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The K+ and Na+ concentrations in living cells are strictly regulated at almost constant concentrations, high
for K+ and low for Na+. Because these concentrations correspond to influx–efflux steady states, K+ and Na+

effluxes and the transporters involved play a central role in the physiology of cells, especially in
environments with high Na+ concentrations where a high Na+ influx may be the rule. In eukaryotic cells two
P-type ATPases are crucial in these homeostatic processes, the Na,K-ATPase of animal cells and the H+-
ATPase of fungi and plants. In fungi, a third P-type ATPase, the ENA ATPase, was discovered nineteen years
ago. Although for many years it was considered to be exclusively a fungal enzyme, it is now known to be
present in bryophytes and protozoa. Structurally, the ENA (from exitus natru: exit of sodium) ATPase is very
similar to the sarco/endoplasmic reticulum Ca2+ (SERCA) ATPase, and it probably exchanges Na+ (or K+) for
H+. The same exchange is mediated by Na+ (or K+)/H+ antiporters. However, in eukaryotic cells these
antiporters are electroneutral and their function depends on a ΔpH across the plasma membrane. Therefore,
the current notion is that the ENA ATPase is necessary at high external pH values, where the antiporters
cannot mediate uphill Na+ efflux. This occurs in some fungal environments and at some points of protozoa
parasitic cycles, which makes the ENA ATPase a possible target for controlling fungal and protozoan
parasites. Another technological application of the ENA ATPase is the improvement of salt tolerance in
flowering plants.
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1. Introduction

In the normal distribution of alkali cations across the plasma
membrane of eukaryotic cells K+ is accumulated and Na+ is excluded,
and an electrical potential, which is negative inside, is physiologically
related to the K+ and Na+ distributions. The primary energy source of
these processes is ATP and the transducers are two plasmamembrane
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P-type ATPases, the Na,K-ATPase in the naked cells of animals and the
H+-ATPase in the walled cells of plant and fungi. The former pumps
K+ and Na+ in opposite directions, creating the asymmetric
distribution of these ions, which subsequently generates the electrical
membrane potential with the mediation of K+ and Na+ channels. In
walled cells, the H+-pump creates the electrical membrane potential
and the K+ and Na+ asymmetric distributions are built up
subsequently by secondary transport systems that mediate K+ uptake
and Na+ extrusion. These two bioenergetic models are the eukaryotic
versions of the ‘sodium and proton worlds’ [1], where Na+ or H+ are
used as the main coupling ions. The former model is adapted to
environments that are quite constant in their composition with a high
Na+ concentration, such as the sea and the extracellular fluids of
animals, and the latter to variable and usually dilute environments,
such as the terrestrial environments where fungi and plants thrive.
Simple energetic calculations [2] suggest that each model is adapted
to the prevailing conditions in these two completely different media.

The aforementioned scheme for fungi and plants, based on the
action of a single type of ATPase, changed when a P-type ATPase that
was supposed to be a Na+-ATPase was identified. This ATPase, which
was named ENA (from exitus natru: exit of sodium), was identified in
Saccharomyces cerevisiae [3], a species in which Li+ and Na+

tolerances depend on the extrusion of these cations [4,5] and in
which Li+ and Na+ sensitive strains are common [6]. By backcrossing
a wild Na+ sensitive strain that showed a poor Na+ efflux with a
laboratory strain with a competent Na+ efflux, the Na+ sensitivity
character was transferred to the laboratory strain. The ENA1 gene was
then identified by its capacity to suppress the Na+ sensitivity of this
strain [3]. Further studies demonstrated that the encoded ATPase
exhibited very low discrimination among alkali cations [7]. Later,
ScENA1 homologue genes were identified in Schwanniomyces occi-
dentalis [8], and subsequently in all fungi that were studied. These
findings raised the possibility that the ENA ATPase was present in all
fungi and that its function was not restricted to mediating Na+ efflux
[9].

After the identification in fungi, the ENA ATPase was identified in
the moss Physcomitrella patens [10] and in the liverwort Marchantia
polymorpha [11]. In contrast, ENA genes do not exist in any of the
vascular plant genomes so far sequenced, including the lycophyte
Selaginella moellendorffii.

In protozoa, biochemical studies on the Na+-ATPase of Trypano-
soma cruzi epimastigotes revealed the existence of an ATPase activity
that was ouabain-insensitive, stimulated by Na+, and inhibited by
furosemide [12]. Later, fragments of genes that could encode ENA
ATPases were cloned from Trypanosoma brucei, T. cruzi, and
Leishmania donovani [13], and the ENA ATPase from T. cruzi and its
encoding gene was characterized a few years later [14].

The existence of the ENA ATPase in almost all fungi, as well as in
bryophytes and protozoa suggests that this enzyme is required for the
adaptation to life conditions that prevail in organisms with very
different lifestyles. This conclusion raises an interesting question
regarding the biological consequences of its absence in flowering
plants. Therefore, the possibility of using drug inhibitors of the ENA
ATPase for controlling protozoan [15,16] and fungal [17] pathogens,
and the use of the ENA ATPase for increasing the Na+ tolerance of crop
plants [18–20] open up a field of technological research on this
enzyme.

This review describes current knowledge about the ENA ATPase
and discusses the emerging functions that it may have especially in
endomembranes.

2. The ENA ATPase across phyla

The phylogenetic study of P-type ATPases by Axelsen and
Palmgren [21] classifies these ATPases into several types. ENA ATPases
made up Type IID, which is closely related to endomembrane (Type
IIA), plasma membrane (Type IIB), and Golgi or PMR1 Ca2+-ATPases,
as well as to Na+/K+ATPases (Type IIC). This phylogenetic analysis
also suggests that the four subtypes appeared before the split of
plants, fungi, and animals, and that each subtype evolved indepen-
dently in these three groups of organisms (Fig. 1). Recently, other
groups of Type II ATPases have been identified [22–25], including
bacterial P-ATPases [10,25,26]. However, Type IID bacterial P-ATPases
have not been described. A P-type Na+ ATPase that has been
described in Exiguobacterium aurantiacum [26] does not keep the
conserved sequences that characterize ENA ATPases (see below).

For several years after the cloning of the S. cerevisiae ENA ATPase
[3] only fungal enzymes were studied: in S. occidentalis [8],
Zygosaccharomyces rouxii [27], Neurospora crassa [28], Debaryomyces
hansenii [29], Fusarium oxysporum [30], Hortaea wernecki [31],
Torulaspora delbrueckii [32], Cryptococcus neoformans [17], and
Ustilago maydis [33]. The CTA3 ATPase of Schyzosaccharomyces
pombe was initially described as a Ca2+-ATPase [34,35] but a further
study showed that by sequence and function CTA3was an ENA ATPase
[10]. A Blast search in the 65 fungal species in which their genomes
have been sequenced (up to December, 2009) revealed that ENA
genes have not been sequenced in nine species only.

Fungal ENA ATPases may be grouped into five phylogenetic
clusters (Fig. 2), in which two ATPases are excluded, from C.
neoformans, Basidiomycota, and S. pombe, Ascomycota; and four are
in uncertain positions, ENA2 from U. maydis, Basidiomycota, ENA1
from Spizellomyces punctatus, Chytridiomycota, and ENA1 and ENA2
from Glomus intraradices, Glomeromycota (numbers 1, 41, 16, 2, 3,
and 4, respectively, in Fig. 2). The species with ATPases in each cluster
belong to the following phyla: 1, Chytridiomycota and Zygomycota; 2,
Basidiomycota; 3 and 4, Ascomycota; and 5, Basidiomycota and
Ascomycota. This cluster distribution cannot be expected from the
consensus tree that explains the evolutionary radiations of fungi
[36,37], especially in the dikarya clade, which includes the two phyla
Ascomycota and Basidiomycota. As discussed below, it seems that
several ENA ATPases existed before the divergence of fungal phyla.

In plants seven ENA genes have been identified in bryophytes, from
the moss P. patens [10], and the liverworts M. polymorpha [11] and
Riccia fluitans (Fig. 3). In addition, we have currently identified a
partial sequence of an ENA cDNA from the moss Bartramia pomiformis.
Taking into consideration that we have found ENA ATPases in all the
bryophyte species that we have investigated, the ENA ATPase may
exist in all or in most bryophyte species, as described for fungi. Among
algae, only in Tetraselmis viridis has an ENA ATPase been identified. In
contrast, ENA genes were not found in the seagrass Cymodocea nodosa
and in barley (Hordeum vulgare) [38], and our Blast searches up to the
end of 2009 did not find any ENA gene in the genomes of vascular
plant sequenced so far, including S. moellendorfii. Genes encoding ENA
ATPases are also absent in brown or green algae [22] and we could not
identify genes encoding ENA ATPases in the Chlorophycea Chlamydo-
monas or Prasinophyceae Ostreococcus genome sequences. However,
active Na+ efflux in Chara longifolia at pH 9.0 strongly suggests the
existence of a Na+ ATPase [39], but the identity of this ATPase is not
known.

Fragments of genes that could encode ENA ATPases have been
cloned from the protozoa T. brucei, T. cruzi, and L. donovani [13], and
the ENA ATPase from T. cruzi and its encoding gene have been
characterized [14]. Entamoeba histolytica also expresses a Na+-ATPase
activity that is ouabain-insensitive, stimulated by Na+ and K+

similarly, and sensitive to furosemide, which might correspond to
an ENA ATPase [15]. In fact, we identified a putative ENA gene in the
genome of E. histolytica (accession number: XM_652464). We carried
out Blast searches in protozoan genome databases using as query an
ENA ATPase sequence, finding translated sequences that unequivo-
cally corresponded to ENA ATPases in T. brucei, Leishmania infantum, L.
donovani, Leishmania major, and Leishmania braziliensis. The Leish-
mania sequences are annotated as Ca2+-ATPases but their amino acid



Fig. 1. Phylogenetic relationships of ENA, IID, with related P-type ATPases: IIA, sarcoendoplasmic reticulum Ca2+ (SERCA); IIB, plasmamembrane (PM) Ca2+; IIC, Na+K+; IIE, ACU.
Two H+-ATPases, IIIA, have been included as outgroup sequences. Subfamily names as given by Axelsen and Palmgren [122]. Abbreviations: Al, alga; An, animal; Om, oomycete; Pa,
protozoa; Pl, plant; F, fungus. Number identification and accession numbers: 1, Trypanosoma cruzi ENA1, XP_817442; 2, Physcomitrella patens ENA1, CAD91917; 3, Saccharomyces
cerevisiae ENA1, P13587; 4, S. cerevisiae PMC1, P38929; 5, Arabidopsis thaliana ACA1, Q37145; 6, Rattus norvegicus Atp2b1 PMCA1, P11505; 7, Ustilago maydis ACU1, CAF22245; 8,
Pythium aphanidermatum KPA1, CAI99409; 9, Porphyra yezoensis KPA1, CAI99405; 10, R. norvegicus Atp1a1 Na+/K+, P06685; 11, Heterosigma akashiwo HANA, BAA82752; 12,
Chlamydomonas reinhardtii Na+/K+, XP_001696293; 13, Ostreococcus tauri Na+/K+, CAL50001; 14, Flabellia petiolata KPA1, CAI99406; 15, Neurospora crassa PMA1 H+, P07038;
16, A. thaliana AHA1, P20649; 17, N. crassa NCA1, CAB65295; 18, Oryctolagus cuniculus SERCA1a, ABW96358; 19, A. thaliana ECA3, Q9SY55; 20, S. cerevisiae PMR1, P13586; 21, Homo
sapiens ATP2C, P98194. The amino acid sequences were aligned with the CLUSTAL X program [123] with default settings and the tree was visualized with the TreeView program
[124].
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sequences identify them as typical ENA ATPases (Fig. 3). An ouabain-
insensitive Na+-ATPase activity studied in Leishmania amazonensis
[40] has the characteristics of an ENA ATPase. We have also identified
ENA genes in the genomes of the amoeba-flagellate Naegleria gruberi
(accession number: gw1.5.10.1) and the Filasterea Capsaspora
owczarzaki (accession number: CAOG_03039).

In summary, the phylogenetic relationships of the protein
sequences encoded by the currently identified ENA genes or cDNAs
suggest that a single ancestral gene gave rise to two or three genes
before or immediately after the plant–animal–fungal splits. This
conclusion is suggested by (i) the fact that the chlorophyte Tetraselmis
enzyme might be closer to some protozoa ENA than to bryophyte
ENA; (ii) two ENA ATPases of Spizellomyces (Chytridiomycota; Spizp1
and Spizp2), Rhizopus (Zygomycota; Ro1 and Ro2), and Phycomyces
(Zygomycota; Pb2 and Pb4) are as divergent as protozoal, bryophyte,
and fungal ENA ATPases; and (iii) the Neurospora (Ascomycota)
NcENA1 is closer to the Ustilago (Basidiomycota) UmENA1 than to the
NeurosporaNcENA2 (Fig. 3). All this suggests that the ENA ATPase was
important at a certain moment of the evolution of life. Interestingly,
while extant fungi maintain the enzyme, with very few exceptions, in
plants only bryophytes maintain it. Possibly, at a certain point of their
evolution, some early terrestrial plants lost the ENA ATPase and
vascular plants evolved from one lacking it. This loss could occur
because at the prevailing ΔpH and ΔpNa across the plasma
membrane, Na+ extrusion mediated by a Na+/H+ antiporter did
not have energetic restrictions (Section 4.3).

3. Sequence and structural characteristics

Type II, P-type ATPases have ten transmembrane fragments and
two cytoplasmic loops that play a central role in the functional
mechanism of the enzyme [15,41]. In the cytoplasmic loops three
important domains have been characterized: actuator (A), between
TM2 and TM3; phosphorylation (P), between TM4 and TM5, where an
aspartic residue is phosphorylated; and nucleotide binding (N), where
ATP is bound [42–45]. The ENA ATPase shows maximum sequence
similarity to Ca2+- and Na,K-ATPases in which the functional
mechanisms have been extensively studied [45–49]. ENA ATPases
maintain conserved sequences that are characteristic of P-type
ATPases and others that are specific to ENA ATPases.

To investigate the specific structural features of the 3D structure
and the position of the conserved fragment sequences of the ENA
ATPase, a homology modeling of ScENA1 was constructed using the
protein structure prediction Phyre server [50]. The highest scoring
alignments were obtained with the SERCA (PDB accession number
3B9R), Na,K- (PDB accession number 3B8E), and H+-ATPases (PDB
accession number 3B8C). The overall sequence identities of ScENA1
with the abovementioned ATPases were 26, 27, and 21%, respectively,
but in the P domain the sequence homology was much higher, 41%
with the SERCA ATPase. The SERCA ATPase has 994 amino acid
residues versus 1091 in ScENA1, which is 13 and 39 residues longer
than the former in the N- and C-terminus, respectively. In the C-
terminus of ScENA1 a potential calmodulin binding site has been
proposed [51]. In all models the four domains, A, N, P, and
transmembrane (blue, green, red, and yellow, respectively, in Fig. 4)
were clearly recognized. Fig. 4 shows a cartoon of the ScENA ATPase
constructed using the SERCA ATPase as a structural template.

Sequence alignments showed that ENA proteins possess the highly
conserved sequences that correspond to the catalytic sites of all P-
type ATPases, especially the signature sequences DKTGT373, which
includes the phosphorylable aspartate, and the TGD675 and DPPR652

sequences, as well as the DGVND761 sequence involved in Mg2+

binding. They also conserve the TGES183 residues in the A domain, and
the conserved residues F537, K542, K561 involved in nucleotide binding
(red circle in Fig. 4; the residue numbers correspond to ScENA1; see
also [44,52]).

All ENA ATPases have a conserved sequence singularity in the P
domain close to the conserved DGVND loop. This conserved sequence,



Fig. 2. Phylogenetic tree of fungal ENA ATPases. All ENA ATPases encoded within the 65 fungal genomes that have been sequenced are included. Number identifications: 1:
Cryptococcus neoformans (B): XM_772704.1; 2: Spizellomyces punctatus (C): SPPG_08664; 3: Glomus intraradices (G): CAJ42021.1; 4: G. intraradices (G) CAJ42022.1; 5: Mucor
circinelloides (Z): fgeneshMC_pm.1_#_404; 6: Phycomyces blakesleanus (Z): e_gw1.1.327.1; 7: Rhizopus oryzae (Z): RO3G_11514.3; 8: M. circinelloides (Z): e_gw1.6.60.1; 8a: S.
punctatus (C): SPPG_06728; 8b: Allomyces macrogynus (C): AMAG_16513; 8c: A. macrogynus (C): AMAG_02549; 9: S. punctatus (C): SPPG_05612; 10: Mucor circinelloides (Z):
stExt_fgeneshMC_pm.C_100102; 11: P. blakesleanus (Z): estExt_Genewise1Plus.C_310035; 12: P. blakesleanus (Z): e_gw1.4.635.1; 13: P. blakesleanus (Z): e_gw1.21.22.1; 14: R.
oryzae (Z): RO3G_00014.3; 15: M. circinelloides (Z): e_gw1.1.1402.1; 16: Ustilago maydis (B): CAQ86601.1; 17: Pleurotus ostreatus (B): estExt_Genewise1Plus.C_20763; 18:
Schyzophylum commune (B): e_gw1.3.1437.1; 19: Coprinus cinereus (B): CC1G_07450.2; 20: C. cinereus (B): CC1G_00228.2; 21: P. ostreatus (B): e_gw1.4.2196.1; 22: P. ostreatus (B):
e_gw1.4.164.1; 23: Histoplasma capsulatum (A): HCBG_04114.2; 24: Coccidioides posadasii (A): EER24302.1; 25: Uncinocarpus reseeii (A): UREG_00592.1; 26:Mycrosporum gypseum
(A): MGYG_06912.1; 27: Trychophyton equinum (A): TEQG_03832.1; 28: Verticillium dahliae (A): VDAG_09301.1; 29: Gibberella zeae (A): XP_384421.1; 30: Nectria haematococca
(A): estExt_fgenesh1_pg.C_sca_20_chr6_4_00051; 31: Trichoderma reesei (A): estExt_GeneWisePlus.C_250195; 32: Trichoderma atroviridae (A): estExt_fgenesh1_pg.C_40579; 33:
Trichoderma virens (A): e_gw1.4.635.1; 34: Cryphonectria parasitica (A): Crypa1.fgenesh1_pg.C_scaffold_3000418; 35:Magnaporthe grisea (A): MGG_05078.6; 36: Neurospora crassa
(A): XP_962099.1; 37: Chaetomium globosum (A): XP_001224140.1; 38: Sporotrichum thermophile (A): estExt_fgenesh1_pm.C_10194; 39: Botrytis cinerea (A): BC1G_15342.1; 40:
Sclerotinia sclerotiorum (A): SS1G_10477.1; 41: Schyzosaccharomyces pombe (A): CAB46699.1; 42: Aspergillus clavatus (A): XP_001273189.1; 43: Aspergillus fumigatus (A):
XP_749268.1; 44: Neosartorya fisheri (A): XP_001265693.1; 45: C. posadasii (A): EER24612.1; 46:U. reseeii (A): UREG_00257.1; 47:M. gypseum (A): MGYG_00748.1; 48: T. equinum
(A): TEQG_02574.1; 49: Blastomyces dermatitidis (A): BDBG_00747.1; 50: Histoplasma capsulatum (A): HCBG_04401.2; 51: Stagonospora nodorum (A): SNOG_11155.1; 52:
Cochliobolus heterotrophus (A): estExt_fgenesh1_pg.C_70257; 53: Pyrenophora tritici-repentis (A): PTRG_09434.1; 54: N. crassa (A): CAB65297.1; 55: C. globosum (A):
XP_001228662.1; 56: S. thermophile (A): estExt_Genewise1.C_53299; 57: M. grisea (A): MGG_13279.6; 58: Verticillium dahliae (A): VDAG_02935.1; 59: T. virens (A): fgenesh1_pm.
C_scaffold_24000006; 60: T. reesei (A): estExt_GeneWisePlus.C_240293; 61: T. atroviridae (A): e_gw1.5.810.1; 62: G. zeae (A): XP_385171.1; 63: N. haematococca (A):
estExt_Genewise1.C_sca_17_chr8_1_00470; 64: Mycosphaerella fijiensis (A): estExt_Genewise1Plus.C_150168; 65: Mycosphaerella graminicola (A): estExt_Genewise1Plus.
C_chr_80432; 66: Hortaea werneckii (A): ABD64570.1; 67: H. werneckii (A): ABD64571.1; 68: Pichia stipitis (A): XP_001385604.2; 69: Debaryomyces hansenii (A): AAK28385.2;
70: Debaryomyces occidentalis (A): AAB86426.1; 71: Lodderomyces elongisporus (A): XP_001526650.1; 72: Candida albicans SC5314 (A): XP_719032.1; 73: C. albicans SC5314 (A):
XP_716992.1; 74: D. hansenii (A): AAK52600.2; 75: P. stipitis (A): XP_001387351.1; 76: D. occidentalis (A): AAB86427.1; 77: Zygosaccharomyces rouxii (A): XP_002499224.1; 78:
Torulaspora delbrueckii (A): AAZ04389.1; 79: Saccharomyces cerevisiae (A): P13587; 80: Vanderwaltozyma polyspora (A): XP_001644531.1; 81: Ashbya possypii (A): AAS54394.1; 82:
Kluyveromyces lactis (A): XP_456007.1; 83: K. lactis (A): XP_454607.1; 84: Yarrowia lipolytica (A): XP_499639.1; 85: Y. lipolytica (A): XP_504141.1; 86: Sporobolomyces roseus (B):
e_gw1.1.48.1; 87: U. maydis (B): CAQ86600.1; 88:Mallasezia globosa (B): XP_001729255.1; 89: C. globosum (A): XP_001222926.1; 90: V. dahliae (A): VDAG_03863.1; 91: G. zeae (A):
XP_382853.1; 92: N. haematococca (A): e_gw1.20.512.1; 93: N. haematococca (A): e_gw1.2.25.1; 94: T. reesei (A): estExt_fgenesh5_pg.C_160247; 95: T. virens (A): fgenesh1_pm.
C_scaffold_12000206; 96: T. equinum (A): TEQG_03743.1; 97: M. gypseum (A): MGYG_06822.1; 98: Aspergillus niger (A): fgenesh1_pg.C_scaffold_6000163; 99: A. clavatus (A):
XP_001270181.1; 100: A. fumigatus (A): XP_747708.1; 101: N. fisheri (A): XP_001257574.1; 102: A. niger (A): fgenesh1_pg.C_scaffold_11000476; 103: A. fumigatus (A):
XP_751881.1; 104: N. fisheri (A): XP_001267067.1; 105: M. gypseum (A): MGYG_07172.1; 106: U. reseeii (A): UREG_02849.1; 107: C. posadasii (A): EER26862.1; 108: H. capsulatum
(A): HCBG_01348.2; 109: B. dermatitidis (A): BDBG_07515.1; 110: B. cinerea (A): BC1G_11540.1; 111: B. cinerea (A): BC1G_04830.1; 112: S. sclerotiorum (A): SS1G_06551.1; 113:M.
grisea (A): MGG_02074.6; 114: N. haematococca (A): estExt_Genewise1Plus.C_sca_17_chr8_1_00310; 115:M. grisea (A): MGG_10730.6; 116: V. dahliae (A): VDAG_05014.1; 117: V.
dahliae (A): VDAG_09836.1; 118: S. nodorum (A): SNOG_15715.1; 119: C. heterotrophus (A): fgenesh1_pm.C_scaffold_4000168; 120: Alternaria brassicicola (A): AB06515.1; 121: P.
tritici-repentis (A): PTRG_07283.1; 122: N. crassa (A): CAB65298.1; 123: S. thermophile (A): estExt_Genewise1Plus.C_60137; 124: C. globosum (A): XP_001219310.1; 125: T. virens
(A): fgenesh1_pg.C_scaffold_14000220; 126: N. haematococca (A): estExt_Genewise1Plus.C_sca_1_chr1_3_01487; 127: Fusarium oxysporum (A): AAR01872.1; 128: G. zeae (A):
XP_385095.1; 129: M. fijiensis (A): estExt_fgenesh1_pg.C_11227; 130: M. graminicola (A): estExt_fgenesh1_pm.C_chr_50123; 131: S. nodorum (A): SNOG_09636.1; 132: P. tritici-
repentis (A): PTRG_11526.1; 133: A. brassicicola (A): AB01088.1; 134: C. heterotrophus (A): estExt_fgenesh1_pg.C_10064; 135:M. graminicola (A): fgenesh1_pm.C_chr_2000108. The
amino acid sequences were aligned with the CLUSTAL X program [123] with default settings. The data sets were bootstrapped (1000 resampling events) and the tree was visualized
with TreeView program [124]. Arrowheads indicate selected nodes with bootstrap values of 1000 in order to show the statistical support of the existence of more than one cluster for
ENA ATPases in Ascomycota and Basidiomycota. The letter in brackets indicates the phyla: A, Ascomycota; B, Basidiomycota; C, Chytridiomycota; G, Glomeromycota; Z, Zygomycota.

1844 A. Rodríguez-Navarro, B. Benito / Biochimica et Biophysica Acta 1798 (2010) 1841–1853

image of Fig.�2


Fig. 3. Phylogenetic relationships among the ENA ATPases of different taxonomic groups. The PMA1 H+-ATPase of Neurospora crassa has been included as an outgroup sequence.
Fungal sequences have been selected to show the characteristic divergences described in text and Fig. 2. Species abbreviations and accession numbers: NcPMA1, N. crassa:
XP_957691.2; Spizp2, Spizellomyces punctatus: SPPG_05612; Ro2, Rhizopus oryzae: RO3G_00014.3; Pb2, Phycomyces blakesleanus: e_gw1.4.635.1; NcENA2, N. crassa: CAB65297.1;
ScENA1, Saccharomyces cerevisiae: P13587; UmENA1, Ustilago maydis, CAQ86600.1; NcENA1, N. crassa: CAB65298.1; Po1, Pleurotus ostreatus, e_gw1.4.164.1; UmENA2, U. maydis,
CAQ86601.1; NcENA3, N. crassa: XP_962099.1; Gi1, Glomus intraradices: CAJ42021.1; Ro1, R. oryzae: RO3G_11514.3; Pb4, P. blakesleanus: e_gw1.1.327.1; MpENA2, Marchantia
polymorpha: CAX27440; PpENA1, Physcomitrella patens: CAD91917; PpENA2, P. patens: CAD91924; PpENA3, P. patens: CAX20544; MpENA1, M. polymorpha: CAX27437; RfENA1,
Riccia fluitans: FN691478; RfENA2, R. fluitans: FN691479; Capow1, Capsaspora owczarzaki: CAOG_03039; Spizp1, S. punctatus: SPPG_08664; TvENA1, Tetraselmis viridis: FN691482;
TcENA1, Trypanosoma cruzi: XP_817442.1; TviENA1, Trypanosoma vivax: TVIV.0.112366; Tcongo1, Trypanosoma congolense: congo1013f03; TbENA1, XP_827683; Lbras1, Leishmania
braziliensis: XP_001568308.1; Lmex1, Lmayor1, Leishmania mayor: XP_843313.1; LdCA1, Leishmania donovani: AAC19126; Naegg1, Naegleria gruberi: gw1.5.10.1; Enthist1,
Entamoeba hystolytica: XM_652464. The tree was constructed as described in Fig. 1.
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MIEALHRR in ScENA1, shows certain variability in ENA ATPases but all
keep a high similarity. The modeled P domain shows a typical
Rossmann fold with a central six-stranded beta-sheet flanked by
alpha-helices one of which is where the conserved MIEALHRR748

sequence of ENA proteins locates (Fig. 5). The spatial disposition of
this conserved sequence and the measurement of the atomic
distances between the basic residues RR748 and the residues that are
involved in the catalytic cycle of the P-type ATPases (DKTGT373,
TGD675, DPPR652, DGVND761) suggest that the MIEALHRR fragment
does not have a critical role on catalytic activation. However, mutation
in this region of the HRRGR746 residues of the N. crassa ENA1 ATPase
into the corresponding QSYDE sequence of the rabbit SERCA ATPase
abolished the Na+ efflux function of NcENA1 in yeast cells without
conferring the capacity of transporting Ca2+.

The TM domain, which consists of ten transmembrane
spanning helices as already explained, has a low sequence
homology with the SERCA ATPase, 19%, but a very similar overall
structure. Alignments of the sequences of these fragments and
those of ScENA1 showed putative residues that can be involved in
Na+ or K+ binding site of ENA proteins (Fig. 4). Seven residues
that contribute to the cation binding sites of Ca2+- and Na,K-
ATPases locate in TM4, TM5, TM6, and TM8 [48,53,54], and only
two out of these seven residues, N in TM5 and T in TM6, are
present in most ENA ATPases. In TM4 there is another sequence
peculiarity of ENA ATPases. The unwound region IPEGLP312, where
one cation binding pocket is formed [55] in Ca2+ and Na,K-
ATPases, changes into IPSSLV330 in ScENA1. In most fungal ENA
ATPases the SS residues are not conserved but a Ser residue occurs
in any of the two positions. Interestingly, bryophyte ENA ATPases
keep the IPEGLP sequence, but no functional differences between
fungal and plant ENA ATPases have been reported.

At the end of the TM10 helix most ENA ATPases and the Na,K-
ATPase have three basic residues (KRR1049 in ScENA1, RRR1005 in pig
renal Na,K-ATPase; dark blue circle in Fig. 4). This arginine cluster at
the membrane edge region has been proposed as a putative voltage
sensor of the membrane potential [54].

A mutational study on the ENA1 ATPase of Z. rouxii has been
published [56]. In this study nine Asp and Glu residues in the P
domain, and two in TM7 and TM10 were mutated. Two of these
residues, D852A and E981A, in TM7 and TM10, respectively (Fig. 4,
magenta circled in ScENA1), are conserved in all ENA proteins and
absent in Ca2+, Na,K-, and H+-ATPases. Their mutations substantially
reduced the function of ScENA1, which suggests that these residues
have been conserved for functional reasons.

4. Functional characteristics

Two experimental approaches have been used in functional
studies of ENA ATPases: biochemical studies of the ATPase in
plasma membranes and determination of the Na+ and K+ effluxes
mediated by different ENA ATPases in null ena mutants of S.
cerevisiae.

Biochemical studies of P-type ATPases have been routinely based
on the rate of ATP hydrolysis by crude or purified membrane
preparations. However, by unknown reasons, ENA1-dependent ATP
hydrolysis by plasma membranes of yeast cells is very low and
extensive biochemical studies of ScENA1 have not been carried out.
In contrast with the difficulties of biochemical studies, functional
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Fig. 4. Structural and sequence characteristics of ENA ATPases. Top: overall structural model of the ENA1 ATPase of S. cerevisiae. Bottom: alignments of the TM4, TM5, TM6, and TM8
sequences in SERCA, Na/K, and ScENA1 ATPases. The structural model was constructed using the protein structure prediction Phyre server [50], www.sbg.bio.ic.ac.uk/phyre/, based
on the model of the SERCA ATPase and visualized with the standard molecular viewer PyMOL 2002 (DeLano, W.L. The PyMOL Molecular Graphics System, DeLano Scientific, San
Carlos, CA, USA; http://pymol.sourceforge.net/); the ten transmembrane helices are shown in yellow, the nucleotide-binding domain (N) in green, the actuator domain (A) in blue,
and the phosphorylation domain (P) in red; key residues mentioned in the text are highlighted in a red circle (F537, K542, K561 conserved residues belonging to the N domain) or in a
yellow circle (DKTGT373, DGVND761, DPPR652 and TGD675 in P domain); red letters depicted the ENA conserved sequence. The dark blue circle shows the three basic residues of
KRR1049 in ScENA1 conserved in the Na,K-ATPase that has been proposed as a putative voltage sensor of the membrane potential [54]; magenta circles indicate the negative charged
residues D896 and E1025 of ScENA1 that correspond to the mutated D852 and E981 of Zygosaccharomyces rouxii ENA1 that are conserved in all ENA proteins and seem to be functionally
important. In the alignment the amino acid residues that are involved in cation binding are highlighted. SERCA and Na/K sequences correspond to the crystallized ATPases, PDB ID:
3B9R and 3B8E, respectively.
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studies based on the determination of Na+ and K+ effluxes that
either disappear in null ena mutants or that appear when ENA genes
or cDNAs are expressed Na+-K+ efflux mutants of S. cerevisiae have
been extensively carried out with many ENA ATPases. Although a
Δena1-4 mutant could be used for these tests a double Δena1-4
Δnha1 mutant is normally used (NHA1 is the Na+ or K+/H+

antiporter described below). The induction of ENA-mediated
effluxes in these strains may be deduced from the increases in
their Na+ or K+ tolerances.

4.1. Na+ and K+ effluxes

Although the first report on the ENA1 ATPase of S. cerevisiae
demonstrated that it mediated Li+ and Na+ effluxes and suggested
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Fig. 5. Amino acid residues that are specifically conserved in the P domain of ENA ATPases, as shown in Fig. 4. Top: alignment of representative sequences of ENA and other P-type
ATPases. The boxed sequence in OcSERCA shows the amino acids residues which substituted for the HKRRG residues in an NcENA1 mutant (see text). Bottom: Rossman fold of the P
domain in ScENA1 amplified from Fig. 4. Side chains of conserved Asp residues and the ENA conserved RR side chains are shown as sticks. Accession numbers: ScENA1:
Saccharomyces cerevisiae, P13587; NcENA2: Neurospora crassa, CAB65297.1; PpENA1: Physcomitrella patens: CAD91917; Glomus1: Glomus intraradices, CAJ42021.1; UmENA2:
Ustilago maydis, CAQ86601.1; Mucor4: Mucor circinelloides, stExt_fgeneshMC_pm.C_100102; LdCA1: Leishmania donovani: AAC19126; TcENA1: Trypanosoma cruzi: XP_817442.1;
Naegg1: Naegleria gruberi: gw1.5.10.1; Enthist1, Entamoeba hystolytica: XM_652464; NaKRat1: Rattus norvegicus, P06685.1; NaKAs1: Artemia franciscana, P17326.1; OcSERCA:
Oryctolagus cuniculus, ABW96358; AsSERCA: A. franciscana, P35316.1.
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that it could mediate K+ efflux [3], the notion that the ENA ATPase is
not specific for Na+ was not established until the conditions for the
phosphorylation of the enzyme were studied [7]. In these experi-
ments, ScENA1 is phosphorylated from ATP in the presence of alkali
cations and from Pi in the absence of alkali cations [7]. In the first assay
all alkali cations were effective and in the second all of them inhibited,
which indicates that the specificity of the enzyme is low. Similarly, an
ENA specific ATP hydrolytic activity has been determined in the
membrane fraction of mammalian cells expressing the ENA ATPase of
T. cruzi. This activity is insensitive to ouabain and stimulated by both
Na+ and K+ [14].

Later, the cloning of two ENA ATPases from S. occidentalis with
different specificities for Na+ and K+ in flux experiments further
support the notion of the double physiological function of ENA
ATPases as Na+ and K+ pumps [8]. Finally, the identification of the
CTA3 ATPase of S. pombe helped to establish the current notion that
some ENA ATPases are specific for Na+ efflux while others show a
poor discrimination between Na+ and K+ or even that some might be
K+ specific [9]. Systematic studies of the specificity of ENA ATPases
can be carried out in transformants of an ena1-4 nha1 null mutant of S.
cerevisiae, which lack Na+ and K+ effluxes. The tests measure the
proportion of Na+ and K+ effluxes mediated by different ATPases
from cells loaded with similar amounts of Na+ and K+ in a medium in
which the only alkali cation is Rb+. In this medium, Rb+ is taken up in
exchange for Na+ and K+, and the effluxes of these cations are
maintained even when a large proportion of them are lost to the
external medium [9]. Fig. 6 shows the results of parallel experiments
carried out with three ENA ATPases that have been proposed to have
different cation specificity: NcENA1, Na+ specific; CTA3, K+ specific;
and ScENA1, similarly effective for Na+ and K+. The results confirmed
that the ENA1 ATPase of N. crassa is Na+ specific while the other two
mediate both Na+ and K+ effluxes. However, although in these efflux
experiments CTA3 behaves similarly to ScENA1 and is not K+ specific,
previous [9] and present (Fig. 6B) growth experiments clearly support
that CTA3 and ScENA1 exhibit different cation specificities. Similarly,
the ENA ATPases of S. cerevisiae ScENA1, ScENA2, and ScENA4
(ScENA3 is identical to ScENA2) are Na+ and K+ unspecific in flux
experiments when expressed independently but in wild type cells
with the four ATPases, Na+ efflux is much more important than K+

efflux [9]. These contradictions suggest that selectivity does not
depend exclusively from the sequence of the protein and is regulated
by unknown factors. Selectivity may depend on the amount of the
expressed protein or may be modulated by the C-terminal region of
the protein, as proposed for the NHX1 Arabidopsis antiporter [57]. As
regards the latter possibility, very little is known about the regulation
of the activity of the ENA ATPase by the C-terminal region.
Interestingly, fungal enzymes have much longer C-termini than
bryophyte enzymes, which suggests that the C-terminus of fungal
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Fig. 6. Variability of the Na+/K+ discrimination of ENA ATPases. A, Time courses of K+ and Na+ losses from Saccharomyces cerevisiae B31 (Δena1-4 Δnha1) cells expressing the
NcENA1 (Neurospora crassa), SpCTA3 (Schyzosaccharomyces pombe), or ScENA1 (S. cerevisiae). Yeast cells with similar contents of K+ and Na+ were prepared by growing the cells in
the arginine phosphate medium described in [9] with 3 mM K+ and then incubating these cells in 10 mM trisodium citrate pH 8.5, 50 mM NaCl, 2% glucose for 20 to 60 min
depending on the expressed ATPase. K+ and Na+ losses were determined by transferring the Na+ loaded-cells to 10 mM TAPS buffer pH 8.0 containing 2% glucose, 0.1 mM MgCl2,
50 mM RbCl, and 20 mM NH4Cl. B, Growth of serial dilutions of the same strains in plain YPD (1% yeast extract, 2% peptone, 2% glucose) or supplemented with the indicated
concentrations of NaCl or KCl. In both panels, pYPGE15 indicates B31 cells transformed with the empty vector.

1848 A. Rodríguez-Navarro, B. Benito / Biochimica et Biophysica Acta 1798 (2010) 1841–1853
enzymes has a functional role. In fact, we have already mentioned a
putative regulation of the ENA1 ATPase of S. cerevisiae by calmodulin
[51]. Interestingly, two mutants that eliminate the last thirteen or
sixteen amino acid residues of the C-terminus of the ScENA1 protein
have been studied, but neither of them produces apparent changes in
the activity of the ATPase [7]. Although, these mutations eliminate
Fig. 7. Putative mechanism and function of the ENA ATPase in the plasma membrane and i
membrane the ENA ATPase mediates the effluxes of Na+ or K+ in exchange for H+ in order t
the entrance of K+ and the return of H+ to the cytosol. Electroneutral antiporters cannot ful
ATPase stoichiometry might be higher than one cation per ATP.
most of the C-terminus of the protein they probably do not affect the
aforementioned calmodulin binding domain [51], which is coincident
with the end of TM10.

In summary, the biochemical basis of the cation promiscuity of the
ENA ATPase and the biological reasons for which some enzymes are
cation specific while others are unspecific are unknown. In contrast,
n organelles when external and lumenal pHs are above the cytosolic pH. In the plasma
o control cation contents and cytosolic pH. In organelles the ENA ATPase would mediate
fill these functions when external or organelle pHs are above the cytosolic pH. The ENA
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the function of the promiscuity is clear because the ENA ATPase
maintains the cytosolic levels of any alkali cationwhen the antiporters
are not functional (Fig. 7 and Section 4.3).

4.2. Induction of ENA gene expressions

Soon after the cloning of the ScENA1 gene it was found that the
expression of this gene in the normal growth conditions of S.
cerevisiae, a complex medium with a low pH (≈4.5), was almost
undetectable. Even when increasing the pH to 6.5 the expression of
the gene in complex medium was still very low. High expressions
were found at high pH, high Na+, or in mineral medium, but high pH
showed the strongest inductions [58]. It was also observed early on
that the regulation of the promoter was complex and that the effects
of calcineurin [59], HAL3 [60], and HAL1 [61] on the salt tolerance of
yeast cells took place through the regulation of the expression of the
ScENA1 gene. Since these early reports the regulation of the
expression of ScENA1 has been studied extensively and there are
two recent reviews on the subject [62,63].

Cloning of ENA genes in other fungal species generalized the
notion that the ENA ATPase is weakly expressed in normal growth
conditions: low pH (4–6) and low K+ and Na+ concentrations
(b10 mM). As in S. cerevisiae high pH or high Na+ concentrations
trigger the expression of the enzyme in S. occidentalis [8], N. crassa
[28], D. hansenii [29], F. oxysporum [30], H. wernecki [31], Aspergillus
nidulans [64], and U. maydis [33]. In P. patens the three ENA genes also
respond to alkali cations and pH, although in this species the
combination of high pH and high Na+ elicits an expression that is
approximately ten times higher than with any of the two stimuli
separately [11].

All these results strongly suggest that although the ENA ATPase is
an enzyme that mediates Na+ efflux its function is related or
especially necessary in high pH media.

4.3. ENA ATPase and Na+ or K+/H+ antiporters

The mechanismwhereby the ENA ATPase pumps alkali cations out
of the cell is unknown. However, through its similarity with other P-
type ATPases a Na+ (or K+)/H+ exchange can be anticipated [65].
Furthermore, considering the very negativemembrane potentials that
have been measured in N. crassa [66,67], which may be the norm in
fungal species, the most likely possibility is that this Na+ (or K+)/H+

exchange is electroneutral. The basis for this prediction is that if the
membrane potential is very negative and the ENA ATPasemediated an
electrogenic exchange, e.g. two Na+ moving outward and one H+

inward, Na+ efflux would be restrained in high Na+, high pH media,
owing to thermodynamic reasons. In contradiction with this restric-
tion, ENA ATPases are expressed to function in high pH media, as
above described. The restriction does not apply if the exchange is
electroneutral, and this mechanism does not violate any functional
principle of P-type ATPases. In fact, although some P-type ATPases
mediate electrogenic exchanges [48,68], electroneutral exchanges
have been proposed for others [65,69].

If the ENA ATPase mediates Na+/H+ exchange its function
results identical to that of Na+/H+ antiporters, which are
universally present in fungi and plants [70]. However, this
functional identity is only apparent because most fungal and plant
Na+/H+ antiporters are electroneutral [70], in which Na+ efflux is
driven by the transmembrane ΔpH that is created by an external
acidic pH. This limitation does not apply to an ATP fueled ENA
ATPase. Therefore, the ENA ATPase and the electroneutral Na+/H+

antiporters are more complementary than redundant systems
(Fig. 7). The same considerations apply to K+ efflux. The only
difference between K+ and Na+ effluxes is that the cytoplasmic K+

concentration is high and K+ efflux may be thermodynamically
possible through an electroneutral K+/H+ antiporter even when the
external pH is high if external K+ is low. These principles of ionic
homeostasis and pH dependence of antiporters are universal and
apply also to bacteria [71,72], the only difference between bacteria
and fungi is that many bacterial antiporters are electrogenic and
function at high external pH [71].

Taking into consideration the multiplicity of environments
regarding the pH range, and the Na+ or K+ concentrations where
fungi [9] and bryophytes [11] can grow, the complementariness of
electroneutral Na+ or K+/H+ antiporters and ENA ATPases is evident.
This complementariness was initially demonstrated in S. cerevisiae
where it was shown that the NHA1 antiporter conferred protection
against high Na+ or K+ concentrations at low pH but that at pH 7.0
ScENA1 was required [73]. However, S. cerevisiae is not adequate for
this type of study because it grows poorly or does not grow when the
external pH is higher than the cytosolic pH. In species that grow at pH
9.0 or even higher the requirement of the ENA ATPase can be shown
more clearly. In fact, in U. maydis the disruption of the ENA genes
abolishes growth of at high pH in the absence of Na+ even when the
external K+ is as low as 1 mM [33]. The same occurs in C. neoformans
although at slightly higher K+ concentrations. In this species the ENA1
gene behaves as a virulence gene, suggesting that the fungus may
have to survive at elevated pH during infection of the mammalian
host [17].

Interestingly, as in ENA ATPases, there are two types of plasma
membrane Na+/H+ antiporters, one type has broad alkali cation
specificity and the other is specific for Na+ or Li+ but not for K+

[74,75]. A representative of the former type is NHA1 from S. cerevisiae
[8,76] while a representative of the second type is Sod2 from S. pombe
[77,78]. Both types of antiporters coexist in some fungi [79–81] but
only the antiporters of broad substrate specificity seem to be involved
in the regulation of the K+ content and cellular pH [75] and in the cell
cycle [82]. Interestingly, the transmembrane domains of SpSod2 and
ScNHA1 are very similar in sequence while the hydrophilic carboxy
termini are very different [79]. Sequence characteristics to identify the
specificity of Na+ (or K+)/H+ antiporters has not been established
[75].

The general principle that ENA ATPases and electroneutral
antiporters control the cellular Na+ and K+ contents in parallel,
dominating the effluxes through either the ATPases or the antiporters
depending on the external pH, has variants. In S. cerevisiae ScENA1 is
muchmore important than ScNHA1 for Na+ tolerance and enamutant
strains are Na+ sensitive [3], even at low pH values. The opposite
occurs in S. pombe where sod2 mutants are Na+ sensitive [77]. S.
pombe has two antiporters, SpSod2, which is Na+ specific, and
SpSod22, of broad substrate specificity [80], but a single ENA ATPase,
CTA3, which might be of low relevance regarding Na+ tolerance [9]. It
is worth observing that both S. cerevisiae and S. pombe are acidophilic
organisms, which grow poorly at the high pH values where the ENA
ATPase is essential.

An exception to the abovementioned complementation of ENA
ATPases and Na+/H+ antiporters is the proposal that the NHA1
antiporter of S. cerevisiae is electrogenic [76]. If this proposal were
correct the requirement of the ENA ATPase for high pH Na+ and K+

effluxes would not exist. However, there is no report of a fungal ena
mutant that is competent for extruding Na+ or K+ against high Na+ or
K+ concentrations at high pH. The exchange mechanism of ScNHA1
was studied in a sec4-2 yeast mutant, which accumulates secretory
vesicles at restrictive temperatures [83], and the electrogenicity was
established by the conventional use of CCCP, K+, and valinomycin (see
[71]) in these vesicles. Although the results are not questioned, the
aforementioned contradiction between them and the physiological
findings raise the caveat that the function of the antiporter in the
vesicles may not match the function in the plasma membrane.
Therefore, the functional electrogenicity of ScNHA1, i.e. that the ΔΨ
component of the proton motive force contributes to the energization
of antiporter, needs further study.
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Similar principles to those described so far regarding the
requirement of the ENA ATPase at high external pH may apply to
some parasite protozoa. In these protozoa the molecular mechan-
isms of the processes that maintain the intracellular Na+ and K+

concentrations remains unclear. Studies aimed at clarifying the
transporters involved in these processes, originally focused on the
Na,K-ATPase that is sensitive to ouabain in T. cruzi epimastigotes
[12], revealed the existence of an ENA ATPase [13,14]. The existence
of ENA ATPases that control the Na+ or K+ contents in any part of
the cycle of parasitic protozoa would explain how the ENA ATPase
inhibitors furosemide [12,14] and miltefosine [16] help to control
trypanosomal infections.

In P. patens the ENA ATPase coexists with an electroneutral
antiporter, PpSOS1 [10,11], which is the only Na+ efflux system of
vascular plants [84,85]. Assuming that SOS1 is electroneutral [86,87]
the absence of the ENA ATPase in vascular plants suggests a defective
Na+ efflux when the soil pH is high [87]. Although the apoplast of
plants is acidic [88,89] and plant roots acidify the rhizosphere [90], the
absence of the ENA ATPase in vascular plants might have imposed a
restriction on their growth in high Na+ media when the soil pH is
high, unless another active Na+ efflux system replaces for the ENA
ATPase. In fact, it has been proposed that the observed cytosolic Na+

concentrations cannot be explained by the action of an electroneutral
Na+/H+ antiporter [91].

4.4. Endomembrane functions

The genomes of many fungi contain two or more ENA genes
(Fig. 2). In some species these genes have similar or very similar
sequences, and the most evident example is the tandem of ENA genes
in S. cerevisiae [51,63,92]. In this species and in two more that have
been investigated, S. occidentalis [8] and D. hansenii [29], the encoded
ATPases have similar sequences and apparently similar functions,
except for different cation specificity. In contrast, in other fungi the
ENA genes are considerably divergent and probably originated from
gene duplications that occurred before the Basidiomycota/Ascomy-
cota split. In these cases, e.g. ENA1 and ENA2 in N. crassa and in U.
maydis, the divergence of two ENA proteins in the same species is very
high (Figs. 2 and 3) and only one of the ENA ATPases suppresses the
Na+ or K+ sensitivity of ena1-4 nha1 null mutants of S. cerevisiae
while the other shows a weak effect [33]. Similarly, the two
bryophytes species that have been studied, P. patens and M.
Fig. 8. Localization of the UmENA2-, NcENA2-, andMpENA2-GFP fusion proteins in Saccharom
images. Experimental conditions as described in [11]. The images of UmENA2-GFP andMpEN
be expressed in a spherical organelle, which we did not identify.
polymorpha, also have three and two ENA ATPases, respectively, and
again only one of the ATPases in each species shows a strong
functional expression in ena1-4 nha1 null mutants of S. cerevisiae
[10,11].

The functional diversity of ENA ATPases has been studied in U.
maydis. By using GFP fusions to the two UmEna proteins it was found
that while UmEna1p localizes to the plasma membrane, UmEna2p
localizes to the ER and other endomembranes. A low suppression of
the Na+ sensitivity of the S. cerevisiae Na+ efflux mutant and
endomembranes localization is also observed with the NcENA2
ATPase of N. crassa [33], which suggests that UmENA2 and NcENA2
might have similar functions. However, parallel expressions of
UmENA2-GFP and NcENA2-GFP fusions in S. cerevisiae from similar
constructs show different cellular locations. While the overexpression
of UmENA2-GFP apparently induces the assembly of karmellae
structures [93], NcENA2-GFP localizes to discrete organelles (Fig. 8)
suggesting that NcENA2 and UmENA2 may have different locations in
the endomembranes of their original organisms. Disruption of the
ena2 gene of U. maydis does not produce any growth defect that has
been so far detected but the double Δena1 Δena2 strain shows
sensitivity to a component of bacteriological peptones at low external
pH. Currently, it is unknown whether the defect is related to an
abnormal cytoplasmic pH regulation or to the dysfunction of an
organelle, which has not been identified so far. However, the first
possibility seems unlikely because at low pH, Na+/H+ antiporters can
substitute for ENA ATPases in the regulation of the cellular pH.

We have already mentioned a certain parallelism between fungal
and bryophyte ENA ATPases regarding the number of genes, and lack
of functional expression of some of these genes in S. cerevisiae. Again,
it seems likely that in both P. patens and M. polymorpha one ENA
ATPase localizes mainly to the plasma membrane [11] and others
mainly to internal membranes (Fig. 8 shows the yeast expression of
MpENA2). As regards to putative representatives of endomembranes
ENA ATPases, there are similarities but also remarkable differences
between the fungal, UmENA2, and the bryophyte, PpENA2. They are
similar in that their transcript expressions are very low in normal
conditions and highly expressed at high pH with Na+. However, they
are different because the expression of UmENA2 transcripts is not
induced by K+ starvation [33] while PpENA2 transcripts are highly
induced by K+ starvation.

Although a comprehensive investigation of the function of ENA
ATPases in endomembranes is still pending, by similarity with plasma
yces cerevisiae B31 (Δena1-4 Δnha1) cells. A, B, and C, GFP fluorescence. D, E, and F, DIC
A2-GFP are compatible with endoplasmic reticulum expressions. NcENA2-GFP seems to

image of Fig.�8
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membrane ENA ATPases a likely function of endomembrane ENA
ATPases is the regulation of Na+ or K+ contents and consequently of
the organelle pH. When the organelle pH is lower than the cytosolic
pH, H+ pumping mediated by the V-ATPase or V-PPase [94–96] in
cooperation with passive transporters [97] can regulate the pH.
Among these cooperative transporters, K+ (or Na+)/H+ antiporters
seem crucial in fungi and plants as a pathway for the return of H+ to
the cytosol [70,98–101]. In contrast with this, when the pH of the
organelle is more alkaline than the cytosol, e.g. peroxisomes [102], K+

(or Na+)/H+ antiporters cannot mediate the effective return of H+ to
the cytosol and a different system is necessary. An ENA ATPase that
exchanges lumenal H+ with cytoplasmic K+ is an obvious candidate
to fulfill the function of the antiporter when the ΔpH would drive K+

out of the organelle's lumen instead of into the organelle (Fig. 7).
Although in fungal species with two or more ENA genes distinct
functionsmay be performed by specific isoforms, species with a single
ENA gene might express an ENA ATPase that at least transitorily
localizes in endomembranes, as proposed for the Na+,K+-ATPase
[103]. The metabolomic changes produced by the overexpression of
PpENA1 in rice and barley [19] might be explained by this mechanism
[11].

While there are reasonable grounds for assuming that of the ENA
ATPase plays a role in the control of the pH of some organelle it has to
be mentioned that the disruptions of the ena2 gene in U. maydis [33]
and PpENA2 in P. patens [11] did not produce any detectable effect,
except the abovementioned defective growth in peptone of U. maydis.

5. Technological and pharmacological interest

Research progress made on the ENA ATPases has two prospective
applications: as a drug target in protozoan and fungal pathogenesis,
and for improving Na+ tolerance in crop plants.

In certain regions and risk populations, protozoan [104,105] and
fungal [106,107] infections produce serious diseases, for which the
number of chemotherapeutics is limited. The ENA ATPase does not
have a functional homologue in animal cells and, therefore, is a
potential target for antiparasitic and antifungal drugs. This possibility
has been reviewed for other P-type ATPases [108]. To be a convenient
drug target, the ENA ATPase has to fulfill two conditions: (i) that its
inhibition results in the growth inhibition of the pathogen and (ii)
that specific drugs can be designed against it; the ENA ATPase fulfills
both. The first condition is fulfilled in C. neoformans, in which the
mutation of the ENA1 gene produces avirulence [17]. Information for
the second condition comes from two drugs, furosemide and
miltefosine. Furosemide is a well-known loop diuretic, which inhibits
the Na–K–Cl cotransporter [109] and that also inhibits the ouabain-
insensitive Na-ATPase of E. histolytica [15], T. cruzi [12,16] and L.
amazonensis [40]. Miltefosine inhibits the growth of Leishmania and T.
cruzi probably through the inhibition of the Na+-ATPase [16]. In T.
cruzi the inhibited Na+-ATPase is likely to be the ENA ATPase [14].

All this information has been obtained recently and very little is
known about the exact point of the pathogenic cycle in which the
inhibition of the ENA ATPase is lethal for the pathogen. The important
aspect of this line of research is that it opens up new perspectives in
the control of two types of diseases for which the number of available
drugs is limited [104,110].

The use of the ENA ATPase for improving Na+ tolerance has
substantial empiric support. Salinity is a detrimental problem of
agriculture, in part due to the toxicity of Na+ in plant cells [111,112].
This toxicity is limited by a very important Na+ extrusion process in
the roots of probably all flowering plants [113–115] and the question
is whether a Na+/H+ antiporter can mediate Na+ extrusion in all
conditions and in which ones, if any, the ENA ATPase would be
beneficial. According to our previous discussion about antiporters and
the ENA ATPase, the determinant factor is soil pH but another factor
has to be considered, the extensive Na+ exchange that takes place in
plant roots [113–115] in which a high proportion of the Na+ taken up
is rapidly extruded to the external medium. For example, in durum
wheat Na+ efflux may amount to as much as 99% of the Na+ influx
[116]. Considering this high Na+ exchange the mechanism of the Na+

efflux is an important detail because in conditions of salinity the
resulting futile cycle of Na+ exchange may represent an unbearable
energetic price for the plant [117]. The energetic price of an
electroneutral antiporter coupled to the H+-ATPase is one ATP per
Na+ extruded assuming that the stoichiometry of the H+-ATPase is
one H+ pumped out per cycle of the enzyme [118]. In contrast,
although the stoichiometry of the ENA ATPase is unknown, consid-
ering the stoichiometry of the Na,K-ATPase [119], it may pump more
than one Na+ per ATP hydrolyzed (Fig. 7). In summary, the
independence from a ΔpH driving force and a possible high energetic
efficiency in relation to Na+/H+ antiporters make the ENA ATPase an
attractive enzyme for improving Na+ tolerance in flowering plants.

The abovementioned uncertainties regarding the use of the ENA
ATPase for improving the Na+ tolerance of flowering plants need to be
solved empirically, but, so far, the number of experiments is limited to
very few cases [18–20]. Furthermore, the ENA ATPases used in these
experimentswere of the type that does not discriminate betweenNa+

and K+, which may be inappropriate for increasing the Na+ tolerance
in cells that only tolerate low Na+ concentrations. This reason could
explain the better performance of the Na+ specific SpSod2 antiporter
[120,121] than the ENA ATPase [19,20] for improving plant Na+

tolerance.

6. Concluding remarks

Although the ENA ATPase was discovered nineteen years ago
current knowledge about this ATPase is still limited. The notion that
this pump was a dispensable enzyme in S. cerevisiae without a clear
biotechnological use has probably contributed to the low interest that
this ATPase has attracted. However, its universal presence in fungi and
extensive presence in bryophytes and protozoa as well as possible
biotechnological applications are having a direct impact on the
biological attractiveness of the ENA ATPase. Furthermore, the function
of the ENA ATPase in endomembranes opens up a new field of
research on this ATPase.

Acknowledgements

The data presented in Figs. 6 and 8 are unpublished results of
Blanca Garciadeblás. We thank her for allowing us to include these
figures in this review. This work was supported by the Spanish
Ministerio de Ciencia e Innovación and by the ERDF European
program through grant no. AGL2007-61075. Additional financial
support was provided by DGUI-UPM Research Group Program.

References

[1] V.P. Skulachev, Membrane Bioenergetics, Springer-Verlag, Berlin Heidelberg,
1988.

[2] A. Rodríguez-Navarro, Potassium transport in fungi and plants, Biochim.
Biophys. Acta 1469 (2000) 1–30.

[3] R. Haro, B. Garciadeblas, A. Rodríguez-Navarro, A novel P-type ATPase from yeast
involved in sodium transport, FEBS Lett. 291 (1991) 189–191.

[4] A. Rodríguez-Navarro, J. Asensio, An efflux mechanism determines the low net
entry of lithium in yeast, FEBS Lett. 75 (1977) 169–172.

[5] A. Rodríguez-Navarro, M.D. Ortega, The mechanism of sodium efflux in yeast,
FEBS Lett. 138 (1982) 205–208.

[6] E.D. Sancho, E. Hernández, A. Rodríguez-Navarro, Presumed sexual isolation in
yeast populations during production of sherrylike wine, Appl. Env. Microbiol. 51
(1986) 395–397.

[7] B. Benito, F.J. Quintero, A. Rodríguez-Navarro, Overexpression of the sodium
ATPase of Saccharomyces cerevisiae. Conditions for phosphorylation from ATP
and Pi, Biochim. Biophys. Acta 1328 (1997) 214–225.

[8] M.A. Bañuelos, A. Rodríguez-Navarro, P-type ATPases mediate sodium and
potassium effluxes in Schwanniomyces occidentalis, J. Biol. Chem. 273 (1998)
1640–1646.



1852 A. Rodríguez-Navarro, B. Benito / Biochimica et Biophysica Acta 1798 (2010) 1841–1853
[9] B. Benito, B. Garciadeblás, A. Rodríguez-Navarro, Potassium- or sodium-efflux
ATPase, a key enzyme in the evolution of fungi, Microbiology 148 (2002)
933–941.

[10] B. Benito, A. Rodríguez-Navarro, Molecular cloning and characterization of a
sodium-pump ATPase of the moss Physcomitrella patens, Plant J. 36 (2003)
382–389.

[11] A. Fraile-Escanciano, B. Garciadeblás, A. Rodríguez-Navarro, B. Benito, Role of
ENA ATPase in Na+ efflux at high pH in bryophytes, Plant Mol. Biol. 71 (2009)
599–608.

[12] C. Caruso-Neves, M. Einicker-Lamas, C. Changas, M.M. Oliveira, A. Vieyra, A.G.
Lopes, Ouabain-insensitive Na+-ATPase activity in Trypanosoma cruzi epimas-
tigotes, Z. Naturforch. 54c (1999) 100–104.

[13] J.K. Stiles, Z. Kucerova, B. Sarfo, C.A. Meade, W. Thompson, P. Shah, L. Xue, J.C.
Meade, Identification of surface-membrane P-type ATPases resembling fungal K
+- and Na+-ATPases, in Trypanosoma brucei, Trypanosoma cruzi and Leishmania
donovani, Ann. Trop. Med. Parasit. 97 (2003) 351–366.

[14] K. Iizumi, Y. Mikami, M. Hashimoto, T. Nara, Y. Hara, T. Aoki, Molecular cloning
and characterization of ouabain-insensitive Na+-ATPase in the parasitic protist
Trypanosoma cruzi, Biochim. Biophys. Acta 1758 (2006) 738–746.

[15] A.M. De-Souza, E.J.O. Batista, A.A.d.S. Pinheiro, M. Carvalhaes, A.G. Lopes, W. De-
Souza, C. Caruso-Neves, Entamoeba histolytica: ouabain-insensitive Na+-ATPase
activity, Exp. Parasitol. 117 (2007) 195–200.

[16] V.B. Saraiva, M. Wengert, E. Gomes-Quintana, N. Heise, C. Caruso-Neves, Na+-
ATPase and protein kinase C are targets to 1-O-hexadecylphosphocoline
(miltefosine) in Trypanosoma cruzi, Arch. Biochem. Biophys. 481 (2009) 65–71.

[17] A. Idnurm, F.J. Walton, A. Floyd, J.L. Reedy, J. Heitman, Identification of ENA1 as a
virulence gene of the human pathogenic fungus Cryptococcus neoformans
through signature-tagged insertional mutagenesis, Eukaryot. Cell 8 (2009)
315–326.

[18] H. Nakayama, K. Yoshida, A. Shinmyo, Yeast plasma membrane Ena1p ATPase
alters alkali-cation homeostasis and confers increased salt tolerance in tobacco
cultured cells, Biotechnol. Bioeng. 85 (2004) 776–789.

[19] A. Jacobs, C. Lunde, A. Bacic, M. Tester, U. Roessner, The impact of constitutive
heterologous expression of a moss Na+ transporter on the metabolomes of rice
and barley, Metabolomics 3 (2007) 307–317.

[20] X. Kong, X. Gao, W. Li, J. Zhao, Y. Zhao, H. Zhang, Overexpression of ENA1 from
yeast increases salt tolerance in Arabidopsis, J. Plant Biol. 51 (2008) 159–165.

[21] K.B. Axelsen, M.G. Palmgren, Evolution of substrate specificities in the P-type
ATPase superfamily, J. Mol. Evol. 46 (1998) 84–101.

[22] J. Barrero-Gil, B. Garciadeblás, B. Benito, Sodium, potassium-ATPases in algae and
oomycetes, J. Bioenerg. Biomembr. 37 (2005) 269–278.

[23] N. Corradi, I.R. Sanders, Evolution of the P-type II ATPase gene family in the fungi
and presence of structural genomic changes among isolates of Glomus
intraradices, BMC Evol. Biol. 6 (2006) 21.

[24] A.G. Sáez, E. Lozano, A. Zaldívar-Riverón, Evolutionary history of Na, K-ATPase
and their osmoregulatory role, Genetica 136 (2009) 479–490.

[25] M.D. Thever, M.H.J. Saier, Bioinformatic characterization of P-type ATPases
encoded within fully sequenced genomes of 26 eukaryotes, J. Membrane Biol.
229 (2009) 115–130.

[26] Y. Suzuki, S. Ueno, R. Ohnuma, N. Koyama, Cloning, sequencing and functional
expression in Escherichia coli of the gene for a P-type Na+-ATPase of a facultative
anaerobic alkaliphile, Exiguobacterium aurantiacum, Biochim. Biophys. Acta 1727
(2005) 162–168.

[27] Y. Watanabe, T. Iwaki, Y. Shimomno, A. Ichimiya, Y. Nagaoka, Y. Tamai,
Characterization of the Na+-ATPase gene (ZENA1) from the salt-tolerant yeast
Zygosaccharomyces rouxii, J. Biosci. Bioeng. 88 (1999) 136–142.

[28] B. Benito, B. Garciadeblas, A. Rodríguez-Navarro, Molecular cloning of the
calcium and sodium ATPases in Neurospora crassa, Mol. Microbiol. 35 (2000)
1079–1088.

[29] A. Almagro, C. Prista, B. Benito, M.C. Lourero-Dias, J. Ramos, Cloning and
expression of two genes coding for sodium pumps in the salt-tolerant yeast
Debaryomyces hansenii, J. Bacteriol. 183 (2001) 3251–3255.

[30] Z. Caracuel, C. Casanova, M.I.G. Roncero, A. Di-Pietro, J. Ramos, pH response
transcription factor PacC controls salt stress tolerance and expression of the Na
+-ATPase Ena1 in Fusarium oxysporum, Eukaryot. Cell 2 (2003) 1246–1252.

[31] A. Gorjan, A. Plemenitas, Identification and characterization of ENA ATPases
HwENA1 and HwENA2 from the halophilic black yeast Hortaea werneckii, FEMS
Microbiol. Lett. 265 (2006) 41–50.

[32] M.J. Hernandez-Lopez, J. Panadero, J.A. Prieto, F. Randez-Gil, Regulation of salt
tolerance by Torulaspora delbrueckii calcineurin target Crz1p, Eukaryot. Cell 5
(2006) 469–479.

[33] B. Benito, B. Garciadeblás, J. Pérez-Martín, A. Rodríguez-Navarro, Growth at
high pH and sodium and potassium tolerance in media above the cytoplasmic
pH depend on ENA ATPases in Ustilago maydis, Eukaryot. Cell 8 (2009)
821–829.

[34] M. Ghislain, A. Goffeau, D. Halachmi, Y. Eilan, Calcium homeostasis and transport
are affected by disruption of cta3, a novel gene encoding Ca2+-ATPase in
Schizosaccharomyces pombe, J. Biol. Chem. 265 (1990) 18400–18407.

[35] D. Halachmi, M. Ghislain, Y. Eilam, An intracellular ATP-dependent calcium
pump within the yeast Schizosaccharomyces pombe, encoded by the gene cta3,
Eur. J. Biochem. 207 (1992) 1003–1008.

[36] M.L. Berbee, J.W. Taylor, Dating the evolutionary radiations of the true fungi, Can.
J. Bot. 71 (1993) 1114–1127.

[37] H. Wang, Z. Xu, L. Gao, B. Hao, A fungal phylogeny based on 82 complete
genomes using the composition vector method, BMC Evol. Biol. 9 (2009)
195.
[38] B. Garciadeblas, B. Benito, A. Rodríguez-Navarro, Plant cells express several
stress calcium ATPases but apparently no sodium ATPase, Plant Soil 235 (2001)
181–192.

[39] E.A. Kiegle, M.A. Bisson, Plasma membrane Na+ transport in a salt-tolerant
Charophyte. Isotopic fluxes, electrophysiology, and thermodynamics in plant
adapted to saltwater and freshwater, Plant Physiol. 111 (1996) 1191–1197.

[40] E.E. Almeida-Amaral, C. Caruso-Neves, V.M.P. Pires, J.R. Meyer-Fernandes,
Leishmania amazonensis: characterization of an ouabain-insensitive Na+-ATPase
activity, Exp. Parasitol. 118 (2008) 165–171.

[41] A.G. Lee, Ca2+-ATPase structure in the E1 and E2 conformations: mechanism,
helix–helix and helix–lipid interactions, Biochim. Biophys. Acta 1565 (2002)
246–266.

[42] P.A. Pedersen, J.R. Jorgensen, P.L. Jorgensen, Importance of conserved ∝-subunit
segment 709GDGVND for Mg2+ binding, phosphorylation, and energy
transduction in Na, K-ATPase, J. Biol. Chem. 275 (2000) 37588–37595.

[43] P.L. Jorgensen, P.A. Pedersen, Structure–function relationships of Na+, K+, ATP,
or Mg2+ binding and energy transduction in Na, K-ATPase, Biochim. Biophys.
Acta 1505 (2001) 57–74.

[44] D.L. Stokes, N.M. Green, Structure and function of the calcium pump, Annu. Rev.
Biophys. Biomol. Struct. 32 (2003) 445–468.

[45] F. Di-Leva, T. Domi, L. Fedrizzi, D. Lim, E. Carafoli, The plasma membrane Ca2+

ATPase of animal cells: structure, function and regulation, Arch. Biochem.
Biophys. 476 (2008) 65–74.

[46] K.J. Sweadner, C. Donnet, Structural similarities of Na, K-ATPase and SERCA, the
Ca2+ ATPase of the sarcoplasmic reticulum, Biochem. J. 356 (2001) 685–704.

[47] L.D. Faller, Mechanistic studies of sodium pump, Arch. Biochem. Biophys. 476
(2008) 12–21.

[48] C. Toyoshima, Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic
reticulum, Arch. Biochem. Biophys. 476 (2008) 3–11.

[49] C. Toyoshima, How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum
membrane, Biochim. Biophys. Acta 1793 (2009) 941–946.

[50] L.A. Kelley, M.J.E. Sternberg, Protein structure prediction on the Web: a case
study using the Phyre server, Nat. Protoc. 4 (2009) 363–371.

[51] J. Wieland, A.M. Nitsche, J. Strayle, H. Steiner, H.K. Rudolph, The PMR2 gene
cluster encodes functionally distinct isoforms of a putative Na+ pump in the
yeast plasma membrane, EMBO J. 14 (1995) 3870–3882.

[52] J.V. Møller, B. Juul Test, M.l. Maire, Structural organization, ion transport, and
energy transduction of P-type ATPases, Biochim. Biophys. Acta 1286 (1996)
1–51.

[53] D.M. Clarke, T.W. Loo, G. Inesi, D.H. MacLennan, Location of high affinity Ca2+-
binding sites within the predicted transmembrane domain of the sarcoplasmic
reticulum Ca2+-ATPase, Nature 339 (1989) 476–478.

[54] J.P. Morth, B.P. Pedersen, M.S. Toustrup-Jensen, T.L.M. Sørensen, J. Petersen, J.P.
Andersen, B. Vilsen, P. Nissen, Crystal structure of sodium–potassium pump,
Nature 450 (2007) 1043–1050.

[55] C. Toyoshima, M. Nakasako, H. Nomura, H. Ogawa, Crystal structure of the
calcium pump of sarcoplasmic reticulum at 2.6 A resolution, Nature 405 (2000)
647–655.

[56] Y. Watanabe, Y. Shimono, H. Tsuji, Y. Tamai, Role of the glutamic and aspartic
residues in Na+-ATPase function in the ZrENA1 gene of Zygosaccharomyces
rouxii, FEMS Microbiol. Lett. 209 (2002) 39–43.

[57] T. Yamaguchi, G.S. Aharon, J.B. Sottosanto, E. Blumwald, Vacuolar Na+/H+

antiporter cation selectivity is regulated by calmodulin from within the vacuole
in a Ca2+- and pH-dependent manner, Proc. Natl. Acad. Sci. U. S. A. 102 (2005)
16107–16112.

[58] B. Garciadeblas, F. Rubio, F.J. Quintero, M.A. Bañuelos, A. Rodríguez-Navarro,
Differential expression of two genes encoding isoforms of the ATPase involved in
sodium efflux in Saccharomyces cerevisiae, Mol. Gen. Genet. 236 (1993) 363–368.

[59] I. Mendoza, F. Rubio, A. Rodríguez-Navarro, J.M. Pardo, The protein phosphatase
calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae, J. Biol.
Chem. 269 (1994) 8792–8796.

[60] A. Ferrando, S.J. Kron, G. Ríos, G.R. Fink, R. Serrano, Regulation of cation transport
in Saccharomyces cerevisiae by the salt tolerance gene HAL3, Mol. Cell. Biol. 15
(1995) 5470–5481.

[61] G. Ríos, A. Ferrando, R. Serrano, Mechanisms of salt tolerance conferred by
overexpression of the HAL1 gene in Saccharomyces cerevisiae, Yeast 13 (1997)
515–528.

[62] A. Ruiz, J. Ariño, Function and regulation of the Saccharomyces cerevisiae ENA
sodium ATPase system, Eukaryot. Cell 6 (2007) 2175–2183.

[63] J. Ariño, J. Ramos, H. Synchrová, Alkali metal cation transport and homeostasis in
yeast, Microbiol. Mol. Biol. Rev. 74 (2010) 95–120.

[64] A. Spielvogel, H. Findon, H.N.J. Arst, L. Araúzo-Bazán, P. Hernández-Ortiz, U.
Stahl, V. Meyer, E.A. Espeso, Two zinc finger transcription factors, CrzA and SltA,
are involved in cation homoeostasis and detoxification in Aspergillus nidulans,
Biochem. J. 414 (2008) 419–429.

[65] V. Niggli, E. Sigel, Anticipating antiport in P-type ATPases, Trends Biochem. Sci.
33 (2008) 156–160.

[66] C.L. Slayman, Electrical properties of Neurospora crassa. Effects of external
cations on the intracellular potential, J. Gen. Physiol. 49 (1965) 69–92.

[67] A. Rodríguez-Navarro, M.R. Blatt, C.L. Slayman, A potassium-proton symport in
Neurospora crassa, J. Gen. Physiol. 87 (1986) 649–674.

[68] J.H. Kaplan, Biochemistry of Na, K-ATPase, Annu. Rev. Biochem. 71 (2002)
511–535.

[69] R.C. Thomas, The plasma membrane calcium ATPase (PMCA) of neurones is
electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded, J. Physiol.
587 (2009) 315–327.



1853A. Rodríguez-Navarro, B. Benito / Biochimica et Biophysica Acta 1798 (2010) 1841–1853
[70] C.L. Brett, M. Donowitz, R. Rao, Evolutionary origins of eukaryotic sodium/proton
exchangers, Am. J. Physiol. Cell Physiol. 288 (2005) C223–C239.

[71] E. Padan, E. Bibi, M. Ito, T.A. Krulwich, Alkaline pH homeostasis in bacteria: new
insights, Biochim. Biophys. Acta 1717 (2005) 67–88.

[72] M.V. Radchenko, K. Tanaka, R. Waditee, S. Oshimi, Y. Matsuzaki, M. Fukuhara, H.
Kobayashi, T. Takabe, T. Nakamura, Potassium/proton antiport system of
Escherichia coli, J. Biol. Chem. 281 (2006) 19822–19829.

[73] M.A. Bañuelos, H. Synchrová, C. Bleykasten-Grosshans, J.-L. Souciet, S. Potier, The
Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium
efflux, Microbiology 144 (1998) 2749–2758.

[74] M.A. Bañuelos, J. Ramos, F. Calero, V. Braun, S. Potier, Cation/H+ antiporters
mediate potassium and sodium fluxes in Pichia sorbitophila. Cloning of the
PsHHA1 and PsNHA2 genes and expression in Saccharomyces cerevisiae, Yeast 19
(2002) 1365–1372.

[75] O. Kinclová, S. Potier, H. Synchrová, Difference in substrate specificity divides the
yeast alkali-metal-cation/H+ antiporters into two subfamilies, Microbiology
148 (2002) 1225–1232.

[76] R. Ohgaki, N. Nakamura, K. Mitsui, H. Kanazawa, Characterization of the ion
transport activity of budding yeast Na+/H+ antiporter, Nha1p, using isolated
secretory vesicles, Biochim. Biophys. Acta 1712 (2005) 185–196.

[77] Z.P. Jia, N. McCullough, R. Martel, S. Hemminngsens, P.G. Young, Gene
amplification at a locus encoding a putative Na+/H+ antiporter confers sodium
and lithium tolerance in fission yeast, EMBO J. 11 (1992) 1631–1640.

[78] K.M. Hahnenberger, Z. Jia, P.G. Young, Functional expression of the Schizosac-
charomyces pombe Na+/H+ antiporter gene, sod2, in Saccharomyces cerevisiae,
Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 5031–5036.

[79] K. Papouskova, H. Synchrova, Yarrowia lipolytica possesses two plasma
membrane alkali metal cation/H+ antiporters with different functions in cell
physiology, FEBS Lett. 580 (2006) 1971–1976.

[80] K. Papouskova, H. Synchrova, Schizosaccharomyces pombe possesses two plasma
membrane alkali metal cation/H+ antiporters differing in their substrate
specificity, FEMS Microbiol. Lett. 7 (2007) 188–195.

[81] L. Pribylova, K. Papouskova, H. Synchrova, The salt tolerant yeast Zygosacchar-
omyces rouxii possesses two plasma-membrane Na+/H+-antiporters (ZrHha1p
and ZrSod2-22p) playing different roles in cation homeostasis and cell
physiology, Fungal Genet. Biol. 45 (2008) 1439–1447.

[82] E. Simón, A. Barceló, J. Ariño, Mutagenesis analysis of the yeast Nha1 Na+/H+

antiporter carboxy-terminal tail reveals residues required for function in cell
cycle, FEBS Lett. 545 (2003) 239–245.

[83] P. Novick, C. Field, R. Schekman, Identification of 23 complementation groups
required for post-translational events in the yeast secretory pathway, Cell 21
(1980) 205–215.

[84] H. Shi, M. Ishitani, C. Kim, J.-K. Zhu, The Arabidopsis thaliana salt tolerance gene
SOS1 encodes a putative Na+/H+ antiporter, Proc. Natl. Acad. Sci. U. S. A. 97
(2000) 6896–6901.

[85] H. Shi, B. Lee, S.-J. Wu, J.-K. Zhu, Overexpression of a plasma membrane Na+/H+

antiporter gene improves salt tolerance in Arabidopsis thaliana, Nat. Biotechnol.
21 (2003) 81–85.

[86] Q.S. Qiu, B.J. Barkla, R. Vera-Estrella, J.K. Zhu, K.S. Schumaker, Na+/H+ exchange
activity in the plasma membrane of Arabidopsis, Plant Physiol. 132 (2003)
1041–1052.

[87] A. Fraile-Escanciano, Y. Kamisugi, A.C. Cuming, A. Rodríguez-Navarro and B.
Benito, The SOS1 transporter of Physcomitrella patens mediates sodium efflux in
planta, New Phytologist (in press).

[88] H.H. Felle, The apoplastic pH of the Zea mays root cortex as measured with pH-
sensitive microelectrodes: aspects of regulation, J. Exp. Bot. 323 (1998) 987–995.

[89] Q. Yu, J. Kuo, C. Tang, Using confocal laser scanning microscopy to measure
apoplastic pH change in roots of Lupinus angustifolius L. in response to high pH,
Ann. Botany 87 (2001) 47–52.

[90] P. Hinsinger, C. Plassard, C. Tang, B. Jaillard, Origins of root-mediated pH changes
in the rhizosphere and their responses to environmental constraints: a review,
Plant Soil 248 (2003) 43–59.

[91] D.E. Carden, D.J. Walker, T.J. Flowers, A.J. Miller, Single-cell measurements of the
contribution of cytosolic Na+ and K+ to salt tolerance, Plant Physiol. 131 (2003)
676–683.

[92] A. Rodríguez-Navarro, F.J. Quintero, B. Garciadeblás, Na+-ATPases and Na+/H+

antiporters in fungi, Biochim. Biophys. Acta 1187 (1994) 203–205.
[93] R. Wright, M. Basson, L. D'Ari, J. Rine, Increased amounts of HMG-CoA reductase

induce “karmellae”: a proliferation of stacked membrane pairs surrounding the
yeast nucleus, J. Cell Biol. 107 (1988) 101–114.

[94] K. Schumacher, Endomembrane proton pumps: connecting membrane and
vesicle transport, Curr. Opin. Plant Biol. 9 (2006) 595–600.

[95] G.A. Martínez-Muñoz, P. Kane, Vacuolar and plasma membrane proton pumps
collaborate to achieve cytosolic pH homeostasis in yeast, J. Biol. Chem. 283
(2008) 20309–20319.
[96] S.S. Samarão, C.E.S. Teodoro, F.E. Silva, C.C. Ribeiro, T.M. Granato, N.R. Bernardes,
C.A. Retamal, A.R. Façanha, A.L. Okorokova-Façanha, L.A. Okorokov, V H+-
ATPase along the yeast secretory pathway: energization of the ER and Golgi
membranes, Biochim. Biophys. Acta 1788 (2009) 303–313.

[97] M. Grabe, G. Oster, Regulation of organelle acidity, J. Gen. Physiol. 117 (2001)
329–343.

[98] K. Venema, A. Belver, M.C. Marín-Manzano, M.P. Rodríguez-Rosales, J.P. Donaire,
A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is
important for K+ ion homeostasis in plants, J. Biol. Chem. 278 (2003)
22453–22459.

[99] S. Mukherjee, L. Kallay, C.L. Brett, R. Rao, Mutational analysis of the
intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion
homoeostasis and vesicle trafficking, Biochem. J. 398 (2006) 97–105.

[100] J.M. Pardo, B. Cubero, E.O. Leidi, F.J. Quintero, Alkali cation exchangers: roles in
cellular homeostasis and stress tolerance, J. Exp. Bot. 57 (2006) 1181–1199.

[101] O. Cagnac, M. Leterrier, M. Yeager, E. Blumwald, Identification and character-
ization of Vnx1p, a novel type of vacuolar monovalent cation/H+ antiporter of
Saccharomyces cerevisiae, J. Biol. Chem. 282 (2007) 24284–24293.

[102] C.W.T. van-Roermund, M. de-Jong, L. Ijist, J. van-Marle, T.B. Dansen, R.J.A.
Wanders, H.R. Waterham, The peroxisomal lumen in Saccharomyces cerevisiae is
alkaline, J. Cell Sci. 117 (2004) 4231–4237.

[103] T. Feldmann, V. Glukmann, E. Medvenev, U. Shpolansky, D. Galili, D. Lichtstein, H.
Rosen, Role of endosomal Na+, K+-ATPase and cardiac steroids in the
regulation of endocytosis, Am. J. Physiol. Cell Physiol. 293 (2007) C885–C896.

[104] P. Borst, M. Ouellette, New mechanisms of drug-resistance in parasitic protozoa,
Annu. Rev. Microbiol. 49 (1995) 427–460.

[105] J.A. Freason, P.G. Wyatt, I.H. Gilbert, A.H. Fairlamb, Target assessment for
antiparasitic drug discovery, Trends Parasitol. 23 (2007) 589–595.

[106] F.C. Odds, A.J.P. Brown, N.A.R. Gow, Antifungal agents: mechanisms of action,
Trends Microbiol. 11 (2003) 272–279.

[107] P.C. Ting, S.S. Walker, New agents to treat life-threatening fungal infections, Curr.
Top. Med. Chem. 8 (2008) 592–602.

[108] L. Yatime, M.J. Buch-Pedersen, M. Musgaard, J.P. Morth, A.M.L. Winther, B.P.
Pedersen, C. Olesen, J.P. Andersen, B. Vilsen, B. Schiøtt, M.G. Palmgren, J.V. Møller,
P. Nissen, N. Fedosova, P-type ATPases as drug targets: tools for medicine and
science, Biochim. Biophys. Acta 1787 (2009) 207–220.

[109] M. Haas, B. Forbush-III, The Na–K–Cl cotransporters, J. Bioenerg. Biomembr. 30
(1998) 161–172.

[110] P.K. Mukherjee, D.J. Sheehan, C.A. Hitchcock, M.A. Ghannoum, Combination
treatment of invasive fungal infections, Clin. Microbiol. Rev. 18 (2005) 163–194.

[111] T.J. Flowers, T.D. Colmer, Salinity tolerance in halophytes, New Phytol. 179
(2008) 945–963.

[112] R. Munns, M. Tester, Mechanisms of salinity tolerance, Annu. Rev. Plant Biol. 59
(2008) 651–681.

[113] H.J. Kronzucker, M.W. Szczerba, M. Moazami-Goudarzi, D.T. Britto, The cytosolic
Na+:K+ ratio does not explain salinity-induced growth impairment in barley: a
dual-tracer study using 42K+ and 24Na+, Plant Cell Environ. 29 (2006)
2228–2237.

[114] B. Wang, R.J. Davenport, V. Volkov, A. Amtmann, Low unidirectional sodium
influx into root cells restricts net sodium accumulation in Thellungiella halophila,
a salt-tolerant relative of Arabidopsis thaliana, J. Exp. Bot. 57 (2006) 1161–1170.

[115] C.M. Wang, J.L. Zhang, X.S. Liu, Z. Li, G.Q. Wu, J.Y. Cai, T.J. Flowers, S.M. Wang,
Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting
unidirectional Na+ influx resulting in a high selectivity for K+ over Na+, Plant
Cell Environ. 32 (2009) 486–496.

[116] R. Davenport, R.A. James, A. Zakrisson-Plogander, M. Tester, R. Munns, Control of
sodium transport in durum wheat, Plant Physiol. 137 (2005) 807–818.

[117] D.T. Britto, H.J. Kronzucker, Ussing's conundrum and the search for transport
mechanisms in plants, New Phytol. 183 (2009) 243–246.

[118] M.G. Palmgren, Plant plasma membrane H+-ATPases: powerhouses for nutrient
uptake, Annu. Rev. Plant Mol. Biol. 52 (2001) 817–845.

[119] P.L. Jorgensen, K.O. Hakansson, S.J.D. Karlish, Structure and mechanism of Na, K-
ATPase: functional sites and their interactions, Annu. Rev. Physiol. 65 (2003)
817–849.

[120] X.H. Gao, Z.H. Ren, Y.X. Zhao, H. Zang, Overexpression of SOD2 increases salt
tolerance of Arabidopsis, Plant Physiol. 133 (2003) 1873–1881.

[121] F. Zhao, S.L. Guo, H. Zang, Y.X. Zhao, Expression of yeast SOD2 in transgenic rice
results in increased salt tolerance, Plant Sci. 170 (2006) 216–224.

[122] M.G. Palmgren, K.B. Axelsen, Evolution of P-type ATPases, Biochim. Biophys. Acta
1365 (1998) 37–45.

[123] J.D. Thompson, The CLUSTAL_X windows interface: flexible strategies for
multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res.
25 (1997) 4876–4882.

[124] R.D.M. Page, TreeView: an application to display phylogenetic trees on personal
computers, Comput. Appl. Biosci. 12 (1996) 357–358.


	Sodium or potassium efflux ATPase
	Introduction
	The ENA ATPase across phyla
	Sequence and structural characteristics
	Functional characteristics
	Na+ and K+ effluxes
	Induction of ENA gene expressions
	ENA ATPase and Na+ or K+/H+ antiporters
	Endomembrane functions

	Technological and pharmacological interest
	Concluding remarks
	Acknowledgements
	References




