
Theoretical

ELSEVIER Theoretical Computer Science 149 (1995) 299-332

Computer Science

Location equivalence in a parametric setting*

Ugo MontanarP *, Daniel Yankelevichb* 1

a Dipartimento di Informatica, Universita di Piss. Corso Italia 40. 56100 Piss, Italy
b Departamento de Computacibn, Universidad de Buenos Aires, Buenos Aires. Argentina

Received February 1993; revised February 1994
Communicated by V. Kotov

Abstract

Location equivalence has been presented in [S] as a bisimulation-based equivalence able to
take into account the spatial distribution of processes.

In this work, the parametric approach of [12] is applied to location equivalence. An
observation domain for localities is identified and the associated equivalence is shown to
coincide with the equivalence introducted in [6,16]. The observation of a computation is
a forest (defined up to isomorphism) whose nodes are the events (labeled by observable actions)
and where the arcs describe the sublocation relation.

We show in the paper that our approach is really parametric. By performing minor changes
in the definitions, many equivalences are captured: partial and mixed ordering causal semantics,
interleaving, and a variation of location equivalence where the generation ordering is not
evidenced. It seems difficult to modify the definitions of [6,16] to obtain the last observation.
The equivalence induced by this observation corresponds to the very intuitive assumption that
different locations cannot share a common clock, and hence the ordering between events
occurring in different places cannot be determined.

Thanks to the general results proved in [12] for the parametric approach, all the observation
equivalences described in this paper come equipped with sound and complete axiomatizations.

1. Introduction

There are many models and theories of concurrency, which differ notationally or on
formal basis or in the assumptions about practical issues. Besides the advantages that

this development can offer, the proliferation of models produces confusion. Even their

classification is difficult, because of the fact that each one uses a different notation,

introduces ad-hoc definitions, and there is no common framework to compare them.

In addition, it is quite likely that there is no best model, since each one emphasizes
different aspects of systems, and hence has advantages in proving some kind of

*Corresponding author. Email addresses: ugo@di.unipi.it and dany@se.uba.ar
*Research partially supported by Hewlett-Packard, Pisa Science Center, within the MDC project.

0304-3975/94/$09.50 @) 1995-El sevier Science B.V. All rights reserved
SSDI 0304-3975(94)00219-3

300 U. Monianari, D. Yankelevich 1 Theoretical Computer Science 149 (1995) 299-332

properties or in specifying a particular type of application. The choice of a model
depends on one’s preference in a particular situation or when specific premises apply.

We restrict ourselves to models equipped with an operational semantics in Plotkin’s
structural operational semantics (SOS) style [23], and have some variation of a bi-
simulation relation [22]. Also, within this class of models, a variety of approaches
have been proposed in the literature. Often a lot of work is redone and several
definitions are rewritten in an ad hoc manner, changing minor points. This redund-
ancy can be avoided by using a general, parametric approach, capable of describing
various models. A parametric approach to the definition of concurrent systems has
been proposed in [12] which is the evolution of ideas already present in [lo]. In its
general outline, this approach consists of four steps:
(1) Define a transition system that captures the desired operational behayior.
(2) Build the possible computations as paths in the transition system, and structure

them as an observation tree (ordering them by prefix).
(3) Define the observations of computations. These appear as labels on the nodes of

the observation tree.
(4) Define an equivalence between observation trees based on the observations

defined in step (3).
The third step characterizes different semantics according to the observations they

utilize. Once the transition system of step (1) has been fixed, and even choosing as the
equivalence of step (4) the same observational equivalence, different observations yield
very different semantic models. Each observation corresponds to distinct assumptions
about what an observer of the system should see. In this way, just by changing the
observation of the computations, many theories are captured. Moreover, this point of
view helps in comparing different semantics, showing how to obtain one from the
other, and gives a common context to classify them (showing that, for example, they
coincide in some of the four steps and differ on others, or showing how the different
observations are related). In particular, a general axiomatization of observational
congruence for (finite) observation trees is given in [12], which is parametric with
respect to the observation. Hence, by defining the semantics within this setting one
automatically gets an axiomatization just as an instance of the general result.

In the present paper, we test this approach with location equivalence [S] which has
been presented as a bisimulation-based equivalence that takes into account the spatial
distribution of processes. Intuitively, the idea is that each action occurs at a location
and locations may have sublocations (for example, a fork operation at some place may
create two sublocations of that place). For CCS, the assumption is that in El E’ the two
subprocesses E and E’ are at different locations.

These semantics, which detect the spatial distribution of events, are very useful. For
example, in a context of faulty processors, or when information about the assignment
process-processor has to be taken into account. For an extended motivation of such
an approach we refer the reader to [S].

The framework for the equivalence proposed in [S, 63 is given by an observer who
can find out where an event takes place, i.e., the location where an action occurs. More

(1. Montanari, D. Yankeievich / Theoretical Computer Science 149 (1995) 299-332 301

precisely, a dynamic mechanism is given to determine the relative location of an event
with respect to the locations of previous events. Hence, it is possible to discern if
a number of events occur in the same place or if they are distributed over many
locations.

This proposal takes spatial information into account, but not causal information.

A causal relation between events describes the necessary conditions to enable an
event. There are some examples which are distinguished using a causality-sensitive
equivalence [1 l] and not using location equivalence, but there are also examples for
which the location approach is more discriminating.

For example, consider the two CCS processes:

u./l.y.NZL and (a.G.NZL~~.~.~.NZL~E.y.NZL)\G\e

both of which can perform a sequence of three actions, with the causal relation
between action occurrences forming a total ordering on both processes. However, the
former executes the actions in one location and the latter executes each action at
a different location. From a causal point of view both processes are equivalent, but
when examining their locations they are different. In this work we show examples of
processes which are equivalent with respect to the spatial distribution of events but
not with respect to the causal relationship between events.

The idea of defining a process algebra’s semantics which are sensitive to the spatial
distribution of the bisimulation testing methodology goes back to the work of [7] on
distributed bisimulation. However, recent developments [S, 6,163 have made it easier
to embed this approach in the parametric setting outlined above.

In this paper, we fully separate the different conceptual levels of the theory
presented in [6], and give an alternative characterization of the proposed semantics.
We identify an observation domain for localities and we show that the resulting
equivalence coincides with the equivalence introduced in [6,16]. It turns out that
these observations constitute a very simple domain: the observation of a computation
is a forest (defined up to isomorphism) whose nodes are the events (labeled with
observable actions) and where the arcs describe the sublocation relation. We statically
characterize the sublocation relation for CCS by very simple rules. For example,
the forests corresponding to the maximal computations of the terms
a.fi.y.NZL and (a.6.NZLI~.j?.&.NZLIE.y.NZL)\E\G are shown in Fig. l(a) and(b),
respectively. The natural numbers in the events denote the (total) generation ordering,
i.e., the ordering in which events occur.

Reducing an ad hoc definition to a particular instance of a parametric approach is
worthwhile, because
l it is convenient to use a general theory as it lets us reuse general theorems,

axiomatizations or parametric tools; and
l the resulting characterization clarifies details and highlights points, which could be

hidden in the ad hoc definition, helping in the development of new semantics or in
testing new ideas.

302 U. Montanari, D. Yankelevich 1 Theoretical Computer Science 149 (1995) 299-332

Fig. 1. Observations for localities.

In [7] there is no clear cut separation between the operational semantics of the
language, the description of observation (i.e., the assumptions on what an observation
of the system is) and the mechanism of the equivalence (i.e., the assumptions on how
computations are organized and how the bisimulation is calculated).

In [5,6,16] for localities and also in [S, 161 for causal mixed orderings, the
transition system that defines the operational semantics is given specifically for the
observation. In particular, the states are terms of an enriched language which captures
some of the structure of the observations (for example, including causes explicitly in
the syntax of the terms). This means that some kind of unfolding of the original
transition system is performed, where states have information about the computations
that can reach them and their observations. For example, in [6], the transition system
corresponding to ret x. EX has no cycle, since in each transition, a prefix of the form 1::
is introduced. Hence, the right-hand side of transitions always grow. This definition
also implies that the transition systems of [S, 6,161 are infinitely branching, since in
each transition a name for a location can be arbitrarily chosen from an infinite set of
location names.

We show in this paper that our approach is really parametric. By slightly altering
definitions, many equivalences are obtained, such as partial and mixed ordering
causal semantics, interleaving, and a variation of location equivalence where
the generation ordering is not evidenced. It is difficult to modify the definitions of [6]
to obtain the last observation. The equivalence induced by this observation corres-
ponds to the intuitive assumption that different locations may not share a common
clock; hence, the ordering between events occurring in different places cannot be
determined.

Thanks to the general results proved in [12] for the parametric approach, all the
observation equivalences described in the paper come equipped with sound and
complete axiomatizations.

lJ. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 303

In Section 2 we introduce spatial terms, which provide the notation for the spatial
distribution of events, along with the observation domain for localities. In Section 3,
we recall the notion of an observation tree from [12] and we enunciate the main result
of the work: the equivalence defined in this paper coincides with the location
equivalence of [6,16]. Section 4 presents the other observations and Section 5 dis-
cusses some related work.

This paper is the revised and full version of [21], and contains the proof of the
coincidence of the parametric location equivalence as defined here and the location
equivalence of [6]. The definition of spatial information for CCS and of the opera-
tional semantics is done here in an algebraic way, by means of a structured transition
system following [14,25], instead of an ad hoc transition system as in [21].

2. Observing spatial distribution

2.1. Spatial information for CCS

We develop the first step of the methodology skechted out in the introduction for
CCS [19]. The first step of our approach concerns the definition of the operational
semantics associated with a language.

This leads to the question of what a programming/specification language is. We do
not address here this problem with much detail, but we need to answer this question at
least for CCS.

It is unsatisfactory to consider a language from a syntactic point of view only. On
the other hand, to fix a syntax and a semantics for a language is too rigid. For
instance, expressions such as “a truly concurrent semantics for CCS”, “three semantics
for CCS”, etc., which have appeared in the literature would not make sense in that
case, since a language would only have one semantics. Hence, programming and
specification languages have often been considered to be the syntax together with
some “basic” meaning. This meaning restricts the range of interpretations that can be
given to the operations, but does not completely fix the abstraction level in which
a language has to be described (for example, it says that the 1 operator of CCS is
intended to be the parallel combinator but not whether parallelism can be reduced or
not to nondeterminism).

This can be formalized by specifying a class of admissible meanings, leaving open
which particular model of the class is chosen in each case. One way of specifying
a class of models is to constrain the possible meanings by presenting the syntax with
a concrete semantics for the language. The admissible models are those which are
obtained from this semantics by abstracting some details.

In the context of bisimulation semantics it is well known what such concrete
semantics are. Usually, a language is equipped with an operational semantics, given
by SOS rules. These rules form a (natural) deductive system. A transition between two
states is allowed if and only if it can be proved in the formal system. We thus assume

304 U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332

that all the information about the intended operational behavior of a language is
given by its SOS rules. Hence, all the information about a particular transition from
one state to another is given by the proof of the transition in the natural deduction
system defined by the SOS rules.

The idea of extracting information from proofs of transitions has been proposed in
[4]. Here, we associate an n-ary operator with each rule with n premises, obtaining an
algebra whose terms are proofs of the SOS deduction system. Instead of considering
transitions labeled by proofs, as in [4], here the transitions are terms of this algebra,
whose operations are proof constructors. In this way, the concrete semantics of
a language is given in a similar way as the abstract syntax: as terms of an algebra.

A language, then, is defined by a two-sorted algebra, with one sort for the states
which are the terms of the language (whose operations are the constructors of the
language) and a sort for transitions, whose terms are proofs and whose operations are
proof constructors. For CCS this algebra has been presented in [20,14]. However,
instead of many-sorted algebras, we use here typed algebras [18].

Typed algebras are not formally introduced here. For the present paper it is enough
to say that typed algebras are one-sorted algebras equipped with a binary typing
relation on the carrier. The signature and set of axioms that define an algebra (or
a class of algebras) is called presentation. Typed algebras presentations consist of
conditional formulas of the form r implies r’, where r, r’ are sets of atomic formulas.
An atomic formula can be either an axiom of the form t = t’ or a typing rule of the
form t + t’, which are interpreted as “t and t’ denotes the same element” and “t’ is the
type oft”, respectively. Sets of formulas are interpreted as conjunctions. There is a full
calculus (similar to equational calculus) for typed algebras presentations, called
equational typed logic. Any typed algebra presentation has an associated class of
models, the class of algebras satisfying the presentation, which has an initial algebra
[18]. In what follows, we introduce the language CCS in this style.

Definition 1 (CCS agents). Let A be a denumberable set of action names, ranged over
by a, /I. Let d be the set of action complements (i.e. a) for all a E A, and r an action not
appearing in A, d. Let n = A u 2 u {z}, ranged over by /J. Function is extended to all
of A u din such a way that B = a. Let X be a set of process variables, ranged over by
x. A relubelling function @ is a function from n to n which respects T and the
- operation.

The syntax of CCS is given by the following grammar;

e ::= nil, p.e,e + e’,ele’,e[@],e\a,recx. e

and CCS terms respect the following axiom:

e [ret x. e/x] = ret x. e

where e[e’/x] denotes the substitution in e of x by e’.
CCS agents (denoted E, El, E2, etc.) are those terms which are closed (without free

variables) and guarded (each variable appears within a p. context).

U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 305

The definition above can be viewed as a typed algebra presentation. For instance,
a production e ::= ,u.e of the grammar is interpreted as the conditional formula
e + term, p + action implies p.e + term. As usual, the type of a variable can be inferred
from the symbol used to denote it. Recursion is handled with the unfolding axiom
e[rec x. e/x] = ret x. e.

We assume that CCS agents have the type CCS. A type system assigning type CCS
only to closed and guarded CCS terms can be expressed within typed algebras, but it
is not particularly simple or suggestive [25]. The substitution operation can also be
formalized in this context by means of axioms and typing rules. As usual, we skip the
final nil in the agents, i.e., cr.nil is abbreviated a.

Definition 2 (CCS transition rules)

(4 [/A, E):p.E 4 E

@es)
t:EI s Ez, cc + 0% B>

t\P : E,\B s Ez\B

W)
t:E, 4 E2

t[@]:E1[@]=Ez[@]

(sum)
t:E, % E2 t:E, % E2

t< +E:E,+EIft E2 E+ >t:E+E, % E2

(par)
t:E, % E2 t:El % ES

tjE:E,lE % EzlE ELt:EIE, 4 EIEz

(vd
t:El % E2, t’:E; 5 E;

tlt’:E,IE; I-, E,JE;

In terms of type algebras, the rule

t:EI 1?, E2

tlE:E,jE II, EzlE

has the following formal meaning. First, the notation t: El % E2 represents the

formula t + transition, El, E2 + CCS, source(t) = El, target(t) = Ez, l(t) = p, where
source, target and 1 are functions intended to denote the source, the target and the
labeling of a transition. Thus the conditional formula associated with the above rule is
t + transition, source(t) = El, target(t) = El, l(t) = p, E + CCS implies tJE +
transition, source(tJ E) = El I E, target(tj E) = E2 I E, l(t J E) = p.

306 U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332

For example, given the rules in Definition 2, using equational typed logic we can
prove that

mvwoJY)\Y :((4B)lv)\r s (WlB)lY)\Y

where the term (([a, nil) Jfi)]y)\y describes the proof of the transition

((~118) I y)\y 5 ((nill/3) I y)\y in the SOS deductive system.

Our aim is to represent and to collect the spatial information which is present in
CCS agents. Each CCS agent represents many sequential components assembled by
the) constructor. That is, in the agent EIE’ we assume that agents E and E’ are in two
different places. The spatial information associated with CCS transitions can be
extracted from proofs. Before doing this, however, we have to show how to represent
explicitly spatial information.

Definition 3 (Spatial terms). Spatial terms are defined by the following (abstract)
syntax: S ::= 0, 0, SI S, and respect the following axiom: 010 = 8.

If we accept that the structure given by I in a CCS agent determines the distri-
buted nature of a number of sequential components, spatial terms reflect this
structure. A spatial term gives the place of a component or of a group of com-
ponents.

Intuitively, spatial terms are used to describe information about the physical
distribution of events. For instance, the term 010 describes a place having an idle
component at the right, and *I* describes the locality of an event which is
performed simultaneously on both sides of the system (a synchronization).
The locality of the occurrence of the action CI in ((cxl fl)l y)\y is described by the

term Pl0)10.
Notice that spatial terms with one bullet describe the occurrence of actions, while

spatial terms with two bullets correspond to communications. Spatial terms with
more than two bullets cannot be obtained in CCS, but can be obtained in process
algebras whose mechanisms of communication allow synchronizations of more than
two processes.

The following grammar defines the type ST, of spatial terms with exactly one
bullet.

Definition 4 (Type ST,). Spatial terms with one bullet are defined by

ST, :I= 0, ST,l0,0lSTu

We define a relation 6 between spatial terms which represents sublocality:
a spatial term s of type ST, is a sublocality of another ST, term s’ if and only ifs < s’.
For instance, l I@ 4 el0)10.

Ui. Montanari, D. Yankelevich 1 Theoretical Computer Science 149 (1995) 299-332 301

Definition 5 (Sublocalities). Let s, s1 , s2 be ST, terms. Then, 4 is defined inductively
by the following rules:

s1 6 s2 implies s1 10 G s210

sr 4 s2 implies 0lsi < 01s2

The above relation defines a tree-like partial ordering between spatial terms. The
root is l and a spatial term s is greater than s’ (written s’ + s) ifs is obtained from s’ by
replacing the bullet with a spatial term. This partial ordering captures the intuitive
idea that l represents the whole system and terms of the form s 10 or 0 Is are parts of the
system, or sublocalities.

We can now show how to obtain spatial terms from transitions. They are defined by
structural induction on transition terms.

Definition 6 (From transitions to spatial terms)

sp(L4 W) = l

sp(t < + E) = sp(t)

sp(E + > t) = sp(t)

sp(tlE) = SP(OI0

sp(ELt) = BlSP@)

SP@l t’) = sp(t)Isp(t’)

SP@C@l) = sp(t)

sp(t\a) = sp(t)

The algebraic approach can be easily extended: for instance, in [141, CCS is defined
as a two-sorted algebra. The labeling operation and the interleaving bisimulation
relation are defined via algebraic operations in a category of models. It is also possible
to apply this approach to other process description languages provided that their
semantics are defined in terms of bisimulation.

Example 7. Extend CCS with an encapsulation operation [-I, as in [9]. Intuitively,
this operator says that the term inside the [_I has to be seen as a black box, and it is
not possible to see inside it if the actions are distributed or not. All the actions it
performs are causally (and temporally) ordered. Notice that in the interleaving
semantics this operator is useless. The agent [E] is seen as a sequential process.
Hence, for example, the equation [LX I fi] = a.jZi + /?. ct is valid also in truly concurrent
models.

308 U. Montanari. D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332

In this algebraic context, we have to extend the signature of the algebra with a new
operation (denoted by [-I) and to add one rule:

t:E % E

[t]:[E] It+ [E’]

Since the interpretation of [_I is an encapsulation operation, the intended meaning
of [-I is that any action inside it is seen as occurring in a common site and there is no
distribution. This fact is reflected in how the spatial term of a transition [t] is defined:

SP(CW = l

A CCS computation from E to E’ is, as usual, a sequence of transitions such that the
target of a transition coincides with the source of the following one.

Computations are introduced in the algebra by means of the following axiom and
rules.

Definition 8 (Computations).

t:E % E’ t:E a E’, t:E’aE”

t:E =S E t; t’ : E =a E”
t; (t’; t”) = (t; t’); t”

If t: E a E’, E is the source of t and E’ is the target of t as before. The set of
computations is called %?ccs.

The presentation we have given so far for CCS has an initial model, which contains
CCS agents, (proofs of) transitions, and computations. As usual, the elements of the
initial algebra are terms modulo the axioms. Besides the initial one, the set of formulas
has many models: some of these models are transition systems, which may be of
interest. For instance, in one of these models all transitions with the same label
between a pair of agents are identified. Hence, a transition is uniquely determined by
its source, target and label. Such a model is equivalent to Milner’s original transition
system, where transitions are triples.

Since we are only concerned with causality-based, location-based, and interleaving
semantics for CCS, some of the information given in the proofs of the transitions is
useless. Thus, we can choose another model (another transition system) by abstracting
away the useless information from the proofs. In our case, it is enough to add the
following rule:

t:Pl s Pz, t':p, s Pz, sp(t) = sp(t’)

t = t’

Transitions are now equivalence classes of terms. In what follows, a transition is
defined by its source, target, label and spatial term. We will use the notation pap’

(read pi at Si) to denote it. Similarly, a computation of the form tl; t2;***; t, is
Pl@S, P2@S2 A@% represented by a sequence of transitions p0 -pl - ... -p..

U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 309

Fig. 2. The class of transition systems for CCS.

Fig. 2 shows the class of models of the axiomatization for CCS. The initial model is
the proved transition system. There is one model where transitions are triples (agent,
label, agent), the original Milner’s one. The transition system that we consider (called
in the figure spatial transition system) is in between these models. Notice that
a transition of the spatial transition system is uniquely determined by the triple
(agent, label@spatial term, agent).

2.2. Observing computations

The next step in the parametric approach is to determine what is observed out of
a single computation. Given a description of a computation of the system, what is seen
by an external observer is established by means of an observationfinction, which maps
computations of the system into their corresponding observations.

Definition 9. An observation ohs is an observation domain (D, c), where D is a set of
observations and c is a partial order on D, together with a monotonic function
o from computations ordered by prefix to the observation domain.

We say that 0 E D is the observation of a computation c if o(c) = 0.
Monotonicity is the only requirement on observation functions: if one observes

a computation and obtains some information, observing a “longer” computation
(i.e. a greater computation in the prefix ordering) one obtains more informa-
tion. Formally, observation domains are ordered, and the observation function
has to be monotonic on computations when ordered by prefix. We call an observa-
tion the observation domain together with the function from the computations to
the domain.

In the following definition we introduce the observation for location equivalence,
called lot.

310 U. Montanan’, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332

Ir2@sz P” @ % Definition 10 (Obseroation lot). Given a computation p. * p1 - *se - pn,

we associate to it a structure (Eu, < , <, d), where (Eu, <) is a forest of events and
< is a total generation ordering on events, defined in the following way:

l EU = {eili = 1 . . . n} is a set of II different events,

0 ei < t?j iff i < j,

0 ei<ejiff(&Q.YjAi<j),

0 /(ei) = /Ai*

The observation lot is obtained from the structure (Eo, < , <, t’) by forgetting all
elements having a z label, and by restricting the orderings and labeling to the
remaining events.

In the labeled forest (Eu, < , <, 4) an event e’ is a successor of e if e’ occurs in the
same locality as e, or if e’ occurs in a sublocality of e. Intuitively, a branch in the forest
corresponds to a “fork” operation, in which two (or more) sublocalities are created.
Only visible actions are taken into account to construct the structure; in fact, this
observation is “weak”, in the sense that it does not observe z’s. Moreover, 7’s have no
influence in the construction of the observation. This fact corresponds to the idea that
communications have no locality, and that locality (unlike causality) cannot be
“transmitted” by synchronizations.

The fact that location observations are forests relies strongly on the form of the
relation of sublocalities in CCS, which has the form of a tree. In another language, the
structure could not verify the property of being a forest, for example, if the language
contains a “join” operation, which can put together many localities. In general, one
could get an acyclic graph instead of a forest.

We consider observations modulo isomorphism. This means that the names of the
events, for example, have no relevance (but of course their labels do); two isomorphic
location observations are considered to be the same. Observations are regarded as
abstract entities.

Example 11. Let c be the computation (a.rJ@.y.~)\~% (~.6l/?.r.~)\rm

(y.Gly.~)\~% (~~E)\Y%(NILIE)\~% (NZLINZL)\y.Theforest (E, < , <,

4) corresponding to the lot observation of c is shown in Fig. 3. The set E has four
events, one for each no-tau transition, labelled with IX, /I, 6 and E, respectively. The
total ordering < is indicated in the figure via the numbers labeling the events and it is
obtained directly from the occurrence ordering in the computation c.

The observation domain of locations is ordered in the following way: we have
0 c 0’ if 0 is isomorphic to a left-closed subset of 0’ (i.e. 0’ is an extension of 0 with
more events). It is easy to verify that this relation defines a partial ordering on location
observations, and that the observation function is monotonic with respect on observa-
tions.

U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (199s) 299-332 311

a

Fig. 3. Observation of c from Example 11.

3. Observational equivalences

3.1. Observation trees: equivalences and axiomatization

Up to now, the observations of computations have been defined. In this section, we
define observational equivalences with respect to such observations. To this aim, the
computations an agent can perform are ordered by prefix, generating a tree-like
structure. Notice that this structure is fixed, independently of the observation. These
structures have been presented in [lo] with the name of nondeterministic measure-
ment systems (NMS) and have also been studied, with the name of observation trees, in
[12] where a parametric approach has been developed. In particular, there is a com-
plete axiomatization of observational congruence on observation trees (for the finite
case), parametric with respect to the observation.

Definition 12 (Observation tree). The observation tree corresponding to a CCS agent
E with observation obs is the tree of all the computations from E ordered by prefix,
where each node is labeled by the observation ohs of the corresponding computation.

Example 13. Fig. 4 shows the observation tree corresponding to the agent
((tl + ~)I(LY./~.~))\#I with lot observations.

We will denote an observation tree as (N, < , o), where N is the set of nodes,
< the ordering relation and o the observation function. A node n’ is a successor of

a node n in (N, < , o) if n < n’; and it is an immediate successor if n < n’ (i.e. n < n’
and n # n’) and there is no n” such that n < n” < n’.

Several notions of bisimulation have been defined in [12] on node-labeled struc-
tures. In particular, a notion of weak bisimulation has been introduced which is the
natural extension of the same notion on arc-labeled structures. Instead, the definition
and axiomatization of the jumping bisimulation of [123 are simpler. However, it is easy
to show that for observations without atomic actions, and this is the case for all the
observations presented in this work, jumping and weak bismulations coincide. Thus,

312 U. Montanari. D. Yankelevich 1 Theoretical Computer Science 149 (1995) 299-332

Fig. 4. The observation tree of ((a + p)l(a./?.y))\/I.

we can use the simpler definition and still be consistent with the natural extension of
bisimulation proposed in [121.

Definition 14 (Weak bisimulation). Let t = (N, < , o) and t’ = (N’, < ‘, 0’) be two
observation trees (over the same observation domain), and let R be a symmetric binary
relation on N u N’. We will say that R is a weak bisimulation iff nl R n2 implies that
l (ni) = o(n2), and
l for every immediate successor n; of nl there exists a successor n; of n2 such that

n; R n;, and for all n’; such that n2 < n; d n;, the observation of n’; coincides with
the observation of n2 or with the observation of n;

Definition 15 ((Jumping) bisimulation). Let t = (N, < , o) and t’ = (N’, < ‘, 0’)
be two observation trees (over the same observation domain), and let R be a symmet-
ric binary relation on N u N’. We will say that R is a bisimulation iff nl Rn2
implies that
l o(nl) = o(n,), and
l for every successor n; of nI there exists a successor n; of n2 such that 4 R 4.

In the sequel, we will call just bisimulation the jumping bisimulation.

Definition 16 (Nonatomic observations). Let obs be an observation, with observation
domain (0, c) and observation function o from %ccs ordered by prefix to (D, c).
Then, obs satisfies the nonatomic property if and only if for each nl , n2 such that n2 is
an immediate successor of nl in the observation tree of some p E CCS the following
property holds:

Vp’ E CCS if n; is a successor of n; and o(nj) = o(ni) for i = 1, 2, then n; is an
immediate successor of n; .

U. Montanari. D. Yankeleuich / Theoretical Computer Science 149 (1995) 299-332 313

A nonatomic observation grows step by step, and it does not allow long observa-
tions (which correspond to computations of more than one step) all of a sudden.

Lemma 17 (Bisimulation and weak bisimulation coincide over nonatomic do-
mains). Let ohs be an observation satisfying the nonatomic property. Let p1 , p2 E CCS.
Let ti be the observation tree associated with pi for i = 1,2. Then, there is a bisimulation
between t and t’ if and only if there is a weak bisimulation between them.

Proof. The if part is always true, since weak bisimulation is stronger than jumping
bisimulation. For the only ifpart, suppose that two trees t and t’ are jumping bisimilar
but not weakly bisimilar. Hence, there exists a jumping bisimulation R between the
nodes oft and those oft’, and there exist nodes n, , n2 oft and 4, n$ oft’ such that n2 is
an immediate successor of nl , n; is a successor of n; and ni R n: for i = 1,2 but for
some n” which verifies n’, < n” < n;, the observation of n” is different from the
observation of n\ and from the observation of n;. Since ni R n:, the observation of ni
and n: coincide, for i = 1, 2, and hence, by definition of nonatomicity (since n2 is an
immediate successor of nI), o(n”) = o(n;) or o(n;) or o(n”) = n;, which is an ab-
surd. 0

Definition 18 (Observational equivalence and congruence). Two trees t and t’ are
observationally equivalent if there exists a bisimulation R such that the roots are in the
relation R, and they are observationally congruent if there exists a bisimulation
R rooted at the roots oft and t’, i.e. such that the roots are in the relation R and no
other node is in the relation with them.

We will say that two CCS agents E and E’ are observationally equivalent with
respect to an observation obs (E zobs E’) if their corresponding obs observation trees
are observationally equivalent.

An interesting feature of observation trees is that a complete axiomatization has
been given for observational congruence (parametric with respect to the observation)
in the finite case.

In [12] a particular syntax for representing (finite) observation trees as terms of an
algebra is introduced. In fact, given a domain of observation D (in this case a domain
of labeled forests), an observation term over D is defined in the following way:
0, := NIL, A(O,), 0, 8 O,, where A E D. In addition, the operations are partial, and
this restriction is expressed via a type system. Typed observation terms are denoted by
P, Q, R. The interpretation of the operations on trees is as follows. Constant NIL
denotes the empty tree. The operation A(P) prefixes the tree P with a node labeled with
A, and it is defined only if the root of P (if any) is labeled with an observation equal
or greater than A (because the observation function has to be monotonic on
computations ordered by prefix). The operation 0 between observation trees merges
two nonempty trees by collapsing their roots, hence it is defined only if both trees have
the same observation associated to the root.

314 U. Montanari. D. Yankelevich 1 Theoretical Computer Science 149 (1995) 299-332

Table 1

Axioms for observational congruence

(Al) PcBQ=Q@P

(A3 U’@Q)@~=P@(QQ~)

643) a(NIL)@P=P

644) P@P=P

(AS) @@(P) 0 Q)) @ a(p) = &V’) @ Q)

Observation terms, modulo axioms (Al)-(A3) of Table 1, are isomorphic to finite
observation trees.

In [12] it is proved that the set of axioms (Al)-(A5), shown in Table 1, are
consistent and complete with respect to observational congruence over observation
trees. That is, two trees represented by observation terms P and Q are observationally
congruent iff (Al)-(A5) k P = Q.

Example 19. Let p = (a.rlr./?)\~~ + (y.ul/?.fi\y and 4 = alp. Then, p wlOC q.
Let E denote the empty location observation, GI denote the location observation with

just one element labeled with U, and let fi denote the location observation with one
element labeled /I.

Let LX&/? denote the location observation with two elements, one labeled with c(and
the other with /I, which are not related in the partial ordering and in the total ordering
the element labeled with CI is minor than the element labeled fi. The observation term
corresponding to p is s(a(tl(c&?(NZL)))) @.@(j?(/?&a(NZL)))) and the observation
term corresponding to q is s(cc(c&~(NZL))) 0 c(/?(/?&a(NZL))).

(1) By axiom (AS), letting P = NIL, Q = B(R), we deduce

A(B(B(NIL) @B(R))) @ A(NIL) = A(B(NIL) @E(R))

(2) From (l), by applying axiom (A3), we prove the lemma:

&(n(R))) = &J(R))
(3) As instances of the Lemma in (2), by substitution, we obtain

&(a(a(a&jI(NZL)))) = ~(ol(c&j?(NZL))) and

s(MWW(NW))) = WB&WW))

(4) By congruence,

e(~(~(aWW~L)))) @ c(B(P(P&~(NW))) = ++W(NIL))) @ e(B(B&a(NIL))).

3.2. Location equivalence

In this section the correspondence between the equivalence defined so far and the
location equivalence of [6,16] is established.

In [5,6,16] the grammar of CCS is extended with an operator of local cause
prefixing 1 ::E where 1 is a location and E a process. Locations form a fixed, countable

U. Montanari, D. Yankelevich 1 Theoretical Cornpurer Science 149 (1995) 299-332 315

set. The idea is that each (sequential) process is assigned to a different location where it
executes, and an observer of the system perceives the visible actions of the system and
also the location where they take place. More precisely, location transitions are of the

form E - or”1’2.‘.‘” E’ where a is the action and 1 1 1 2 . . . I, is a sequence of location names.

The prefix ordering in strings of location names represents the concept of sublocality.
For example in the process a.(/?[y), action a may occur at any location name, for
example, I (names of locations are arbitrarily chosen at each step), and /I and y both
are performed at different sublocations of 1, for example, 1 I’ and II”.

The operational semantics of the language is defined by means of two transition
relations: one giving location transitions discussed above, and another giving standard
transitions, where no location is assigned to transitions. The second transition relation
defines the r-moves, corresponding to both r prefixing and communication. A bi-
simulation-like equivalence is defined on these transition systems, and the resulting
equivalence (called location equivalence and denoted with xl) is shown to be
consistent with the original interleaving semantics for CCS agents.

Definition 20. Location terms are defined by the following abstract syntax:

P = nil, P.P, P + P, PIP, pC@l, p\a, l::p, x, recx. p

where 1 E Lot and x is a variable.

Location agents are guarded, closed location terms. We call PIOc the set of all
location agents.

If p E PIOC, pure(p) is the agent obtained by removing all locations from p and lot(p)
denotes the set of location names that occur in p.

In [6] the syntax of the language is extended also with variables for localities. We
consider here the version without location variables, more similar to the syntax of

P, 161.

Definition 21. Location transitions:

a.p-%l::p

n:u
P-P’

t(;”
P-P’

IELOC

implies k :: p p * k :: p

implies p + p” zp’ and p” + p;ff,p’

cL;u

P-P’ implies p 1 p” ~p,lp/l and p”,p~p,,,p,

oL;u
P-P’ implies p[@] %p’[@]

P$P, implies p\a&p’Ia /I$ {a,E}

p Crec x. p/xl Xp’ implies recx. p-%p’

316 U. Montanari. D. Yankelevich 1 Theoretical Computer Science I49 (1995) 299-332

Definition 22. Standard transitions

P s P’ implies k::p % k::p’

P s P’

P lit P’

P s P’

implies p + p ” % p’ and p” + p 4 p’

implies pip” % p’Ip”and p”Ip 3 ~“1 p’

implies p[@] %p’[@]

P It-, PI implies p\a 5 p’ I a p $ {a, Cc}

p[rec x. p/x] % p’ implies ret x. p li, p’

a;u
P-P’ and q “” -4’ implies pIgA p’lq’

Some definitions (as weak transitions, etc.) are given for transition systems contain-

ing an internal T action. In this way, some of the theorems of this section are also valid

for a general class of systems, not only for the one considered here. This is an

advantage of the parametric approach: some general results can be established which

are then applied to many particular cases.

Notation 23 (Weak transitions). Let TS = (S, T, A) be a transition system such that

A includes a distinguished invisible action z. Then, for p, p’ E S,

0 p%p’iffpI, p1 I, ... 1-, pI=p’forsomepl,...,p,ESorp=p’,

l p~p’iffp~pp,5p,~p’forsomep,,p,~S,

0 c : p * p’ if c is a computation (i.e. sequence of transitions) from p to p’,

l if c : p * p’ and c’ : p’ a p”, with p” E S, c; c’ : p = p” is the concatenation of c and c’,

l cp is the empty computation from p to p.

Definition 24 (Location equivalence). A symmetric relation R E PIOC x PIOC is called

a location bisimulation iff (p, q) E R implies

l p % p’ implies q % q’ for some q’ such that (p’, q’) E R,

l p g p’ implies q g q’ for some q’ such that (p’, q’) E R.

Two agents p and q are said to be location equivalent, p x, q, iff there is a location

bisimulation R such that (p, q) E R.

The transition system given above, following [6] is infinitely branching, because on

each step a location name is chosen from an (infinite) set of location names. Each place

has an explicit name, and hence observations are not considered up to isomorphism,

that is, the isomorphism has to be explicitly constructed.

U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 317

As has been pointed out by Kiehn [16], an important point about the name of
locations is that, when one chooses a new name to be used in a computation, one has
to assure that the name does not appear in the agent. In some sense, the name of
a location is similar to the name of an event (the name determines the event in
a unique way). Choosing twice the same location name in a computation, no
information is added. In fact, the most discriminating computations are those in
which a different name is chosen each time. The other computations can be construc-
ted by renaming some locations, and it has been proved [16, Proposition 2.81 that this
operation of renaming does not affect the equivalences, i.e., it is irrelevant.

Following these considerations, the proof of coincidence of the semantics proceeds
in three steps:

(1) The formal definitions and results showing that infinite branching is not needed
are introduced. If one is interested only in CCS terms (and this is our case), it is
possible to systematically use natural numbers as location names, introducing them in
order and using them only once in each execution sequence. With this aim,
a transition system called numbered localities is defined.

(2) For the transition system introduced in (I), bisimulation over the transition
system and bisimulation over the associated observation trees (considering as obser-
vation of a computation just the sequence of its labels), is shown to coincide for CCS
terms. This result is proved in a rather general theorem, that may be applied to many
transition systems.

(3) The observation tree that we associate with a CCS term and the observation
tree associated in step (2) are observational equivalent. That is, it is possible to
construct a bisimulation that relates observation trees and the trees of computations
introduced in the second step. For this, it is necessary to show how to recover the
labels of the trees from location observations and vice versa.

Since the notion of bisimulation of observation trees considered for (2) and (3) is the
same, and bisimulation is a transitive relation, the correspondence of the semantics
follows from the steps above.

In the sequel, Lot = N, that is, location names are natural numbers.

Notation 25. The set of all the computations of the location transition system is called
VI. If u is a sequence of location names and 1 is a location name, 1 E u iff I appears in the
sequence u. A sequence of elements el, . . . , e, is denoted el * e2 a.. e,, and the concatena-
tion of two sequences’ s and s’ is denoted s. s’.

Definition 26. Let c E ‘%‘r. We define the norm of c, written 11 c 11, as the number of
events in c labeled with an observable action.

The norm of c is less than or equal to the length of c.

‘Note that a different notation is used for concatenation of labels and for concatenation of computations.

318 U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332

Definition 27. We type location terms with the following type system:

nil:0 X:0

p:0 p:M p:M - ___
CL.p:Q p\a: M PC@] : M

p:0, p’:0 p:M, p’:M MnM’=0 p:M

p + p’:0 pIp’:M u M recx. p:M

P:M, I c min(M) p: {l...n} p:0

(l::p):(M u {I}) p : camp(n) p: ccs

where min(M) returns the minimum number in the set M. By convention, min(0) > n
for any number n.

Notice that not all terms in PIOC have a type and that some have more than one type.
Each type gives a different kind of information about the term.

Proposition 28. Let p E Pl,,. Then, p E CCS ifs p : CCS.

If p: M where M is a set, the location names appearing in p are exactly those
of M.

Proposition 29. Let p: M. Then, lot(p) = M.

Lemma 30. Let p : camp(n). Then,

0 ifp- OL”‘” + ’ p’ then p’: comp(n + l),

l if p It p’ then p’ : camp(n),

0 max(loc(p)) = n.

Proof. The first point is proved by induction on the rules of location transitions. The
second is immediate, since the transition does not change the location names appear-
ing in the term. The third is implied by the previous proposition. 0

Definition 31. The transition system for numbered localities (NL) has as set of states S,
where S = (p E Plot 1% p: camp(n)}, and the transitions are defined as follows:

p a;u’n ,p, iff p 0r;u.l
-p” is a location transition and I does not appear in p,

where p’ = p” [l+ n] and n = max(loc(p)) + 1, and

p I, p’ iff p It p’ is a standard transition

U. Montanari. D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 319

The transition system for numbered localities is finitely branching. In this transition
system location names are introduced in order, and each location name is used only
once.

For CCS terms, the bisimulation equivalence that results from the use of the NL
transition system coincides with location equivalence.

The next definition recalls the weak bisimulation equivalence for states of
a transition system.

Definition 32. Let TS = (S, T, A) be a transition system such that A includes a distin-
guished invisible action r, and let so, i. E S. The states so and sb are observational
equivalent (written so z rs sb) iff there exists a symmetric relation R E S x S such that
(so, sb) E R, and (si, s;) E R implies that

l whenever s1 2 s2 there exists s; such that s2 2 s; and (s2, s;) E R, and

l whenever s1 2 s2 there exists s; such that s2 % s; and (s2, s;) E R.

Lemma 33. Let p, p’ E CCS. Then p E I p’ iflp z NL p’.

Proof. (Only if) Since one can choose any location name at each step in the bisimula-
tion, in particular one can choose n as location name in the nth step of the bisimula-
tion, and in this way one obtains a bisimulation of NL.

(If) Suppose that p x NL p’. Then, there exists a bisimulation R of NL. Let
R’ = {(PI, p2)13p;, pi such that (pi, pi) E Rand p(pi) = pi, i = 1,2} where p is a func-
tion from location names to location names, i.e., a renaming. To check that R’ is
a location bisimulation is straightforward. 0

The set of computations of NL is called %Z”. Notice that with Lot = N, we have that
%” 5 V,.

Lemma 34. Let p’ E Ploe such that p’ : camp(n). Then, there exist p E CCS and c E ‘3,
such that c:p =z. p’ and jjcjj = n.

Proof. We have that loc(p’) = (1. ..n}. Suppose that a, . . . a, do not appear in p. Let ,
pi=p[i+ai][i+ l+ai+l]...[n+a,]. It is easy to see that pi~pi+l

Vi E { 1.. .n - l} (where ai is possibly a relabeling of ai). Then, there exists a computa-
tion from p1 to p’, and p1 E CCS. 0

Definition 35. Let TS = (S, T, A) be a transition system such that A includes a distin-
guished invisible action r, and let so E S. Then, obtreeTs(so) is the observation tree of so
in TS such that the labels of the nodes are the sequences of observable labels of the
computation (i.e. different from r).

Given a computation c, its label is denoted by label(c).

320 U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332

Theorem 36. Let TS = (S, T, A) be a transition system such that A includes a distin-
guished invisible action z, and let so, sb E S. Then, so FZ rs sb ijfobtreers(so) is observa-
tionally equivalent to obtreers(sb).

Proof. (Only if) Suppose that so z rS sb. Then, there exists a bisimulation R such that
(so, sb) E R. Let R’ = {(cl, cz)Icl, c2 are computations of TS, label(cl) = label(cz) and
(target(target(E R}. Then, R’ is a bisimulation of observation trees. It is easy
to see that (E,,,, E,,) E R’. Now, let (ci, c2) E R’ and c; be a successor of cl. Then, there
are two cases:

1. target % s1 and label(c;) = label(c,),

2. target(c, 5 s1 and label(c;) = label(c,); a.

Since (target(target(E R, we have that

1. target 2 s2 and (sl, s2) E R or,

2. target %- s2 and (si, s2) E R,

respectively. Let c be the computation from target to s2, and let c; = c2;c. The
computation c$ has target sl. Hence, since the labels of c; and c; coincide and their
targets are in R, (c;, c;) is in R’.

(If) Let R be a bisimulation such that (E,~, E,,) E R. Define R’ = ((target(
target(c2))l(cI, c2) E R}. It is immediate that (so, ~6) E R’. Now, suppose that

(si, s2) E R’ and s1 % s;. Since (sl, s2) E R’, there exist computations cl and c2 such

that (c,, c2) E R’, label(ci) = seq and target = si for i = 1,2. Let C; be the
result of concatenating cl and the computation from s1 to s;. Then, the label of c;
is seq; a and there exists c;, successor of c2 with label seq; a. Hence, there exists

computation from target to target(&) with label a. Thus, s2 % s; (where

s; = target(&)) and by definition (s’, , s;) E R’.

Corollary 37. Let p, p’ E CCS. Then, p z, p’ tJfobtreewl(p) is observationally equivalent

to obtree,,(p’).

Proof. From the previous lemma, obtree,,(p) is observationally equivalent to ob-

treem,(p’) iff p z NL! p’, and by Lemma 33, p x,,p’ iff p xt p’. Cl

The function where defined below finds out where a location name appears in
a term. This place is described with a spatial term, and 0 is used to represent that the
location name does not appear. For example, where(a.j?I 1:: 2::B, 2) = @I*, and
where(a.j?11::2::/?, 3) = 010 = 0.

Definition 38 (Function where). Given a term p of PloC and a location i, the place
where location i occurs in p is described by the spatial term given by the following
function:

where(NIL, i) = 0,

where(u.p, i) = 0,

U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 321

where(plp’, i) = where@, i)(where(p’, i),

where(p + p’, i) = 8

where(p[@], i) = where(p, i),

where (p\a, i) = where(p, i),

where(i :: p, i) = 0,

where(i::p,j) = where(p,j) if i #j,

where(rec x. p, i) = where(p [ret x. p/x], i).

We now need a function that given a computation in %cCS abstract away the
irrelevant information and returns a computation of ‘Xs,. Evidently, each computation
of ws, may have many corresponding computations in Vc CS, since the spatial informa-
tion given in the spatial transition system is more concrete than that given in NL: each
event has an address describing the exact place in the term where it occurs, whether in
NL this address is relative to previous events. However, it can be shown that some
computations of %?cc, may have more than one ‘3, corresponding ones, since the latter
do not contain any information about locations. Thus a relation, rather than a func-
tion, is defined.

The relation ch defines a correspondence between the computations from an agent
in the CCS transition system and in NL. The intuition of c ch c’ is that the computa-
tions c and c’ describe the same behavior, this implies, in particular, that they have the
same observation.

Definition 39 (Relation ch). The relation ch E W,, x Wccs, given a computation
Ir,:u,

PO-P1 “‘P.-l 5~. of %?” such that p. : CCS, is defined as follows:

PO ch web)

cchc’

c; p. * pn+ I ch c’; pure(p,) Or0 where(p*+“m’ b pure@,,+ I)

cchc’

c; p. 1* pn+ 1 ch c’; web,) I* pure@,+ I 1

Lemma 40 (From NL transitions to CCS transitions).

l Let pz p’ be a transition of NL. Then, pure(p)apure(p’) is a CCS

transition, with s = where@‘, m).

l Let p I, p’ be a transition of NL. Then, there exists s such that pure(p)% pure(p’)

is a CCS transition.

322 U. Montanari, D. Yankelevich 1 Theoretical Computer Science I49 (1995) 299-332

Proof. In order to prove the first item, we actually prove a stronger result, namely: let

p;u’1:p’ be a location transition, such that m # lot(p) and each location name occurs

at most once in p. Then, pure(p) Or’@’ -pure($) is a CCS transition, with s = where

(P’, m).
This stronger result is proved by induction on transitions. For the axiom,

a.q-% 1:: q, we have that pure(q) is a CCS agent (since q is in P1,,) and hence

a.pure(q) ‘@* -pure(q) is a CCS transition, and where(l :: q, l) = l by definition.

The inductive step is similar for all the rules. Let us show the case of the left-parallel,

which is very representative. Suppose that pip” Zp’Ip” is a location transition,

with rn$ loc(plp”) and location names occurring only once in pip”. By inductive

hypothesis, pure(p) Or@’ -pure@‘) is a CCS transition, with s = where@‘, m). By the

rules for CCS transitions, pure(p) I pure(f) ‘@“’ - pure(p’) I pure(p”) is a CCS transition.

By definition, where(p’lp”, m) = where(p’, m)l where(p”, m). Since m 4 loc(plp”), we have
that m 4 lot@“) and it is immediate to see in that case where@“, m) = 8. Hence,
where(p’I p”, m) = where@‘, m) 18 = s 10. 0

We now show some properties of the relation ch.

Proposition 41 (Correctness of 4). Zf c ch c’ then c E %Zs, and c’ E Wccs.

Proof. The first argument is clearly in GzZ”. By induction on the length of the computa-
tion, using the previous lemma, the second argument is in qccs. 0

Proposition 42. Let c E Gff” and c’ E Wccs. Then, cch c’ implies that target =

pure(target(c)).

Proposition 43. Let cl, c2 E Wn and c’, , c; E %’ ccs such that cichci, i = 1,2 and ~1; ~2

and c; ; c; are dejned. Then, cl ; c2 ch c\ ; c;.

The information about locations is syntactically included in location agents. When
a transition occurs, this information is used to find out the location of the event. The
function site uses this information to describe locations of events with an observable
label. Hence, it takes as arguments two agents and a spatial term and returns the
location, described as a string of location names, of an event which occurs in the
location described by the spatial term.

Definition 44 (Function site). The (partial) function site : Plot x ST x Plot + Lot* is
defined as follows:

site(a.p, l , m :: p) = E,

~Whlp2,~l0,p~lp~) = siWl,s,p\L

Mp~lp2,0Is,~ilp;) = sWp2, s,P;),

U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 323

site(pl + p2, 0, p’) = E,

site(p[@], s, p’[@]) = sit&, s, p’),

site@\a, s, $\a) = site(p, s, p’),

site(m::p,s,m::p’)= m.site(p,s,p’),

site(rec x. p, s, p’) = site@[rec x. p/x], s, p’),

site(p, s, ret x. p’) = site(p, s, p’[rec x. p’/x]).

Lemma 45 (From CCS transitions to NL transitions).

0 Let p %p’ be a CCS transition. Then, Vq E PIOc such that pure(q) = p and q : M,

there exists q’ such that qw q’ is a location transition, and pure(q’) = p’ and

u = site(q, s, q’)for any n 2 max(M).

0 Let p- I@’ p’ be a CCS transition. Then, Vq E Ploe such that pure(q) = p and q: M,

there exists q’ with pure(q’) = p’ such that q s q’ is a standard transition.

Proof. By induction on transitions. For the axiom, let a.p -% p. Let q : M such that

pure(q) = a.p. Then, q = i :: ... :: n :: a.p (since agents of type M cannot contain
location names inside any a. context). By the location transition rules, i :: ..+ :: n ::

cf;i...n.n + I
a.p- i :: ... :: n:: n + 1 :: p, and, by definition, site(i :: ... :: n :: a.p, 0, i :: ... :: n ::

n + 1 :: p) = i...n*site(a.p,*,n + 1 :: p) = i...n*n + 1.
The inductive step is very similar for the other rules. Let us show the case of the

left-parallel, which is representative.

Let pip” ‘@“’ - p’lp” be a c CCS transition. Let q : M such that pure(q) = pip”.

Then, q= i ::-a.:: m :: @If’) with pure@) = p and pure@‘) = p”. Moreover,
p: M’ and ~7 : M” with M’, M” E M. Note that p may contain j :: prefixings.

By inductive hypothesis, we have that P-J?’ is a location transition and

pure@-‘) = p’ and u = site@-, s, p’) for any n 2 max(M’), and in particular for any
n 2 max(M) 2 max(M’).

Then, by the location transition rules, i :: +.. :: m :: (jlp”)w i :: . . . :: m ::

($1 p”) is a location transition. Moreover, site(i :: e.. :: m :: (jlp”), sl@, i :: . . . :: m ::
($lp”)) = c . . . me.&@I$‘, ~10, p’lp”) and by definition of site and inductive
hypothesis site @(p”, ~10. p’lp”) = site@, s, p’) = u and thus site(i :: a-- :: m :: @Ip”), ~10,
i 1: m :: (I‘)) = p . ..-m.u. 0

Lemma 46 (From CCS transitions to NL transitions).

0 Let p- ‘@’ p’ be a CCS transition. Then, Vq: camp(n) such that pure(q) = p, there

exists q’ such that q ““’ + ’ -4’ in NL and pure(q’) = p’ and u = site(q, s, q’).

‘@’ l Letp- p’ be a CCS transition. Then, Vq:comp(n) such that pure(q) = p, there

exists q’ with pure(q) = p’ such that q J+ q’ is a transition of NL.

324 U. Montanari. D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332

Proof. If q: camp(n) then q: A4 for M = { 1,n}. Hence, by the previous Lemma,

q a q’ is a location transition.

By Lemma 30, if q : camp(n) and qm q’ then q’ : comp(n + 1) and thus

qe q’ is in NL. The same reasoning applies to standard transitions. 0

The function where shows how to describe locations as spatial terms, and the
functions site recovers locations from agents and spatial terms. We now show the
relation between these functions.

Lemma 47. Let p: coy(n) and p or’u’n+ ’ - p' be a transition of NL, with where

cp’, n + 1) = s. Then, site@, s, p’) = u.

Fact 48. Let c E gccs, c : p * p’. Then, for all q E PIOC such that pure(q) = p there exist
c’ E WB,, q’ E Ploe such that C’ : q =S q’ and pure(q’) = p’ and c’ch c.

Fact 49. Let c E V,, c : p * p’. Then, there exists c’ E Wccs, c’ : pure(p) =S pure@‘) such
that c ch c’.

The label of a computation in obtreeN1() is just the sequence of the observable
labels that occur in the computation. These sequences can be seen as representations
of forests of events. The following definition shows how to build lot observations from
labels of obtreeNL().

Definition 50. Let V be the function from labels of obtree,,() to lot observations
defined in the following way:

V(R; ~,).(a,; UZ)...(CG 4) = (Eu, G , -x, lab),

where
l Eu = {l,...,n},
0 jii iff j appears in Uip

l < is the usual order on natural numbers restricted to Eu,
l lab(i) = ai.

Actually, the information given in lot observations and the information given
in the labels of obtreeNhrl() is the same, in the following sense: given any lot
observation it is possible to construct an equivalent obtreewl(), label, and
given a obtreew,() label it is possible to construct a corresponding lot observ-
ation.

Proposition 51. The function V has an inverse V- ’ given by V- ‘(Eu, < ,

<, lab) = (aI; uI)*(a2; u2) . ..(c(.,; u,), where, denoting by ei the ith element in the total

U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 325

order < ,
0 Qi = lUb(ei),
l ui = {m (e,<ei} sorted with the usual order on natural numbers,

which oerifies that V(V-‘(S)) z S and V-‘(V(S)) z S.

Lemma 52 (Observations). Given c E V, with label(c) = seq, let c’ E ‘is,,, such that
cchc’. Then, V(seq) = obs(c’).

Lemma 53. Let cl, c2 E 5f,, and let c;, c; E %‘ccs such that cich cj. Then,
label(cI) = label(c2) if and only ifobs = obs(c;).

Definition 54. Let O(p) be obtree&) where each label seq is replaced by V(seq).

Lemma 55. Let p : CCS. Then, O(p) is observational equivalent to the observation tree of
p in the transition system of CCS with labels lot.

Proof. Let R= {(c,c’)(c~G??~,c’~bP ccs, source(c) = p, source(c’) = p, c ch c’}. Then,
R is a bisimulation of observation trees. Suppose (ci , c;) E R and let c2 be a successor
of cl. Then, c2 = cl; AC, where AC : target * target(By Lemma 40, there exists
AC’: pure(target(cl)) * pure(target(c2)) and AC ch AC’. Since pure(target(c,)) = tar-
get(c;) if is possible to define c; = c;; AC’. From Proposition 43, c2 ch c;, and hence
there exists a successor of c; with obs(c2) = obs(c;) (since they are in ch) and

(cz,c;)~R.

If c; is a successor of c; , c; = c; ; AC’, and using Lemma 46 the proof proceeds as
before. Cl

Now we are ready to prove the main theorem which shows that both equivalences
coincide.

Theorem 56. Let p, p’ E CCS. Then, p x I p’ if and only if p % toe p’.

Proof. It follows immediately from Lemma 33, Lemma 55 and Corollary 37. •i

4. Other observations

In this section we fix the transition system for CCS and the equivalence (observa-
tional equivalence), and we experiment with different observations. In this way, many
different equivalences are defined for the same language, changing the assumptions on
what an observer can see.

Some of these equivalences can be defined via bisimulation directly on a suitably
defined transition system (without explicitly constructing the computations). For
example, the equivalence induced by mixed ordering causal observations, as presented

326 (1. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332

below, has been defined on a transition system for a language including CCS in [8].
However, it is not immediate to define the equivalence induced by other observations
directly on a transition system.

For instance, the observation corresponding to location equivalence gives
information on the forest induced by locations but also on the generation ordering.
In the classical approach to causality [ll] one can choose between a mixed and
a partial ordering (in the former the generation ordering is observed, while in
the latter it is not). Here, one can choose either to observe or not to observe
the generation ordering. The model where the generation ordering is not observed
is to some extent more intuitive: it assumes that it is not possible to determine
the order between two events that occur in different places. It is not obvious
how to modify the definitions of [6,16] to obtain this equivalence. Instead,
in our parametric approach, just by performing a simple change on the observa-
tions of computations, namely by forgetting the total ordering and by leaving
the rest (transition system, bisimulation) unchanged, this equivalence is
obtained.

For each observation in this chapter, an axiomatization of the observational
congruence induced can be obtained as an instance of the axioms of Table 1.

4.1. Abstract localities

Given a computation, the observation aloe is defined as a labeled forest
(E, <, 8) where E, < and e are defined as in Definition 10 for location observa-
tions.

As it has been pointed out above, this observation captures the intutive idea that
there is no global clock, and that it is not possible to establish the order of occurrence
of events in different, unrelated places. An interesting point is whether this observation
induces a different equivalence (and hence different semantics). In fact, the equivalence
x l0c is finer than ZZ~~,,~, and the example showing this fact is the same example used to

show that mixed ordering causal observations induces a finer ordering than partial
ordering causal observations [111.

Example 57. Let p = (((0~18) + cr.B)la.b.B)\6 and q = ((c(+ cr.b./?)la.~?.j?l~)\iL Then,
we have that p xolOC q but p +ilOC q.

The example above, while being finite, is not trivial. It has been checked, together
with other examples of this work, by the automatic parametric verification tool of
Cl.51 (which is based on the theory of observation trees).

Using lot observations, when p has performed two CL actions in two different
locations, it has decided if the fi will take place in the same location where the first or
the second u has been performed. Instead, when q has executed two c1 actions in
two different locations, it may still choose where to perform /?, and thus the processes
are different. This difference is detected by the total ordering, but leaves no trace in
the tree.

U. Montanari, D. Yankelevich 1 Theoretical Computer Science 149 (1995) 299-332 321

Although the intuitive nature of localities is to assign locations to events up to
isomorphism, it is sensitive to a global clock, distinguishing two computations where
an action occurs in a location which has been “the first” in executing an a, or in
a location which has been “the second” in performing an ~1.

4.2. Observing causality

A different, well-known notion of observation is suggested by the causal approach.
In these models, the observer of a system is supposed to be able to determine the
causal dependencies between event occurrences.

Here we first define mixed ordering causal observations. This observation has been
proposed previously in [111, and the equivalence that it induces coincides with the
causal bisimulation of [8] and with the history preserving bisimulation of [24].

The main difference between this observation and the one defined for localities is the
treatment of r’s. While localities are not affected by events labeled with r’s, causes can be
inherited by means of communications. Hence, we have to extend the sublocality
relation to deal with events labeled with r’s, i.e., with spatial terms with more than one 0.

We will now define a relation between spatial terms which includes the idea of
overlap: two spatial terms are overlapping if they both cover some part of the system.

Definition 58 (Overlapping localities)

s # 0 implies l - s,

s1 -s2 implies sl(s’-s21sN,

s1 -s2 implies ~‘1s~ -s”Is2.

A dot in a spatial term represents the position where an action takes place. The idea
of overlapping is that some “active” position of one spatial term coincides, or is
a refinement of, an active position of the other spatial term. Notice that - is neither
symmetric nor antisymmetric.

A particular case of overlapping localities is when s1 and s2 are of type ST, (i.e. have
only one l) and both s’ and s” in the last two rules are 8: in that case the sublocality
ordering is obtained.

Definition 59 (Mixed and partial ordering causal observations). Given a computa-

tion p. 818Sl
-Pl

Pz@Sz - ...%pn we associate with it a structure (Ev, < , c, , t),

where

l Ev = { ei 1 i = 1.. .n} is a set of different events,
0 ei < ej iff i < j,

l si-sjandi<jimplieseizej,

l eiz ekande,L ejeizej,

0 r!(Q) = /Ji.

328 U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332

The mo observation of the given computation is given by the structure obtained
from (Eu, < , t, , 4) by forgetting all elements having a r label, and by restricting the
orderings and labeling to the remaining events.

The observation for causal partial orderings is obtained from causal mixed
orderings as abstract localities from localities, i.e., by forgetting the total
ordering G .

The construction of the causal partial ordering given above is straightforward. The
only difference between the approaches based on causality and on locality is whether
to allow causality to be inherited from communications or not. Thus, < z c, .

The causality relation is the least partial order which contains < n -.
The coincidence of the mixed ordering equivalence of [l l] with the observational

equivalence with mo observations defined above is immediate. In fact, the definition of
[l l] employed NMS, but they are essentially the same as observation trees. A proof of
the coincidence of mixed ordering bisimulation, causal bisimulation and history-
preserving bisimulation for event structures can be found in [2].

4.3. Partial ordering localities

Locality and mixed ordering observations give different information about the
system. Combining them, we have a third kind of observations, namely a structure
(Ev, < , <, c, , &‘) where (Ev, < , i, 8) is the lot observation and (Ev, -C , c, , t’)

is the mo observation. Since < E c, , we can give a graphical representation of these
observations with colored partial orderings, i.e. with partial ordering diagrams where
arcs belonging to both relations are painted with a color different from the color used
for t, (here we use plain lines for arcs belonging to both relations and dotted lines for
arcs which are only in the causal ordering). We will call this observation pol, for partial
ordering localities. The equivalence induced by this observation coincides with the
local/global cause equivalence of [163.

Example 60. Fig. 5 shows the colored partial orderings corresponding to
computation c of Example 11 and to the computation (cr.r.el/?.T.@\r

~(Y.EIB.y.G)\y~(y.EIy.6)\y~(EI.s)\y~(EINzL)\1,~(NzL(

NIL)\y.

Fig. 5. Partial ordering localities observations for (a.y.6lj?.~.e)\y and (a.y.sIB.~.@\y.

U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 329

Notice that with location or colored partial (or mixed) orderings they are different.
However, with partial (or mixed) causal orderings the two computations have the
same observation.

The equivalence w rl is stronger than both the causality-based an the locality-based
equivalences, i.e. E x Pl E’ implies E w m. E’ and E x lot E’, and it is stronger than the
intersection of the equivalences x,, and zloe, as shown by the following example.

Example 61. Let I = (alp) + (a.yIT./?)\y + E./I and s = (al/?) + a./?. Then, IX,, s,
since (a. y 17. /?)\y is causally absorbed by a. /3, and r x lee s, since (a. y 15. /$\y is locally

absorbed by (al/?), but I &,0l s. The last inequality arises because r has a computation
whose observation is the structure ({1,2}, < , i, t, , t), with 1 c 2, e(l) = u,
~(2) = /I, 1 c, 2 and < = 8 while s has not.

4.4. Weak and strong interleaving observations

Of course, as a particular case, interleaving observations can be defined in this
context. The interesting point is that the difference between weak and strong equiva-
lence is given here at the level of observations, and not at the level of equivalences.

Definition 62 (Interleaving observation). Given a computation p,, a p1
PZ@Sl - ... * pn, we associate with it the sequence of labels pl; pz; . . . ; pn.

The weak version of the interleaving observation is obtained by deleting r labels
from the sequence pr; pLz; ..-; ~1..

The correctness of this definition is an immediate corollary of Theorem 36.

Corollary 63. Let E, E’ E CCS. Then, E x int E’ iff E z E’, where x denotes the
interleaving weak observational equivalence [19].

Fig. 6 shows all the weak observations presented in this work. An arrow from
x to y means “y is more abstract than x”, and hence the equivalence induced by
observation x is finer than the equivalence induced by y. Observations which are not
related by an arrow are incomparable, and counterexamples have been shown in the
paper.

5. Related work

Location equivalence has been introduced in [S, 6,161. A static version of localities,
where location names are associated with sites at “compile time” has been proposed in

330 U. Montanari, D. Yankelevich 1 Theoretical Computer Science 149 (1995) 299-332

Mixed Causal

Orderings

partial Causal

Orderings

Localities
Abrtract

Localities

Fig. 6. The observations presented in the paper and their relationships.

[3] for a subset of CCS. This version may be useful for the development of algorithms
for location equivalence checking. A variation of location equivalence has been
introduced in [17] with many examples showing that this notion is useful for
specifying protocols, in particular taking into account routing and distribution
properties.

Kiehn studied the relationship between locality and causality-based equivalences
[16] and proposed a model merging them. She extended the notion of locations
to local and global causes. While local causes correspond to locations, global
causes are used to represent the causal relation, in a similar way to the backward
pointers of [S]. This approach can be viewed as dual to ours: the information needed
to keep track of the history of a process is inserted into the process itself, by means
of a constructor defined with this purpose. Dually, we here observe the computations,
not the states.

However, given a generic observation, no systematic way has been given in [16,8]
for inserting the information in the processes, and the syntax of the processes cannot
be chosen independently of the technical requirements, since certain constructors are
used to represent part of the history of the process. Another general approach to
observational equivalences for locality and causality, similar to the previous one, is
discussed in [13]. This approach is more semantic than the one in [16], since the
information about the history is not syntactically included in the processes. The main
difference with our work is that the first and the second step (and part of the third step)
of our approach are merged in [13] in the construction of a tree whose arcs are labeled
by proofs. An advantage of the proposals in [16,13] is that they are incremental, in the
sense that the observation of each transition yields a single event. However, their
proposals are likely to be less general than ours: the generation ordering is intrinsi-
cally included in their semantics and abstracting out from it may be difficult if at all

U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 331

possible. In addition, our notion of observation, being defined on computations, is
more explicit and makes comparisons easier, since each observation has an associated
domain.

Acknowledgements

We wish to thank Ilaria Castellani for her helpful comments on an early version of
this work, and Ed Harcourt for correcting many english flaws. Two anonymous
referees also gave insightful comments.

References

Cl1

PI

c31

M

c51

C61

c71

C81

c91

Cl01

[III

CI21

CI31

CI41

Cl51

Cl61
Cl71

Cl81

Proceedings 19th ICALP, Vienna, Lecture Notes in Computer Science, Vol. 623 (Springer, Berlin,

1992).
L. Aceto, History preserving, causal and mixed-ordering equivalence for stable event structures (note),

Technical Memo HPL-PSC-91-28, Hewlett-Packard Laboratories, Pisa Science Center, Pisa, 1991;

Fundam. Inform., to appear.

L. Aceto, A static view of localities, Rapport de Recherche 1483, INRIA, Sophia Antipolis, Valbonne,

July 1991, Formal Aspects Comput., to appear.

G. Boudol and I. Castellani, A non-interleaving semantics for CCS based on proved transitions,

Fundam. Inform. 11 (1988) 433-452.
G. Boudol, I. Castellani, M. Hennessy and A. Kiehn, Observing localities, Theoret. Comput. Sci. 114
(1993) 31-61.
G. Boudol, I. Castellani, M. Hennessy and A. Kiehn, A theory of processes with localities, Tech.

Report 13/91, University of Sussex, December 1991, Formal Aspects Comput., to appear.

I. Castellani and M. Hennessy, Distributed bisimulations, J. ACM, 36 (1989) 887-911.
P. Darondeau and P. Degano, Event structures, causal trees and refinements, Theoret. Comput. Sci. to

appear.

N. De Francesco, U. Montanari and D. Yankelevich, Axiomatizing different views of distributed

systems, in: Proc. ERCIM Workshop on Theory and Practice in Verification, Pisa, 1992.

P. Degano, R. De Nicola and U. Montanari, Observational equivalences for concurrency models, in:

M. Wirsing, ed. Formal Description of Programming Concepts - III, Proc. 3rd IFIP WG 2.2 Working
Conf., Ebberup, 1986 (North-Holland, Amsterdam, 1987) 105-129.

P. Degano, R. De Nicola and U. Montanari, Partial orderings descriptions and observations of

nondeterministic concurrent processes, in: J. d. Bakker, W.-P. d. Roever and G. Rozenberg, eds., REX
School/Workshop on Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, Noordwijkerhout, Lecture Notes in Computer Science, Vol. 354 (Springer, Berlin, 1989)

438-466.
P. Degano, R. De Nicola and U. Montanari, Universal axioms for bisimulation, Theoret. Comput. Sci.
114 (1993) 63-91.

P. Degano and C. Priami, Proved trees, in: Proc. 19th ICALP, Vienna, Lecture Notes in Computer

Science, Vol. 623 (Springer, Berlin, 1992) 629-640.

G. Ferrari, Unifying models of concurrency, Ph.D. Thesis, Dipartimento di Informatica, Universita di

Pisa, 1990. Available as report TD-4/90.
P. Inverardi, C. Priami and D. Yankelevich, Verification of concurrent systems in SML, in: Proc.
ACM SIGPLAN Workshop on ML and ifs Applications (1992) 169-175.
A. Kiehn, Local and global causes, Tech. Report 342/23/91, Technische Universitat Munchen, 1991.
P. Krishnan, Distributed CCS, in: Proc. CONCUR’91, Lecture Notes in Computer Science, Vol. 527

(Springer, Berlin, 1991) 393407.
V. Manta, A Salibra and G. Scollo, Equational type logic, Theoret. Comput. Sci., 77 (1990) 131-159.

332 U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332

[19] R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, NJ, 1989).
[20] U. Montanari and D. Yankelevich, An algebraic view of interleaving and distributed operational

semantics for CCS, in: Proc. Category Theory and Computer Science ‘89, Lecture Notes in Computer
Science, Vol. 389 (Springer, Berlin 1991) 5-20.

[21] U. Montanari and D. Yankelevich, A parametric approach to localities, in: Proc. 19th ICALP,
Vienna, Lecture Notes in Computer Science, Vol 623 (Springer, Berlin, 1992) 617-628.

[22] D. Park, Concurrency and automata on infinite sequences, in: P. Deussen, ed. Proc. 5th GI Conf:
Lecture Notes in Computer Science, Vol. 104 (Springer, Berlin, 1981) 167-183.

[23] G. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Computer
Science Department, Aarhus University, 1981.

[24] A. Rabinovich and B. Trakhtenbrot, Behavior structures and nets, Fundam. Inform., 11 (1988)
357-404.

[25] D. Yankelevich, Parametric view of process description languages, Ph.D. Thesis, Dipartimento di
Informatica, Universita di Pisa, 1993. Available as report TD-23/93.

