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Abstract

For twenty years the Nuprl (“new pearl”) system has been used to develop software systems
and formal theories of computational mathematics. It has also been used to explore and implement
computational type theory (CTT)—a formal theory of computation closely related to Martin-Lof’s
intuitionistic type theory (ITT) and to the calculus of inductive constructions (CIC) implemented in
the Coq prover.

This article focuses on the theory and practice underpinning our use of Nuprl for much of the
last decade. We discuss innovative elements of type theory, including new type constructors such as
unions and dependent intersections, our theory of classes, and our theory of event structures.

We also discuss the innovative architecture of Nuprl as a distributed system and as a transactional
database of formal mathematics using the notion of abstract object identifiers. The database has led
to an independent project called the Formal Digital Library, FDL, now used as a repository for Nuprl
results as well as selected results from HOL, MetaPRL, and PVS. We discuss Howe’s set theoretic
semantics that is used to relate such disparate theories and systems as those represented by these
provers.
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1. Introduction

One of the most profound contributions of computer science to intellectual history is
the body of demonstration that computers can automate many intellectual processes (not
only calculation), and that by having access to knowledge in digital form they become
indispensable partners in knowledge formation. The first clear articulation of this idea was
in our field, applied mathematical logic and automated reasoning, about fifty years ago.

In its full scope, the idea of automating intellectual processes is profound and applies
to knowledge formation in every instance. In its full generality, we might call it computer-
mediated knowledge formation, or digital knowledge for short. Like logic itself, this is a
meta-idea, transforming the very concept of knowledge. It rests on the insights of Euclid,
Aristotle, Leibniz, Boole, Kant, Frege, Russell, Brouwer, Cantor, Godel—giants of human
achievement—and legions of logicians, philosophers, mathematicians, and computer sci-
entists. It has transformed the methodology of the physical sciences and created the new
methodology of the information sciences of which automated reasoning and formal knowl-
edge management are a key part.

This article is about one ongoing theme in the above story. The PRL research group
in applied logic and automated reasoning at Cornell University plays a role in developing
computational logics, implementing them, and demonstrating their value in mathematics,
theoretical computer science, and software system design and verification. We will high-
light our latest contributions in each of these activities and put them into both historical
and contemporary perspective, suggesting directions for promising future work. We start
with a discussion of the major themes that have influenced our work.

Proofs and rules of thought Aristotle and Euclid gave us the idea of deductive proof as
a means to establish truth. The Nuprl (“new pearl”) proof development system is based
on a formal account of deduction. Proofs are the main characters and are used not only to
establish truth but also to denote evidence, including computational evidence in the form
of programs (functional and distributed). The idea of a proof term is a key abstraction;
it is a meaningful mathematical expression denoting evidence for truth. We advocate us-
ing propositions as a means of classifying the evidence; the structure of the proposition
determines properties of the evidence [27].

Propositions and logical truth  Propositions are abstract objects about which it is sensible
to make truth judgments (among others). Some propositions are about abstract objects,
some are about physical objects. Logic is concerned with those aspects of truth that are
applicable to reasoning in any domain.

A great deal has been written justifying philosophically the laws of logic. The Platonic
view is that there are immutable laws in the world of ideas. The Kantian view is that
these truths are grounded in properties of the mind. Brouwer focused on the computational
powers of the mind (and Chomsky on the brain). It is no surprise that computer scientists
are drawn to computational justifications because they provide guidelines for implementing
logics and for automating intellectual processes on digital computers.
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The PRL group has focused on computational justifications in the spirit of Bishop [20]
and Martin-Lof [89-91]. We have applied their ideas in the context of computer science,
significantly extending them, and experimenting with them using the Nuprl prover.

Type theories The elementary parts of logic, including Aristotle’s discoveries are rel-
atively unproblematic. For example, the propositional calculus is quite well understood
and beautifully presented in classic books such as Smullyan [105], Church [24], and
Kleene [69]. It can easily be given several philosophical justifications, including a clas-
sical (Boolean) one or the Brouwer/Heyting/Kolmogorov [107] one based on computation
for the Constructive (or Intuitionist) fragment. The Godel dialectica interpretation [107]
also applied to the constructive fragment.

Serious and difficult issues are lurking one small step away from elementary logic.
Suppose Prop is the domain of discourse for propositional logic; so a tautology such as
P = P would be made into a closed proposition by writing Vp : Prop.(p = p). According
to Russell [101], it is not a well defined proposition because giving the meaning of Vp :
Prop.(p = p) requires already having defined what is in Prop. He labelled such an act as
impredicative concept formation, and created his theory of types to control it.

In a contemporary type theory, we would stratify Prop into levels, say Prop, Prop,, . ...
An expression such as Vp : Prop;.(p = p) would belong to Prop, but not to Prop,. Each
Prop; is regarded as a distinct type. This is a common feature of the type theories imple-
mented in Coq and Nuprl.

Russell’s ramified type theory has led quite directly to those used in several modern
theorem provers, e.g., Church’s Simple Theory of Types (STT) a direct descendent of Rus-
sell’s Principia Mathematica logic (PM), the Calculus of Inductive Constructions (CIC) of
Coquand, Huet, Paulin [15,40], Intuitionistic Type Theory (ITT) of Martin-L6f, and Com-
putational Type Theory (CTT) of the Cornell group [29,31] (which was derived from one
version of ITT, and will be discussed in detail).

Type theory based provers are natural for computer science because the idea of logical
types helped organize the concept of a data type as used in programming languages (say
Algol68, Pascal, ML, Haskell, Java, C++, etc.). The relationship between logical types and
data types is explicitly treated in [29,59,104].

Foundations of mathematics—sets and types Principia Mathematica [110] was intended
to be a logical foundation for mathematics, but it was more complex and less intuitive
than formalizations of set theory in first-order logic. Most mathematicians seem to prefer
Zermelo Fraenkel Set Theory (ZF) with the Axiom of Choice (ZFC) as the default formal-
ization. There are other essentially equivalent set theories such as Bernays Godel (BG).

A distinct approach to foundations is through theories of logical type, in which (1) the
notions of function and type are basic, a type being the domain of a function, and (2)
relations and properties are functions over their possible arguments, and so the meaning
of propositional expressions is treated explicitly in terms of how functions are denoted.
Russell’s and Church’s type theories are obviously of this kind.

Among modern type theories used as theories of logical type are CIC, CTT, and ITT,
which are adequate foundations (some persons further requiring the law of excluded middle
to be added to them to achieve adequacy). Indeed, these three theories have a great deal in
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common and are in some sense equivalent and converging. If we call the common theory
Computational Types (CT), then CT with Choice, (CTC), is a canonical foundation for
mathematics as well. In ZFC, the familiar types such as integers (Z), reals (R), functions
(A — B), Cartesian products (A x B) and so forth are defined in terms of sets. In CTC,
sets are defined in terms of types.

Foundations of computing Computational type theory (CTT) and the calculus of induc-
tive constructions (CIC) are intended to be foundations for computing. This means that
special attention is given in logic design to expressions that can express algorithms and
data structures, designing rules adequate for reasoning about them with types. In practice,
this means that these theories can provide a semantics for real programming languages and
for the logics of programs associated with them. See also [10] for a fine exposition of such
methods extending ITT.

For both CTT and CIC, the programming languages native to the theory are simple func-
tional programming languages. In order to define and reason about side effects, modules,
and objects requires a great deal of work [41,53,54]. CTT has been extended to reason
about events and distributed computing [17]. Here we call it CTT-E, and we describe it
briefly later.

Proofs as programs and processes The constructive type theories, CIC, CTT, and ITT,
express logic by reducing propositions to types, and so serve as theories of logical type.
This reduction is often called the propositions-as-types principle [45,61,89]. The usual
enunciation of this principle (Martin-L6f’s innovation on it will be described below) is
to associate with every proposition P a type, say [P], consisting of objects representing
proofs of P. The type [A&B] for a conjunction could be the Cartesian product [A] x
[B]. For an implication A = B, the type [A = B] is [A] — [B], the type of computable
functions from the content of A into the content of B. Likewise, [Vx : T.B,] consists of
the dependent function space x :[T] — [By], where [T] is the data type associated with
the mathematical type 7'.! This topic is explained well in the literature [12,49,98,106].

When f is a proof of A = B, then its content, [ f], is an element of [A] — [B], that
is a computable function. The proof object f is like a program in that its computational
content is a computable function. Systems that implement CTT must have operations that
extract the program from f, that is, operations to construct [ f] from f.

As we explain later, for expressions that use the type of events, [E, expressions of the
form Ve : Ep.3¢’ : Eq.R(e, ¢') describe relations between events at one agent (or location)
p and those at another g. A proof that this relation is realizable will denote a computing
process that implements it.

Martin-Lof’s innovation on the propositions-as-types principle was to use computa-
tional content of proofs of P rather than proofs as such. Thus, when explaining the meaning
of proposition P as a type, only the computational content of all its possible proofs (i.e.,
the data available to functions implicit in proofs of implications from P) need be stipu-

! This rather direct translation only works when any data computationally derivable from proofs of t € T' are
already computationally derivable from ¢ itself. See [108, Chapter 1, Section 3] and [6, Chapter 7] for discussion.
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lated. The production of any non-computational epistemic content is deferred to producing
an argument that [ P] has a member.

Under this version of the principle, one may be given a member e which has type T
without being also provided a method for constructing from e alone an argument for this
fact. Propositions that are difficult to prove, say having the form Vx : N. f(x) =0, can still
have trivial computational content Ax.r where r is a trivial constant.

Automating reasoning The Nuprl system is a tactic style theorem prover in the spirit of
Edinburgh LCF [50]; moreover it introduced the notion of a factic-tree so that users could
interact directly with the proof object [37,52]. We take the approach that the basic elements
of automated proof development can be seen as providing algorithms for formal metamath-
ematical results, so it is computation in the metalanguage [33,71]. There is not space in
this article to discuss or illustrate the tactic mechanism, but the interested reader can see
thousands of examples of tactic-tree proofs in our on-line library of formal mathematics at
http://www.nuprl.org. In addition, the library contains many examples of the basic tactics
written in classical ML, the language of LCF which we adapted as the main programming
language for Nuprl.

The first person to build substantial tactics for Nuprl was Douglas Howe, and he was
able to use them to settle an important open problem about the typed lambda calculus,
called the Girard Paradox [62]. Another person who solved an important open problem in
mathematics was Chetan Murthy in generating a constructive proof of Higman’s Lemma
from its classical proof [95].

Over the years, many users have added to the Nuprl tactic library, sometimes by import-
ing important algorithms from other provers, adapting packages from other provers such
as HOL and Isabelle. We benefited a great deal from the use of a version of Nuprl at Edin-
burgh for many years and have adapted many of the ideas from Alan Bundy’s group there,
especially their reconstruction of methods from the Boyer and Moore prover Nqthm [22].
Chetan Murthy worked with the Coq group at INRIA and this resulted in sharing other
ideas, designs and code (in both directions). The MetaPRL [57,58] group has contributed
many ideas and programs as well. Now when we are using Nuprl, we are acutely aware that
its capabilities rest on the contributions of dozens of modern researchers and the legacy of
the logicians, philosophers, mathematicians and computer scientists we mentioned before.
We will discuss later the contribution of fully automatic proving, through JProver, to proof
automation in Nuprl, MetaPRL, and Coq.

Formal digital libraries The important role of knowledge, and the information resources
from which it arises, is clear from the behavior of the best system designers and program-
mers. They bring extensive knowledge to bear in their reasoning about designs and code,
sharing knowledge and reasoning in a coordinated yet distributed manner. However, the
tools used to help them create and check inferences have access to limited fragments of
formal proofs. It is a terrible waste of time and huge cost to unnecessarily recreate knowl-
edge. Several researchers have made significant strides to overcome the challenges that
sharing formal mathematics create [2,9,23,72,73,111]. The community of Mathematical
Knowledge Management (MKM) has emerged with these challenges at heart. The PRL
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research group has built a prototype Formal Digital Library in response to a MURI grant
[30], and continues to focus efforts in this domain.

2. Computational Type Theory

Computational Type Theory (CTT) is a family of closely related theories designed to
provide a foundation for reasoning about computation both in mathematics and comput-
ing practice. It is strongly influenced by the computer scientist’s wish to have a universal
programming language as an integral part of the theory. There are two implementations of
this theory, the initial one in Nuprl and a newer one in MetaPRL. Any implementation of
the theory will provide an implementation of this language. This requirement on a founda-
tional theory for computing goes back to early work in computer science on programming
logic, including work at Cornell in which PLC programs were the algorithms of the logic,
which was called PLCV [35,36,38]. Interestingly, some of the reasoning methods from
PLCV were directly recoded in the Nuprl system, the arithmetic decision procedure for
example, presented in [35].

Computational Type Theory was also influenced by our experience trying to generalize
the type system of PLCV to make it more like Algol68 and to integrate the assertions of the
programming logic with the types. Our efforts in this direction were dramatically affected
when we read the work of Per Martin-Lof [89]. We incorporated his ideas into our pro-
gramming logic [39], and then decided with Joe Bates to adopt Martin-Lo6f’s theory as the
core of our type theory. We were deeply impressed by Martin-Lo6f’s idea that an untyped
lambda calculus underlies the semantics of the type theory, and that methods of describing
types and values could be rich enough that one must sometimes carry out complex argu-
ments that a purported expression actually succeeds at describing a type or a value of a
certain type. That is, the well-formedness of expressions for types and typed values is not
a mere decidable syntactic condition.

Our technical presentation of types will begin with Martin-Lof’s Intuitionistic Type
Theory as it appears in Nuprl. But first we describe some differences in the logic designed
for the Nuprl system.

2.1. Differences in logic design

Martin-Lof’s texts, especially [90], which informed our understanding of his methods,
formalize arguments about types as natural deduction style proofs under hypotheses of
form x € A, for variable x and type expression A. A peculiarity of this style of proof was
that any proof introducing such a hypothesis must be built by extending a proof comprising
a proof of A being a well-formed type expression. Thus, a common form of a proof that
(ITx : A) B(x) denotes a type would be a proof that A denotes a type followed immediately
by introducing hypothesis x € A and proving B(x) denotes a type under that hypothesis,
then finishing with an inference to the proof goal discharging the hypothesis.

This did not suit the Nuprl design goal of organizing proofs by assertions to be proved,
typically proving an assertion by proving independently provable assertions as premises.
The meaning of Martin-Lof’s “B(x) type (x € A)” presupposes that A is a type, and under
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that presupposition means that B(x) describes a type-valued function in x over A. Hence
proving “B(x) type (x € A)” requires proving A is a type. The alternative logic design
choice made for Nuprl was to stipulate (and we use a different syntax here to avoid confu-
sion) that “x : A F B(x) type” means that if A is a type then B(x) describes a type-valued
function in x over A. Consequently, the problem of showing that “B(x) type (x € A)”
reduces to independently showing both “A type” and “x : A+ B(x) type”.

Another purpose of the Nuprl design was to automatically derive witnesses to claims
that some type has a member, forestalling the actual construction of the witness as long
as practical. This allows the user to carry out much of a typical proof as though it was
an ordinary proof of a proposition; so a person might simply prove a theorem of the form
“Vx : A. P(x)” without always having to think about what functional expression is im-
plicit in its construction. This provides an elegant solution to the project goal of implicitly
extracting programs from proofs. Hence, “ 7" was stipulated to mean that there is an ex-
pression ¢ such that t € T. And similarly, “x : A+ B(x)” was stipulated to mean that if A
is a type then B(x) describes a type-valued function in x over A and there is an expression
t(x) that describes a B(x)-valued function in x over A.

By stipulating for each rule of inference how to automatically construct the witness for
the conclusion from any witnesses for the premises, one has shown how to automatically
construct a witness, often a program, from any complete proof.

This goal of constructing programs automatically from proofs that their specifications
can be met was an original design goal for the PRL project [13], and Martin-L6f’s theory
provided an elegant basis for it [14], superior to the one suggested in [25].

2.2. Direct computation rules

A striking feature of the computationally type-free basis for the type theory as given
in [90] is that any expression that evaluates to an expression of a given type is also an
expression of that type and denotes the same value in that type. Thus, (Ax.0)(a) =0€ N
no matter what (variable-free) untyped expression might be used for a. In the formal ITT
systems provided by Martin-Lof there is no general rule exploiting this semantic feature.
In contrast, such exploitation has become a hallmark of CTT methodology.

As reported in the 1986 book [31], standard Nuprl included direct computation rules,
which allowed inference by various rewrites within a proof goal by steps of type-free
computation. Thus, for example, showing the fact mentioned above reduces by one use
of direct computation to showing that 0 = 0 € N. Using these direct computation rules
sometimes allows one to assign significant types to programs by induction over pos-
sible arguments. For example, a simple recursive unbounded search of a denumerable
sequence of numbers for its first root, such as Kleene’s minimization operation, can be
typed {f:(N— N) |3n:N. f(n) =0} — N and shown to find the first root of any func-
tion in this domain.” Indeed, such a typing argument was one of the motives for including
the direct computation rules in the system originally.

2 Fora CTT proof of similar facts see “Recursive Functions” at www.nuprl.org/NuprlBasics.
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Users developed the practice of using the untyped Y -combinator to define functions re-
cursively instead of using various primitive recursion combinators, and then proving they
had the appropriate types by induction.? The original direct-computation rules as presented
in [31], justified ultimately by methods in [5], involved unpalatable restrictions on con-
texts permitting rewrites, and were eventually simplified to allow type-free rewrites freely
throughout a proof goal, justified by [63].

2.3. Intuitionistic type theory of Martin-Lof

Types are built from a few primitive types using basic type constructors. These pro-
vide templates for constructing various kinds of objects. The type constructors of ITT
are motivated by mathematical considerations. However, they also correspond to data type
constructors used in programming. The notes by C.A.R. Hoare, Notes on Data Structuring,
also explain the ties between data types and logical types [59].

We start with the basic type constructors of ITT.

2.3.1. Cartesian products
If A and B are types, then so is their product, written . There will be many
formation rules of this form, so we adopt a simple convention for stating them. We write

AisaType BisaType

A x BisaType

The elements of this product are pairs, . Specifically if a belongs to A and b belongs
to B, then (a, b) belongs to A x B. We abbreviate this by writing

aceA beB

(a,b) e Ax B

In programming languages these types are generalized to n-ary products, say A; X Az X
RIRING An2~
We define equality on the elements by

(a,b)={c,d)inAx B iff a=cinAandb=din B

In set theory, equality is uniform and built-in, but in type theory we define equality with
each constructor; in ITT these equalities are built-in.

There is essentially only one way to decompose pairs. We say things like, “take the first
element of the pair P”, symbolically we might say first(P) or lof (P). We can also “take
the second element of P”, second(P) or 20f (P).

A uniform way to access both elements of a pair simultaneously is the spread operation.
The formula expresses that every free occurrence of x in the expression ¢
represents the first element of the pair P and that every free occurrence of y in ¢ represents
the second element of P. It is often displayed as

3 Indeed, the Y -combinator itself, not just its applications, can be assigned appropriate types if one uses the in-
tersection type constructor of Section 2.5.1 below, and reformulates the function space constructor purely in terms
of typing its applications to arguments, ignoring convergence. See “Typing Y” at www.nuprl.org/NuprlBasics.
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2.3.2. Function space

We use the words “function space” as well as “function type” for historical reasons. If
A and B are types, then is the type of computable functions from A to B. The
formation rule is:

AisaType BisaType

A — BisaType
The informal notation we use for functions comes from mathematics texts, e.g. Bourbaki’s

Algebra [21]. We write expressions like x — b or x |—f> b; the latter gives a name to the
function. For example, x — x? is the squaring function on numbers.

If b computes to an element of B when x has value a in A for each a, then we say
(x = b) € A — B.Formally we use lambda notation, for x +— b. The informal rule
for typing a function A(x.b) is to say that A(x.b) € A — B provided that when x is of type
A, b is of type B. We can express these typing judgments in the form x : A+ b € B. The
typing rule is then

x:A-beB
FA(x.b)e A— B

If f, g are functions, we define their equality extensionally as

f=g iff f(x)=g(k) forallxinA

If f is a function from A to B and a € A, we write for the value of the function.

2.3.3. Disjoint unions

Forming the union of two sets, say x U y, is a basic operation in set theory. It is basic in
type theory as well, but for computational purposes, we want to discriminate based on the
type to which an element belongs. To accomplish this we put tags on the elements to keep
them disjoint. Here we use i72/ and inr as the tags.

AisaType BisaType
A+ BisaType

The membership rules are
acA beB
inllaye A+B inr(b)e A+ B

We say that inl(a) = inl(a’) iff a = a’ and likewise for inr(b).
We can now use a case statement to detect the tags and use expressions like

if x =inl(z) then ... some expressioninz...

if x =inr(z) then ... some expressioninz...

in defining other objects. The test for inl(z) or inr(z) is computable by an operation called

that discriminates in the type tags. The typing rule and syntax for it are given in
terms of a typing judgment of the form E ¢ € T where is a list of declarations of the
formx; : Ay, ..., x, : A, called a typing environment. The A; are types and x; are variables
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declared to be of type A;. The rule is

Et-deA+B Eu:A+-tneT E,v:BkFneT
E +decide(d;u.ti;v.p) e T

2.3.4. Dependent product
Here is a simple example of the dependent product type constructor. Suppose you are
writing an application needing a data type for the date.

Month={1,...,12}, Day={l,...,31}, and Date=Month x Day

We would need a way to check for valid dates. The pair, 2, 31 is a perfectly legal member
of Date, although it is not a valid date. One thing we can do is to define

Day(1) ={1,...,31}
Day(2) ={1,...,29}

Day(12) ={1,...,31}

and we will now write our data type as Date = m : Month x Day(m).

We mean by this that the second element of the pair belongs to the type indexed by
the first element. Now, 2, 20 is a legal date since 20 € Day(2), and 2, 31 is illegal because
31 ¢ Day(2).

Many programming languages implement this or a similar concept in a limited way. An
example is Pascal’s variant records. While Pascal requires the indexing element to be of
scalar type, we will allow it to be of any type.

One view of this is that we are generalizing the product type. It is very similar to A x B.
Let us call this type . We can display this as . The typing rules are:

EtaeA EFRDbeBla/x]

E - pair(a, b) € prod(A, x.B)

EtF-peprod(A,x.B) E,u:A,v:Blu/x]+teT
E - spread(p;u,v.t)eT

Note that we haven’t added any elements. We have just added some new typing rules.

2.3.5. Dependent functions
If we allow B to be a family in the type A — B, we get a new type, denoted by

, or , which generalizes the type A — B. The rules are:
E,y:AFbly/x] € Bly/x] Er fefun(A;x.B) EFacA
new
EF A(x.b) € fun(A; x.B) Y EF f(a) € Bla/x]

Back to our example Dates. We see that m : Month — Day[m] is fun(Month; m.Day),
where Day is a family of twelve types. And A(x.maxday[x]) is a term in it.
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2.3.6. Universes

A key aspect of ITT is the ability to denote types and type-valued functions using all the
generic methods of the theory, especially those for reasoning about (typed) functions. For
example, one might choose to recursively define the types of n-place curried numeric func-
tions, such that N - N = Nand N"*! - N=N — (N — N). A convenient explanation
of how this defines a type would be to employ a generic form for iteration of functions
which explains, for any type 7', for base case b € T, and any function F € T — T, how to
define a function g € N — T such that g(0) =b and g(n + 1) = F(g(n)).

To apply this generic form of reasoning about functions, we would need to find an
appropriate type T such that N € 7 and A(A.N — A) € T — T. The obvious first choice
would be to introduce a type U of all types, but there cannot be one in ITT [60].

However, one can introduce a series of types called universes [90], and one can
stratify the explanation of how expressions denote types by taking whatever basic type
construction methods one might have and iteratively introducing a sequence of type ex-
pressions Uy, [5]. The base definition of type expressions is defined simply from the base
construction methods. Then one defines the level k 4+ 1 system from the level k£ system
by adding Uy as a new constant type expression whose members are the type expressions
defined at level k. The union of this sequence of systems then assigns every type expres-
sion to a universe, assigning U,, € U4, and making the universes cumulative, i.e., U, is
a subtype of U,41.

Returning to our example, for each k, adopting Uy, as the type to be used as T in the
generic iterated function pattern, we get A(n.N" — N) € Uy. Similarly, when expressing
and proving general facts about types, one quantifies over universes rather than a non-
existent type of all types, similar to Russell’s ramified logic.

Note that the level variable n in U, is a not a variable over which one quantifies within
the logic. Indeed, the most perspicuous formulation of a logic for type theory with uni-
verses would, like both Martin-Lo6f’s and the original Nuprl logic of [31], require this
universe level in any particular expression within the logic to be a constant, a numeral. But
requiring users to produce these constants proved inconvenient; it too often happened that
a lemma would be proved for level k that would later have been more useful had it been
formulated at a higher level instead.

As a result, based upon [6], the Nuprl logic was reformulated to use more general level
expressions for universes, including level variables (as letters), an operator for taking the
maximum of two or more levels, and an operator for incrementing a level by a constant.
A key rule was added that allowed the inference from any sequent to another gotten by
uniformly instantiating all the level variables by any level-expressions.*

Hence, a proof of “VA : Uy. P(A)” takes on the force of quantification over all de-
fined types, and such a lemma could be applied to a type of any level by instantiating k
with an appropriate level expression. As a notational matter, when all the level expressions
throughout an expression of CTT are simply occurrences of the same level variable, we
often write simply “ ” instead of U;, say.

4 Note that, therefore, since one can always change level variables, that there is no inferential significance of
the same level variable occurring in different sequents of an inference.
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2.3.7. Propositions as types

One of the key distinguishing features of Martin-Lof type theory [89-91] and the Nuprl
type theory [31] is that propositions are considered to be types, and a proposition is true
iff it is inhabited. The inhabitants of a proposition are mathematical objects that provide
evidence for the truth of the proposition.

This approach to propositions is related to the so-called Curry—Howard isomorphism
[44,61] between propositions and types. But the correspondence is elevated in our type
theory to the status of a principle. The Curry-Howard isomorphism explains why the de-
finition is sensible for Heyting’s formalization of Brouwer’s constructive semantics for
propositions. We briefly recall these semantics and state the Nuprl definitions for the log-
ical operators. According to Brouwer the logical operators have these constructive mean-
ings:

L is never true (read L as “false”).
A&B is true (provable) iff we can prove A and we can prove B.
AV B is true iff we can prove either A or B, and we say which is proved.
A = B is true iff we can effectively transform any proof of A into a proof of B.
—A holdsiff A=_1.
dx : A.B is true iff we can construct an element a of type A and a proof of Bla/x].
Vx : A.B is true iff we have an effective method to construct a proof of B[a/x] for any a
in A.

For an atomic proposition, P, with no logical substructure, we say it is true exactly when
we have evidence for it. The evidence can be taken to be atomic as well, e.g. unstructured.
So we use the unit element, e, as evidence.
We express Brouwer’s semantics by these definitions of the logical operators:
Definition
A&B=AxB
AVB=A+B
A=B=A—B
Ix:AB=x:AxB
Vx:AB=x:A— B
1 =void
T=1

We can also define other logical operators that express shades of meaning not commonly
expressed. For example, N x : A.B (Section 2.5.1) makes sense as a kind of universal
quantifier.

We use as a synonym for Type;.
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2.4. Early extension to ITT

2.4.1. Subset and quotient types

One of the first extensions we made to ITT type theory has been one of the most use-
ful and pervasive, a type we called the subset type [26]. The idea seems obvious from set
theory, but its computational interpretation is subtle. Given a type A and a propositional
function on A, say B : A — Prop;, we form the type of those elements of A satisfying B,

. For example, if Z is the type of integer, then the natural numbers can be
defined as {z : Z | z > 0}. This type is different from z : Z x z > 0 because the elements
of {z:7Z | z > 0} are simply numbers whereas the elements of the product are pairs (z, p)
where p is the content of the proposition z > 0. The subset type is very useful in a compu-
tational theory because it allows us to separate data from its logical properties.

Another key extension we introduced at the same time is the quotient type. Given a
type A, it comes with an equality relation, =4. We can form a new type by changing the
equality. If E is an equivalence relation on A, then is a new type, the quotient of A
by E. The elements of A//E are the elements of A, but the equality on A//E is E. Good
examples are the congruences of integers. That is, if E,(x, y) iSx =y mod n, then Z//E,
are the integers modulo 7, often denoted Z,,. In Z,,0=2=4=6="---.

2.4.2. Inductive types

For recursive types ITT uses W-types (well-founded trees, Brouwer ordinals). An al-
ternative approach was used for the Nuprl system by which recursive types are defined
as minimal fixed points of suitable operators on types [93]. For example, a list-like type
could be defined as (uX.Unit+ (A x X)), and Martin-Lo6f’s type (Wx € A) B(x) could be
defined as (uW.x : A x (B(x) —> W)).

We say thatt) =1, € iff ty =0 € F(uX.F(X)).

To construct elements of uX.F(X), we basically just unwind the definition. That is,

ifte F(uX.F(X)) thente uX.F(X).

There is a natural notion of subtyping in this theory. We say that iffa=d € A
implies that a = a’ € B. Semantically, a recursive type defined by («X.F (X)) is meant to
be the C-minimal transitive symmetric relation on terms that is closed under F'.

Induction over this type can be expressed as a rule, similar to rules in [58,93],

H x:(wzZ.T),J,u:U;j,u (uZ.T),w: (x:u— Glx/x]),z:Tu/Z]1+ Glz/x]
H,x:(nz.T),JFGlx/x]

where A C B is simply an operator notationally defined as a : A — (a € B), which ex-
presses subtyping, since there is a member iff equal expressions of type A are equal
expressions of type B.

The power of recursive types comes from the fact that we can define total computable
functions over them and we can prove properties of elements recursively. (These are the
same idea.) Recursive definitions are given by this term, called a recursor
or recursive-form. It obeys the computation rule

u-ind(a; f, z.b) evaluates in one step to bla/z, (Ay.u-ind(y; f, z.b))/f].
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It is rather clear what type (uX.F (X)) is when it is a type at all. It may be more contro-
versial when (uX.F (X)) actually succeeds at describing a type. One widely acceptable
criterion would be when F(X) describes a C-monotonic operation on types, which would
be handily formulated by a rule

H,Z:U;FTeU; H,X1:U;, X5:U;, XK1 EXo)FT[X1/Z]ET[X2/Z]
HF(WZ.T)eU;

Some constructivists, however, might prefer a rule that imposes other constraints (perhaps
intensional ones, involving positivity, say). One advantage of introducing particular kinds
of recursive types, such as W-types and lists, instead of using this generic recursive type
constructor is that the conditions for legitimately describing types would be quite narrow,
and so more widely accepted.

2.5. Class extensions

As we expanded our efforts from verifying moderately large programs (say up to one
thousand lines [1]) to verifying systems, we were faced with formalizing some of the basic
concepts from object-oriented programming. Jason Hickey took on this task at the start of
his thesis work, and along with Karl Crary, Alexey Nogin, and Aleksey Kopylov, we made
a great deal of progress in building a theory of classes in CTT. These ideas are reported in
several publications, among them [32,42,43,58,75]. The MetaPRL prover was built using
object-oriented concepts, even in the tactic mechanism.

The key concepts turned out to be the subtyping relation and a generalization of the
intersection type to dependent intersections—an idea that has had a profound impact on
both the theory and its applications to designing systems.

2.5.1. Intersection types and the top type

Given two types A and B, it makes sense to consider the elements they have in common;
we call that type the intersection of A and B, written . We require that (a = b in
ANB)iffa=>bin A and a = b in B. To illustrate, it is clear that void N A is void for any
type Aand AN Ais A.

It might be a surprise that (1 — 1) N (void — void) is not void but contains the identity
function, A(x.x). This is because the base objects of Nuprl are untyped, so A(x.x) is poly-
morphic, belonging to all types A — A. Itisclearthat {x : A| P(x)} N{x: A | Q(x)} is
{x Al P(x)&Qx)}.

The intersection type is defined for a family of types as well. Let B(x) be a family of
types for x € A, then is their intersection; and b e N x : A.B(x) iff b € B(a)
forall a € A. also b="b"in Nx: A.B(x) iff b =10 in B(a) for all a € A. Notice that
when A is empty, N x : A.B(x) is not empty but has exactly one element. This element
is denoted by any closed expression of the theory, e.g. void = 1 in N x : void. B(x). Such
equalities follow from the understanding that under the assumption that x € void, we can
infer anything.

Types such as N x : void.B(x) are maximal in the sense that every type is a subtype and
every closed term denotes the single member of the type. We pick one such type expression
and call it the top type, denoted 7op. For example, N x : void.x can be Top.
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Type equality follows the pattern for structural equality, namely
(Nx:A.B(x)=Nx:A"B'(x)) iff A=A"and B(a)= B'(a)

Intersection types can express conditional typehood, which is useful in typing partial func-
tions. If B does not depend on x, then N x : A.B expresses the notion that B is a type
provided that A is inhabited, as pointed out by Backhouse et al. [10]. We write this as
B given A, following an analysis of this idea by Stuart Allen. Allen calls these guarded
types.

Guarded types can specify the conditions under which A = B is a type in Nuprl.
Namely, if A is nonempty, the B must be a type. So the typing is

AMA,B.A— B)e A:Type— B:(Nx:A.Type) — Type

Guarded types are also useful in expressing one-one correspondences between types. For
example we know that mappings from pairs p in x : A X B(x) into C(p) are isomorphic to
curried mappings of the type x : A — y : B(x) — C({x, y)). Similarly, mappings x : {x :
A | B(x)} — C(x) are isomorphic to thoseinx : A — Ny: B(x).C(x).

2.5.2. Subtyping

As mentioned before, the natural notion of subtyping is to define AC B iffa=a' € A
implies that @ = a’ € B. For example, {x : A | P(x)} C A for any predicate P(x). We
clearly have void E A for any type A and A C Top for any type A, and A N B C A for any
types A and B. It is easy to see that the following relationships hold.

If AC A’ and B C B’ then

1. AXxBC A" x B’
2. A+ BC A+ B
3. A > BC A— B'.

The relation in 3 holds because functions in type theory are polymorphic. Given f € A" —
B, we see that it belongs to A — B’ as well because on inputs restricted to A it will produce
results in B. In set theory this relationship would not hold, as we see in examples from the
discussion of classes.

2.5.3. Records

We follow the idea from algebra and programming languages that classes are like al-
gebraic structures, sets with operators. But classes are defined using signatures, and these
are large types. Without the signature definition, as a large type, we could not have the
definition of a class as a small type. The precise type we start with is a record type, these
will also be classes.

Let F be a discrete type, the field names, and define a signature over F as a function
from F into types, say Sig € F — Types. A record type on discrete type F with signa-
ture Sig € F — Types is the dependent type i : F — Sig(i). If F is a finite type, say
{x1,...,x,}, then we write the record as {xy : Sig(x1);...; x, : Sig(x,)}. If we are given
types T1, ..., T, we can also write simply {x; : T1;...; x, : T,} and this implies that we
built the function assigning type 7; to name x;.
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Notice that if F| and F, are discrete types such that F; T F> and Sig, : F1 — Type,
Sig, : F> — Type and Sig (x) C Sig,(x) for x € F then

i:Fy— Sigy(i)C j: F1 — Sigy(j)

An important example of these relationships will be used as a running illustration. We
consider it here briefly. Given a type M as the carrier of algebraic structure, we get the
structure of a monoid over M, Monoidyy, is {op : M x M — M id : M'}. We can extend
this to a group structure, Group,,, as {op : M x M — M;op : M;inv: M — M}. Notice
that Group; © Monoidyy .

2.5.4. Uniform records

Extending records is a basic operation, as in extending a Monoid structure to a Group
structure. This can be done in a uniform way if we agree on a common set of names to be
used as names of the components (“fields” as they are often called). Let us take Label as
an infinite discrete type. Signatures Sig over Label are functions in i : Label — Type, and
records with this signature are i : Label — Sig(i).

We generally consider records in which only finitely many labels are names of signifi-
cant components. If we map the insignificant components to the type 7op, then intersection
of arbitrary uniform records makes sense and is defined as

(i : Label — Sigl(i)) N (j : Label — Sigz(j)) =1 : Label — Sig (i) N Sig,(i)

Record intersection is an operation that extends records as we see if we assume that op,
id and inv are elements of Label and assume that MonSig,,(i) = Top if i # op and i # id.
Generally when we write {x1 : Sig(x1);...; x, : Sig(x,)} we will assume that Sig(i) = Top
for i # x;. So now consider {op: M x M — M;id: M}N {inv: M — M}.

The result is Group,, {op: M x M — M;id : M;inv: M — M} because in the struc-
ture {inv: M — M}, the components for op and id are Top and in Monoid the component
for inv is Top. Thus for example, the type at op in the intersected structure is

op-MxM—->M)YNTop and (M xM —-> M)NTop=M xM —> M

When two records share a common field, the intersected record has the intersection of the
types, thatis {x : T} N {x : S} = {x1 : T N S}. So generally,

. Ca J Ty Sy ifx Ay
{x.T}ﬂ{y.S}_{{x:TmS} el

2.5.5. Dependent records

Records can be seen as (Cartesian) products with labels for the components. Can we
define the record analogue of dependent products? The right notation would be {x :
Ti;x0 : To(x1); ... % Ty (x1, ..., Xp—1)} where T;(x1,...,x;—1) is a type depending on
X1, ..., Xi—1. Can we define this structure in terms of a function Sig : {x1, ..., x,} = Type?
We see that Sig(x1) is just a type, but Sig(x) uses a function F € Sig(x1) — Type and it
is F applied to x;. We might think of writing F(x1), but x; is a name and F wants an
element of Sig(x). Basically we need to talk about an arbitrary element of the type we are
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building. Thatisifr €i : {x,..., X} — Sig(i), then Sig(x2) is F(r(x1)). So to define Sig
we need r, and to type r we need Sig.

We see that an element of a type such as {x; : T1;...;x, : T,,(x1,...,x,—1)} has the
property that its type depends on its “previous values”. That is, the type of r(x1) is Sig(x1)
but the type of r(x2) is Sig(x2)(r(x1)). We can encode this type using the very-dependent
function type denoted . We give Jason Hickey’s original definition
below. Now we use it to define the dependent records. We take A to be the finite type
{0...(n—1)}. Let

case(i)of
0 = Ty
Trmy=f—»ief0..ma—D}| 1 = NO)

n1 = L (fON(fMD)---(f(n=2))

If we have a function F that returns the values 7; for 0 < i < n given the index i, we
can give this type a more concise form. Let fix(f.b) define the fixed point of the program
b. That is, fix(f.b) = YAf.b. Given functions F and f, and an index i we can define a
function napply that applies F to f(0),..., f(n —1):

napply = L f.1i.fix(g. AG.Aj. if j =ithen G else g(G(f(j)))(j+ 1))

The type for F isthen Tr(n) ={F |i : {0...(n — 1)} — napply(F)(i)(Ax.x)(0)}.
If we parameterize these types over n, we have the types

Sr=n:NxTyr(n)
SpEn:NxTF(n)

The type SF specifies descriptions of dependent products of arbitrary finite arity, and the
type Sy specifies the corresponding dependent product type. The inhabitants of S are pairs
(n, f) where n is the arity of the product, and f is a function with domain {0...(n — 1)}
that serves as the projection function.

This finite arity dependent product type will be useful to define the type Signature. It
can also be used to define the type of sequents in a constructive logic: the hypotheses of
the sequents are defined as a dependent product of finite arity, and the goal is a type that
may depend on all hypotheses.

2.6. Later extensions

2.6.1. Dependent intersection

The general subtyping of record types is captured exactly by the contravariance in func-
tion space subtyping: A C A’ and B C B’ implies (A’ — B) C (A — B’). This property
makes it possible to express records as intersections of singletons, as illustrated in Sec-
tion 2.5.4.

To express dependent records (see Section 2.5.5) in a similar fashion, a type constructor
stronger than simple intersection is needed. Kopylov [74] elaborated an elegant definition
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Table 1
Inference rules for dependent intersection
I' = AType I';x: AF Blx]Type
' (x: AN B[x])Type
T'FA=A I';x: A Blx]= B'[x]
I'F(x:ANBx])=(x:A'NB'[x])
I'FaecA I'a € Bla] I'+x: AN B[x]Type

(TypeFormation)

(TypeEquality)

(Introduction)
I'Fae(x:ANB[x])
I'Fa=d ecA I'+a=a e Bla] I'x: AN B[x]Type .
(Equality)
'ta=ad €(x:ANB[x])
Is;u:(x:ANB[x]); Alul; x : A; y : Blx]F Clx, y] oL
(Elimination)

I';u:(x:ANB[x]); Alu]lt Clu; u]

of dependent records in terms of a new type constructor that he discovered: dependent in-
tersections. Let A be atype and B[x] be a type for all x of the type A. We define dependent
intersection as the type containing all elements a from A such that a is also in
Bla]. This is a type that we might write as {x : A | x € By}, but x € By is not a well-formed
proposition of Nuprl unless it is true.

As anexample, let A=7Z and B[x]={y:Z|y > 2x} (i.e., B[x] is a type of all integers
v, such that y > 2x). Then x : AN B[x] is a set of all integers, such that x > 2x.

The ordinary binary intersection is just a special case of a dependent intersection with a
constant second argument: AN B=x:ANB.

The dependent intersection is not the same as the intersection of a family of types
N -4 Blx]. The latter refers to an intersection of types B[x] for all x in A. The differ-
ence between these two type constructors is similar to the one between dependent products
x 1 A X B[x] = X,.4 B[x] and the product of a family of types IT,.4 B[x] =x : A - B[x].

Two elements, a and a@’, are equal in the dependent intersection x : A N B[x] when they
are equal both in A and B[a]. The rules for the new type appear in Table 1.

2.6.2. Dependent record types as dependent intersections

Now we will give a method for constructing record types and their elements using de-
pendent intersection. This type is defined by other means in Nuprl’s Class Theory and its
Applications [32], and there are other quite different accounts [16,100].

Records  Elements of record types are defined as in [32]. They map labels to the corre-
sponding fields. We can build up these functions component by component starting with
an empty record. We write the extension (or field update) as ; think of assigning a
to r.x, where x is a label.

{}=A.l) (the empty record)
We could pick any function as a definition of an empty record.

(rx:=a)=A(.1fl=x thena elserl) (fieldextension)

r.x =r(x) (field extraction)
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Now we use a common notation for the elements of record types.

{xi=ay;...;x,=ay} ={}x1:=a1.x:=ay..... X, = ay

These definitions provide that

{xi=ay;...;xp=a,}=Al.if l = x| thena; else

ifl=x, thena,

Record types We will show how to build finite record types by intersection. First we
define a singleton record.

{x:A}={x} > A (single-field record type)
where {x} = {l : Label | | = x € Label} is a singleton set.

{R1; R2} = R1 N Ry (independent concatenation of record types)

Thus {n : Nat; x : Real} is {n : Nat} N {x : Real}.
Next we include dependency.

{self : Ry; Ra[self]} = self : R1 N Ry[self] (dependent concatenation)

Here self is a variable bound in R,. We will usually use the name “self” for this vari-
able and use the shortening {R7; Ry[self]} for this type. Further, we will omit “self.” in
the body of R, e.g. we will write just x for self.x, when such notation does not lead to
misunderstanding.’

We assume that this concatenation is a left associative operation, and we will omit inner
braces. For example, we will write {x : A; y : B[self]; z : C[self]} instead of {{{x : A};{y:
Blself1}}; {z : Clself1}}.

Note that in this expression there are two distinct bound variables self. The first one is
bound in B, and refers to the record itself as a record of the type {x : A}. The second self
is bound in C; it also refers to the same record, but it has type {x : A; y : B[self]}.

The definition of independent concatenation is just a special case of dependent concate-
nation, when R; does not depend on self. We can also define right associating records, a
less natural idea, but nevertheless expressible:

{s:x:A; R[s]} =self : {x : A} N R[self .x]

Here x is a variable bound in R that represents a field x. Note that we can a-convert
the variable s, but not the label x, e.g., {s : x : A; R[s]} = {y : x : A; R[y]}, but {s : x :
A; R[s]} # {y : z: A; R[y]}. We will usually use the same name for labels and correspond-
ing bound variables. This connection is right associative, e.g., {s : x : A;¢:y: B[s];z:
Cls,t]} stands for {s : x : A; {¢r : y: B[s]; {z: C[s, t]}}}.

5 Note that Allen’s notational devices allow Nuprl to display these terms as written here [7].
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These dependent records can be used to capture theories built in a context. For example,
here is how a monoid could be defined:

{M:Typei;

op:MxM— M;

id: M,

assocax :Vx,y,z: M.op(x,op(y, z)) =op(op(x, V), 2);
idax :Vx : M.(op(x,id) = x & op(id, x) =x)}.

Here we use the fact that propositions are types—another key Automath contribution.
2.7. Unions, singletons, and mainstream sets

Given the utility and elegance of the intersection operator, and given the fact that those
two properties derive in large part from N’s position as the infimum of the subtyping or-
der, it is natural to wonder what we could accomplish if we also had the dual. The union
type operator has, in fact, recently been introduced into the CTT family [58,76]. Guided
and inspired not only by the supremum operation of order theory but also by mainstream
set theory’s union, the present implementation is a good compromise in the face of the
infeasibility of getting the best of both those two worlds.

Part of the compromise is uneven compatibility with set-theoretic expectations, as ex-
emplified by the fact that a union A U B can have fewer distinct members than do its
branches A and B. That fascinating information-hiding phenomenon is characteristic of
general unions, but we will not pursue it further since the rest of this paper only requires
restricted and unsurprising applications of U. Specifically, each collection of types that we
will union together will be pairwise disjoint, and that special case of the operator is reliably
like the familiar ZFC union, both in its behavior and in its versatility.

As hoped, these two new ways of combining types, intersection and union, do greatly
enrich the foundational system, and the community is still in the early stages of exploiting
them. Kopylov, for instance, is using unions and intersections to describe objects [76].
Another ongoing effort is the use of the enhanced language to re-explain types in a way
that creates a pervasive, bi-directional connection between CTT and ZFC.

In the limited space remaining, a preview of the latter project is presented. Our focus
here is on one central aspect of the re-explanation: the fact that types are constructed from
the bottom up, using unions and intersections as mortar and using singletons as stones. To
see what is meant by that, consider the following unusual rendition of Ny — N3.0 It has a
superficial similarity to the analogous ZFC function space, 2 — 2, since it is the union of
four (disjoint) things. If we look more closely, we see that the similarity to the native ZFC
function space 2 — 2 goes much further than that; the two match all the way down to the

6 Throughout this section, we work modulo extensional type equality.
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leaves.
[ [0 = (0} 0,0
L {1} — {1} (1,1
A[103 = (0} 0,0)
U | {1} = {0} (1,0)
NEUEAY ©.1)
| {1} — {0} (1,0)
NEUEY ©.1)
L {1}~ {1} (1, 1)

Thinking of them in this way, we could say that they’re structurally identical, although the
one on the left is admittedly much more heavily decorated.

To see why the left-hand type expression and N, — N are extensionally equal, consider
the union’s third branch. That intersection’s top half, {0} — {1}, says that O maps to 1,
while its bottom half, {1} — {0}, says that 1 maps to 0. It is thus a brute-force description of
negation. The identity function and the two constant functions are visible in the remaining
branches.

Doug Howe, in [64,66,67], essentially showed that the connection illustrated above can
be developed into a comprehensive system, one that encompasses not only finite func-
tion spaces like Ny — N» but also infinite function spaces, higher-order function spaces,
dependent function spaces, dependent products, universes, W types, special cases of the
intersection, union, and recursion operators, and even a variant of the quotient operator.
The result underlies a novel set-theoretic semantics of a new, classical member of the CTT
family.

The semantic framework discussed here is an extension and re-examination of his work,
taking different approaches in many areas (in particular, by focusing on singletons instead
of oracles) and aiming to ultimately explain a richer collection of types. The core ideas and
methods are still the same, though. To get a glimpse of the mechanics, let’s first note that
the metatheory is ZFC + Jinfinitely many inaccessibles, abbreviated ZFCI®, and that the
meaning of a type T with « equivalence classes is a set [T'] with exactly « elements.

Although entirely conventional up to this point, perfectly in line with [109, Chapter 9]
and [46], if we attempt to continue with a straightforward mapping we immediately en-
counter a snag. Namely, the set [{0} — {0}] must contain exactly one element, but the type
{0} — {0} contains terms such as Ax.0 and Ax.x whose meanings must be distinct. It turns
out that this counterexample is typical in the sense that the challenges that we face all boil
down to difficulties with singletons. The essential problem is [S] when S is a singleton,
and the counterexample shows that this can be perplexing even at the level of the oldest
and simplest types.

The solution is to abandon, at least initially, the idea that [S] will be a set of things that
inhabit S. Instead, [S] is no more (and no less) than a description of how S can be built
from other singletons. In a bit more detail, the unique member of [S] is a well-founded tree,
the encoding of which is not particularly important. The tree’s rank can be (and typically
is) greater than several inaccessible cardinals. At each leaf, there is a code for either the
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singleton Top or a concrete singleton like {1}. At each internal node, there is a code for a
type operator such as - — -, - X -, N, or //ypit-

These trees, these blueprints for constructing singletons, have a number of useful and
intriguing properties. First and foremost is the comprehensive, pervasive match that often
exists between the blueprint and its native ZFCI® counterpart. This is true not only for
function spaces, as illustrated with Ny — Nj earlier, but also for products, disjoint unions,
and so on, and it is the basis of Howe’s justification of bi-directional sharing between STT
and his classical CTT.

This singleton-based rendition of type theory is also remarkable for the fact that types
are constructed bottom-up, building singletons from singletons via a fairly limited and
orthogonal collection of type operators. It seems plausible that, with sufficient effort, this
approach could be developed into a full-fledged, alternative formulation of a rich successor
to Howe’s classical CTT. Due to the percolation upward from mainstream set theory, we
might aspire to a foundation that is compact, stable, and directly connected to ZFC.

2.8. A logic of events

As a result of working with system designers on the specification, design, and verifica-
tion of distributed systems [19,56,85], we have developed a theory of event structures [17]
that is the basis for extending CTT and the extending the method of correct-by-construction
programming. We present distributed systems from the point of program synthesis that we
helped create in the 80’s. Logical synthesis of programs in constructive logic uses the
propositions-as-types principle: a specification is a proposition and a constructive proof
of the proposition yields a member of the corresponding type [14]. Because we can ade-
quately characterize a sequential computation as a function from its input parameters to its
output value, a computational theory of function types is a sufficient basis for logical syn-
thesis of sequential programs. Specifications are propositions that correspond to function
types and programs are members of these function types.

From Lamport’s work [83,84], we know that to characterize a distributed computation
we need a fundamental model of messages, i.e., information flow between agents. This
naturally introduces abstract agents and temporal concepts into our logic since a message
is sent from some agent at some time and is received by another agent at some, causally
later, time. These aspects of distributed computation are not naturally modeled as functions
and, hence, a distributed program is not merely a member of some function type. Instead,
distributed algorithms are specified by describing the desired set S of possible runs, and
a distributed program p satisfies the specification if all of its runs are in the set S. Thus a
specification is a proposition about runs and a program is something that constrains the set
of possible runs.

A system is a set of runs. A protocol p generates a system, namely the set of all runs
consistent with p. Again, following Lamport, we characterize a run of a program as a
set of events. Each event is associated with a unique agent. When we want to speak more
abstractly about events happening before the agent is fully defined, we talk about the events
at a location. A location is an abstraction of the notion of an agent or a process. Formally,
events are elements of a type E, and there is a function loc of type E — Loc, where Loc
is some set of locations. For each i € Loc, the set of events e such that loc(e) =i is totally
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ordered. Intuitively, this set of events is the history of events at location i. If first(e) holds,
then e is the first event in the history associated with loc(e); if not, then e has a predecessor
pred(e). Events are further partitioned by their kinds. The kind(e) of event e is either rcv(l)—
a receive event on link |, or else local(a)—a local event of kind a.” Every receive event has
a sender event sender(e). The sender event of a message is the event when the message
was sent.

In this setting we can define Lamport’s [83] causal order on events as the transitive
closure of the sender-receiver and predecessor relations. The local state of a process is
represented as the values of a collection of state variables. Formally, state variables are just
identifiers that are assigned a value at each event.®

There are binary functions when and after that describe the values of state variables be-
fore and after an event takes place. We typically write these functions using infix notation.
Thus, if loc(e) = i then (x when e) describes the value of the state variable x at location i
just before e, and (x after e) describes its value after e. Note that state variables are local
variables and two locations may have state variables with the same name.

Every event e also has a value val(e). The value of a receive event is the message that
is received, and the value of a local event represents a value (satisfying some constraints)
chosen (non-deterministically) when the local event is generated. For example, if whenever
alocal event of kind a occurs an integer value is chosen and a message with twice that value
is sent on link I, then events with kind(e) = rcv(l) and kind(sender(e)) = local(a) will have
val(e) = 2xval(sender(e)).

Our six axioms of event structures say that an event is the sender of only a finite number
of messages; the predecessor function is one-to-one; causal order is well-founded; the local
predecessor of an event has the same location; the sender of an event has the location of
the source of the link on which the message was received; and state variables change only
at events, so that: (x after pred(e)) = (x when e).

Working in a powerful higher-order logic, we are free to define further derived concepts
on top of the event structure model. An event structure is a rich enough structure that
we can define various “history” operators that list or count previous events having certain
properties. Because we can define operators like these we do not need to add ‘“history
variables” to the states in order to write specifications and prove them. For example, the
basic history operator lists all the locally prior events at a location.

before(e) = if first(e) pred(e) :: (pred(e))
We can also define useful notations for concepts such as “event e changes state variable x”
xAe=(x eFx e)

This language is a theoretical contribution that enables natural declarative descriptions of
distributed systems, and it is a basis for formal verification. Now we need to examine the
issue of code synthesis.

7 Receive events are further partitioned by a tag so that we can restrict the kinds of events sending messages on
a given link with a given tag without restricting other uses of that link. To simplify the discussion in this paper,
we have suppressed all mention of these tags.

8 State variables are typed, but to simplify our discussion we suppress all type declarations.
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2.8.1. Worlds and executable code

In order to relate the event structure abstraction to executable code, we define a general
model of the execution of a distributed system. We call instances of this general model
worlds. Any concurrent programming language can be given a semantics in terms of its
possible worlds, and every world gives rise to an event structure. We are now using one
concurrent programming language that we call message automata (and their coding as Java
programs). These automata are closely related to the I0-automata defined by Lynch [88]
but have a built-in syntax for messages and a built-in mechanism, the frame conditions, to
allow simple extension. We will summarize below how the semantics of XYZaa is defined
in terms of possible worlds.

Definition of world A world is an idealized trace of the execution of a distributed system.
It has locations, and links from a graph . In contrast to an
event structure, in which time is only a partial order, a world has a notion of global, discrete
time, modeled as the natural numbers N. This global time is not expressible in the logic
of events and is only used to construct these models. By observing the system at every
location i and every time 7, we have a state , an action , and a list of messages

The state s(i, t) is the state of the part of the system at location i at time ¢. The state at
location i is a general record (a dependent function from names to values).

The action a(i, t) is the action that was chosen by the system to be executed next at
location i and time ¢. It may be a null action, indicating that no action was taken at (i, ).
Other actions will be local actions and the action of receiving a message. Every action has
a kind of one of these forms ( , , or ), and it also has a value whose type
depends on the kind and location of the action.

The messages m (i, t) are the list of messages sent from location i at time 7. As in event
structure, a message consists of a link, a tag, and a value.

Event system of aworld If w is a world, then we can construct an event structure from w.
The basic construction is to let the events E be the points (i, t) in spacetime such that the
action a(i, t) in world w is not null. So E is the set of points where an event occurred. We
then define all the operations <y, <, first, pred, s , etc., to construct the event
structure of world w. It is then a theorem that Ev(w) satisfies all the axioms for
event structures.

Note, our logic is not about worlds. They are part of the meta-reasoning about execution.
We reason about processes which we turn to next.

2.8.2. Message automata

Event structures and worlds are infinite objects, but they arise from the behaviors of
finite distributed programs. We call our representations of these finite programs message
automata. A message automaton is a finite collection of declarations and clauses each of
which has an assigned location. The declarations provide the names and types of state vari-
ables, local actions, input messages, and output messages. The clauses initialize variables,
state preconditions on local actions, give the effects of actions on state variables, and
give the output messages sent by actions. In addition, two further kinds of clauses, called
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frame conditions, restrict the kinds of actions that affect only a given state variable or send
only on a given link.” For example, the following message automaton was automatically
assembled from a proof of an algorithm for leader election in a ring.

me : N; uid(i)
done : B; false
x . B; false

vote; —done

done := true
[msg(out(i), vote, me)]
rcving) (vote) (v) 1 N;
v > me [msg(out(i), vote, v)] [1
x:=ifme=v true X
leader; X = true
rcvin() (vote) X
vote done
{vote, rcviny (vote)} out(i), vote

The semantics of a message automaton D is the set of possible worlds w that are con-
sistent with it. To be consistent, w must be a fair-fifo world and respect the meanings
of the clauses of the message automata at each location. We have a formal definition

of this relation, and this defines the semantics of distributed systems
of message automata.

Rules for message automata A message automaton constrains the possible worlds that
can be executions of the system. We state these constraints as rules on the event structures
that come from the possible worlds. A rule of the form means that:

Jw : Consistent(M, w).YD : Dsys. Vw : World.

Consistent(D,w) AM C D= Ev(w) =y
It says that there is at least one event structure of a possible world for M and the event
structure of any possible world of any distributed system containing M will satisfy .
Since there are only six kinds of clauses in message automata, we have a set of only six
basic rules and one composition rule. For example, the rules for initialization clauses and
effect clauses are

@i x : T; Eminitially x = v :

Ve @i. first(e) = x e=v

9 Actually, send on a given link with a given tag.
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@i x:T1; k:T2;
k(v) x:= f(s,v):
Ve@ij. kind(e) =k = x e= f(s e,val(e))

2.8.3. Implementation of the logic of events and extraction of process code

Our current Logical Programming Environments supports proof and program develop-
ment by top down refinement of goals into subgoals and bottom up synthesis of programs
from fragments of code derived from proofs of subgoals. We are extending this mechanism,
called program extraction, to the synthesis of processes to support process extraction.

Our library of declarative knowledge about distributed systems will contain many the-
orems that state that some property ¢ of event structures is realizable (which we write as
= ¢.) A property ¢ is realizable if and only if there is a distributed system D that is both
feasible—which implies that there is at least one world and, hence, at least one event struc-
ture, consistent with D—and realizes the property; every event structure consistent with D
satisfies the property.

The basic rules for message automata provide initial knowledge of this kind—all the
properties of single clauses of message automata are realizable. We add to our knowledge
by proving that more properties are realizable. In these proofs, the system will automat-
ically make use of the knowledge already in the library when we reach a subgoal that is
known to be realizable.

To make this automated support possible, some new features, which we believe are
unique to the Nuprl system, have been added to the system. In order to motivate a dis-
cussion of these features, let us examine in detail the steps a user takes in proving a new
realizability result.

Suppose that we want to prove that ¢ is realizable, and we start a proof of the top-level
goal = ¢. From the form of the goal, the proof system knows that we must produce a
feasible distributed system D that realizes ¢ so it adds a new abstraction D(x, ..., 7) to
the library (where x, ..., z are any parameters mentioned in ¢). The new abstraction has no
definition initially—that will be filled in automatically as the proof proceeds. This initial
step leads to a goal where from the hypothesis that an event structure es is consistent with
D(x, ..., z) we must show the conclusion that ¢ (es), i.e., that es satisfies ¢.

Now, suppose that we can prove a lemma stating that in any event structure, es,
Y1(es) A Ya(es) = ¢(es) (the proof of this might be done automatically by a good de-
cision procedure for event structures or interactively in the standard way). In this case, the
user can refine the initial goal ¢ (es) by asserting the two subgoals ¥ (es) and ¥ (es) (and
then finishing the proof of ¢ (es) using the lemma).

If ¥ is already known to be realizable, then there is a lemma = v in the library and,
since the proofs are constructive, there is a realizer A for 1. Thus to prove v (es), it is
enough to show that es is consistent with A, and since this follows from the fact that es
is consistent with D(x, ..., z) and that A| C D(x, ..., z), the system will automatically
refine the goal (es) to A1 C D(x,...,z). If ¥, is also known to be realizable with
realizer A, then the system produces the subgoal A> C D(x, ..., z), and if not, the user
uses other lemmas about event structures to refine this goal further.
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Whenever the proof reaches a point where the only remaining subgoals are that

D(x,...,z) is feasible or have the form A; C D(x,..., z), then the proof can be com-
pleted automatically by defining D(x, ..., z) to be the join of all the A;. In this case, all
the subgoals of the form A; C D(x, ..., z) are automatically proved, and only the feasi-

bility proof remains. Since each of the realizers A; is feasible, the feasibility of their join
follows automatically from the pairwise compatibility of the A; and the system will prove
the pairwise compatibility of the realizers A; automatically if they are indeed compati-
ble, in which case the proof of the realizability of ¢ is complete and its realizer has been
constructed and stored in the library.

How might realizer A1 and A; be incompatible? For instance, A might contain a clause
that initializes a state variable x to true while A, contains a clause that initializes the same
variable to false. Or, A; might declare that an action of kind k1 has an effect on x while A,
declares that only actions of kinds k; or k3 may affect x.

If the variable x occurs explicitly in the top goal ¢ then the user has simply made in-
compatible design choices in his attempt to realize ¢ and must change the proof. However,
if the variable x is not explicitly mentioned in ¢ then it is the case that x can be renamed
to y without affecting ¢. It is often the case that x can be renamed independently in the
proofs of the subgoals 11 and v, (say to y and z) and hence the realizers Aj(y) and A>(z)
will no longer be incompatible.

Incompatibilities such as these can arise when names for variables, local actions, links,
locations, or message tags that may be chosen arbitrarily and independently, happen to
clash. Managing all of these names is tedious and error prone, so we have added automatic
support for managing these names.

By adding some restrictions to the definition mechanism, we are able to ensure that the
names inherent in any term are always visible as explicit parameters. We have also defined
the semantics of Nuprl in such a way that the permutation rule is valid. The permutation

rule says that if proposition ¢ (x, y, ..., z) is true, where x, y, ..., z are the names men-
tioned in ¢, then proposition ¢ (x’, y’,...,z’) is true, where x’, ¥/, ..., 7’ is the image of
X,V,...,zunder a permutation of all names.

Using the permutation rule, our automated proof assistant will always permute any
names that occur in realizers brought in automatically as described above, so that any
names that were chosen arbitrarily in the proof of the realizability lemma but were not
explicit in that lemma will be renamed to fresh names that will not clash with any names
chosen so far. This strategy is supported by the primitive rules of the logic and it guarantees
that any incompatibility in the realizer built by the system was inherent in the user’s design
choices and was not just an unfortunate accident in the choice of names.

3. System architecture

The architecture of the Nuprl [3,78,99] system is the product of many evolutions aimed
at providing a theorem proving environment as rich and robust as its type theory. The
resulting implementation composes a set of communicated processes, distributing tasks
amongst the varied components. The independent communicating processes are centered
around a common knowledge base, called the . The library contains definitions,
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theorems, inference rules, and meta-level code (e.g. tactics), and serves as a transaction
broker for the other processes. Those processes include inference engines ( ), user
interfaces ( ), rewrite engines ( ), and . Translators between the
formal knowledge stored in the library and, for instance, programming languages like Java
or Ocaml [79,80] allow the formal reasoning tools to supplement real-world software from
various domains and thus provide a logical programming environment for the respective
languages.

Multiple instances and kinds of processes can connect to the library, and can do so at
any time during the user’s session. This allows for multiple refiners in a session so that
proofs can be refined in parallel, for example. At its core, the Nuprl system is based upon a
transactional library, connected components, or clients, and library-client communications.

3.1. Transactional library

The ways in which knowledge is stored, structured, changed, and in general managed,
stem from desires to provide users with a reliable robust and sustainable system.

All content in the library is stored in the form of library objects. The library maintains a
mapping of abstract object identifiers to object content. Abstract object identifiers prevent
name collision problems, since their values cannot be imposed on the library. Instead,
unique object identifiers are created by the library while mnemonic names chosen by users
are included as simply part of an object’s content, and thus need not be unique. When an
object refers to another object, it contains that object’s identifier. The mapping of object
identifiers to object content can be viewed as a graph where an identifier occurring in some
object constitutes an edge from this object to the identified object.

Apart from the object map and embedded abstract links to objects, the library does not
impose any predefined organization. The absence of a predefined library organization is a
prerequisite for integrating formal knowledge from other systems besides Nuprl without
requiring these systems to change their representation structure. It is expected that con-
tributors define their own organization of content using the simple but powerful primitives
provided in the library. Translators of formal knowledge relating content of disparate sys-
tems would require specialized methods of accessing each systems content.

So that users need not worry about losing unsaved work, the library uses a transactional
database to make objects persistent. All changes to object contents are committed to the
database when a transaction ends, ensuring that knowledge does not get lost in case of a
system failure.

In the intended use of the library to support mathematical knowledge management, it is
expected that clients will be reading content repeatedly. To facilitate this use, the library
implements a to allow clients to maintain local projections of the
library content. A projection is a mapping of a subset of library content. Clients can tailor
the content in their local tables by defining their own projections. The library maintains the
consistency of the projection by broadcasting updates after modification of objects within
the subset of the projection.

The library database is constructive in the sense that it never overwrites content. Instead
the object identifier is rebound to newly constructed object content. The chain of bindings is
preserved so that old versions may be accessed. This allows recovery of user data corrupted
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or destroyed erroneously. The original content is preserved until it is deleted during garbage
collection of the database. Garbage collection must be explicitly invoked and retains a
parameterizable number of generations of the library.

The ACID model is an old and important concept that sets prerequisites for the design
of a reliable database. Drawing from this standard, we designed the knowledge base to be
sure to provide the four ACID database properties.

Atomicity Each object entry in the library table has three attributes. A sticky bit marks
the object as a root object, which prevents it from being deleted during garbage collection.
A liveness bit indicates whether an object can be included in a projection. The content is
the term data associated with the object.

All persistent modifications to the library are performed via six fundamental :
Bind and unbind modify the binding of object identifiers to content. Allow and disallow
modify the sticky bit. Activate and deactivate modify the liveness bit.

There are many functions to manipulate properties and projections of content, but such
modifications must be made persistent by unbinding the old content from the object iden-
tifier and binding the new content to it.

Having a small symmetric set of basic commands provides for easy implementation
of atomicity. As modifications are performed within a transaction the library remembers
which command was called (for an unbind it also remembers content prior to unbind).
If a transaction fails, then modifications can be undone simply by performing the inverse
operation in reverse order. If a transaction succeeds then the committed commands are
written to a log.

Each deactivate or activate generates a broadcast of a conditional update. Each undo or
commit will then generate a broadcast to either retract or confirm the update. Broadcasts
are filtered and routed to clients depending on the projections they request. It is required
that an object be inactive at bind or unbind. Thus the following sequence of actions is
required to modify an object: deactivate, which generates a conditional delete broadcast;
unbind old content; bind new content; activate, which generates a new conditional insert
broadcast; and finally commit will generate appropriate confirm broadcasts for the delete
and insert updates.

Consistency By extracting access list updates during the scope of a request, the access
list is used to record dependencies between objects. For example, by extracting the ac-
cesses recorded during a refinement the lemma dependencies of the inference created can
be recorded. Dependency accounting data are stored with the object content. If clients are
robust in reporting such dependencies, dependency accounting can be a powerful tool to
convert ephemeral runtime dependencies into persistent links between objects.
Dependency links and object content time stamps provide the ability to detect stale de-
pendencies. If a referenced object has a time stamp later than the referencing object, then
some doubt is cast on the validity of the referencing object. Similar tests could be used to
cause failure if such conditions are detected at modification of the referenced object. This
would prevent stale dependencies, but it also requires more forethought when attempting
modification of referenced objects. In the current implementation we have opted to allow
inconsistent states, but have provided utilities for detecting such states and refreshing af-
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fected objects to resolve them. The concept of certificates (see Section 4.3.2) addresses
similar concerns in a more rigorous manner.

Isolation Serializability is provided by locking objects. Current implementation uses only
write locks and a transaction will fail if it attempts to gain a lock on an object held by
another transaction. Read locks are not used but instead Nuprl supports multiple views.
Modifications of objects by concurrent transactions are not visible to other transactions. At
commit time, modified content is stamped. Each time an object is accessed the transaction
remembers the stamp at access time. While Nuprl can record library lookup of objects,
clients must also report lookups in distributed tables for the access list to be complete.
After a transaction is complete, it can determine if any objects accessed were modified by
a concurrent transaction which has since committed. Thus dirty reads are allowed, but can
be detected. Given the nature of the expected content it is expected that transactions will
read many objects and write few.

Durability The database provides durability for a library. A library instance is created
from a log in the database. A log is a journal of committed directives. A user opens a
library by choosing a log from the database, and a library process can then construct a
library instance from the log. The content terms are stored separately from the log and
thus each log entry consists of an indication of the operation, the object identifier, and
possibly a pointer to the content. The log entries are represented as terms and the database
is used to store logs as a sequence of terms. When a log is closed, an abbreviated copy is
made containing only the entries needed to produce the library instance. If a library process
fails, a new library instance can be produced from the raw log. In this manner durability
is provided. When a new library instance is created, a new log is created as well. If the
instance was created from a properly closed log, then the first entry will be a persistent
pointer to the old log. Otherwise, the new log is initialized with the state of the library after
the old log has been completely read.

3.2. Editing and refining proofs

Besides the library, the Nuprl system includes as native clients an editor and a Nuprl
refiner for editing and refining proofs, respectively. While one process of each is the most
standard configuration, multiple editor and refiner processes can be connected to a single
library process. For example, multiple editors can allow for cooperative work on a shared
library, and multiple refiners allow for parallel refinement

The Nuprl editor is a structure editor suited to manipulating terms. It provides many
features to facilitate browsing and modification of library content and offers special support
for editing terms, definitions, theorems, programs, proof tactics, etc. As a structure editor
it enables the user to modify terms in a structured fashion by marking subterms and editing
slots in the displayed term. Users may also follow hyperlinks between object identifiers
contained in a term and the object they refer to.

The Nuprl refiner implements the formal system described in Section 2. It contains a
rule compiler that translates rule objects contained in the library into inference mecha-
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nisms, which makes it possible to extend the logic in the future without re-implementing
the refiner. The refiner can also extract programs from proofs and evaluate them.

JProver [81,82,103], a complete theorem prover for first-order intuitionistic and classi-
cal logic, is included as an extension to the Nuprl refiner. To ensure validity of a proof built
from refiners of disparate logics, JProver is used as a heuristic, and the proof terms are
translated and rerun in the Nuprl system. The communication between Nuprl and JProver
utilizes the MathBus design [92].

3.3. Communication between the components

The advantages of an open distributed system are vast, providing us not only with the
robustness and flexibility we aimed for, but also with an excellent division of labor, par-
ticularly useful for targeting mathematical knowledge management. Still, managing the
communication between the library and its clients required a significant evolution of ear-
lier versions of the Nuprl system.

In our open architecture, refiner and editor processes will be repeatedly reading con-
tent. To facilitate this, the library has robust methods to push object content projections to
clients. In our implementation, clients may subscribe to various projections and kinds of
content. The library distributes lookup tables to the clients at the time of connection, and
sends updates appropriately as changes are made. This minimizes load on the library and
maintains the correct state for all processes.

All interprocess communication is done via the exchange of terms. Each process main-
tains a list of links to connected processes. Currently, term transfer is done over TCP
sockets. The terms are encoded into a byte stream on output and then decoded back to
a term on input.

Work is accomplished in Nuprl by evaluating requests. Requests must be evaluated in
the scope of an . An environment is characterized by its subscriptions and what
requests it can evaluate.

Just as an environment will process requests, it can make requests of other environ-
ments. Requests are sent by marshalling the request as a term and then routing the request
to a connected environment.

Nuprl also supports a fixed API with predefined commands. The fixed API is suitable
for clients which do not wish to support the distributed table features. Such clients could
be used for reading Nuprl content or for batch imports of content into Nuprl. There are
provisions in the API for a client to provide limited services to Nuprl.

To tightly integrate a system as a Nuprl client, several protocols need to be supported.
The message protocol specifies the form and valid sequences of all messages. This protocol
includes fields for relating messages to transaction scope and describes forms for delimiting
the extent of transactions. The distributed table protocol specifies the form of broadcast
messages used to update the distributed tables. The evaluation protocol specifies the form
of messages used to make requests, return responses and report distributed table lookups.
A client is not required to implement an evaluator in the library’s native language (ML).
Instead, the library can be extended to build client-specific commands to access client
services provided the commands are expressible as terms.



S.F. Allen et al. / Journal of Applied Logic 4 (2006) 428—469 459

4. A formal digital library

It is very gratifying to researchers in automated reasoning that a great deal of formal
mathematics has now been created using interactive theorem provers. There are probably
as many as 50,000 formally proved theorems of interest among the files of a dozen major
provers.

In the mid 90’s, Doug Howe and his collaborators at Bell Labs who were using HOL and
Nuprl on various projects decided that it was more efficient to carry out the basic theoretical
and practical work needed to share mathematics across these provers than it was to rebuild
the results separately. They worked to this end, showing how to embed HOL in Classical
Nuprl [64,65] and using the combined library in their work [47,48]. We built on this work
to also include PVS results in a library of formal mathematics [3]. Out of that work and our
work on the Nuprl System, emerged our project on a Formal Digital Library ( ). The
FDL allows for multiple logics, and the integration of multiple support tools and services.
discuss some of our results and contributions in this section. This is an on-going effort
of our research group [30], and it ties us into the Mathematical Knowledge Management
community.

4.1. FDL design goals

Mathematical Knowledge Management is concerned with providing access to mathe-
matical knowledge in order to facilitate the creation or discovery of mathematics, facilitate
mathematics education, and make feasible intelligent information retrieval in large bodies
of digital mathematics. To better serve these goals, a digital library of formalized mathe-
matical and algorithmic knowledge should meet the following objectives.

Connectivity The FDL must be able to connect to multiple clients (proof tools, users,
etc.) independently, asynchronously, and in parallel.

Usability Clients of the FDL must be able to browse library contents, search for infor-
mation by a variety of search criteria, and contribute new knowledge to the library.

Interoperability The FDL shall support the cooperation of proof systems in the develop-
ment of formal algorithmic knowledge. Different proof systems will be based on different
formal theories and on different internal representations of knowledge. The representation
of knowledge in the FDL has to be generic, so that it can be translated into a large vari-
ety of formats when providing knowledge to clients or receiving formal knowledge from
them.

Accountability 'The FDL needs to be able to account for the integrity of the formalized
knowledge it contains. As it supports interoperability between very different proof tools,
there cannot be an “absolute” notion of correctness. Instead, the FDL has to provide jus-
tifications for the validity of proofs, which will depend upon what rules and axioms are
admitted and on the reliability of the inference engines employed. Furthermore, these justi-
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Fig. 1. FDL distributed open architecture.

fications must be exposed to determine the extent to which one may rely upon the provided
knowledge. We call these justifications

Information preservation The FDL has to guarantee that existing knowledge and justifi-
cations cannot be destroyed or corrupted by clients or system crashes.

Archiving The FDL has to support the management of knowledge on a large scale such
as merging separate developments of large theories and performing context-specific tasks.
This requires the use of abstract references to knowledge objects, or ,as
traditional naming schemes do not scale.

We have extended the Nuprl library described in Section 3.1 to a prototype FDL that in-
terfaces with Nuprl refiners and editors and other tools and systems that support formalized
mathematical reasoning and knowledge. The FDL system is depicted in Fig. 1. Multiple
logics are accommodated via translators, which can map subsets of one logic onto another
[4,48,64,65]. Throughout this ongoing project, we have studied concepts, core functionali-
ties and features of formal digital libraries, which we will discuss in the rest of this section.
The latest version of the Nuprl library was in fact designed for the intended use of math-
ematical knowledge management. Constructing the FDL independently from the Nuprl
Refiner and Editor as a fully autonomous system, and integrating many of the concepts
discussed below provided us with an excellent prototype upon which to innovate further
to meet the needs of mathematical knowledge management. Furthermore, it allowed us
to enhance the Nuprl system, because we can connect Nuprl refiners to it to get the ben-
efits of the additional FDL functionalities. While concepts including abstract identifiers
(Section 4.2.1) and general accounting mechanisms have been fully implemented into this
prototype, closed maps (Section 4.2.2) and certificates have not yet been made available to
the users, while their design is complete.
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4.2. Organizing concepts

4.2.1. Abstract identifiers

The usual method of interaction with the FDL is to build and develop a client work
space, i.e., a collection of named object contents that provide a specific view of the data
and can be tailored to the specific needs and permissions of a client.

In a work space, abstract object identifiers [8] are linked to concrete names chosen by
a user. This allows the user to organize objects in folders, to use the same name in dif-
ferent folders, and to establish “private” links between objects. The work space may also
restrict a client’s access to certain library objects. Most importantly, however, it protects in-
ternal identifiers and object contents from being modified without going through the FDL,
helps preventing name collisions, and makes proof mechanisms independent of particular
naming schemes.

The library manager provides clients with utilities for building, storing, and sharing
collections of session objects. It maintains the work spaces and thus enforces a discipline
for building named collections, thus preserving the coherency of the collections.

4.2.2. Closed maps

Work spaces are represented by maps from a finite set of names to library objects.
These maps have to be closed in the sense that the objects they refer to do not contain any
references to objects that have no name in the map. Thus the basic model of interacting with

the library is to maintain a as a part of state that is updated repeatedly
as one works.
In general, a is a function of type D — Term(D), where D is a finite discrete

type of indices and Term(D) is the type of terms whose subterms only contain abstract
identifiers in D. Usually we identify objects in a closed map with their index (or name).

In practice the class D will be varied continually. For example, extending a closed
map requires selecting a larger index class. Deleting members of a closed map requires a
smaller index class. In both cases, we have to make sure that the resulting map remains
closed.

If the restriction of a closed map m € D — Term(D) to a subclass X C D is itself a
closed map, then we call it a of m. Similarly a of m is a closed extension
of m to a class Y 2 D. Two closed maps m and m’ are , if they are simply
renamings of each other.

Closed maps are essential for defining the notion of dependency. Objects depend on oth-
ers if they directly or indirectly refer to them. An expression ¢t € Term(D) directly
to an object (index) x € D if x occurs within a subterm of . The notion of dependency is
the key to defining correctness. While it is possible to define useful notions of correctness
with respect to state, the enduring ones can only be formulated in terms of closed maps:
the correctness of an object should only depend on the correctness of the object it refers to
but not on library objects that are not within the current closed map.

The library is a repository not of closed maps per se, but is rather a repository of data
and instructions for building closed maps modulo choice of abstract identifiers. In a session
the current closed map is initialized from the library, transformed through a sequence of
operations, and then stored back into the library for later retrieval. Several operations can
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be defined on closed maps including operations on two maps such as Merging, in which
objects can be identified, or operations that build a new map by shrinking or expanding a
current map, or a subset of a current map, utilizing dependency information.

4.3. Accounting mechanisms

One of the central aspects of a formal digital library is to account for the integrity of its
contents and to support arguments for claims of the following form:

Because the library contains a proof of theorem 7 that refers to a given collection of
proof rules and proof engines, theorem 7 is true if those rules are valid and those engines
run correctly.

Accounting mechanisms determine how to execute inferences as specified by a proof
tactic depending on the actual contents of the library and produce certificates, which attest
that certain actions were taken at a certain time to account for the validity of an object. Ac-
counting mechanisms are also needed to determine whether a proof built from a collection
of certified inferences is acceptable for a given purpose. This would be trivial if the FDL
were restricted to a single uniform logic and to a single inference engine. But inferences
that may employ a variety of logics and inference engines cannot be simply combined. In-
stead, certain stipulations limiting proofs to a given set of rules, axioms, and other objects
on which these may depend must be expressed and checked.

To account for the validity of library objects, the knowledge base supports dependency
tracking. For this purpose a variety of information is stored together with an object, e.g. the
logical rules and theorems on which it depends, the exact version of the refiners that were
used to prove it, timestamps, etc. This information will help a user to validate theorems
that rely on knowledge created by several systems, provided that the conditions for hybrid
validity with respect to the underlying logics are well understood and stored in the library.
For instance, a theorem referring to lemmata from Nuprl (constructive type theory) and
HOL (classical higher order logic) would be marked as constructively valid if the HOL
theorems involve only decidable predicates.

The library only provides methods to store and retrieve dependency data recorded for
an object. Tools for examining the relationships between objects from disparate domains
must be provided by developers of the systems being related.

Key units of the FDL accounting mechanisms include accounting at the level inference,
and maintenance of certificates.

4.3.1. Inferences

One of the most fundamental mechanisms to account for the validity of library contents
is the application of logical inferences from a finite number of premises to a conclusion.
Inferences are represented by trees of inference steps, which in turn are represented as
library objects. A library process checks or generates an inference step by applying in-
ference engines, which create proofs in some formal calculus according to user specified
methods.
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The fact that an inference step has been verified by a given inference engine is repre-
sented by an external certificate that refers to the inference step. There may be multiple
certificates for the same inference, certifying that the inference has been checked by differ-
ent inference engines. Depending on the contents of the available certificates, the inference
may be considered valid or not in a specific context.

Inference engines support the development of new formal knowledge by providing
mechanisms for interactive, tactical, and fully automated reasoning in a specific formal
language. As the formal digital library supports almost any formal language, it can be
connected to a variety of inference engines that will provide justifications for its formal
content.

4.3.2. Certificates

Certificates are the basis for logical accounting. They attest that certain library actions
were taken at a certain time to validate the contents of, or identity between, objects. A cer-
tificate will be realized as an object, which can then be referenced and accessed like other
objects save for certain constraints. A certificate cannot be created or modified except
by the library process following a procedure specific to the kind of certificate in ques-
tion.

Although certificate contents are expected to be rather compact, largely consisting of ob-
ject references, they will often be expensive to establish. By realizing certificates as objects
the library can build certificates that depend on others whose correctness is independently
established. Thus one process of certification can contribute to many other certifications
without having to be redone.

The paradigmatic certificates are those created to validate proofs. An inference step cer-
tificate attests to the fact that a specified inference engine accepted that a certain inference
step is valid. It is built by applying the engine to the inference, and includes references
to the inference step as well as to the instructions for building or deploying the inference
engine. A proof is a rooted dag of inference steps. A proof certificate is created only when
there is an inference certificate for the root inference, and there are already proof certifi-
cates for all the proofs of the premises of the root inference.

A certificate may fall into doubt when any object it refers to is modified and needs to be
reconsidered and modified in this case. Certificates may also be reconsidered by explicit
demand.

As certificates only attest to the fact that the objects they refer to satisfy certain policies
for creating these certificates, they provide justifications that are more general than formal
proofs in a specific target logic. Nevertheless, they are equally rigorous in the sense that
they provide the exact reasons that were used for declaring an object valid.

This aspect is particularly interesting when one considers the possibility that certain
inference engines may not be generally accepted. People who do trust a certain inference
engine will accept the certificates produced by it while others will insist that the same infer-
ences have to be checked by inference engines they trust. The connection between the FDL
and JProver accounts for these two levels of trust: one may either trust that matrix proofs
produced by JProver [81] are valid, or one may require that the algorithm for translating
matrix proofs into sequent proofs [82] be executed and that the results will be checked with
a proof checker for the intuitionistic sequent calculus.
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4.4. Information science considerations

With the capabilities to merge vast collections of formal mathematics, to account for
their correctness and origins, and to use these libraries in the further developments of for-
mal mathematics, we see both a need and an opportunity to utilize and adapt information
science techniques.

4.4.1. Publishing and reading

One of the key services that a library must provide is an interface that makes formal al-
gorithmic knowledge accessible to users. Efforts such as MoWGLI and the HELM project
[55,94] attest to this importance. As we envision a variety of users who would benefit from
being able to inspect the contents of a formal digital library, we have developed a publica-
tion mechanism that enables external users to access the logical library and to browse its
contents without having to run a local copy of it.

In [97] we made a first step towards publishing our formal mathematics on the web.
Our interface supports viewing formal contents at all levels of precision—from the rough
sketch of a theory or proof down to the level of the underlying logic. We expect that the
ability to unveil formal details on demand will have a significant educational value for
teaching and understanding mathematical and algorithmic concepts.

We have built a large utility for converting related collections of objects to HTML,
along with automatically generated structure-revealing documents and auxiliary annota-
tions. When the utility is run, the various browsable pages and some print forms are gen-
erated, missing links are reported diagnostically, and a decision is rendered about whether
the result is suitable for posting. The structure of the generated web material is thoroughly
explained on the several documentation pages to which one may link from every page so
created.

Currently, the publication mechanisms are capable of handling formal content created
by Nuprl. Automatically showing new kinds of content in this way, such as pages about
PVS libraries, requires appropriate modification and specialization. Not only might the
presentation of each object need adjustment, but the relations to be revealed between doc-
uments must be determined and accommodated.

4.4.2. A whole greater than its sum

From an information science perspective, the FDL is a dynamic information network,
with library objects as its vertices and relationships between them as its arcs, not unlike
web pages and hypertext. There can coexist multiple kinds of arcs, defined at varying
levels of detail, such as object to object or theory to theory, as well as multiple kinds of
objects. The collection of these objects into such a network facilitates a deeper and richer
understanding than instances of these objects, or even instances of these objects together
with meta-properties. We have already seen this in numerous accounts for the web [70,
102].

One meaningful and straightforward relationship in the FDL network is the logical de-
pendency relationship. If we limit the links to logical dependencies, for example, then,
unlike with hypertext on the web, we gain a well defined linking mechanism. A popu-
lar link analysis method to reveal relevancy in web search, HITS [70], was applied and
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adapted to the FDL dependency network in [87]. The algorithm finds popular nodes, which
is useful for ranking query-based search results, and also finds communities, or clusters of
related objects, which may be useful for automated organization of the library. Looking at
the graph as a whole, it appears that our FDL mathematics collections are scale-free [11].
A scale-free network includes “very connected” nodes, which greatly shorten the likely
distance between two nodes from that of a randomly connected graph with the same num-
ber of nodes and arcs. A characteristic depth and breadth of the graph was also revealed.
Initial comparisons were made between the FDL network and the dependency network of a
collection of Coq proofs, yielding a mix of similar and dissimilar patterns. Relationships to
other objects, and the context within which a math object resides, can bring added support
to the task of information retrieval in the math domain.

5. Conclusion

The Nuprl system, its Computational Type Theory, and the design of a formal digi-
tal library are the result of more than 20 years of research and practical experiments with
mathematical proof assistants. In addition to aspects of theoretical developments and issues
of implementing state-of-the-art proof environments there have been numerous applica-
tions ranging from mathematics and formal courseware to hardware and software design,
verification, and optimization [1,18,19,28,34,56,62,64,68,77,79,80,85,86,96]. Much of our
current research supports the interaction between Nuprl and other mathematical assistants,
proof engines, and publication mechanisms—both from the technological and from the
logical perspective—which will lead to a greater acceptance of these systems in the prac-
tice of mathematics and software development.
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