~. Put 

II* =p(L’) and X* = 4(X). We have p <p,, -C +,,f for all n EN, and since p is 

quotient, p + 4f. Consequently, there exists a continuous mapping f* : II* --)X 

such that f * p = 4f. Since $ < 4, for each II E N, (4) implies 

(6) cl+(U) = +-‘(cl,,4e(U)) for all U E F*. 

Now apply (6) and Lemma 6.5 to conclude that F = $- ‘$(F*), and c$(F*) is 

closed in X*. The inclusion F = F,(p) c F,(p*) = F* follows from p z p*. We are 

left to verify F* \ F # @. 

Extend p to a continuous mapping fi : @Il -+ pIi’*. Then (3) and the fact that 

p -up, for all n together imply 

(7) K = ($)-‘c(K) for each K ~3. 

Furthermore, (2), (3) and Lemma 6.3 give 

(8) the family _!Z= I;(K): K E Z} separates points of U* from the points of 

pII*\n*. 

Apply Lemma 6.6 to find a point x E f-‘(S) so that x E clFk for all K EZ(X). 

By (5), we have f”(K) 0 V&J*) # fl for all 0 E y(y) and KE%(x). Therefore, 

fiR) fi clpxF* Z fl where R = rlLw(x) (use the compactness of pn and the 

closedness of Z(x) under finite intersections). This in turn implies 4f(R) n 

$(F,*) + fl or equivalently, f** h(R) n C&F,*) # @ where F,* = clpxF* and 3 and 

f* are continuous extensions of 4 and f, over /3X and pIi respectively. Put 

x0 =p(x) and T = fl L%q,). Then (7) and (8) imply that R = (j)-‘(T) and that T 

is a nonempty compact subset of II*. Thus, f;(T) n C&F,*) # @ and fA.+. (T) = 

f,(T) LX”. Since F* = qf-‘#4F*) and 4(F*) is closed in X*, we have C&F,*) n 
X* =+(F*). Pick points t E T and PER nI7 so that f*(t>E4(F*) and p(r)= t. 

Then qbf(r) = f * p(r) = f ,(t) E 4(F*), and the equality F” = c#--‘c$(F*) implies 

(9) f(r)EF*nf(RnlJI). 

We claim that f(R n II) n F = @. Indeed, F c F, by the monotonicity of e. 

From the choice of x follows f(x) E S\F, cS\F, i.e., x E I7\f-l(F). Apply (0) 

to find K E 0 with x E K. Since 8 c_VO _cZ, the definition of R implies R 2 K 

and (0) in turn implies f(R n Ii? c f( K n II> c X\ F. Apply (9) to conclude that 
f(r) E F*\F. q 
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Proof of Theorem 4.3(a). We divide the proof into two steps. 

Step 1. x(y, Y) G K, for each y EM. 

Assume for contradiction that x(y, Y) > N, for some y EM. Making use of 

Lemma 6.7, define sequences (p,: (Y < ol} and 14,: (Y < wl} ~55$ so that the 

following conditions hold for all a < wl: 

(a) wa is a countable family of closed sets in Y; 

(b) I*, c I_L~ and +p < 4, whenever (Y < /3 < wl; 

cc> tip= Uaipp, and ~J~=w lim oI < &, for each limit ordinal p < w,; 

(d) Fy(pu,) = $;‘4,(F,(~,)>, and $,(F,(EL,)) is closed in 4,(X); 
(e) F&J is a proper subset of F$~_L,+~). 

Put F, = F&p,) for each LY < ol. Clearly, the sequences IF,: cy < ol) and (4,: 

LY < ol} satisfy the conditions (l)-(3) of Lemma 6.1. However, (e> contradicts the 

conclusion of Lemma 6.1. 

Step 2. A4 has countable network. 

Assume the contrary and define sequences {4,: LY < ol) Cpx and IF,: (Y < 0~1 

satisfying the conditions (l)-(3) of Lemma 6.1. Following [3Ol, define for every 

4 ~9~ a closed subset Z, of 4(X> as follows. Let r = {U,, U,) be an open cover 

of Y. Denote by I/; the maximal open subset of $(X> with 4-‘(K) c cl,e(U,), 

i = 1, 2. Put Z, = cl+(,, (V, u 1/2) and Z, = n rZ,, where r runs through all 

two-element open covers of X. By [30, Lemma 131, there exists the unique 

continuous mapping g+ of Z, n c#4S) to Y such that g(x) =g,(4(x)) for all 

x ES n c/-l(Z,>. 
Let p < w1 and suppose we have already defined for all (Y < /3 the mappings 

4, ~9~ and the closed sets Z, = Z,a G 4,(X) and F, = +-l(Z,>. Put g, = g4@; 

g, : Z, n 4,(S) + Y. If p is limit, put +p = w lim, <&, and define Z, and Fp as 

above. 

Now suppose p = LY + 1. Then we have 

nw(s(FUnS))=nw(ga(Zan~,(S)))cnw(Z,) G~w(~,(X))GKO, 

so the assumption nw(M) > N, implies M\g,(F, n S) # !ii. Pick a point Y in this 

set. By Step 1 of the proof, there exists a countable base y for Y at Y. Similarly to 

that in Step 1, for every U E y there exists 4U ~9~ such that cl e(U) = 

+-‘cl +,(e(U>>. Choose +p ~9~ so that $p + 4, and 4p 4 &, for all U E y. The 

definition of Z, and Fp is clear. The inclusion F, L Fp follows from 4p + 4,. The 

definition of Fp implies y E f(Fp n S>, so Fp \F, + !d . 
Thus, the mappings 4, and the sets F,, a < wl, satisfy the conditions (l)-(3) of 

Lemma 6.1. By the construction, F,+ , \ F, z ki for each (Y < wl, which contradicts 

Lemma 6.1. q 
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