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Contrast sensitivity defines the threshold between the visible and invisible, which has obvious signifi-
cance for basic and clinical vision science. Fechner’s 1860 review reported that threshold contrast is
1% for a remarkably wide range of targets and conditions. While printed charts are still in use, computer
testing is becoming more popular because it offers efficient adaptive measurement of threshold for a
wide range of stimuli. Both basic and clinical studies usually want to know fundamental visual capability,
regardless of the observer’s subjective criterion. Criterion effects are minimized by the use of an objective
task: multiple-alternative forced-choice detection or identification. Having many alternatives reduces the
guessing rate, which makes each trial more informative, so fewer trials are needed. Finally, populations
who may experience crowding or target confusion should be tested with one target at a time.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.
1. Introduction (Masson, 1845), Fechner reported that threshold contrast is about
Suppose we present a visual target on a uniform background. The
contrast of the target quantifies its relative difference in luminance
from the background, and may be specified as Weber contrast
Lmax�Lmin
Lbackround

, Michelson contrast Lmax�Lmin
LmaxþLmin

, or RMS contrast Lr
Ll

, where Lmax,
Lmin, Lbackground, Ll, and Lr are luminance maximum, minimum,
background, mean, and standard deviation, respectively. Weber
contrast is preferred for letter stimuli, Michelson contrast is pre-
ferred for gratings, and RMS contrast is preferred for natural stimuli
and efficiency calculations (Bex & Makous, 2002; Pelli & Farell,
1999). Threshold contrast is the contrast required to see the target
reliably. The reciprocal of threshold is called sensitivity.

Vision science, with the ultimate goal of providing a mechanistic
account for how we see, has placed a great emphasis on measuring
and explaining sensitivity for a wide range of target objects in a wide
range of conditions. Fechner’s 1860 book, Elemente der Psychophysik,
was the beginning of the modern era. His title introduced the word,
psychophysics, referring to behavioral studies of perception. In his
words, psychophysics works towards ‘‘an exact theory of the func-
tionally dependent relations of . . . the physical and psychological
worlds.’’ (Fechner, 1860; /1966, p. 7). He reviewed the prior work
on contrast sensitivity, and described and named many of the basic
procedures that we still use today to measure threshold (and thus
sensitivity). Reviewing his own, and past measurements, especially
1% for a wide range of targets, independent of size and luminance.
That amazing and robust finding is still unexplained today. The
roughly 1% holds up, for example, as the threshold contrast (log con-
trast �1.8 ± 0.1, about 1.6%) for identification of Sloan letters over a
sixteen-fold range of size (0.75–12�) and hundred-fold range of
luminance (7–514 cd/m2) (Zhang, Pelli, & Robson, 1989).

Generalizing earlier results from fluctuation theory, Signal Detec-
tion Theory showed that in white noise, the detectability of a known
signal depends solely on its contrast energy, independent of its shape
or extent. The noise level determines the minimum detectable con-
trast energy (Pelli & Farell, 1999; Peterson, Birdsall, & Fox, 1954). That
is for the optimal algorithm, or ideal observer. Since, in a given level of
white noise, all signals have the same ideal threshold energy, we can
say that the ideal detection thresholds conserve contrast energy:

E ¼ C2
rmsAT ¼ k ð1Þ

where E is contrast energy, crms is RMS contrast, A is area, T is
duration, and k is a constant. For a fixed luminance, this corre-
sponds to Eq. (1) in Barlow (1958). For a fixed duration T, this is Pi-
per’s law (Piper, 1903). Barlow notes that, far from being the rule,
Eq. (1) holds only for small-area short-duration stimuli. Unlike Eq.
(1), Fechner’s review showed that human threshold contrast is
independent of size over a wide range of size. When size increases,
the ideal threshold (in white noise) conserves energy while the hu-
man threshold conserves contrast (Dubois, Poeppel, & Pelli, 2013;
Pelli, Farell, & Moore, 2003; Pelli et al., 2006). This is yet to be ex-
plained, as noted above, but can be understood as an early infor-
mational bottleneck in object recognition (Dubois, Poeppel, &
Pelli, 2013).
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Robson (1993) reviews the history of contrast sensitivity mea-
surement and Owsley (2003) reviews its importance for clinical
assessment. We present some highlights. Contrast sensitivity is im-
paired in many clinical conditions and peak contrast sensitivity
may be reduced even when acuity is normal. Contrast sensitivity
is impaired in ophthalmic conditions including myopia (Collins &
Carney, 1990), glare (Abrahamson & Sjöstrand, 1986), cataract
(Hess & Woo, 1978), amblyopia (Freedman & Thibos, 1975), age-re-
lated macular degeneration (Kleiner et al., 1988), ocular hyperten-
sion (Gandolfi, 2005), glaucoma (Stamper, 1984) and dry eye
(Rolando et al., 1998). Contrast sensitivity can also be impaired
in neurological conditions, including cerebral lesions (Bodis-Woll-
ner, 1972), multiple sclerosis (Regan et al., 1981), Parkinson’s dis-
ease (Bodis-Wollner & Onofrj, 1986) and schizophrenia (Cimmer
et al., 2006). Furthermore, contrast sensitivity loss is a common
side-effect of many prescription drugs (Li, Tripathi, & Tripathi,
2008; Santaella & Fraunfelder, 2007). Some contrast sensitivity
deficits can be remedied by optical, pharmaceutical, surgical, or
rehabilitative intervention. Even when poor contrast sensitivity
cannot be remedied, patients may be glad to understand why they
see poorly.

The French hydrographer Pierre Bouguer (1698–1758) made
the first measurements of light, using the eye as a null indicator
for a match. To assess the accuracy of the eye’s match, he made
the first measurement of contrast sensitivity (Bouguer, 1760/
1961). His method is very simple. Two candles illuminate a screen.
One candle is roughly ten times farther than the other. An opaque
rod is placed between the far candle and the screen, casting a sha-
dow onto the screen. That shadow is the target to be detected by
the observer. The luminance difference across the edge of the sha-
dow is determined solely by the far candle. The background lumi-
nance comes almost entirely from the near candle. Contrast is the
target luminance difference expressed as a fraction of the back-
ground. To measure threshold, the contrast of the shadow is con-
trolled by adjusting the distance of the far candle until the
observer can barely see it.

Presuming that the candles have the same intensity and that
their illuminations strike the screen at the same angle, as recom-
mended by Bouguer, then the Weber contrast is approximately
d2/D2, where d is the distance of the near candle and D is the dis-
tance of the far candle. The tiny contribution of the far candle to
the background luminance is negligible. Using this technique, Bou-
guer (1760/1961) reported a threshold of 1/64, or about 1.6%, for
one observer. A hundred years later, Fechner (1860/1966, p. 125)
reported that Volkmann used this technique with four observers
and consistently found a 1% threshold. More than 150 years later,
in 2012, John Robson and Denis Pelli replicated Bouguer’s condi-
tions, using modern paraffin candles, and measured a threshold
not significantly different from his.

Masson (1845) used a spinning disk. He painted black a tiny
sector of a white disk. When spun quickly, this produces a gray ring
with a contrast proportional to the width of the black sector. He
too found a 1% threshold for ‘‘ordinary’’ to ‘‘good’’ vision, and re-
ported that, over a wide range, there is no effect of size or illumi-
nation. Bouguer’s candles allowed for easy adjustment of
contrast, simply by moving the far candle. Masson’s disks are not
adjustable, and one finds threshold by testing with many disks.
Both tests use a subjective task, asking whether the observer sees
the target, which is always present.
2. On each trial: The task

Methods to measure contrast threshold can be broadly catego-
rized into objective and subjective tasks (e.g. Pelli & Farell, 2010).
Objective tasks have a right answer. Subjective tasks do not. In
objective tasks, the observer is making a factual assertion about
the stimulus, which is right or wrong. In subjective tasks, the ob-
server is reporting his or her internal experience, which is private
to the observer, so the experimenter cannot classify the report as
right or wrong. Subjective tasks include rating, matching, and null-
ing. Objective tasks include yes/no (Is it present?) and forced-
choice detection or identification.

When observers make a yes–no judgment, to detect a stimulus,
it is now well established that they say ‘‘yes’’ if the internal magni-
tude of the stimulus sensation exceeds an internal criterion (Green
and Swets, 1966). Many things, including instructions, can induce
the observer to raise or lower his or her criterion, causing threshold
to shift up or down. This unknown internal criterion of the obser-
ver typically differs among observers and may vary across popula-
tions and over time. Clinical and basic studies of visual sensitivity
are usually not interested in these criterion shifts, so they avoid the
undesired variations of yes/no methods by using less-criterion
dependent methods (Vaegan & Halliday, 1982). Symmetric designs,
with equally probable possibilities encourage observers to use a
criterion that yields equally probable answers. In some popular
forced-choice procedures the observer identifies a letter as one of
the N possible letters, or identifies the orientation of a stimulus
as one N orientations, or indicates which of N spatial or temporal
intervals contained the target. The N possibilities are equally prob-
able. Such forced-choice identification and detection tasks are the
preferred methods for accurate estimation of contrast thresholds.

For detection, N is typically 2, and the task is usually two-inter-
val forced choice (2IFC). There are two presentations, each marked
by a tone. Only one contains the target. The observer must say
which. Threshold is the contrast at which the observer’s response
is correct on a given percentage (e.g. 75%) of the trials. Near thresh-
old, decisions take longer.
3. The trial sequence: Threshold estimation

In order to estimate a contrast threshold, the observer is tested
over many trials, at various contrasts. Each trial is at some contrast
and is scored right or wrong. The proportion of correct responses at
each contrast is recorded. The observer’s probability of correct re-
sponse as a function of contrast is the psychometric function. There
are several ways to select the contrast level to be tested on the cur-
rent trial. The method of constant stimuli presents a predetermined
set of contrasts in random order (Fechner, 1860/1966). This ap-
proach is easy to implement, but requires that the set of test con-
trasts be specified before the experiment begins. This often forces
the experimenter to test an inefficiently broad range of contrasts,
which is particularly problematic for special populations. Running
10 trials at each of 10 test contrasts requires 100 trials per thresh-
old. Observers can typically complete ten trials per minute, but
special populations may be slower, and may tire sooner. The wish
to minimize the number of trials has led to the popularity of statis-
tically efficient methods that use all the preceding responses to se-
lect the contrast level for the current trial that will be most
informative in improving the threshold estimate. Such methods
yield an accurate estimate of threshold after 40 trials.

More generally, adaptive staircase methods exploit existing
knowledge of the likely parameters of the psychometric function
for similar observers together with the results of previous trials
on this observer to select a test level that provides maximum infor-
mation about the psychometric function. There are many alterna-
tive adaptive staircase methods, including 3 down 1 up
(Wetherill & Levitt, 1965), APE (Watt & Andrews, 1981), QUEST
(Watson & Pelli, 1983), PEST (Taylor & Creelman, 1967), ZEST
(King-Smith et al., 1994), and W (Kontsevich & Tyler, 1999). For re-
view see Treutwein (1995) and Leek (2001).
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As noted above, in a forced-choice task, the experimenter asks the
observer to identify one of many possible targets or to say which of
several intervals (spatial or temporal) contained the target. The two-
alternative forced-choice (2AFC) procedure with feedback concern-
ing response accuracy is widely used to test experienced psycho-
physical observers (Blackwell, 1952). However, the slope of the
psychometric function, and therefore the information gained from
each response, increases with the number of alternatives because
that decreases the probability of a successful guess. Multiple re-
sponse alternatives reduce the guessing rate, as Snellen (1862) and
Donders (1864) pointed out long ago. Most of this benefit is attained
by having at least four or five alternatives (Pelli & Robson, 1991; Pel-
li, Robson, & Wilkins, 1988). When central viewing is not required,
four spatial alternatives have been recommended for testing inexpe-
rienced observers (Jäkel & Wichmann, 2006).

The psychometric data (responses at several contrasts) gener-
ated by any of these methods are usually then fit with a psycho-
metric function, which is one of several similar sigmoidal
functions (Treutwein, 1995), with free parameters for threshold
and slope, and a fixed parameter for the guessing rate and possibly
a fourth (free or fixed) parameter for response mistakes (Wich-
mann & Hill, 2001a), arising from attention lapses, blinks, finger
slips, etc. Algorithms are available to fit and estimate confidence
intervals on each parameter (Kingdom & Prins, 2009; Wichmann
& Hill, 2001a, 2001b).
4. The Contrast Sensitivity Function (CSF)

Schade (1956) made the first measurements of visual contrast
sensitivity as a function of spatial frequency. This contrast sensitiv-
ity function (CSF) typically consists of the measured contrast detec-
tion threshold at five or so spatial frequencies uniformly spaced on a
log scale spanning the most sensitive part of the range, typically 1–
16 c/deg. The CSF is a product of optical and neural factors (Green &
Campbell, 1965). Optically, the quality of the retinal image is deter-
mined by the Modulation Transfer Function (MTF), which depends
strongly on pupil size, and can be measured physically (Artal & Nav-
arro, 1994). Neurally, Campbell and Robson (1968) revealed the
presence of multiple channels in vision, each selective to a different
band of spatial frequencies. This greatly increased interest in mea-
suring the CSF. Today, the set of thresholds as a function of spatial
frequency is usually fit with a contrast sensitivity function (Watson,
2000). In order to establish the CSF of a standard human observer, a
group of 10 laboratories collaborated to collect contrast thresholds
for 16 observers on a standard set of 43 diagnostic stimuli (Carney
et al., 2000). The resulting data were used to evaluate the goodness
of fit of 5 (Watson, 2000) or 9 (Watson & Ahumada, 2005) competing
CSF models. Several models provided approximately equally good
fits to the data, with as few as four parameters.

The peak spatial frequency of the CSF shifts to larger sizes dur-
ing normal aging (Owsley, Sekuler, & Siemsen, 1983) and lower
luminance levels (De Valois, Morgan, & Snodderly, 1974), and
when eye diseases like age related macular degeneration are pres-
ent (Mei & Leat, 2007). In many pathologies, contrast sensitivity is
impaired at all spatial frequencies, but a range of different clinical
conditions selectively affect different regions of the CSF. For exam-
ple, incorrect refraction reduces sensitivity to high spatial frequen-
cies, without affecting sensitivity to low spatial frequencies
(Charman, 1979; Green & Campbell, 1965), as does amblyopia
(Freedman & Thibos, 1975); glare, which is a common side effect
of refractive surgery (Ackermann et al., 2013), reduces sensitivity
to low spatial frequencies with relatively little effect on acuity
(Abrahamson & Sjöstrand, 1986), and fovea-sparing geographic
atrophy from Dry AMD can reduce sensitivity only to large targets
(Sunness et al., 1997). These sources of population variability,
along with measurement variability, increase the sample size re-
quired for clinical trials (Lesmes, Jackson and Bex, 2013).

How many degrees of freedom does the CSF have? Might one
get by with fewer than four? Pelli, Rubin, and Legge (1986) sug-
gested that a fixed-shape parabola might adequately fit clinical
CSFs plotted as log contrast sensitivity as a function of log spatial
frequency. That model has only two degrees of freedom: horizontal
and vertical position of the parabola. If two degrees of freedom suf-
fice, then measuring acuity and one contrast sensitivity (at a single
size or spatial frequency) ought to be enough to estimate the whole
CSF. To test this idea, Rohaly and Owsley (1993) fit one hundred
CSFs of older patients and found that, to fit them all, they needed
more that two degrees of freedom. As noted above, the simplest
model so far needs 4 parameters to fit CSFs of normal observers.

5. Is it necessary to measure the whole CSF?

Straightforward measurement of the CSF at four spatial frequen-
cies, with 40 trials per point, requires 160 trials. A standard CSF func-
tion, with four free parameters, can be fit to the results. Applegate,
Hilmantel & Howland (1997) show that the area under the log CSF
is a useful one-number of contrast sensitivity that is easy to correct
for change in target size. Alas, 160 trials is prohibitive for routine
clinical testing. If time is very limited, clinicians measure just acuity.
With more time, many clinicians also measure low-contrast acuity
(Bailey, 1982; Regan & Neima, 1983), or employ the Pelli-Robson
contrast sensitivity chart, which measures threshold contrast for
identification of a fixed size target letter (Pelli, Robson, & Wilkins,
1988). This two-number summary, high-contrast acuity and either
low-contrast acuity or contrast threshold for a large letter, could
be fit by one of the models to estimate the full contrast sensitivity
function. In this spirit, Brown and Lovie-Kitchin (1989) found high
correlations between the CSF and the high- and low-contrast acu-
ities. Of course, with only two measurements and a four-parameter
model, one might not get accuracy as good as would be achieved
with four or more measurements. Since clinical time is so precious,
it would be interesting to determine how the accuracy of the esti-
mated CSF grows with the number of thresholds measured, from
zero (just population norms) on up.

Recently, new methods use prior knowledge of the CSF and the dis-
tribution of its parameters to select the spatial frequency and contrast
of each trial to maximize the information gain (Lesmes et al., 2006;
Lesmes, Lu, Baek, & Albright, 2010; Vul, Bergsma, & MacLeod, 2010).
These approaches provide significant gains in clinical data collection
and have already demonstrated successful visual assessment in clin-
ical populations with amblyopia (Hou et al., 2010), age-related mac-
ular degeneration (Lesmes et al., 2012) and congenital cataracts
(Kalia et al., 2012). In these populations, reliable estimates of the
CSF are possible within 25 trials and an estimate of the area under
the log CSF in as few as 15 trials (Lesmes, Jackson, Wallis, & Bex, 2013).

6. Conclusion

6.1. Practical advice

Based on the considerations reviewed here, and our own expe-
rience in developing and using contrast sensitivity tests, we have
five recommendations for contrast sensitivity testing.

1. FORCED CHOICE. Use a less-criterion-dependent objective test.
This will minimize the effects of attitude, which vary and yet
are not usually of interest in basic and clinical studies.

2. SCALE. When testing multiple sizes (or spatial frequencies),
vary only size. Vision is roughly scale invariant and the test
should be too, so that revealed scale dependence can be attrib-
uted directly to size and not any covarying test parameter.
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3. MANY ALTERNATIVES. Use at least 4 or 5 alternatives to mini-
mize the guessing rate to speed threshold estimation.

4. ADAPTIVE. If the test is not printed, then use an adaptive
method, e.g. QUEST.

5. ONE OR MANY? If the test is printed, then think carefully about
whether to show one or more letters at a time. Traditional
charts show many letters, which saves space. However, if many
letters or symbols are present, small children have trouble
knowing which symbol is being tested, and some clinical
groups, including central field loss, strabismic amblyopes, and
apperceptive agnosics, may be affected by crowding (Levi,
2008; Pelli & Tillman, 2008). If using a computer, then just show
one letter or symbol at a time.
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