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Abstract 

Given a hypergraph 9f=(E1, . . . ,Er , )  with vertex set V, let no be the number of different 
possibilities for coveting V by an odd number of E's  and n~ the number of different possibilities 
for covering V when selecting an even number of E's. The quantity d(V, o~f)= n o -  n¢ is known 
as the (reliability) domination of ~f~ and a combinatorial invariant of considerable practical 
relevance. The present paper addresses the problem to determine this domination. After reviewing 
the current theory in the area we present some new relationships for d(V,;,~) with respect to 
dual and interval hypergraphs. @ 1998 Elsevier Science B.V. All tights reserved 

1. Introduction 

Let V = { 1  . . . . .  n} be a finite set. A hypergraph is a family ~'f=(El,. . . ,Em) of  

non-empty subsets of  V. The E ' s  are called the edges and the elements o f  V the 

vertices of  9f ~. A hypergraph o~¢f is called simple if no element of  9f ~ is contained in 

another element of  9~. We assume ~ and V to be both non-empty and finite. We 

say that ~vf covers V if and only if every element of  V is contained in at least one 

element of  our. A simple hypergraph presents a generalized form of  a graph which in 

turn is a hypergraph with ]Ei[ ~<2 for all Ei E ~t ~. Simple hypergraphs are also known 

as clutters, antichains or coherent, binary systems. 

The signed domination is a combinatorial invariant that is widely examined for 

graphs. It gained considerable practical relevance when its usefulness in network re- 

liability theory has been discovered [9]. It is therefore sometimes called reliability 

domination [4]. For hypergraphs we define the signed domination as follows: Let no 
be the number of  different subsets of  ~ with odd cardinality covering V and ne the 
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number of subsets of ~ with even cardinality covering V, then the signed domination 
of the hypergraph ~ is defined as 

d(V,:~ff)=no - ne. (1) 

This definition follows [9] and it follows the few studies of the domination invariant for 
some conceptual counterparts of hypergraphs, namely for coherent binary systems [2] 
and clutters [5-7]. 

In the present paper we study d(V, ~ )  for several distinct types of hypergraphs. 
In fact, the setting in terms of hypergraphs is new. As it will be seen, it makes not 

only sense due to the generalizing nature of hypergraphs (in relation to graphs), but it 
allows to study d(V, ~ff) within in comfortably structured theoretical framework. Thus, 
after reviewing some known results about the domination of graphs, hypergraphs and 
transversals, we present relationships for dual and interval hypergraphs. Herein, we 
make use of the well-defined conceptual basis 
defined in [1]. Following this work, hypergraph 
common terminology in studying for example 

offered by hypergraph theory, as it is 
terminology differs generally from the 
clutters. Whenever possible, we will 

therefore give a reference between a hypergraph concept and its clutter equivalent. The 
same will be done with respect to coherent binary systems used in reliability theory. 
An additional paragraph is dedicated to elucidate the relevance of the presented results 

to this particular research area. 

2. Simple, transversal, dual and interval hypergraphs 

We introduce some further notations: Let ~ be a hypergraph with vertex set V. 
If E C_ V is an edge of ~ ,  we write E E ~ .  By ~ - E we denote the hypergraph that 
has the edge set of ~ without edge E, and by ~ U E we denote the hypergraph that 
has the edge set of ~ including a new edge E. If  ~ and ~ffP are two hypergraphs 
on V and V ~, respectively, ~ U ~ ' ,  ~ff N ~ '  and J¢~-  ~ denote the hypergraphs 
rendered by the union, the intersection and the difference of the edge sets of ~ and ~¢t °~. 
The vertex sets of these hypergraphs are given by the subsets of V U V ~ which are 

covered by the corresponding edge set. 
A convenient way to define d(V,~ff) more formally makes use of  the concept of 

formation (see, e.g., [9]). A formation of  V by ~ff is defined as a subset of the edges 
of ~,~ covering V. Let F(V, )if) be the set of all possible formations of V by ~ff, and 
let Fo (Fe) be the set of all possible formations of V by g by selecting and odd 
(even) number of subsets of ~ff. Note that F(V, ~¢f)= Fo UFe, and, in accordance with 

definition (1), no = ]Fo[ and ne = IFol. 
In the following Proposition 1 we relate the signed domination of a hypergraph to 

the signed domination of a certain simple hypergraph that is defined as follows: Let 
be hypergraph with vertex set V. We define the maximal simple subhyper#raph of 

~ff to be the hypergraph ~fft that is obtained by deleting all non-minimal or replicated 
edges from ~ .  If af ~ is simple then o~¢t ~ = aff'. If  ~ is not simple then 3¢f t is given 
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by a proper subset of edges of ~ .  Note, that in this case the vertex set covered by 

9¢t ¢' may be a proper subset of V. 

Proposition 1. Let 9¢f be a hypergraph with vertex set V and A "~' its maximal simple 
subhypergraph. Then, 

d(V, J f ) = d ( V , ~ ' ) .  (2) 

Proof. I f  ~ = fir '  then (2) is trivial. I f  not, assume Ej to be an edge of g that is 

not an edge of ~ ' .  Let F l =  { fEF(V,H)[Ej  E f }  denote the set of formations of  V 
by J f  containing Ej and F Z =  { f  EF(V,H)[Ej ~ f }  the set of formations of  V not 
containing Ej. F 1 consists of  a set of formations with odd cardinality F d and a set of  

formations with even cardinality Fe 1 such that F 1 -- Fo 1 UF~. Analogously, F 2 ~ Fo 2 UF 2. 

With (1), the signed domination of ~ can be expressed in the form 

d(V, ~ )  = no - ne = (IFo~ [ - lEe ~ [) + (I/7o2[ - IF2[). (3) 

Since Ej E ~¢f' there exists another edge Ei E oYf such that Ei C Ej. For F 1 , if a formation 
f E F 1 does not contain Ei, we can add Ei. Likewise, if E~ is contained in a formation 
f E F 1, we can delete it and f remains to be a formation. Thus, IFdl and [FI[ are equal 

and IFo~l- lEVI--0. Insertion in (3) leads to d(V, af)=(IFo2l- IF2l)=d(V, g f f -E j ) .  
By applying these considerations repetitively to all edges of  ~ that are not edges of  
~ ' ,  we obtain the proof. [] 

The benefit of Proposition 1 is that, if  we are interested in the signed domination of 

hypergraphs, one may concentrate on analyzing simple hypergraphs only. 

Perhaps the most detailed study of the signed domination invariant was performed 
in [7]. A main result of  this work consists in a general set theoretic formula for d(V, Yt ~) 

which, in the context of hypergraphs, can be given as follows: 

Corollary 1 (Huseby [6,7]). Let U ( V , ~ )  to be defined as the set of all supersets 
(up to V) of  edges of a simple hypergraph 9~, i.e. U(V, ~ ) =  {SI3Ei E a~ such that 
Ei C_SC_ V}, then d ( V , ~ )  can be given as 

d (V ,9~ )=  ~ ( - 1 )  Ivl-lsL - ~ (-1)lVl-lSlI(S), (4) 
SEU(K~) SC_ v 

where I(S) is an indicator variable defined as 

1 if  S E u ( v , : ~ ) ,  
I ( S ) =  0 otherwise. (5) 

ProoL See [7]. [] 

In addition to Corollary 1 we recall another known result that concerns the signed 
domination of transversal hypergraphs [1]. A transversal of a hypergraph ~ is a set 
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T _C V that meets all edges of ~ ,  i.e. T fq Ej ~ 0 for every Ej E 9f ~. The transversal 
hypergraph Tr(H) of a hypergraph 3¢g is defined as the family of minimal transversals 
of o~. In clutter terminology a transversal hypergraph is called the blocking or dual 
clutter. 

Proposition 2 (Barlow and Iyer [2]). Let ~,~ be a hypergraph with vertex set V and 
T r ( ~ )  the transversal hypergraph of aft, then 

d(V, 9if) = ( -  1 )1Vl+ld(V, Tr(gf~)). (6) 

Proof. See [2,7]. [] 

We use this proposition to prove a similar general result for dual hypergraphs [1] 
which should not be confused with dual clutters (see above): The dual of a hy- 
pergraph ~--=-(E1 . . . . .  Era) with vertex set V=  {1 . . . . .  n} is the hypergraph DI(AP)-- 
(Etl . . . .  ,E~) which covers the vertex set W =  {1 . . . . .  m} and whose edges are given by 
E[={jEVtI icEj} .  

Proposition 3. Let  ~ be a hypergraph and D I ( ~ )  the dual hypergraph of ~ ,  then 

d( V, 9f ~) = d( V', DI (~) ) ,  (7) 

where V and V' are the vertex sets of ~ and DI(~) ,  respectively. 

Proof. Let f E F(V,.Cf). Since for every element of f there exists exactly one vertex 
of V', f corresponds to some vertex subset S c V'. From the fact that f covers V and 
I VI = IDl(oUg)l it follows that each edge E' 6 Dl(aff) contains at least one vertex of S. 
In other words, S is a (proper or improper) superset of some element of the transver- 
sal Tr(Dl(af~)) and there exists a one-to-one correspondence between the elements of 
F(V,A~) and U(V',Tr(DI(A~))). Since ISI is even iff If] is even and IsI is odd iff 
Ifl is odd, it is 

d(V,~)=no - ne = ~ ( -1 )  Isl-I (8) 
SE U( V', Tr(DI(,,~))) 

and, using Corollary 1 and Proposition 2, 

d(V, AP):(-1)IV'I+I ( ~ ( -1 )  Iv'l-lsl) 
SEU(V', Tr(DI(~))) 

=(-1)lV'i+ld(V',Tr(Dl(~)))=d(V',Dl(~)). [] (9) 

It should be noted that the dual hypergraph of a simple hypergraph is not necessarily 
simple. However, if we are interested in the signed domination of the maximal simple 
subhypergraph of a dual hypergraph, we apply Proposition 1 and obtain the result at 
once. 
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In the rest of this paragraph we study the signed domination of a special hypergraph 
class, the so-called interval hypergraphs [1]. Interval hypergraphs exhibit several inter- 
esting combinatorial properties, e.g. the coloured edge property, the Helly property and 
the K6nig property (see [1]). 

A hypergraph ~ is an interval hypergraph if there exists an ordering of the vertex 
set V such that for every two vertices i, k E V with i < k, which are contained in an 
edge E E Jt ~, all vertices j in i < j < k  are also contained in E. An ordering of V which 
satisfies this condition is called an interval preserving ordering. 

It is sometimes helpful to imagine oneself the vertices V of an interval hypergraph 
to be arranged on a line according to the interval preserving ordering. Then, an edge 
family of an interval hypergraph is a set of subsets of V such that each edge consists 
of a set of all vertices lying in an interval on the line. 

For a simple interval hypergraph an interval preserving ordering of the hypergraph 
vertices may be used to order the edges of the hypergraph. In the proof of the following 
theorem we make use of this fact. In ordering the edges of a given simple interval 
hypergraph our such that E < E t for E, E t E 9~ if and only if E contains a vertex i with 
i < j  for every j E U,  we obtain an ordering of the edges of ~ that depends on the 
interval preserving ordering of the hypergraph vertices. 

Theorem 1. Let o~f be an interval hypergraph with vertex set V. Then, the signed 

domination d ( V , ~ )  takes the value - 1 , 0  or +1. 

Proof, The proof is performed by induction on ]~[ .  Obviously, for I9ffl = 1 it is 
d(V,~,vg) = 1. For any hypergraph ~ with [Jt~l > 1, we first use Proposition 1 to pass to 
the maximal simple subhypergraph o'¢g 0). Assume that the theorem holds for I ~  (l)] = m 
and should be proven for ]~,°(1) I = m +  1. We order the m +  1 edges of ~(1) according 
to an interval preserving ordering of their vertices, that is to say, E < E' for E, E' E ~ ( l )  
if and only if E contains a vertex i such that i < j  for every j E E'. If with respect 
to the obtained ordering E1 . . . . .  Er~+~ the edge Em+~ does not cover vertex n, then 
d ( V , ~ )  = 0. Otherwise Em+l = {r . . . . .  n}, r<~n, is the only edge covering vertex n. It 
follows that every formation of V by Jt ~(1) is comprised of Em+l together with a for- 
mation of V (2) = {1 . . . . .  r - 1 }  by the edges E 1 - { r  . . . . .  n} . . . . .  E m - { r  . . . . .  n}. Together 
with V (2) these edges form an interval hypergraph ~(2). Note that the formations of 
V (2) by Jt ~(2) are in one-to-one correspondence with those of V by ~(1) with the 
parity switched. Now apply the inductive hypothesis. [] 

The inductive progressing that is pursued in the proof forms a series of interval sub- 
hypergraphs ~,~(1), ~(2) . . . . .  ~( i )  . . . . .  ~(k) where k is the number of passed induction 

stages. Since each stage contributes to the signed domination by switching the sign, 
d ( V , ~ )  is equivalently given by 

d ( V , ~ ) = ( - 1 )  k-~ (10) 

unless d(V, ~ )  = O. 
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Further, at each stage i of the induction the edges of the corresponding interval 
hypergraph 9i(i) are truncated by some vertex subset Si C V. Thus, the induction leads 
to disjoint sets S1 . . . . .  Sk which, in the case of d(V,9i )  ~ O, are a partitioning of V 
and, in the case of d(V, aft) = 0, are not a partitioning of V. 

3. Applications 

The signed domination invariant has been originally studied in reliability theory [9]. 
Translating the hypergraph terminology to notions used in this research field, a hy- 
pergraph aft corresponds to a coherent binary system or reliability system [3], the 
hypergraph vertices are the components and the hypergraph edges are the path sets 
of the reliability system. The minimal path sets of a reliability system are the edges 
of the maximal simple subhypergraph of a hypergraph under consideration. Its mini- 
mal cutsets are the edges of the transversal hypergraph Tr(9i). They form the dual 
reliability system [3]. Moreover, Dl(9i)  is sometimes called the family of transposed 
minimal path sets of a reliability system [7]. 

The actual relevance of domination theory in reliability analysis renders from the 
fact that for certain classes of reliability systems - -  or, equivalently, hypergraphs - -  
algorithms are known which use the signed domination invariant for a fast reliability 
computation of these systems. In addition to k-out-of-n-systems [2, 5] and consecutive 
k-out-of-n-systems [8], such a fast reliability computing algorithm exists in particular 
for certain directed network systems which (in their simplest form) are to be described 
as hypergraphs whose vertices correspond to the edges of a directed graph and whose 
edges are representable by the paths between two fixed vertices in the directed graph 
[7,9]. It was shown that for such a directed network system - -  or hypergraph 9 i  - -  
d(S, 9i(S)),  where 9i(S) denotes the subhypergraph of aft having exactly those edges 
E E aft with E c S for S C_ V, takes either the value 1, 0 or - 1 for every S c_C_ V (see 
[7,9]). 

A common property of the domination-based algorithms for a given hypergraph aft 
of these classes is that they, first, generate efficiently all subhypergraphs aft(S) with 
d(S, 9 i ( S ) ) ¢  0, S C_ V, and, secondly, compute efficiently d(S, 9i(S)). This means that 
following these algorithms the signed domination has to be determined not only for 
aft but for all subhypergraphs aft(S). 

Interval hypergraphs or, as they are sometimes called in reliability theory, consec- 
utively connected systems [10] represent another reliability system class for which 
the signed domination is limited by 1, 0 or -1  (see Theorem 1). It can be easily 
seen that if V is the vertex set of an interval hypergraph aft, then this holds not 
only for d(V, 9 i )  but also for every d(S,9i(S)) ,  SC_ V, since every subhypergraph 
of aft which is obtained by deleting some edges from aft is an interval hypergraph, 
too. 

It is an interesting question whether this result can be used for constructing a fast 
reliability computing algorithm of interval hypergraphs, possibly in analogy to the ex- 
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procedure INT_HYP_DOM ( simple interval hypergraph Yf(S) with ordered edge set 

begin 
( E l ,  . - ,E  m)); 

s_partition := { ~ }; 
minimizingset := ~;  
for i := 1 to []f(S){ do 
begin 

if nunimizing_set = ~ or minimizing_set ~: E i then 

begin 

T := E i - [[ sA~artition [[; 

minimizing_set := T ; 
s_partition := s_partition u {T}; 

end 
end; 
if II spartition [I c S then d(S,Skc(S)):= O; 
else 

begin 
if [ s_partition [ is oddthen d(S, Yf(S)):= 1; 

if I s partition I is even then d(S,~c(S)):= -l, 
end 

end 
end INT_HYP_DOM; 

Fig. 1. Algorithm for computing d(S,,~(S)) of an interval hypergraph. 

isting algorithms for directed network systems. If so, one must find efficient algorithms 
which, first, generate all subhypergraphs Jr(S), S C_ V, with d ( S , W ( S ) ) # O  of an 
interval hypergraph W and, secondly, compute d(S, Jr(S))  efficiently. While a solu- 
tion to the first task seems not to be found so easily and have to be left as an open 
problem a solution to the second task, i.e. the efficient computability of d(S,,,~(S)), 
is evident, as a short algorithm shows which 'implements' the proof of Theorem 1 
(see Fig. 1). 

To make the relationship between this algorithm and the proof of Theorem 1 clear, 
we add that, for sake of a short presentation, the interval hypergraph provided as 
the input to the procedure INT_HYP_DOM is assumed to be simple and to possess an 
ordered edge set in accordance with a given interval preserving ordering of its vertices. 
Further, for obtaining a simple interval hypergraph at each induction stage of the proof 
a minimizing set is used in the algorithm that allows us to neglect non-minimal edges. 
Finally, s_partition is the set family S1,...,Sk that, along with the comments after 
Theorem 1, decides upon the value of d(S, J/g(S)). 
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