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Abstract
People living in urban areas are exposed to outdoor air pollution. Air contamination is linked
to numerous premature and pre-native deaths each year. Urban air pollution is estimated to
cost approximately 2% of GDP in developed countries and 5% in developing countries. Some
works reckon that vehicle emissions produce over 90% of air pollution in cities in these countries.
This paper presents some results in predicting and interpolating real-time urban air pollution
forecasts for the city of Valencia in Spain. Although many cities provide air quality data,
in many cases, this information is presented with significant delays (three hours for the city
of Valencia) and it is limited to the area where the measurement stations are located. We
compare several regression models able to predict the levels of four different pollutants (NO,
NO2, SO2, O3) in six different locations of the city. Wind strength and direction is a key feature
in the propagation of pollutants around the city, in this sense we study different techniques to
incorporate this factor in the regression models. Finally, we also analyse how to interpolate
forecasts all around the city. Here, we propose an interpolation method that takes wind direction
into account. We compare this proposal with respect to well-known interpolation methods. By
using these contamination estimates, we are able to generate a real-time pollution map of the
city of Valencia.
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1 Introduction

Air pollution is one of the factors with major impact on the health of people. Exposure to
ambient air pollution increases the risk of suffering respiratory diseases, such as pneumonia, or
chronic, such as lung cancer or cardiovascular diseases [21]. A recent work [20] relates structural
changes in the brain to long-term exposure to ambient air pollution.The SOER 2015 report [19]
concludes that although the atmosphere in Europe has improved in the last decades, there
are significant traces of the most harmful contaminants. The report estimates that in 2011,
430.000 Europeans died prematurely because of pollution. In this context, citizens of urban
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agglomerations must try to reduce their exposition to urban air pollution as much as possible.
This is especially relevant for high risk population such as: kids, elderly people, asthmatics or
people suffering respiratory diseases.

In this work we study the prediction of urban air pollution in real-time by employing his-
torical data. We concentrate on four pollutants (NO, NO2, O3, SO2). For that reason we
employ data from the city of Valencia in Spain. Valencia is a medium size urban agglomeration
(around 1.000.000 inhabitants). The city provides an open data site with information about:
traffic data, noise levels and air pollution... Data about pollutant levels need to be verified and
it is published with a delay of three hours. This delay can represent a problem since risky high
levels of pollution are not detected in real-time. Moreover, the network of sensors is limited (six
in the city of Valencia). Considering these restrictions, we address the problem of producing
real-time predictions of the levels of pollution all around the city. We will study the perfor-
mance of the predictions of different techniques for building regression models that are trained
using features that represent traffic intensity, persistence of pollutants and meteorological pa-
rameters. We also analyse how the direction of wind affects the level of pollution and how to
use that information in order to increase the accuracy of the prediction models.

Additionally, we address how to interpolate predictions and, in this way, we are able to
show the approximate concentration of pollutants all around the city. For that reason we
analyse popular spatial interpolation methods [10] such as Inverse Weighting Distance (IDW)
or Kriging. These methods are static in the sense that they do not consider context conditions
of the points to interpolate. Meteorological parameters (specially wind condition) clearly affects
the way in which the pollutants are dispersed around the city. We propose a new method that
uses wind information in order to improve the interpolation of urban pollution. In this aspect,
we consider this technique a wind-sensitive interpolation approach. Experiments using a cross
validation methodology show that this new method get better forecasts in comparison with
well-known methods, specially when the interpolation is computed using enough information.
This paper can be considered an extension of [13]. That work was focused on presenting the
Airvlc application for real-time forecasts of air pollutants. In the models of [13] we did not
consider wind direction in the learning models and interpolation techniques were not studied.

The paper is organised as follows. Section 2 details the process of data collection of pol-
lution particles and some factors that affect the generation or dispersion of these pollutants.
We also include some experiments in learning regression models for predicting the pollutant
concentrations and some results on including wind direction in the models. We study some
interpolations methods in Section 3. Finally, Section 4 closes the paper with a discussion of the
main conclusions and some plans for future work.

2 Prediction of urban pollution

2.1 Data collection

The historical pollution data for this work has been obtained from the open data web of the
Generalitat Valenciana1. The following particles are studied in this work:

• NO (Nitrogen monoxide): Nitrogen monoxide is a highly unstable compound; it causes
nitrogen dioxide by quickly reacting in the atmosphere. This instability makes the nitro-
gen monoxide a radical whose effects on the body are abnormal DNA, lipids and proteins.

1http://www.cma.gva.es/cidam/emedio/atmosfera/jsp/historicos.jsp
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This kind of changes derives in the medium and long term as a greater chance of devel-
oping cancer.Its origin stems largely from vehicle engines.

• NO2 (Nitrogen dioxide): Nitrogen dioxide is not a directly generated pollutant, since
its presence in the atmosphere is caused by the oxidation of nitrogen monoxide. In the
presence of moisture, this compound results in nitric acid, and its inhalation, even in low
concentrations, can cause lung tissue degradation, as well as can reduce the efficacy of
the immune system, especially in children.

• SO2 (Sulphur dioxide): It is a toxic gas primarily produced for sulphuric acid man-
ufacture. SO2 emissions are related to acid rain and atmospheric particulates. Inhaling
SO2 is associated with respiratory diseases and premature death.

• O3 (Ozone): Ozone is not released directly by specific sources. This pollutant is gener-
ated by sunlight acting on NOx and Volatile organic compounds (VOC) in the air. Ex-
posure to ozone significantly reduces lung function and induces respiratory inflammation.
It can also produce symptoms such as chest pain, coughing, and pulmonary congestion.

The main sources of pollution in developed countries are motor vehicles and industry. It is
useful to measure the level of traffic in a city in order to predict air pollution. The City of
Valencia provides a network of sensors (electromagnetic coils) that measure the intensity of
traffic (Vehicles/hour). This information can be found in the open data site of the Valencia
City Council2. Meteorological conditions influence severely in the generation and distribution
of air pollutants. In an ordinary atmosphere situation, temperature decreases with altitude,
favouring ascension of warmer (and less dense) air, and dragging contaminants upwards. In a
situation of thermal inversion, a warmer layer of air is over the colder surface air and prevents
the rise of this last (denser), so the contamination is confined and increases. Strong winds
can disperse pollutants and transport them away from their emission point. We have collected
Meteorological observations of Valencia city from Meteorological Agency of the Government of
Spain (AEMET)3.

With all the selected parameters, we have built datasets aimed to predict the concentration
of pollutants from the intensity of traffic and weather parameters. Concretely, we have collected
data for a period of two years (2013 and 2014). Data was collected every 60 minutes, 24 hours a
day during those two years. Valencia city has six stations for the detection and measurement of
air pollution, although not all the stations measure the same parameters. For each one of these
stations, we create a dataset with the level of the pollutants measured and parameters that
can affect these measurements, we concentrate on traffic level calendar features and weather
conditions. Concretely, we extract the following set of features for each station:

• Meteorological conditions: Temperature (Celsius degrees), Relative humidity (Per-
centage), Pressure (hPa), Wind speed (m/s), Rain (mm/h)

• Calendar features: Year, Month, Day in the month, Day in the week, Hour

• Traffic intensity features: Traffic level in the surrounding stations (vehicles/hour) and
traffic level 3 hours before

• Pollution features: Pollution level in the target station 3 hours before

2http://www.valencia.es/ayuntamiento/DatosAbiertos.nsf/
3http://www.aemet.es/
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Additionally, given the particular behaviour of the set of pollutants analysed and in light of that
some of these pollutants can derive from others in some cases we add extra features. Precisely,
for predicting NO2 we include NO and SO2 3 hours before, for predicting NO we also use NO2

and SO2 3 hours before, and finally, for forecasting O3 we include NO and NO2.

Figure 1: Distribution of the average level of four pollutants (NO, NO2, O3, SO2) in Pista
station depending on hour of the week (top), hour of the day (bottom left), month (bottom
centre), week day (bottom right).

We can see a summary of the datasets in Table 1. Averages and standard deviation for
the analysed stations of the pollutant particles measured and the intensity of traffic associated
with each station (average traffic per hour measured the traffic sensors closer than 1km to the
station) are included in this table. If we analyse traffic intensity, Pista and Viveros are the
busiest stations. With regard to pollution levels Pista station presents the maximum levels
for all the parameters except O3. This behaviour can probably be associated with the specific
situation of the station. Pista is located in a the central part of the city surrounded by busy
streets, and therefore vulnerable to the overall city pollution. Note that some stations do not
measure all the pollutants.

Figure 1 represents the distribution of the average level of four pollutants (NO, NO2, O3,
SO2) depending on different calendar factors4. It is easy to see that there are direct correspon-
dence between the level of measured pollution and some of these factors. For instance, most of
pollutants reach the lowest levels during weekend days and summer months when traffic is not
intense. We can observe a peak in March in SO2, this is a local phenomenon caused by the fallas
traditional celebration that concludes around midnight on March 19th with the combustion of
hundreds of cardboard monuments. We can also see a negative correlation between O3 and the
other three pollutants ( specially NO, NO2). This can be explained if we consider that part of
the urban O3 generation occurs when nitrogen oxides (NOx) and other compounds react in the
atmosphere in the presence of sunlight. This effect can be observed in the high levels of ozone

4This figure has been generated using the R Openair Library [2].
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around midday and in summer. The strange behaviour of high values in urban O3 has been
detected in several cities. In [3], the authors defend that ”the primary cause of the higher O3

on weekends is the reduction in oxides of nitrogen (NOx) emissions on weekends in a volatile
organic compound (VOC)-limited chemical regime”.

Station Traffic NO NO2 O3 SO2

ave sd ave sd ave sd ave sd ave sd

Moli 13357 10302 10.3 19.9 28.2 20.7 46.9 25.5 2.4 2.1
Pista 34606 24462 23.5 33.8 45.1 27.0 47.1 25.0 3.8 3.8
Francia 20037 14277 8.5 18.8 26.7 23.2 50.2 25.2 2.3 2.3
Viveros 33214 24746 9.7 21.5 29.4 24.2 45.2 28.5 2.7 2.5
Bulevar 11352 8555 12.8 27.5 29.2 22.1 48.5 28.3 2.2 2.1
UPV 11987 8938 7.6 17.9 24.3 24.1 56.3 27.3 2.2 3.1

Table 1: Averages and standard deviation of the pollution detection sensors for the available
stations.

2.2 Experiments

We use several regression learning techniques from R [14] in order to identify the technique
that is able to better predict the levels of pollution. We build the models using as training data
the registers of 2013 and the first nine months of 2014, and test the models with the last three
months of 2014. Concretely, we employ the following techniques for learning regression models
(all of them with the default parameters, unless stated otherwise): Linear Regression (lr) [5],
quantile regression (qr) [9] with lasso method, K nearest neighbours (IBKreg) with k = 10 [5] ,
a decision tree for regression (M5P) [5], and Random Forest (RF) [11]. In order to compare the
predictive performance of the regression models, we introduce three baseline models: A model
that always predicts the mean of the train data (TrainMean), a model that always predicts the
mean of the test data (TestMean), and a basic model that predicts the same value of the target
pollutant 3 hours before (X3H). Root Mean Squared Error (RMSE) is used as performance
measure.

Table 2 contains the RMSE of the regression models for the prediction of the four target
pollution levels of the Moĺı station5. When observing these results, we can conclude that
machine learning models are able to improve the performance of the basic baseline models in
almost all cases. Comparing learning techniques, ensembles of decision trees technique (Random
Forest) is the best model in almost all of cases. Given these results, Random Forest models will
be applied in the following experiments in this work.

Machine learning has been widely used for predicting pollution levels. A seminal work in
this area with neural networks is [22]. Neural networks models have been widely employed
in this field, a review of these approaches can be found in [8]. A more related work is [7].
Here the authors propose a modelling system for predicting the traffic volumes, emissions from
stationary and vehicular sources, and atmospheric dispersion of pollution in an urban area.
The paper compares the predicted NO and NO2 concentrations with the results of an urban
air quality monitoring network. The agreement of model predictions was better for the two
suburban monitoring stations, compared with two urban stations. Our comparison of regression
techniques obtains similar conclusions to the work presented in [17]. In this study, principal
components analysis (PCA) is performed to identify air pollution sources. From the extracted

5 Results for the other five stations are shown in http://www.dsic.upv.es/~flip/pollutionexp.pdf.
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features, tree based ensemble learning models are induced to predict the urban air quality of
Lucknow (India) together with the air quality and meteorological databases for a period of five
years.

TrainMean TestMean X3h LR qr IBkreg M5p RF

NO 30.41 28.45 33.76 25.32 30.29 27.33 23.55 19.72
NO2 20.80 20.80 20.72 15.52 15.47 15.04 16.51 14.42
O3 30.33 21.81 18.32 14.91 14.98 15.88 12.52 11.79

SO2 1.65 1.14 1.25 1.13 1.25 1.26 1.18 1.04

Table 2: Results in RMSE of different regression models for Moli Station. The best prediction
model is highlighted in bold.

2.2.1 Models with wind direction

Previous methods only take wind strength into account in order to build machine learning
models. Wind direction can contribute significantly in the dispersion of pollutants. For instance,
if we consider quarters in the shore of coastal cities, when wind is coming from sea, the levels of
pollutants are drastically lower than when winds is coming from dense populated areas of the
city. This behaviour can be seen in Figure 2 (generated with library [2]). These plots show the
average of NO and NO2 pollutants depending on wind speed and direction, and they clearly
show how these factors correlate with respect to the level of these pollutants.

A simple way of using wind direction component is to consider the pair attributes sine and
cosine of the angle defined by wind direction. In our case, this method has obtained poor
results. Therefore we have adopted a different approach of including wind direction: we modify
the area where we select sensors for the traffic measurement according to wind direction. We
use the idea that traffic is generating many of the pollutants that we are trying to predict, and
these pollutants are dispersed according to wind speed and direction. We study two different
versions of this idea: in the dir method we consider the traffic that is generated in the radius of
1km from the sensor but only considering the traffic sensors that are in the windward circular
sector of 30o; and in the wdir method is similar to dir method but now we use the windward
in order to weight traffic sensors, and in this way we give more importance to traffic measures
in the circular sector of 30o. In Table 3 we compare the results in RMSE of the six stations
(with the same methodology of the previous section) using three scenarios to incorporate wind
direction: nd (wind direction is not used), dir method and wdir method. The results show
that performance of the methods depends drastically on the pollutant. dir and, specially, wdir
methods are able to improve the prediction performance in particles directly related to traffic
emissions (SO2, NO and NO2) probably because these techniques of modelling wind direction
are based on the selection of traffic measures according to the direction of the wind stream.
O3 is not directly related to traffic emissions, and in this case, the dir and wdir methods are
generally not able to enhance the nd baseline method. In any case we can also observe a wide
variety of performance depending on the station since every station is located in a different
environment with specific features (city centre, residential area, coast shore...).

Wind direction has rarely been incorporated into land-use regression models. [4] identifies
25 land-use regression studies and only two incorporate wind direction in the predictive models.
[1] studied the use of wind fields to improve the prediction of air pollution in Toronto. Wind
direction fields were constructed from 38 weather stations, and these features were significantly
useful for NO2 prediction. Another approach is [18]. Here, the authors apply land use regression
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(LUR) integrating wind speed, wind direction and cloud cover/insulation to estimate hourly
NO and NO2 concentrations.

Figure 2: Distribution of NO and NO2 pollutants in Pista station depending on wind speed
and wind direction.

Station NO NO2 O3 SO2
nd dir wdir nd dir wdir nd dir wdir nd dir wdir

Moli 19.72 20.50 19.54 14.42 15.78 14.50 11.79 11.67 12.01 1.038 1.037 1.046
Pista 32.98 33.90 32.48 17.63 16.73 17.55 14.48 14.92 14.41 1.76 1.74 1.75

Francia 22.65 23.53 22.64 13.53 14.57 13.44 12.61 13.00 12.76 2.23 2.25 2.22
Viveros 26.38 26.46 25.96 12.79 13.49 12.99 13.30 13.50 13.29 1.17 1.19 1.18
Bulevar 28.79 30.21 28.46 15.26 18.18 15.77 11.37 11.21 11.42 0.92 1.14 0.91

UPV 26.21 26.32 26.18 18.71 19.17 18.51 12.84 12.44 12.89 0.90 0.91 0.85

Table 3: RMSE of the Random Forest regressors for the pollutants NO, NO2, O3 and SO2

depending on the method to model wind direction: nd (wind direction is not used), dir (direction
is used to select traffic sensors), wdir (similar to dir method, but nearby traffic sensors are given
more relevance). The best prediction model is highlighted in bold.

3 Interpolation of predictions

In the previous section we have analysed how to obtain real-time air pollution predictions from a
given set of features. Our objective in this section is to interpolate predictions all around the city
in order to be able of forecasting the concentration of pollutants in locations that are not close to
the pollutant measurement station. Spatial interpolation [10] tries to predict values for cells in a
raster from a limited number of sample data points. Spatial interpolation can be used to forecast
unknown values (eg. elevation, chemical concentrations, noise levels..) for any geographic point
data in the raster. Formally, given a set of N known sample data points in the study region D.
The set of N known data points are a list of tuples: {(x1, y1), (x2, y2), ..., (xN , yN )}, x ∈ D, y ∈
IR. A spatial interpolation method is a function u, such that u(x) : x → IR, x ∈ D. We study
the following interpolation techniques:

• Mean: A baseline method where we always predict the average of all the N known points
(y). Formally, u(x) →y.
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• Inverse Distance Weighting (IDW): The values of unknown points are computed
using a weighted average of known points. The weights are estimated using distances
among the target point and known points. Here we used the well-known Shepard’s method
[16] with power parameter p = 1.

• Local Inverse Distance Weighting (LIDW): A different method for Inverse Distance
Weighting. This version assigns greater influence to values closest to the interpolated
point compared to IDW and p = 1 , We define d(xa, xb) as the Euclidean distance in
D between points xa and xb. Then u(xi) = w(x1, xi) ∗ yi + ..w(xN , xi) ∗ yN , where
w(j, k) = (Dtot(k)− d(j, k))/(Dtot(k) ∗ (|N | − 1)), and Dtot(k) =

∑
(d(k, xi)), ∀xi ∈ N .

• Wind Sensitive LIDW: A modification of LIDW that takes into account wind direction
in such a way that we increase the weights of the known points that are windward. We
define a windward circular sector of 30o from the point to predict, and the weights of the
stations located in that sector are increased by a factor α = 1.5.

• Kriging: In Kriging the surrounding measured values are weighted to produce a predicted
value for an unknown point. Weights are based on the distance between the known points,
the prediction locations, and the overall spatial arrangement among the known points.
Here we use the R implementation of [15].

In order to evaluate the interpolation methods, from the six available stations, we establish
three different settings. A) 3 stations as known points versus 3 stations as unknown points
(20 possible combinations); B) 4 stations as known points versus 2 stations as unknown points
(15 possible combinations); C) 5 stations as known points versus 1 stations as unknown points
(6 possible combinations). Table 4 includes the average RMSE of the unknown points with
respect the real value for the three different settings and the studied pollutants. Here, we use
the whole dataset, i.e. hourly measures for years 2013 and 2014. If we compare the results
of the interpolation methods in this table, Kriging and Wind Sensitive LIDW obtain the best
performance. In general, Kriging interpolates better with few known points and Wind Sensitive
LIDW shows better performance when it can use more information to interpolate. The exception
to this behaviour is O3 where interpolation methods cannot improve the mean baseline.

A)3 Known - 3 Unknown 20it B)4 Known - 2 Unknown 15it C)5 Known - 1 Unknown 5it
Mean LIDW IDW Wind Krig. Mean LIDW IDW Wind Krig. Mean LIDW IDW Wind Krig.

NO 22.15 19.55 17.67 16.92 19.94 18.13 17.76 17.89 14.99 19.89 17.13 16.72 14.76 14.71 22.98
NO2 21.49 22.06 21.46 20.02 19.99 19.04 22.19 20.80 17.31 20.56 17.90 19.20 16.31 16.09 24.18
O3 15.37 14.54 17.54 17.72 13.16 12.32 20.44 14.44 15.13 12.66 12.03 13.74 13.87 13.90 18.66
SO2 3.05 3.23 2.95 2.91 2.90 3.19 2.96 3.05 2.47 3.42 2.97 2.90 2.37 2.47 3.42

Table 4: Comparison of five methods of spatial interpolation of four pollutants and three
different settings. RMSE of of the unknown points with respect the actual value for the hourly
measures of years 2013 and 2014. The best prediction model is highlighted in bold.

The application of spatial interpolation methods over the forecasts of the six pollution
stations provides a way to estimate a real-time pollution heat map of the city. An example of
these plots are included in Figure 3. Here we show the spatial interpolation of O3 by Wind
Sensitive LIDW (left) and Kriging (right) in the city of Valencia.

Some works have addressed the interpolation of air pollution forecasts. In [12] the authors
compare Land-use regression (LUR) [4] and universal Kriging (UK) (a version of Kriging that
assumes a general polynomial trend model). In their experiments with prediction models for
NOx in Los Angeles (USA), the UK interpolation consistently outperformed LUR. The RIO
method is presented in [6] as a interpolation model for air pollution. The method uses a β
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Figure 3: Spatial interpolation of O3 by Wind Sensitive LIDW (left) and Kriging (right).

parameter that offers flexibility in the weighting between land use and air pollution levels. The
experiments with O3, NO2 and PM10 in a cross-validation procedure show that RIO produces
better results compared to IDW and Ordinary Kriging.

4 Conclusions

Poor Air quality is one of the factors that can decrease life expectancy since contamination
rises the risk of suffering respiratory diseases. The detection of risky levels in real time can
reduce the exposure to ambient air pollution. In this work, we have studied machine learning
methods that predicts in real-time the levels of four dangerous pollutants for the six pollution
measurement stations in the city of Valencia. According to our experiments, the Random
Forest technique is able to build the best forecast models in most of the studied cases. We
have analysed how we can enrich these models by incorporating wind direction information.
We have proposed an approach where wind direction is used for dynamically select the traffic
emission sources. The results show that this approach is able to improve the performance of
the predictions for the pollutants directly related to emissions by fuel combustion. Finally, we
have proposed a new interpolation method based on LIDW (Local Inverse Distance Weighting)
that takes wind direction into account. We have compared the novel technique with respect to
well-known spatial interpolation methods such as Kriging or common IDW. The experiments
show that our Wind Sensitive LIDW obtains a positive performance specially when there are
significant number of known points to use in the interpolation.

As future work, we propose the application of local features of the target points in the
interpolation methods, e.g. nearby traffic level or altitude. We also plan to apply the presented
techniques in other cites in order to study if similar behaviours are observed.
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