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Abstract

It is shown that an image X of a product of Lindel6f 3-spaces or of a countably compact
(even countably protocompact) space I under a continuous M-mapping is X,-cellular in the
sense of A.V. Arhangel’skii. The same holds if both IT and X have “good” lattices of
continuous mappings. Some generalizations of earlier results of V.V. Uspenskii and M.G.
Tkadenko on continuous images of (dense subspaces of) topological groups are also given.
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1. Introduction

The well-investigated class of dyadic compact spaces has the natural extension
considered in [4], where some interesting traits of compact continuous images of
o-compact topological groups are mentioned. Obviously, all dyadic compact spaces
fall under consideration in [4], because the generalized Cantor cube D7 carries the
natural structure of a compact topological group. This line of investigation was
continued by considering compact continuous images of (dense subsets of) Lindel6f
3-groups [30] and products of Lindeléf Y-groups [27]. Later on, Pasynkov [18]
suggested to “‘separate” the structures of a product space and of a topological
group. So the basic situations we begin with are the following ones:

(a) II is a product of Lindelof 3-spaces and f: IT— X is a continuous mapping
of IT onto a topological group X;

(b) in addition, g:S§ — Y is a continuous mapping of a dense subset S of X
onto a compact space Y.

In what follows the most of our results will treat essentially more general cases;

Elsevier Science B.V.
SSDI 0166-8641(93)E0085-3



184 M.G. Tkalenko / Topology and its Applications 57 (1994) 183-207

however, one should keep in mind the original nature of spaces IT and X, the
product space and a topological group respectively.

The notion of Rj-cellularity plays a central role in this paper. Following
Arhangel’skii [4], we call a space X R,-cellular if every family y of Gj-sets in X
contains a countable subfamily u €y such that cl(U u) =cl(Uy). As far as the
author knows, it was Efimov [8] who considered this property first (without
introducing the term) and who proved that D7 is Ry-cellular for each 7. This easily
implies that every dyadic compact space is Ry-cellular. ééepin [19] defined k-
metrizable spaces and showed that every k-metrizable compact space is X -cellu-
lar.

By the Ivanovskii~Kuz’'minov theorem, a compact topological group is dyadic,
and so is X,-cellular. On the other hand, every o-compact group has the Souslin
property [25]. Both results follow from the theorem of Uspenskii [29]: every
o-compact (Lindelof 3-) group is Rg-cellular. Moreover, a product of arbitrarily
many o-compact (Lindeldf 3-) groups has the same property [27]. This and some
other results are generalized here in “algebraic” and topological directions (see
Sections 2 and 3). The majority of our generalizations start from the point (a)
above.

In Section 4 we proceed with the consideration of (b), which is inspired by the
theory of dyadic compact spaces. By the theorem of Esenin-Vol’pin [11), the weight
and character of a dyadic compact space Y coincide. For the same Y, the equality
w(Y)=1t(Y) was found out by Arhangel’skii and Ponomarev [5]. These results
were improved by Efimov, Gerlitz and Hagler [9,12,14]: if the cofinality of weight
of a dyadic compact space Y is uncountable, then there exists a continuous
mapping of Y onto the Tychonoff cube I*Y). A similar result was proved in [27]
for compact spaces Y which are continuous images of (a dense subspace of) a
product of Lindelséf 3-groups. Moreover, the equality x(y, Y) =#(y, Y) holds at
each point y €Y in this case (to be published in [28]). Recently Pasynkov [18]
extended some results of [27,30] to the spaces as in (a) and (b).

Our aim is to show that the main cause of the above equalities is the existence
of well-structured families of continuous mappings the spaces IT and X as in (a),
(b) possess. The family .¥;; of all projections of the product space II onto
countable subproducts is a strong o-lattice for IT (see Definition 3.1) consisting of
open mappings onto Lindelof 3-spaces. As for X, the family %, of all quotient
mappings of X onto left coset spaces X/N, where N runs through all closed
uniform G,-subgroups of X, is a weak o-lattice for X (Definition 3.1) consisting of
open mappings onto submetrizable spaces. Note that under conditions of (a), every
submetrizable space X/N has countable network. Indeed, it has a Gs-diagonal,
and by a theorem of Engelking [10], every continuous mapping of II to a space
with Gj-diagonal depends on at most countably many coordinates. So X/N is a
continuous image of a countable subproduct Il of II; therefore X/N is a
Lindelsf 3-space with Gs-diagonal, which in turn implies nw(X/N) < R,.

In what follows we substitute the product and group structures of II and X by
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lattices of open (d-open, quotient, etc.) mappings of these spaces onto “good”
spaces (Lindelof I-spaces, spaces with G,-diagonal, spaces with countable net-
work). The properties of the lattices we require are somewhat weaker than those
of the lattices .#};, &5 above.

All spaces are assumed to be completely regular, The symbols w(X), nw(X),
c(X), x(X), t{X) denote the weight, network weight, cellularity, character and
tightness of X respectively. The character and mr-character of X at a point x are
denoted by y(x, X) and w(x, X). If X admits no continuous mapping onto the
Tychonoff cube 7!, we write id(X) < R, and say that X has countable index.

2. M-mappings and X ,-cellularity

A continuous mapping F: X3 — X is called a Mal’tsev operation on the space
X [B1]if F(x, y, y)=F(y, v, x)=x for all x,y € X. Every topological group and
every retract of a topological group admits a continuous Mal’tsev operation [17,31],
i.e., is a Mal’tsev space. The following definition extends the notion of a Mal’tsev
operation to a mapping between two distinct spaces.

Definition 2.1. We call f: X —>Y an M-mapping if there exists a continuous
mapping F: X>— Y such that F(x, y, y)=F(y, y, x)=f(x) for all x,y €X.

Note that if X or Y admits a Mal’tsev operation, then every continuous
mapping of X to Y is an M-mapping. Moreover, f: X - Y is an M-mapping if
there exist a Mal’tsev space Z and continuous mappings g: X—>Z and A: Z->Y
with f=hg. Obviously, X is a Mal’'tsev space iff the identity mapping id, is an
M-mapping.

It is known [29, Theorem 6] that a Lindel6f 3-space X with a Mal’tsev
operation is X -cellular. Countably compact spaces also have this property [30]. We
generalize these results in two directions simultaneously: to products of Lindeldf
Y-spaces and to M-mappings.

Theorem 2.2. Let X be an image of a product Il of Lindelof 3-spaces under a
continuous M-mapping. Then X is Ry-cellular.

The conclusion of Theorem 2.2 remains valid if one requires a strong o-lattice
of open retractions of IT onto its Lindel6f Y-subspaces (see Theorem 5.12) instead
of a product structure on the space I1.

A space IT is said to be countably protocompact [4] if IT contains a dense subset
S such that every infinite subset 4 of S has a cluster point in II. Every countably
compact space is countably protocompact, but not vice versa (the Moore—Mréwka
space is a counterexample).

Theorem 2.3. If X is an image of a countably protocompact space under an
M-mapping, then X is R ,cellular.
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One easily sees that a countably protocompact space is pseudocompact, so we
have the following.

Problem 2.4. Must an image of a pseudocompact space under an M-mapping be
R,-cellular?

A similar problem for pseudocompact Mal’tsev spaces (see [31]) is still unsolved.

Every compact Mal’tsev space is a Dugundji space, and hence dyadic [31]. There
are, however, dyadic spaces which are not Dugundji, and since every dyadic space
is an image of a compact topological group D™ =(Z,)" under a continuous
M-mapping, we see that the image of a compact dyadic space under an M-mapping
need not be Dugundji. This leads to the following problem.

Problem 2.5. If X is an image of a compact space under a continuous M-mapping,
must X be dyadic? Must the weight and tightness (character) of X coincide?

3. Lattices of continuous mappings and X ,-cellularity

In Section 2 we have collected the results on Rj-cellularity of algebraic nature.
In many instances, however, Xy-cellularity of X = f(IT) arises as a result of the
closed interaction between the lattices .#(X) and .#(IT) of continuous mappings
of the spaces X and II. An extremely simple example of this kind is the case when
II=X and X has a o-lattice of open mappings onto spaces with countable
network. For reader’s convenience we give the necessary definitions here.

We write g <f for f,g € .#(X) if there exists a continuous mapping 4: g(X)
— f(X) such that f=hg.

Definition 3.1. A subfamily . of .#(X) is said to be a o-lattice (a strong o-lattice)
for X if the following conditions hold:

(1) 2 generates the topology of X;

(2) every finite subfamily of % has a lower bound in .Z;

(3) for any decreasing sequence p, > p, > p, > -+ in &, the diagonal product
p=K;_,p; belongs to .# (and if a sequence {x;: j€N}CX has the property
p{x,)=p{x;) whenever i <j, then § = N7_p; 'p(x,)).

The definition of a weak o-lattice for X comes if one replaces (3) by

(3') for any decreasing sequence p,>p,>p,> --- in &, there exist p €%
and a one-to-one continuous mapping ¢ of p(X) to p(X) such that p = ¢p where
p=A47_yp;. We denote p =w lim7_, p, in this case.

Obviously, strong o-lattice = o-lattice = weak o-lattice. Note that (2) and (3')
together imply that every countable subfamily of a weak o-lattice .# has a lower
bound in %, i.e., is R,-directed by the partial ordering <. The part of (3) in
brackets means that p(X) is homeomorphic to the limit space of the spectrum
{p{X), p;;: i <j} where p;,=p,p;".

Now let X be a space with a o-lattice . of continuous open mappings onto
spaces with countable network. To show that X is X,-cellular, consider an
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arbitrary family & of Gj-sets in X. Since .& is R,-directed by <, we can assume
that each element Fe % is of the form F =p;'pp(F) for some pp€.%. One
easily defines mappings p,>p, > --- of & and countable subfamilies #,C %,
C -+ of & that satisfy for each n € N the conditions:

1) p(U&,) is dense in p, (U F),

(i) p,.,<pp, andso F=p; ! p . (F) for each Fe Z,.

Put $*=U%_&, and p=A%_,p,, p €Y. Then Z=p(U F*) is dense in
p(UF), and F=p~ 'p(F) for all Fe *. Since p is an open mapping, we have
cl UF*=p Ucl %), which in turn implies UF cp~'p(UF)ccl U F*.

One of the most simple examples of spaces with a strong o-lattice of open
mappings is a product space II =11, . ,X, whose o-lattice #;; consists of all
projections pg of II onto countable subproducts I, =11, . 5 X,. The restrictions
pgl i of projections pg to a subspace IT of IT constitute a o-lattice of continuous
mappings for I1. If IT is dense in II, then this o-lattice consists of d-open
mappings [23].

Another basic example is a k-metrizable compact space, which has, by [19], a
strong o-lattice of open mappings onto second-countable spaces. Therefore, every
k-metrizable compact space is X -cellular (see [19].

The R,-cellularity of Lindel6f X-groups arises from a different reason. It was
mentioned in the introduction that a Lindel6f 3-group G has a weak o-lattice of
open mappings onto spaces with countable network. However, the existence of this
weak o-lattice itself does not imply ®,-cellularity: the presence of a continuous
algebraic operation on G was used in [29] to conclude that G is Rg-cellular.
Nevertheless, the lattice approach works in this case: every Lindelof 3-space is a
continuous image of a Lindelof p-space IT and the latter has a strong o-lattice of
perfect mappings onto second-countable spaces. The existence of such lattices for
II and G implies R -cellularity of G as we will see below (Theorems 3.3 and 3.4).

For generality, we use the following definition.

Definition 3.2. We call X an OD-space (D-space) if X has a weak o-lattice of
open (d-open) mappings onto spaces with G;-diagonal.

Every Hausdorff topological group (more generally, a Hausdorff paratopological
group, i.e., an algebraic group with continuous multiplication) is an OD-space; a
dense subspace of an OD-space is a D-space. In the following theorems, the union
of an arbitrary family of G,-sets in X is called a G; 5-set.

Theorem 3.3. Let an OD-space X be a continuous image of a space Il with a strong
o-lattice of open retractions onto Lindelof 3-subspaces. Then X is X -cellular and the
closure of any G; s-set in X is a Gy-set.

A product of Lindel6f 3-spaces has a strong o-lattice of open retractions onto
Lindeltf 3-subspaces; more generally, every subspace of this product that contains
a Y-product 3(p) with a base point p has the requisite o-lattice.
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Theorem 3.4. Let an OD-space X with the corresponding weak o-lattice %, be a
continuous image of a space II with a factorizative strong o-lattice %;; of quotient
mappings onto Lindelof 3-spaces. If nw ¢(X) <R, for each ¢ €Ly, then X is
Ro-cellular and the closure of a G; s-set in X is a Gg-set.

The term factorizative lattice applied to a given lattice .%); means that for every
continuous real-valued function s on II there exists p €% with p <h. Clearly,
for any continuous mapping ¢ of IT to a second-countable space one can find
p €% such that p < ¢ (provided that the factorizative lattice .Z; is X,-directed).

Note that Corollary 5.7 reduces Theorem 3.3 to Theorem 3.4. Since every
paratopological group is an OD-space, Theorem 3.3 implies the following.

Corollary 3.5. If a paratopological group H is a continuous image of a product of
Lindelof 3-spaces, then H is R-cellular (even t-cellular for each cardinal > R).

This result implies Theorem 2 of [29] and the first part of Corollary 1.8 of [27].

4. Regular mappings onto compact spaces

The first result concerning compact continuous images of dense subsets of D7
was proved in [8]: if there exists a continuous mapping of a 3-product 3(p) c D7
onto a compact space Y, then Y is metrizable. The same holds if Y is a continuous
image of an arbitrary dense subset S C 3(p) (see [24]). Answering a question of
Arhangel’skil, Shirokov [21] proved the equality w(Y) = (Y) for every compact
continuous image Y of a dense subset of D". Later on, Uspenskii [30] and the
author [27] generalized Shirokov’s theorem by showing that the same equality
remains valid if Y is a compact continuous image of a dense subset of a o-compact
(Lindelsf 3-) group. We extend Theorem 10 of [30] and the main results of [27,
Section 2] to compact regular images of subsets of D,-spaces.

Definition 4.1. A space X is said to be a D,-space if X has a weak o-lattice of
d-open mappings onto spaces with strict G4-diagonal.

Obviously, every D, -space is a D-space; a dense subset of a (para)topological
group is a D -space. Furthermore, every d-space in the sense of Uspenskii [30] is a
D,-space.

We write id (X) < 8, if id(K) < &, for each compact subset K of X. It is clear
that id (X) < id(X) and id (X) < t(X). A gap between id (X) and id(X) can be
arbitrarily large; however, id(X) = id (X) for any Lindeldf 3-space X [27, Asser-
tion 2.12). The following theorem is the main result of this paper.

Theorem 4.2. Let a D -space X be a continuous image of a space 11 that has a strong
o-lattice of open retractions onto Lindeldf 3-subspaces, and suppose that a space Y
of pointwise-countable type is an image of a dense subset S of X. Then:

(@) the set M={y<Y: t(y, Y) <R} has countable network, and x(y,Y) <X,
for each y e M;
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) if id (Y) <R, then nw(Y) - x(Y) < X,.

Theorem 4.2 remains true if the space Y is assumed to be an image of an
arbitrary subset S of X under a regular with respect to X mapping g. The latter
means (see [27]) that there exists an operator e assigning to each open subset O of
Y an open subset e(Q) of X so that e(O)NS=g Y0) and e(O)Ne(U)=4
whenever O N U = @. One easily sees that any continuous mapping g:S — Y of a
dense subset § of X is regular with respect to X. Making use of Corollary 5.7
below, we will reduce Theorem 4.2 to the following.

Theorem 4.3. Let a space X with a weak o-lattice of d-open mappings onto spaces
with countable network be a continuous image of a space II that has a factorizative
strong o-lattice of quotient mappings onto Lindelof 3-spaces. If a space Y of
pointwise-countable type is an image of a subset S of X under a regular with respect to
X mapping, then

(a) the set M={y€Y: t(y, Y) <X} has countable network, and x(y, Y) <X,
foreachy € M,

®) if id(Y)<R, then nw(Y) - x(Y) < R,.

It seems surprising that the space X in Theorems 4.2 and 4.3 need not be
X-cellular: all earlier results of [4,30] and [27] generalized here depend heavily on
the R,-cellularity of X. In addition, the assertion (b) in Theorem 4.2, the pointwise
coincidence of the character and tightness of Y, is new; it generalizes a similar
coincidence theorem for dyadic compact spaces and may be compared with
Theorem 9 of [13] on continuous images of product spaces.

For simplicity, all our results are formulated in the countable case. However,
one easily extends them to the general case. Keeping this in mind and making use
of the fact that product spaces and paratopological groups have “good” r-directed
lattices of open mappings for each 7> X, we infer the following corollary of
Theorem 4.2.

Corollary 4.4. Let a paratopological group X be a continuous image of a product of
Lindeldf 3-spaces, S C X and suppose that a compact space Y is an image of S under
a regular with respect to X mapping. Then

(a) foreach >R, theset M_ ={y €Y: t(y, Y) < 7} satisfies nw(M_) - x(M_) <
T,

() w(Y)=t(Y)=id(Y).

The assertion (a) of Corollary 4.4 has been proved also by Pasynkov [18] in the
case X is a topological group.
Our last result is a very special case of Theorem 4.3.

Corollary 4.5. Suppose that a space X has a o-lattice of d-open mappings onto spaces
with countable network, S C X and g : S — Y is a regular with respect to X mapping
onto a compact space Y with id(Y) < Ry. Then Y is metrizable.
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Indeed, set II=X in Theorem 4.3. Note that the o-lattice &, for X is
factorizative by Theorem 1 of [26]. The assumption of Theorem 4.3 that the
mappings of the lattice #; for IT are quotient is unnecessary in this case, because
the family %, (=%};) is assumed to be a o-lattice.

5. Proofs

Here we prove the results formulated in Sections 2 and 3. Throughout this
section the symbol %; denotes a strong o-lattice of quotient mappings of II onto
Lindel6f 3-spaces. Let f:IT — X be a continuous mapping of I7 onto a space X
with a weak g-lattice ., of continuous mappings (onto spaces with countable
network usually), and #(X) be the family of all sets in X of the form ¢~ (R)
where ¢ €%, and R C¢(X). Choose a subfamily & € F(X) and denote by .#
the set of all triples (p, ¢, y) where p €%y, d €%y and y C F, |y| <R, Define
the partial ordering < on .# by

(p1s 15 v1) <(Po> bo> o) if Py <Py, d1 < and v, Cyy.
Clearly, every countable subset of (_#, <) has a lower bound in .#.

Definition 5.1. A triple (p, ¢, y) € # is called dense if

(1) F=¢ '¢(F) for each F=1v;

(2) p<of;

(3) the unique continuous mapping f,: p(IT) = $(X) with fop = ¢f (see (2))
satisfies d(U F) Cfo(cl pf~ (U y).

It is easy to verify that ¢(U.F) ccl ¢(Uy) whenever (p, ¢, y) is a dense
triple. The following key lemma is used in the proof of most of our results.

Lemma 5.2. Suppose that %y is factorizative and that $(X) has countable network
for each ¢ € L. Then the set #* of all dense triples of # is cofinal in (#, <), and
the greatest lower bound in .# of any decreasing sequence in #4* belongs to #A*.

Proof. The second statement of the lemma immediately follows from Definition 5.1
and the assumption that all mappings of %}, are quotient. Only the cofinality of
A* in # requires proof. Pick an element ¢y = (pg, ¢g, v) of £ with p; < ,f.
For every integer n define spaces X, Y, Z,, IT,, continuous mappings ¢,,, f,, &>
Dus Qp> Tns Upy U, and a countable subfamily vy, of # so that the following diagram
1S commutative

f
I X
l!’nﬂ b
Unsa En+1 fav1
Zn+1 Yn+1 Hn+1 Xn+1 - (1)

X, —

r’r't+l q:+l l :11+1 l¢:+l
v fu
: ]
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(the mapping u,,,:Z,,, = X, is not depicted here) and the conditions (1)-(5)
below are fulfilled:

(1) w(Z,) < Rg, nw(X,) < Rg;

Q) ¢,€%x, p,= pr’:+1pn+1 ST

(3) v, is a perfect mapping;

(4) the set v,g"'p,f~(I') is dense in v,g 'p, f (I'), where I',= Uy, and
r=vuys;

(5) Fn = ¢“1¢n+l(rn)'

The mapping ¢, €.%5 and the countable subfamily y, C % are determined by
the triple . Put X, = ¢o(X). It is easy to define spaces I,..., Z, and mapping
Do, - - -5 Ug that satisfy (1)-(4) and the commutativity of the appropriate part of the
above diagram for n=0. So assume that all requisite spaces, mappings and
subfamilies of & are already defined for some n €N. Since the lattice Zy is
R,-directed by < and 1y, is a countable subfamily of F#(X), there exists ¢, , ; €Z5
such that ¢,,, < ¢, and F=¢,},¢,,F) for each F €1y,. This implies (5). Put
X,.1=¢,.£X). Then X, ; has a countable network, so one can find a continu-
ous bijection j of X,,, onto a second-countable space T,.,. Since %% is
factorizative, there exist p, ., €%y, Pn.1 <P, and continuous mapping f, , of
Hn+1 =p,.{IDto T, , such that f. ,p,.,=Jjd,., Then the mapping fos1=
j~f!,, is continuous, because p, . is quotient. The equality f,, P, = ¢, . f is
immediate. Making use of ¢,,; < ¢, and p,,, <p,, define continuous mappings
¢"* ! and p’*' so that ¢,=¢" b, and p,=p"*'p,, . The following diagram
illustrates the remaining construction.

'
Un+y

/ n+1\ —J(
Unsi &n+1 Frei

Z XZ;:+1DZ 7 Ynl+1 Hn+1 Xn+l (2)
lr;‘“ J/q,:‘“ \J{pﬂ“
z, ——, ~ 1,

Since IT,., is a Lindelof 3- space we can find spaces Y., and Z, , and
continuous onto mappings g,,,, and w, +1 such that Z, _ , is second-countable and
w, ., is perfect. One can assume that w;, , <f,, g, .,; otherwise replace W, ., by
the diagonal product w},, |A(f, &) which is perfect because w/, , is. Denote

n+1
by u/,,, a continuous mapping that satisfies u, w,_ ,=f,.18,.1, and put b=
n+1 ’

gn+1
Now let Y, be the fan product (see [1, Addendum to Ch. 1]) of the spaces Y,
and Y, with respect to the mappings A and g, i.e., Y, ., ={(x, y) €Y, XY,
8,(x) = h(y)}. Denote by g *! and k the restrictions to Y, , of projections of the
product Y, XY, , onto the first and the second factors respectively. Also put
8n+1=8&n k. Obviously, Y, , is closed in Y, X Y, ,; hence the restriction of the
perfect mapping v, Xw/_ , to Y, ,, call it v, ,,, is perfect. Note that the space

n+1
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Z,.1=0,..Y,. ) is second-countable. Denote by r;*' and ¢ the restrictions to
Z, ., of projections of the product Z, % Z! ,, onto the first and the second factors.
It remains to put u, ., =4, t. The existence of a countable subfamily y,,, S
such that v, g7, p, 1 f (U v,.,) is dense in v,, 18,11 P, 1 (UF) follows
from w(Z,, ) <R,. This completes our construction at the (n + Dth step. It is
important to note that for every n €N, the square diagram determined by the
equality p**'g, 3 =g, q'*! is bicommutative in the sense of [20], i.e.,

g, . (x)=g;'pr*'(x) for each x €1I, . This follows immediately from the
definition of Y, ; as a fan product.

Put p* =A% _,p,, 5 =A% _ob,, I* €p(Il) and X5 = ¢§(X). Then p* =y
and there exist ¢* €%, and a continuous bijection j of X* =¢*(X) onto X§
such that ¢} =j¢*. Since #; is a strong o-lattice, IT* is homeomorphic to the
limit space IT} = lim{II,, p?*': n € N}, so one can identify IT* and II§. Denote
Y =lim(Y,, g+ n ¢ EN} and Z = llm{Z r**1l: n eN}. Let gq,,, r,, and p*: IT*
—>Hn_ be the limit projections, n EN. Define continuous mappings g:Y — IT*
and v:Y > Z to be the limit mappings of the morphisms {g,: » €N} and {v,:
n € N}. Since all mappings v, are perfect, so is v [1, Addendum to Ch. 1]. Define
similarly the mappings u} = lim{u,: n €N} and fF = lim{f,: n € N}. This gives
the following commutative di(ag_ram. —

07— x —

o5 (3)

Here f* =j7'f¥ and u* =~ 'u}. All mappings are onto. Since ¢*f is continuous

and p* is quotient, the mapping f* is continuous. Similarly, since f*g is

continuous and v is perfect, u* is continuous. It is easy to see that there exists a

continuous mapping ¢7 : X* — X, that makes the following diagram commutative.
Dy f

n, ———1a — X

J o l
17D p* &*
// .
Y,& v & L x+ (4)
v, \ / o
/ u, v

Zn Xn
(The mapping f, : IT, — X,, is not depicted here.)
Note that for each n €N, the mappings g,, q,, & and p} constitute the
bicommutative diagram D,,, because so are all “nonlimit” diagrams determined by

the mappings g, 4z, gf+! and pf*l k>

X
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Put y* = U%_,v, and I'* = Uy* c X. Clearly, |y*| <X,, and by virtue of (5),
I'* = (¢*)~'¢*(I'*). We claim that the triple ¢* = (p*, ¢*, y*) belongs to .£*,
and t* <t,. Only the first assertion requires a proof. It suffices to show that

&* () cf*(clysp*f~'(I'*)) where I'= |JF. (*)

Indeed, by (4), the set v,g,'p,f (I'*) is dense in v,g, 'p,f (I') for each
neN. We have v,¢ " p, f {(I'*)=v,(g; 'p,)p*f '(I'"*), and since the diagram
D, is bicommutative, the latter set coincides with v,(g,g”")p*f~'(I'*) =
r,vg " 'p*f~X(I'*). The same is true for I' instead of I'*. Thus, for each n € N, the
set r,o(T*) is dense in r,uv(T) where T* =g 'p*f~(I'*) and T =g 'p*f~(I").
By the definition of Z, v(T*) is dense in v(T). Hence the inclusion v(T) Ccv(cl T*)
follows from the fact that v is perfect. Consequently, u*v(T)cu*vicl T*)=
f*glcl T*) cf*(cl i g(T*)) =f*(cl p*f~'(I'*)). Making use of the commutativity
of diagram (4), we come to the equality u* v(T) = ¢*(I"). This completes the proof
of (). Thus, t* is a dense triple, t* € #* and t* <¢,. O

The simplest application of Lemma 5.2 is in the proof of Theorem 3.4.

Proof of Theorem 3.4. Let ., be a weak o-lattice of open mappings of X onto
spaces with countable network. Consider an arbitrary family % of Gj-sets in X.
Since &y is Ry-directed by <, every Gg-set in X is a union of sets of the form
¢~ (y), where ¢ €%, and y € $(X). Thus, we can assume without loss of
generality that % C F(X) (see the beginning of this section). Pick an element
t, €4#. By Lemma 5.2, there exists a dense triple 1 € .#%, say t = (p, ¢, y), with
t<ty Put I'*= Uy and I'= U &. Since ¢ is dense, one can find a continuous
mapping f,: p(I1) = $(X) so that f,p=e¢f and $(I)cfylcl pf~'(I'*)). The
continuity of f, implies that ¢(I") ccl fopf "(I'*) = cl $(I'*). By the choice of ¢,
we have I'* = ¢~ '¢(I'*), and since ¢ is an open mapping, ¢l I'* =cl ¢ ~'¢p(I'*) =
¢l p(I*) ¢ '¢(I')2I'. Thus, I'* = Uy isdensein I'= U F and |y | <X,,.
This means that X is X,-cellular.

The second claim of the theorem readily follows from the first one. Indeed,
using the same notation, we have cl I'=cl I'* = ¢~ '(cl ¢(I'*)). The set F=
cl ¢(I'*) is closed in ¢(X) and nw H(X) < Ky, so F is a Gg-set in ¢(X). Being the
preimage of F under the mapping ¢, cl I' is a Gy-setin X. O

We defer the proof of Theorem 3.3, similar to the proof of Theorem 3.4, till
later, for it requires an additional result on factorization of continuous functions
(see Lemma 5.5). The following result is known in folklore.

Lemma 5.3. Let X be a Lindelof 3-space with Gg-diagonal. Then X has countable
network.

Proof. Obviously, X is Lindel6f. Every Lindelof space with Gs-diagonal admits a
continuous one-to-one mapping onto a second-countable space. Furthermore, a
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Lindelof 3-space is Rg-stable in the sense of Arhangel’skil [3], i.e., every continu-
ous image Y of this space that admits a continuous bijection onto a second-counta-
ble space has countable network. These facts imply the lemma. O

For generality, we use the following notion (see [6]).

Definition 5.4. A subset T of II satisfies the inequality wi(T, IT) <R, (T, IT) <
R,) if every open cover vy of II contains a countable subfamily & €y such that
Tccd Up (TS Up).

Obviously, ¢(T) <R, or c¢(II) <R, implies wi(T, IT) <R,, and {T) <X, im-
plies (T, IT) < R,.

Lemma 5.5. Suppose a space II has a o-lattice & of open mappings onto Lindelof
3-spaces and that for every p €7 there exists a subset T C II such that wi(T, IT) < X,
(T, IT) < Ry) and p(T) is dense in p(II). Then

(a) the lattice ¥ is factorizative;

(b) every continuous image X of II with strict Gs-diagonal (Gy-diagonal) has
countable network.

Remark 5.6. Items (a) and (b) without brackets of Lemma 5.5 remain true even if
one weakens the requirement that the mappings of & are open to “quotient and
d-open”.

Proof of Lemma 5.5 and Remark 5.6. We first prove (b) in the case wi(T, IT) <R,
and & consists of quotient, d-open mappings. Let f be a continuous mapping of
IT onto a space X with strict Gs-diagonal. Then there exists a family {U,: k € N}
of open neighborhoods of the diagonal A, in X? such that A, = N%_,cl U,. For
every integer n define a closed subset F, of II, a family %, of open sets in IT and
a mapping p, €% that satisfy the following conditions:

D) 1#,] <Ry and &, = US_oZ(k),

(2) f(0)Xf(O)c U, for each O €, (k);

(3) p,(V,(k)) is dense in p,(II) where V,(k) = U % (k);

4 pyy1 <Dy

(5 O=p, i p,,(O)for each O €2,

Let n € N and suppose that we have already defined a mapping p,: Il - 1II,,
p, €. Then there exists a subset T, C IT such that wl(T,,, IT) <R, and p,(T,) is
dense in II,. The family & of all open sets in IT which are of the form
O =p~'p(0) for some p €%, constitutes a base for II. By the continuity of f, for
every k € N there exists a subfamily y, of & such that IT= Uy, and f(O) X f(O)
c U, for each O €v,. Since wi(T,, II) < R, one can find a countable subfamily
A (k) Cy, with T, c cl(U &, (k). Put &Z, = US_ (k). Since %, C# and ¥ is
R,-directed, there exists p,,, €% such that p,,, <p, and O=p,},p,. (O) for
each O €4,. It is easy to see that the conditions (1)-(5) are satisfied.
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For each k € N denote #(k) = U%_#,(k),V, = U H(k)and put p = A% _,p,,
p €. Then V,=p~'p(V,) by (5), and p(V,) is dense in IT* = p(IT) by (3), for all
k € N. We claim that for any x,y €I, p(x) =p(y) implies f(x)=f(y). Suppose
not; fix x and y so that p(x)=p(y) and f(x)+f(y). Then (f(x), f(y) &cl U,
for some k € N. There exist open neighborhoods V,, V) of the points x, y in [T
such that (f(V,) X f(V,))Ncl U, =@. Since p is a d-open mapping, p(V,) and
p(V,) are dense in some open sets W, and W, in II* respectively (see [23]). The
equality p(x) = p(y) implies W =W, "W, # @. Since p(V}) is dense in IT*, there
exists O €%(k) such that p(O) N W=+ @. The latter set is open in IT* because of
the equality O = p~!p(0) and the fact that p is quotient. Therefore, the definition
of W implies p(V,) N\p(0) # @ and p(V,) N p(O) # #. Making use of the equality
O =p~'p(0), pick two points x, €V, N0 and y, €V, N O. Then (f(x)), f(y)) €
fV) X f(V,) c X\ cl Uy, which contradicts the facts that O € (k) and f(O) X
fo)cu,.

Thus, we have proved the existence of a mapping g of II* to X such that
f =qp. Since p is quotient, g is continuous, i.e., p <f. This along with Lemma 5.3
proves the nonbracket case of (b). Since every second-countable space has strict
G,-diagonal, (a) is immediate.

It remains to prove (b) in the case T, IT) <X, and X has G;-diagonal (all
mappings of & are assumed open). In this case we carry out a similar construction
of p, and #,(k) that satisfy the same conditions (1)-(5). However, we define
#,(k) to be a cover of T, for each k€N. Then put R,= N,_,V, (k) and
R=U?%_,R, where V, (k)= U %#k). Then R,=p, ! p,. (R, by virtue of (5),
and p,(R,) is dense in II, because T, CR,, n € N. Therefore, R =p~!p(R), and
p(R) is dense in I1. It suffices to show that p(x) = p(y) implies f(x) = f(y) for any
x, y of II. Obviously, this is true for any x,y € R. To complete the proof, use the
fact that p is an open mapping, whence R =p~'p(R)is dense in II. O

Corollary 5.7. Suppose that a space II has a o-lattice & of d-open (open)
retractions onto its Lindelof 3-subspaces. Then ¥ is factorizative and every continu-
ous image of II with strict Gy-diagonal (G-diagonal) has countable network.

Proof. Every retraction is a quotient mapping, and it remains to apply Lemma 5.5
and Remark 5.6. O

Corrollary 5.8. Let S be a subset of the product II =11, . ,X, of Lindeldf 3-spaces
X,, a € A. Suppose that for each countable set B C A, py(S) =11, and there exists
Ty C S such that wi(Tg, S) < R and pg(Ty) is dense in Il (here py is the projection
of Il onto IIz =11, 5 X,). Then every continuous image of S with strict Gs-diago-
nal has countable network .

Proof. The condition “pg(S)=1II; for each countable B CA” implies that the
restriction of py to S is open whenever B is countable. Hence the corollary follows
from Lemma 5.5. O
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Corollary 5.9. Let II be a product of Lindeldof 3-spaces, a €Il and 3(a) be the
3-product with the base point a. If 3(a) € S CIT and a space X with G4-diagonal is a
continuous image of S, then X has countable network.

Proof. The family {pg|s: B<A, | B| <X} consists of open “retractions” of S.
Corollary 5.7 implies nw(X)<R,. O

Now we give a reduction of Theorem 3.3 to Theorem 3.4.

Proof of Theorem 3.3. Suppose that spaces IT and X satisfy the conditions of
Theorem 3.3, and lattices .y, &5 for II and X witness this. It suffices to show
that #; is factorizative and ¢(X) has countable network for each ¢ €%y, i.e.,
that #; and %y satisty the conditions of Theorem 3.4. Clearly, the necessary
properties of %; and %, follow from Corollary 5.7. O

Let us return to the first result of this paper, Theorem 2.2. We begin with the
following simple lemma.

g _f _h
Lemma 5.10. Let X — Y — Z — T be continuous mappings. If f is an M-mapping, then
so are fg and hf.

Proof. Choose a continuous mapping F:Y?> — Z witnessing that f is an M-map-
ping. Define continuous mappings G: X —> Z and H:Y? - T by G(x,, x,, x3) =
F(g(x)), g(x,), g(x3) and H(y,, y,, y3) =h(F(y,, y,, y3) for all x,€X and
v; €Y, 1<i<3. Clearly, G and H witness that fg and Af are M-mappings. O

Suppose we are given the following commutative diagram
n -1 x
l l"‘ (5)
HO _h—) XO

where f and h are M-mappings. Let the mappings F:II°* — X and H:1I§ - X,
witness this.

Definition 5.11. We call f and A parallel M-mappings if ¢F = Hp3. Similarly, the
mappings p and ¢ are also called parallel in this case.

The following generalization of Theorem 2.2 is valid.

Theorem 5.12. Let 11 be a space with a strong o-lattice &y of open retractions onto
its Lindelof 3-subspaces and suppose that X is an image of Il under an M-mapping f.
Then X is R-cellular.
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Proof. Denote by ., the o-lattice of all continuous mappings of X onto second-
countable spaces. Let F: II° — X be a continuous mapping witnessing that f is an
M-mapping. Assume that the space X is not X,-cellular. Then there exists a
sequence of pairs (K, V), @ <w,, such that § # K, cV, C X, K, is a nonempty
Gs, V, is open, and K, NV, =@ whenever a < B < w,. Diminishing K, and V, if
necessary, one can assume that for every @ < w, there exists a continuous real-val-
ued function 4, on X such that K =#h_(0) and X\ V, =h (D).

Now for every integer n, define spaces X,, Y,, Z,, Il,, continuous mappings
&b, fus &4>--->U, and an ordinal «, < @, in a manner analogous to that of Lemma
52. Weput F={K,: a<aw}, '=UF and F;={K,: a <g} for each g <w,.
The ordinal «, determines the countable family y, =%, as in the proof of
Lemma 5.2. Furthermore, we will define for each n € N continuous mappings
F,:II? > X, and U,: Z> - X,, satisfying the following additional conditions:

(6) f, and u, are M-mappings, and F,, U, witness this;

(7) f and f, are parallel M-mappings;

(8) F,g,; = Uy,

Only the definition of «,, F, and U, need be clarified. This also requires slight
modifications to the definitions of spaces II,, Z, and mappings f,, p,, U,, U,
Suppose we have already defined the ordinal a, < w,. Put ¢, = Alh_: a <a,} and
X,=¢,(X). Then K,=¢,'¢,(K,) and V,=¢,'$,(V,) for each a <a,. Con-
sider the strong o-lattice %3 ={p> p €.} of open retractions of II* onto its
Lindel6f 3-subspaces. By Corollary 5.7, the lattices -#;; and .3 are factorizative.
So there exists p, €.%; such that p,<¢,f, p,<p,_, Gf n>1) and p, < ¢, F.
Put IT, = p,(II) and denote by F, the unique continuous mapping of 11, to X,
such that F, p} = ¢, F. In turn, since p, < ¢, f, there exists a continuous mapping
fu I, —> X with f,p,= ¢, f. Then F, witnesses that f, is an M-mapping, and f,
f, are parallel. This implies the first part of (6) and (7).

Define spaces Y,, Z, and mappings g,,, v, and u, as in the proof of Lemma 5.2
and then “correct” them in the following way. Let %, be the family of all
continuous mappings w of Y, onto second-countable spaces, w < v,. All mappings
of &, are perfect because v, is. The space Y, is Lindeldf and % is a o-lattice
for Y,; hence Lemma 1 of [22] implies that there exists v} €%, such that
(vF)’<F,g) and v} <uv,. Put Z¥=0*(Y,) and denote by u* the continuous
mapping of Z} to X, such that u¥v} =f, g, Since (v})®<F,g2, there exists a
continuous mapping U, :(Z})? - X, that satisfies U,(v})> = F, g>. Obviously, u,, is
an M-mapping, and U, witnesses this. Now one can replace Z, and u,, v, by Z*
and u}, v} to satisfy the conditions (6)—(8). In the sequel we use the carlier
denotations u,, v,, Z, instead of u}, v}, Z*. Thus, we have Uy, =F,g,. It
remains to choose «,,, a, <a,,, <w,, to satisfy the condition (4) at step n + 1
with I, ., = U&, . This completes our construction.

Similarly to that in the proof of Lemma 5.2, define the limit spaces X*, IT*, Y,
Z and the limit mappings ¢*, f*, p*, g, v, u* (XF=X* and f§ =f*, u} =u* in
this case). In the same way define limit mappings F* :(IT*)® > X* and U*: Z% —
X*. Now (7) implies that f and f* are parallel M-mappings, i.e.,
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(a) (f)*F = F* o(p*)li.

In the same way (8) implies

(b) F¥og3=U*o003

Put B =sup{a,: n €N} and I'* = U F,. Denote R=f"I'), R*=f"'(I'*)
and S =g p*(R), $* = vg~p*(R*). By (4), we have

(c) $* is dense in S;
and (5) implies

(d K,=(¢*)""¢*(K,) and V, = (¢*) '¢*(V,) for all a <.

In particular, I'* = (¢*)~1¢p*(I'*).

Pick some points x;€X and yg€ Il so that x; €K, and f(yB) =xg. Let
Yg €Y and y; €IT* be points satisfying g(y,) =p*(yﬁ) =y;. Since v is perfect,
there exists a point y €Y such that y €cl g7 'p*(R*) and v(¥)=uv(¥,). Put
y* =g(¥) and pick a point y € II so that p*(y) =y*. This is possible because .#;
is a strong o-lattice. We claim that y € ¢l R*. Indeed, from I'* = (¢*) ™ 1p*(I'*)
(see (d) and f*p* =¢*f follows R* =(p*)~'p*(R*). It remains to note that
y* ecl p*(R*) and p* is an open mapping.

We have F(t, ¢, yB) =f(yB) =xp €V, for all ¢t €11, and in particular, for 1 =y.
Since F is continuous and y ecl R*, there exists a point z € R* such that
F(z, y,yg) € Vj. Clearly, f(z) €K, for some a <, and we claim that F(z, y, yj)
€K,

Indeed, the following equalities are valid:

(@) - = =
S F(z, v, yg) =F*(p*)’(...) =F*(z*, y*, y§) =F*¢*(Z, 7, J),

where z* =p*(z) and z €Y, g(Z) =z*. Then, by virtue of diagram (4),

N ) _ _ _
F*g3(z, ¥, yB)=U*U3(...) = U*(U(z), v(¥), v(yﬂ)).
The second and the third arguments of the function U* coincide, so we have
¢*F(z,y, yg) =u*v(Z) =f*g(2) =f*p*(z) = ¢*f(2) € $*(K,),

for f(z)€K,. Since K, =(¢*)"'¢*(K,) by (d), the point x =F(z, y, yp) is in
K(x

Thus, xeK, NV # @, which contradicts the choice of the sets K, and V.
Therefore, X is Rq-cellular. O

To prove Theorem 2.3 we need three auxiliary results. A mapping F:II1 XII > Z
is said to be separately continuous if the functions f,(x) = F(x, a) and g,(x)=
F(a, x) are continuous for each a € II. The Cech—Stone compactification of 7 is
denoted by BI1. We omit the proof of the following result.

Theorem 5.13 (E. Reznichenko). Let F:II XII — Z be a continuous mapping,
where II is pseudocompact and Z is second-countable. Then F extends to a separately
continuous function F: BII X BII — Z.
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Lemma 5.14. Suppose that 11 is a countably protocompact space, bl is a compactifi-
cation of II and F : bI1 X bII — R a separately continuous function, F(x, x) =0 for
each x €I1. Then F(y, y)=10 for each y € bII.

Proof. Assume for contradiction that F(y, y)+ 0 for some y ebll. Let for
convenience, F(y, y) =1. By the assumption, there exists a dense set S in IT,
every infinite subset of which has a cluster point in II. Put U, ={x<blI:
F(x, y)>1/2}. Then U, is open in IT and y € U,. Pick a point x, € U; N S. Since
F is separately continuous and F(x;, y) > 1/2, there exists an open neighborhood
W, of y in bII such that F({x,} X W,) c(1/2, «). Let U, be an open neighbor-
hood of y in bII such that cl,;U, C W, N U,. Pick a point x,€ U, NS, find an
open set W, in bIT with y € W, and F({x,} X W,) c(1/2, ), and so on.

We have defined the sequences {x,: n € N}, {U,: n € N} and {W,: n € N}. Put
@& =N _oU,; @ is a nonempty closed subset of bII. Since x, €S N U, for each
n €N, the sequence {x,: n € N} has a cluster point x* in @ NII. On the one
hand, F(x*, x*)=0, for x* €1l. On the other hand, F(x,, x*)>1/2 for each
n € N, which contradicts the continuity of (-, x*). O

Lemma 5.15. Let A: Il = E be a continuous mapping of a pseudocompact space I1
to a second-countable space E. Suppose that @ :I11? — Z is a separately continuous
mapping and a subset A of II satisfies the condition; A < ®(a, -) for each a € A.
Then A < ®(b, -) whenever b € cl A.

Proof. Assume that @(b, x)+ P(b, y) for some points becl 4 and x,y €Il
Since @ is continuous in the first argument, there exists an open subset U of IT
such that b€ U and &(U X {x}) N &(U X {y}) = @. Pick a point a € U N A. Then
®(a, x) # P(a, y), whence A(x) # A(y). Therefore, one can find a mapping ¢ of
AIT) to Z such that @(b, y) = ¢A(y) for a given point b&cl A and all y e I1. It
remains to note that ¢ is continuous: apply the fact that A is z-closed [7, Lemma
7] and thereby is R-quotient [16] as a continuous mapping of a pseudocompact
space to a second countable space. O

Proof of Theorem 2.3. There exists a continuous mapping F of IT® to X that
witnesses that f is an M-mapping. Consider an arbitrary family of pairs (K, V,),
a <w;, where K, is a nonempty Gy-set in X and V, is an open neighborhood of
K, in X. It suffices to show that K, NV, # @ for some a,8 < w,, @ < 8. Diminish-
ing K, and V,, one can assume that, for each a < w,, there exists a continuous
real-valued function 4, on X such that K,=#"'(0) and X\ V, =h~!(1). For
every a <w,; pick a point x, €II so that f(x )€K, and put T={x_: a <w;}
and T; ={x,: @ <}, B <w,. For every a, B <w, with @ <8 put ¢_={h,: v <a},
X, =¢,(X)and ¢, =4, ;. All spaces X, are second-countable, and since IT
and X are countably protocompact, the X, are compact. By the definition, we
have ¢, <h,; hence K,=¢; "¢, (K,) and X\V, =y "¢ (X\V,). Since X is
pseudocompact, ¢, takes zero sets to closed sets [7]. Therefore, U, =y _(V,) =X,
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\Y(X\V,) is open in X,, and V, =4, '(U,) for each a <w, For every
a,v <w; define the continuous mapping ¢,, of II to X, by ¢, (x)=
v, F(x,, x,, x), xe Il

Now we proceed to the following inductive construction. Let A, be a mapping of
II to a one-point space E,, and a(0)=0. Suppose we have already defined a
continuous mapping A, of IT onto a metrizable compact space E, and an ordinal
a(n) <w, for some n e N. Denote by A, , the diagonal product of the mapping
A, and the family of mappings ¢, , for a,v <a(n). Put E,  ,=A, (II); E,  isa
metrizable compact space. There exists an ordinal a(n + 1), a(n) <a(n + 1) < w,,
such that A, (T, ) is dense in A, (T).

Now put A = A} _,A,,, E=A(II) and B = sup,a(n). Then E is compact metriz-
able and B <w,. By the construction, A(Tj) is dense in M(T) and A < ¢, for all
a,v <. Extend A to a continuous mapping A:BII - E where BII is the Cech—
Stone compactification of IT. Since A is a closed mapping, there exists a point
x* € BII such that x* € cly; T, and A(x*) = )I(xﬁ).

Define the continuous mapping ¥, :II 25 Xz by the rule: Wy(x, y)=
YpF (x, y, xﬂ), x,y €I1. Since X, is compact metrizable, Theorem 5.13 implies
that ¥, extends to a separately continuous mapping 1173 (BIT)? — X;. We have
1I_’ﬁ(x, x) =g F(x, x, x5) =5 f(xp) for all x €IT; therefore Lemma 5.14 implies
Ve(x*, x*) = i f(xp). Obviously, f(xz)€KzcV; and yyf(x,) € Us. Hence
Yy(x*, x*)€U; and the continuity of v, i13 the first argument implies
that there exists an ordinal a < 8 such that yg = ¥y(x,, x*) € Uj,.

We claim that the point y, =, (yp) belongs to ¢,(K,). Indeed, it follows
from the construction that A <¢,, for each » <B; hence A <¢,, where
d;a,,, is the continuous extension of ¢, , to BII, v <B. Define the continuous
mapping A, :I1?—> X, by the rule: A (x,y)=4¢ F(x,, x,y), x,y<cIl. By
Theorem 5.13, A, extends to a separately continuous mapping /fa:BH X BII
— X,. Note that A(x,, y)=4¢,,(y) for all v<pB and yeIl; hence
Afx,, )= b,, for each »<p. Since x* ecl T,, Lemma 5.15 implies
A< /fa(x*, ). By the choice of x*, we have A(x*)= X(xﬁ), whence
/ia(x*, x*)=/fa(x*, i‘B)' By Lemma_ 5.14, /ia(x*, x*) =4, f(x,), and it
is easy to verify that A (x*, x,) =, Ws(x,, x*) =i, (yp) =y,. Consequently,
Vo= f(x) €Y (K,).

Pick a point y €X so that §z(y) =y, Then y €K, NV, +{. Indeed, from
Y(y) =y, € Ug and Vj; = 455 '(Uj,) follows y € V. Furthermore, §,(y) = g ,5(¥)
=45 (yg) =y,. Since K, = ¢, "4, (K,), the inclusion y, € ¢,(K,) implies y €K,,.
Hence ye K_n UB’ as is required. Thus the theorem is proved. O

We conclude this section with two remarks concerning Theorems 3.3 and 3.4.

Remark 5.16. Suppose that the space X in Theorems 3.3 and 3.4 satisfies the
following weaker condition: there exists a weak o-lattice &5 for X that consists of
skeletal mappings onto the corresponding spaces. Then the cellularity of X is
countable (even if the o-lattice .%}; is not assumed to be strong).
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Recall that a mapping ¢: X - Y is skeletal if ¢ '(N) is nowhere dense in X
whenever N is a nowhere dense subset of Y. To prove the above assertion
consider a disjoint family y of open sets in X. One can assume that every element
IV € v is of the form V = ¢~} U,,) for some ¢, €% and an open set Uy, C ¢, (X).
Similarly to that in the proof of Lemma 5.2, define a countable subfamily y* cy
and the following commutative diagram,

H——f—>X

l . lw (6)

nm* — Xx*

in which p* €%y, ¢* €%, and the conditions (1)-(3) below are satisfied:

(D ¢* <o, for all Ve y*;

Q) V=(¢*)"1¢*(V) for all V& y*;

3) ¢*(IN) cf*(clp*f~(I'*)), where I'= Uy and I'* = [ y*.
Then I'* = (¢*) ™ '¢*(I'*) by virtue of (2), so ¢*(I'*) is open in X* (use (1)) and
dense in ¢™*(I") by (3). Consequently, ¢*(I'\ I'*) is a nowhere dense subset of X*
lying in cl ¢*(I'*)\ ¢*(I'*) (apply (2) and (3)). Since vy is a disjoint family, the set
I'\TI'* is open in X, and the fact that ¢* is skeletal implies I'\I™* =@. Thus,
v =v*, ie., y is countable.

Remark 5.17. Now wecaken the conditions of Theorem 3.3 and 3.4 on X by
assuming that X is a D-space, i.e., suppose that an appropriate weak o-lattice %y
consists of d-open mappings. Then &, is factorizative (even if the o-lattice &y
for II is not assumed to be strong), and X is perfectly k-normal, i.e., the closures
in X of open sets are zero sets.

Indeed, every d-open mapping is skeletal, so c(X) <X, by Remark 5.16. Now
apply an argument of [23] as follows. Let 4: X —» Y be a continuous mapping of X
to a second-countable space Y. Choose a countable base & for Y. Since c(X) < R,,
one can find for every U €% a mapping ¢, .Y, and an open subset V;, of
¢, (X) so that ¢;'(V,) ch~ ' U) ccl ¢~ (V). Apply the fact that ¢, is d-open
to deduce the equalities cl A~ (U) =cl ¢ (V) = ¢ '(cl V,,). Therefore, the set
K, = cl h~'(U) satisfies the condition K, = ¢ 'd,(K,), and ¢ ,(K,)=clV, is
closed in ¢,(X). Since | % | <R, there exists ¢ €%y such that ¢ < ¢, for all
U €4%. One easily verifies that ¢ < h.

To conclude that X is perfectly k-normal, consider an open subset O of X and
choose ¢ €, so that cl O =¢ !¢l ¢(0). Since ¢(X) has countable network,
cl ¢(O) is a zero set in $(X), whence follows that the set ¢l O is so in X.

6. Proofs of Theorems 4.2 and 4.3

It is clear that Theorem 4.3 and Corollary 5.7 together imply Theorem 4.2.
Therefore, only Theorem 4.3 requires a proof. Furthermore, the proof of Theorem
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2.18 of [27] gives an approach to a proof of Theorem 4.3(b); all necessary
supplementary results may be found in Sections 5 and 6 here. So we focus our
attention on item (a) of Theorem 4.3.

It is not known whether a space X that satisfies the conditions of Theorem 4.3
(or Theorem 4.2) must be R,-cellular. However, such spaces have a somewhat
weaker property.

Lemma 6.1. Suppose two spaces IT and X and their lattices of continuous mappings
Fg and Fy satisfy the conditions of Theorem 4.3. Also, let {¢,: a <w,} be a
sequence in £y and {F,: a <w,} be a sequence of closed sets in X that satisfy the
following conditions:

(1) ¢g <, and F,C Fy whenever a < <w;;

(2) F,=¢,'¢,(F,), and ¢ (F,) is closed in ¢, (X) for each a <w;

(3) ¢pg=w lim,_ 40, for each limit ordinal B <, (see Definition 3.1).
Then the sequence {F,: a < w.} stabilizes at some step B < ;.

Proof. Let j be the diagonal product of mappings ¢,, a <w,. Put X= j(X) and
X,=¢,(X), a<w,. Then for any a <w, there exists a continuous mapping
d;a X — X, such that ¢, = d;a j. Clearly, X is a continuous image of IT and the
family &5 ={$,: @ <w,} is a weak o-lattice for X. Therefore, one can assume
X=X and ¥3=%. Apply Lemma 5.2 to find a dense triple (p, ¢g, v) wWhere
p €Yy, B<w, and y = {F,: a <B}. Since F, CF, for all a <B, ¢4(F,) is dense in
¢g(I') where I'= U{F,: v <w,). However, F; = ¢ '¢4(F,), and ¢4(F,) is closed
in Xz, whence I'=F,. O

Remark 6.2. The proof of Lemma 6.1 did not use the assumption that the
mappings in %5 are d-open.

Let BZ be the Cech-Stone compactification of Z, and % a family of closed
sets in BZ. We say that & separates points of Z from the points of BZ\ Z if for any
z€Z and x € BZ\ Z there is an F € & with z € F and x & F. We omit the proof
of the following simple lemma.

Lemma 6.3. Suppose a space II and its strong o-lattice £y satisfy the conditions of
Theorem 4.3. Let py>p, > -+ be a sequence in ¥} and suppose a family 7, of
closed sets in II,=p,(IT) separates points of II, from the points of BII,\II,,
ne€N. Then the family F* ={p(p,) (F). FE€F,, n<N} separates points of
IT* =p(Il) from the points of BIT*\IT*, where p= A%, _,p,, and p, p, are
continuous extensions of p, p, over BIL.

Lemma 6.4. Suppose R is a G s-set in a space Y of pointwise-countable type and
yeclyR=B. If wx(y, B) <R, then there exists a countable -base u for Y at'y
such that UNB # @ for all U € p.

Proof. By assumption, there exists a countable m-base A for B at y. Then for any
UeA, UNR is a nonempty G s-set in Y. Since Y is of pointwise-countable type,
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one can find a nonempty compact set K, CU N R so that xy(K,, Y) <X,. Let y,
be a countable base for Y at K,,. It is easy to see that the family u = U{y,: U €A}
is as required. O

The following lemma is a generalization of [27, Lemma 2.15] to d-open
mappings.

Lemma 6.5. Let  : X = Z be a d-open mapping of X onto a space Z with countable
network, and m be a family of open sets in X such that cl U =~ cl4(U)) for all
U € n. Then for any filter & on the set 7, the upper limit set F = N ¢ gl (U{U €
n: UERY)) is a Gyset in X; moreover, F = \W(F), and (F) is closed in Z.

Proof. Apply the argument of [27, Lemma 2.15] along with the fact that ¢l ¢ (V')
= !(cl V) for any open subset V of Z. O

Thereafter to the end of the proof of Theorem 4.3 we use the following
notation. The spaces II, X, Y and lattices ¥};, &5 for Il and X are assumed to
satisfy the conditions of Theorem 4.3. Let BIT and BX be the Cech-Stone
compactifications of IT and X. Denote by f the continuous extension of f over
BII. Let e be a lifting operator witnessing that g: S — Y is an M-mapping. One
can assume that e is monotone, i.c., e(U) ce(O) whenever U C O (see [27, Section
2]). Denote by .7(y) the family of all open neighborhoods of a point y € Y. Put
F,= N{clxe(0): O € F(y)}. Note that SNF, =g '(y). Indeed, pick a point
ze€Y, z+#y. There exist disjoint open sets U and O in Y such that z € U and
y€O0. Then e(U)Nne(0)=@ and g '(y)cg MO)ce(O)NS; hence F,C
cye(0)cXx\g ' (2). Consequently, SN F, = g Wy

For a subset P of Y, denote by P a union of all G4-sets in Y lying in P. If % is
a family of sets in BII, put #(x)={Ke.%: x €K} for each x € 8II; put also
§,=S\F,.

Lemma 6.6. Let 7 be a countable family of sets in BII such that f~(S,)c U .%. If
x(y,Y) >R, then there exists a point x €f (S,) such that y €cl P, for all
K e.Z(x) where pi=cl g(f(K)N S).

Proof. Assume for contradiction that the lemma is false for some family .%#. Then
for every x € f~'(S,) there exists K(x)&€.#(x) with y $I5K(x). Put &={Py,:
x €718 clearly, [£] < |21 <R, Since Y\{y}=g(S,) and gf(x) € Py,,, for
each x € f71(S), we have Y\{y} C U & If y & U ¢ then ¢(y, Y) < | €] < R,; since
Y is of pointwise-countable type, (v, Y) < R, a contradiction. So Y = {J &. For
every P € ¢ choose V, &€ F(y) so that Vpﬂﬁ= @. Then G=N{V,: Pcé}is a
Gs-set in Y. Since Y is of pointwise-countable type, one can find a compact G4-set
G’ in Y so that y € G’ € G. By Lemma 2.16 of [27], there exists a nonempty G;-set
H in Y such that H € G’ and for every P € ¢ either HNP =@ or HC P. Since £is
cover of Y, P* N H # {§ for some P* € £. Now the definition of H implies H C P*,
whence H C P*. The last inclusion contradicts the facts that Hc G Vpx and
Vs NP*=¢. O
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If w is a family of open sets in Y, we put V,(u) = Ule(U): U, Uc O} for
each O € 7(y) and then define the set F,(u) = N{cl V,(n): O € F(y)}. Clearly,
Fy(,u) CF, for any family u of open sets in Y. The following key lemma incorpo-
rates the most difficult technical details.

Lemma 6.7. Suppose % is a base for Y, y €Y, and Ry=t(y, Y)<x(y,Y). Then
for any countable family u CF there exists a countable family u* C% and a mapping
b EFLy such that

(@) u Cu* and F(u) is a proper subset of F,(u*);

() F(u*) = 'd(F(u*)), and ¢(F(u*)) is closed in $(X).

Proof. Let B be an arbitrary closed subset of Y, and y e BN M. Then B is of
pointwise-countable type, so one can find a compact set B, with y € B,C B and
x(B,, B) <R,. By a theorem in [15], mx(y, B,) < t(y, By). Lemma 1 of [2] implies
mx(y, B) <wx(y, By x(By,, B). Since t(y, By <t(y, Y) <X, we have
wx(y, B) <R,. Thus, the hereditary w-character of Y at any point y of M is
countable.

By Remark 5.17, X is perfectly k-normal and the lattice %, is factorizative.
Hence for each U € u there exists ¢, in %, such that cl ye(U) = ¢~ (cl ¢, e(U)).
Choose ¢, €2y so that ¢, < ¢, for all U € u. Then the above equality is valid
for ¢, instead of ¢,, so Lemma 6.5 implies that the set F =Fy(,u,) satisfies
F=¢g'¢(F) and that ¢,(F) is closed in X, = ¢o(X). Since nw(X,) < X,, there
exists a countable family A of closed sets in X, such that X,\¢o(F)= UA.
Furthermore, X, admits a continuous bijection onto a second-countable space.
This fact and the factorizative property of the lattice ., imply that there exists
Py €Ly with py < ¢, f; now one can find a continuous mapping f, of IT; = p(II)
onto X, such that f,p,=¢,f. Let fo :BIl, - BX, and p,: BII — BII, be contin-
uous extensions of f, and p,. Put A ={clﬁX0Q: Qe and 0={(f,p,) (L)
L € A}. Then the equalities F = ¢ '¢,(F) and fyp, = ¢, f imply

©) In(UB)=I\f '(F)and K=(p,) 'p,(K) for any K €86.

Since py, €%y, 11, is a Lindelof 3-space. Therefore [27,30], one can find a
countable family %, of closed sets in 811, which separates points of I1, from the
points of BII,\Il,. Denote by %, the minimal family of closed sets in BII
containing the family 8 U{(p,) '(L): L €%,) and closed under finite intersec-
tions. Put w,=pu.

Let » €N and suppose we have already defined for all k <n the mappings
¢ €L, Pr €Fy and the countable families u,, £, %, satisfying the following
conditions:

@) p<df;

(2) &, separates points of II, = p,(IT) from the points of BII,\II;

3) 7, =Up) (L) LeZ);

@ clyeU)= ¢ '(clyd,e(U)) for all U € py, where X, = ¢ (X);
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G if Kexz,_;and ye clf;k, then, for every O € 7(y), there exists U e u,
such that UC O and UN P+ .

Obviously, the conditions (1)-(5) for k = 0 are fulfilled. Put &%, = {f(K): K €.%,}
and £, ={cl,g(FNS): Fe€.%,}. Then the families %, and ¢, are countable and
the inclusion IT c U %, implies X c U &,. Put gfn ={Pe¢,ye cl P}. Making use
of Lemma 6.4, choose for every P & §~n a countable m-base v, for Y at y so that
UN P+ for each U € vp. Then the countable family u, ,, =, U (U{vp: PEE)
satisfies the condition (5) for k =n + 1. An argument similar to that for » =0 is
applied to define a mapping ¢,,, €%y satistying (4) and a mapping p, ,, €%y
satisfying (1). One can choose these mappings to satisfy the natural conditions
¢,.1 <, and p, , <p,. Now define countable families .%,,, and .7, , satisfy-
ing (2) and (3) such that .7, C.%, ., and %, is closed under finite intersections.

Put ¢ =w lim,¢,, p=A4%,_yp,, u*= U _ou, and Z = U’ _,%,. We claim
that p*, ¢ and F(u*)=F* are as required. Note that ¢ €%, and p €. Put
II'* = p(I) and X* = ¢(X). We have p <p, <@, f for all n €N, and since p is
quotient, p < ¢f. Consequently, there exists a continuous mapping f, : [I* - X
such that f, p = ¢f. Since ¢ < ¢, for each n € N, (4) implies

(6) clye(U)=¢ clyxdpe(U)) for all U € u*.

Now apply (6) and Lemma 6.5 to conclude that F=¢ 1¢(F*), and ¢(F*) is
closed in X*. The inclusion F = F (u) C F,(u*) = F* follows from u c u*. We are
left to verify F*\ F # .

Extend p to a continuous mapping p:BII — BII*. Then (3) and the fact that
p <p, for all n together imply

(7 K=(p)"'p(K) for each K €.%.

Furthermore, (2), (3) and Lemma 6.3 give

(8) the family .#={p(K): K €.%)} separates points of IT* from the points of
BIT*\ IT*.

Apply Lemma 6.6 to find a point x € f~1(S) so that x € clP, for all K € #(x).
By (5), we have f(K) NV (u*)# @ for all O € .9(y) and K €.%(x). Therefore,
f(R)ﬂclﬁXF* ## where R= N %(x) (use the compactness of BII and the
closedness of #(x) under finite intersections). This in turn implies ¢f(R) N
d(FE) # @ or equivalently, f, p(R) N H(F¥) =@ where Ff = clgx F* and é and
f. are continuous extensions of ¢ and f, over BX and BII respectively. Put
xo=p(x) and T= N Z(x,). Then (7) and (8) imply that R = (p)~(T) and that T
is a nonempty compact subset of IT*. Thus, [, (T)NHFF) =@ and f.(T)=
f«(T)CX*. Since F* = ¢~ '¢(F*) and $(F*) is closed in X*, we have $(FF) N
X* = ¢(F*). Pick points t € T and r € RN IT so that f,(z) € $(F*) and p(r)=1t.
Then ¢f(r)=f, p(r)=f.(t) € $(F*), and the equality F* = ¢~ '¢p(F*) implies

9 f(neF*Nnf(RNI).

We claim that f(RNII)NF=4. Indeed, F CF, by the monotonicity of e.
From the choice of x follows f(x)€ S\ F, CS\F, i.e., x €II\f~'(F). Apply (0)
to find K6 with x € K. Since 8 C.%, C.%, the definition of R implies R cK
and (0) in turn implies f(RNIT) Cf(KNII)CX\F. Apply (9) to conclude that
f(r)eF*\F. O
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Proof of Theorem 4.3(a). We divide the proof into two steps.

Step 1. x(y, Y) <R, for each y e M.

Assume for contradiction that x(y, Y) >R, for some y € M. Making use of
Lemma 6.7, define sequences {u,: a <w,} and {¢: a <w} CF, so that the
following conditions hold for all @ < w,:

(a) m, is a countable family of closed sets in Y;

(b) p,Cpyand ¢y < $, whenever a <B <wy;

(©) ug=U, g, and ¢g=w lim, ¢, for each limit ordinal B < w,;

(d) Flpy)=9¢; ¢ (Fu,), and ¢,(F,(1,)) is closed in ¢, (X)),

(e) F,(un,) is a proper subset of F, (i, ).

Put F, =F(u,) for each a <w,. Clearly, the sequences {F,: a <w,} and {¢,:
a < w,} satisfy the conditions (1)-(3) of Lemma 6.1. However, (e) contradicts the
conclusion of Lemma 6.1.

Step 2. M has countable network.

Assume the contrary and define sequences {¢,: @ <w,} ¥y and {F,: a <w,}
satisfying the conditions (1)-(3) of Lemma 6.1. Following [30], define for every
¢ €2 a closed subset Z, of ¢(X) as follows. Let I" = {U,, U,} be an open cover
of Y. Denote by V, the maximal open subset of ¢(X) with ¢~ (V) Cclye(U),
i=1,2. Put Zp=cl,,(V;UV,) and Z,= N Z;, where I' runs through all
two-element open covers of X. By [30, Lemma 13], there exists the unique
continuous mapping g, of Z,N@(S) to Y such that g(x)=g(é(x)) for all
xeSNndNZ,y).

Let B <w, and suppose we have already defined for all @ < the mappings
¢, €Ly and the closed sets Z,=Z, c¢,(X) and F,=¢ " NZ,). Put g,=g,;
8,:Z,N¢,(S)— Y. If Bis limit, put ¢g=w lim,_z¢, and define Z; and F, as
above.

Now suppose 8 =a + 1. Then we have

nw(g(F,NS))=nw(8,(Z, N ,(5))) <nW(Z,) < nw(do (X)) <Ko,
so the assumption nw(M) > R, implies M\ g (F, N S) * @. Pick a point y in this
set. By Step 1 of the proof, there exists a countable base y for Y at y. Similarly to
that in Step 1, for every U<y there exists ¢,y such that cl e(U)=
¢~ 'cl ¢y (e(U)). Choose ¢z € so that g < ¢, and ¢z < ¢, for all U € y. The
definition of Z; and Fj is clear. The inclusion F, < F; follows from ¢4 < ¢,. The
definition of F, implies y € f(Fz; N S), so Fy\F, # .

Thus, the mappings ¢, and the sets F,, o <, satisfy the conditions (1)-(3) of
Lemma 6.1. By the construction, F,,,\F, # @ for each a < w,, which contradicts
Lemma 6.1. O
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