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Abstract 

Location equivalence has been presented in [S] as a bisimulation-based equivalence able to 
take into account the spatial distribution of processes. 

In this work, the parametric approach of [12] is applied to location equivalence. An 
observation domain for localities is identified and the associated equivalence is shown to 
coincide with the equivalence introducted in [6,16]. The observation of a computation is 
a forest (defined up to isomorphism) whose nodes are the events (labeled by observable actions) 
and where the arcs describe the sublocation relation. 

We show in the paper that our approach is really parametric. By performing minor changes 
in the definitions, many equivalences are captured: partial and mixed ordering causal semantics, 
interleaving, and a variation of location equivalence where the generation ordering is not 
evidenced. It seems difficult to modify the definitions of [6,16] to obtain the last observation. 
The equivalence induced by this observation corresponds to the very intuitive assumption that 
different locations cannot share a common clock, and hence the ordering between events 
occurring in different places cannot be determined. 

Thanks to the general results proved in [12] for the parametric approach, all the observation 
equivalences described in this paper come equipped with sound and complete axiomatizations. 

1. Introduction 

There are many models and theories of concurrency, which differ notationally or on 
formal basis or in the assumptions about practical issues. Besides the advantages that 

this development can offer, the proliferation of models produces confusion. Even their 

classification is difficult, because of the fact that each one uses a different notation, 

introduces ad-hoc definitions, and there is no common framework to compare them. 

In addition, it is quite likely that there is no best model, since each one emphasizes 
different aspects of systems, and hence has advantages in proving some kind of 
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properties or in specifying a particular type of application. The choice of a model 
depends on one’s preference in a particular situation or when specific premises apply. 

We restrict ourselves to models equipped with an operational semantics in Plotkin’s 
structural operational semantics (SOS) style [23], and have some variation of a bi- 
simulation relation [22]. Also, within this class of models, a variety of approaches 
have been proposed in the literature. Often a lot of work is redone and several 
definitions are rewritten in an ad hoc manner, changing minor points. This redund- 
ancy can be avoided by using a general, parametric approach, capable of describing 
various models. A parametric approach to the definition of concurrent systems has 
been proposed in [12] which is the evolution of ideas already present in [lo]. In its 
general outline, this approach consists of four steps: 
(1) Define a transition system that captures the desired operational behayior. 
(2) Build the possible computations as paths in the transition system, and structure 

them as an observation tree (ordering them by prefix). 
(3) Define the observations of computations. These appear as labels on the nodes of 

the observation tree. 
(4) Define an equivalence between observation trees based on the observations 

defined in step (3). 
The third step characterizes different semantics according to the observations they 

utilize. Once the transition system of step (1) has been fixed, and even choosing as the 
equivalence of step (4) the same observational equivalence, different observations yield 
very different semantic models. Each observation corresponds to distinct assumptions 
about what an observer of the system should see. In this way, just by changing the 
observation of the computations, many theories are captured. Moreover, this point of 
view helps in comparing different semantics, showing how to obtain one from the 
other, and gives a common context to classify them (showing that, for example, they 
coincide in some of the four steps and differ on others, or showing how the different 
observations are related). In particular, a general axiomatization of observational 
congruence for (finite) observation trees is given in [12], which is parametric with 
respect to the observation. Hence, by defining the semantics within this setting one 
automatically gets an axiomatization just as an instance of the general result. 

In the present paper, we test this approach with location equivalence [S] which has 
been presented as a bisimulation-based equivalence that takes into account the spatial 
distribution of processes. Intuitively, the idea is that each action occurs at a location 
and locations may have sublocations (for example, a fork operation at some place may 
create two sublocations of that place). For CCS, the assumption is that in El E’ the two 
subprocesses E and E’ are at different locations. 

These semantics, which detect the spatial distribution of events, are very useful. For 
example, in a context of faulty processors, or when information about the assignment 
process-processor has to be taken into account. For an extended motivation of such 
an approach we refer the reader to [S]. 

The framework for the equivalence proposed in [S, 63 is given by an observer who 
can find out where an event takes place, i.e., the location where an action occurs. More 
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precisely, a dynamic mechanism is given to determine the relative location of an event 
with respect to the locations of previous events. Hence, it is possible to discern if 
a number of events occur in the same place or if they are distributed over many 
locations. 

This proposal takes spatial information into account, but not causal information. 

A causal relation between events describes the necessary conditions to enable an 
event. There are some examples which are distinguished using a causality-sensitive 
equivalence [ 1 l] and not using location equivalence, but there are also examples for 
which the location approach is more discriminating. 

For example, consider the two CCS processes: 

u./l.y.NZL and (a.G.NZL~~.~.~.NZL~E.y.NZL)\G\e 

both of which can perform a sequence of three actions, with the causal relation 
between action occurrences forming a total ordering on both processes. However, the 
former executes the actions in one location and the latter executes each action at 
a different location. From a causal point of view both processes are equivalent, but 
when examining their locations they are different. In this work we show examples of 
processes which are equivalent with respect to the spatial distribution of events but 
not with respect to the causal relationship between events. 

The idea of defining a process algebra’s semantics which are sensitive to the spatial 
distribution of the bisimulation testing methodology goes back to the work of [7] on 
distributed bisimulation. However, recent developments [S, 6,163 have made it easier 
to embed this approach in the parametric setting outlined above. 

In this paper, we fully separate the different conceptual levels of the theory 
presented in [6], and give an alternative characterization of the proposed semantics. 
We identify an observation domain for localities and we show that the resulting 
equivalence coincides with the equivalence introduced in [6,16]. It turns out that 
these observations constitute a very simple domain: the observation of a computation 
is a forest (defined up to isomorphism) whose nodes are the events (labeled with 
observable actions) and where the arcs describe the sublocation relation. We statically 
characterize the sublocation relation for CCS by very simple rules. For example, 
the forests corresponding to the maximal computations of the terms 
a.fi.y.NZL and (a.6.NZLI~.j?.&.NZLIE.y.NZL)\E\G are shown in Fig. l(a) and(b), 
respectively. The natural numbers in the events denote the (total) generation ordering, 
i.e., the ordering in which events occur. 

Reducing an ad hoc definition to a particular instance of a parametric approach is 
worthwhile, because 
l it is convenient to use a general theory as it lets us reuse general theorems, 

axiomatizations or parametric tools; and 
l the resulting characterization clarifies details and highlights points, which could be 

hidden in the ad hoc definition, helping in the development of new semantics or in 
testing new ideas. 
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Fig. 1. Observations for localities. 

In [7] there is no clear cut separation between the operational semantics of the 
language, the description of observation (i.e., the assumptions on what an observation 
of the system is) and the mechanism of the equivalence (i.e., the assumptions on how 
computations are organized and how the bisimulation is calculated). 

In [5,6,16] for localities and also in [S, 161 for causal mixed orderings, the 
transition system that defines the operational semantics is given specifically for the 
observation. In particular, the states are terms of an enriched language which captures 
some of the structure of the observations (for example, including causes explicitly in 
the syntax of the terms). This means that some kind of unfolding of the original 
transition system is performed, where states have information about the computations 
that can reach them and their observations. For example, in [6], the transition system 
corresponding to ret x. EX has no cycle, since in each transition, a prefix of the form 1:: 
is introduced. Hence, the right-hand side of transitions always grow. This definition 
also implies that the transition systems of [S, 6,161 are infinitely branching, since in 
each transition a name for a location can be arbitrarily chosen from an infinite set of 
location names. 

We show in this paper that our approach is really parametric. By slightly altering 
definitions, many equivalences are obtained, such as partial and mixed ordering 
causal semantics, interleaving, and a variation of location equivalence where 
the generation ordering is not evidenced. It is difficult to modify the definitions of [6] 
to obtain the last observation. The equivalence induced by this observation corres- 
ponds to the intuitive assumption that different locations may not share a common 
clock; hence, the ordering between events occurring in different places cannot be 
determined. 

Thanks to the general results proved in [12] for the parametric approach, all the 
observation equivalences described in the paper come equipped with sound and 
complete axiomatizations. 



lJ. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 303 

In Section 2 we introduce spatial terms, which provide the notation for the spatial 
distribution of events, along with the observation domain for localities. In Section 3, 
we recall the notion of an observation tree from [12] and we enunciate the main result 
of the work: the equivalence defined in this paper coincides with the location 
equivalence of [6,16]. Section 4 presents the other observations and Section 5 dis- 
cusses some related work. 

This paper is the revised and full version of [21], and contains the proof of the 
coincidence of the parametric location equivalence as defined here and the location 
equivalence of [6]. The definition of spatial information for CCS and of the opera- 
tional semantics is done here in an algebraic way, by means of a structured transition 
system following [14,25], instead of an ad hoc transition system as in [21]. 

2. Observing spatial distribution 

2.1. Spatial information for CCS 

We develop the first step of the methodology skechted out in the introduction for 
CCS [19]. The first step of our approach concerns the definition of the operational 
semantics associated with a language. 

This leads to the question of what a programming/specification language is. We do 
not address here this problem with much detail, but we need to answer this question at 
least for CCS. 

It is unsatisfactory to consider a language from a syntactic point of view only. On 
the other hand, to fix a syntax and a semantics for a language is too rigid. For 
instance, expressions such as “a truly concurrent semantics for CCS”, “three semantics 
for CCS”, etc., which have appeared in the literature would not make sense in that 
case, since a language would only have one semantics. Hence, programming and 
specification languages have often been considered to be the syntax together with 
some “basic” meaning. This meaning restricts the range of interpretations that can be 
given to the operations, but does not completely fix the abstraction level in which 
a language has to be described (for example, it says that the 1 operator of CCS is 
intended to be the parallel combinator but not whether parallelism can be reduced or 
not to nondeterminism). 

This can be formalized by specifying a class of admissible meanings, leaving open 
which particular model of the class is chosen in each case. One way of specifying 
a class of models is to constrain the possible meanings by presenting the syntax with 
a concrete semantics for the language. The admissible models are those which are 
obtained from this semantics by abstracting some details. 

In the context of bisimulation semantics it is well known what such concrete 
semantics are. Usually, a language is equipped with an operational semantics, given 
by SOS rules. These rules form a (natural) deductive system. A transition between two 
states is allowed if and only if it can be proved in the formal system. We thus assume 
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that all the information about the intended operational behavior of a language is 
given by its SOS rules. Hence, all the information about a particular transition from 
one state to another is given by the proof of the transition in the natural deduction 
system defined by the SOS rules. 

The idea of extracting information from proofs of transitions has been proposed in 
[4]. Here, we associate an n-ary operator with each rule with n premises, obtaining an 
algebra whose terms are proofs of the SOS deduction system. Instead of considering 
transitions labeled by proofs, as in [4], here the transitions are terms of this algebra, 
whose operations are proof constructors. In this way, the concrete semantics of 
a language is given in a similar way as the abstract syntax: as terms of an algebra. 

A language, then, is defined by a two-sorted algebra, with one sort for the states 
which are the terms of the language (whose operations are the constructors of the 
language) and a sort for transitions, whose terms are proofs and whose operations are 
proof constructors. For CCS this algebra has been presented in [20,14]. However, 
instead of many-sorted algebras, we use here typed algebras [18]. 

Typed algebras are not formally introduced here. For the present paper it is enough 
to say that typed algebras are one-sorted algebras equipped with a binary typing 
relation on the carrier. The signature and set of axioms that define an algebra (or 
a class of algebras) is called presentation. Typed algebras presentations consist of 
conditional formulas of the form r implies r’, where r, r’ are sets of atomic formulas. 
An atomic formula can be either an axiom of the form t = t’ or a typing rule of the 
form t + t’, which are interpreted as “t and t’ denotes the same element” and “t’ is the 
type oft”, respectively. Sets of formulas are interpreted as conjunctions. There is a full 
calculus (similar to equational calculus) for typed algebras presentations, called 
equational typed logic. Any typed algebra presentation has an associated class of 
models, the class of algebras satisfying the presentation, which has an initial algebra 
[18]. In what follows, we introduce the language CCS in this style. 

Definition 1 (CCS agents). Let A be a denumberable set of action names, ranged over 
by a, /I. Let d be the set of action complements (i.e. a) for all a E A, and r an action not 
appearing in A, d. Let n = A u 2 u {z}, ranged over by /J. Function is extended to all 
of A u din such a way that B = a. Let X be a set of process variables, ranged over by 
x. A relubelling function @ is a function from n to n which respects T and the 
- operation. 

The syntax of CCS is given by the following grammar; 

e ::= nil, p.e,e + e’,ele’,e[@],e\a,recx. e 

and CCS terms respect the following axiom: 

e [ret x. e/x] = ret x. e 

where e[e’/x] denotes the substitution in e of x by e’. 
CCS agents (denoted E, El, E2, etc.) are those terms which are closed (without free 

variables) and guarded (each variable appears within a p. context). 
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The definition above can be viewed as a typed algebra presentation. For instance, 
a production e ::= ,u.e of the grammar is interpreted as the conditional formula 
e + term, p + action implies p.e + term. As usual, the type of a variable can be inferred 
from the symbol used to denote it. Recursion is handled with the unfolding axiom 
e[rec x. e/x] = ret x. e. 

We assume that CCS agents have the type CCS. A type system assigning type CCS 
only to closed and guarded CCS terms can be expressed within typed algebras, but it 
is not particularly simple or suggestive [25]. The substitution operation can also be 
formalized in this context by means of axioms and typing rules. As usual, we skip the 
final nil in the agents, i.e., cr.nil is abbreviated a. 

Definition 2 (CCS transition rules) 

(4 [/A, E):p.E 4 E 

@es) 
t:EI s Ez, cc + 0% B> 

t\P : E,\B s Ez\B 

W) 
t:E, 4 E2 

t[@]:E1[@]=Ez[@] 

(sum) 
t:E, % E2 t:E, % E2 

t< +E:E,+EIft E2 E+ >t:E+E, % E2 

(par) 
t:E, % E2 t:El % ES 

tjE:E,lE % EzlE ELt:EIE, 4 EIEz 

(vd 
t:El % E2, t’:E; 5 E; 

tlt’:E,IE; I-, E,JE; 

In terms of type algebras, the rule 

t:EI 1?, E2 

tlE:E,jE II, EzlE 

has the following formal meaning. First, the notation t: El % E2 represents the 

formula t + transition, El, E2 + CCS, source(t) = El, target(t) = Ez, l(t) = p, where 
source, target and 1 are functions intended to denote the source, the target and the 
labeling of a transition. Thus the conditional formula associated with the above rule is 
t + transition, source(t) = El, target(t) = El, l(t) = p, E + CCS implies tJE + 
transition, source(tJ E) = El I E, target(tj E) = E2 I E, l(t J E) = p. 
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For example, given the rules in Definition 2, using equational typed logic we can 
prove that 

mvwoJY)\Y :((4B)lv)\r s (WlB)lY)\Y 

where the term (([a, nil) Jfi)]y)\y describes the proof of the transition 

((~118) I y)\y 5 ((nill/3) I y)\y in the SOS deductive system. 

Our aim is to represent and to collect the spatial information which is present in 
CCS agents. Each CCS agent represents many sequential components assembled by 
the ) constructor. That is, in the agent EIE’ we assume that agents E and E’ are in two 
different places. The spatial information associated with CCS transitions can be 
extracted from proofs. Before doing this, however, we have to show how to represent 
explicitly spatial information. 

Definition 3 (Spatial terms). Spatial terms are defined by the following (abstract) 
syntax: S ::= 0, 0, SI S, and respect the following axiom: 010 = 8. 

If we accept that the structure given by I in a CCS agent determines the distri- 
buted nature of a number of sequential components, spatial terms reflect this 
structure. A spatial term gives the place of a component or of a group of com- 
ponents. 

Intuitively, spatial terms are used to describe information about the physical 
distribution of events. For instance, the term 010 describes a place having an idle 
component at the right, and *I* describes the locality of an event which is 
performed simultaneously on both sides of the system (a synchronization). 
The locality of the occurrence of the action CI in ((cxl fl)l y)\y is described by the 

term Pl0)10. 
Notice that spatial terms with one bullet describe the occurrence of actions, while 

spatial terms with two bullets correspond to communications. Spatial terms with 
more than two bullets cannot be obtained in CCS, but can be obtained in process 
algebras whose mechanisms of communication allow synchronizations of more than 
two processes. 

The following grammar defines the type ST, of spatial terms with exactly one 
bullet. 

Definition 4 (Type ST,). Spatial terms with one bullet are defined by 

ST, :I= 0, ST,l0,0lSTu 

We define a relation 6 between spatial terms which represents sublocality: 
a spatial term s of type ST, is a sublocality of another ST, term s’ if and only ifs < s’. 
For instance, l I@ 4 el0)10. 
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Definition 5 (Sublocalities). Let s, s1 , s2 be ST, terms. Then, 4 is defined inductively 
by the following rules: 

s1 6 s2 implies s1 10 G s210 

sr 4 s2 implies 0lsi < 01s2 

The above relation defines a tree-like partial ordering between spatial terms. The 
root is l and a spatial term s is greater than s’ (written s’ + s) ifs is obtained from s’ by 
replacing the bullet with a spatial term. This partial ordering captures the intuitive 
idea that l represents the whole system and terms of the form s 10 or 0 Is are parts of the 
system, or sublocalities. 

We can now show how to obtain spatial terms from transitions. They are defined by 
structural induction on transition terms. 

Definition 6 (From transitions to spatial terms) 

sp(L4 W) = l 

sp(t < + E) = sp(t) 

sp(E + > t) = sp(t) 

sp(tlE) = SP(OI0 

sp(ELt) = BlSP@) 

SP@l t’) = sp(t)Isp(t’) 

SP@C@l) = sp(t) 

sp(t\a) = sp(t) 

The algebraic approach can be easily extended: for instance, in [ 141, CCS is defined 
as a two-sorted algebra. The labeling operation and the interleaving bisimulation 
relation are defined via algebraic operations in a category of models. It is also possible 
to apply this approach to other process description languages provided that their 
semantics are defined in terms of bisimulation. 

Example 7. Extend CCS with an encapsulation operation [-I, as in [9]. Intuitively, 
this operator says that the term inside the [_I has to be seen as a black box, and it is 
not possible to see inside it if the actions are distributed or not. All the actions it 
performs are causally (and temporally) ordered. Notice that in the interleaving 
semantics this operator is useless. The agent [E] is seen as a sequential process. 
Hence, for example, the equation [LX I fi] = a.jZi + /?. ct is valid also in truly concurrent 
models. 
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In this algebraic context, we have to extend the signature of the algebra with a new 
operation (denoted by [-I) and to add one rule: 

t:E % E 

[t]:[E] It+ [E’] 

Since the interpretation of [_I is an encapsulation operation, the intended meaning 
of [-I is that any action inside it is seen as occurring in a common site and there is no 
distribution. This fact is reflected in how the spatial term of a transition [t] is defined: 

SP(CW = l 

A CCS computation from E to E’ is, as usual, a sequence of transitions such that the 
target of a transition coincides with the source of the following one. 

Computations are introduced in the algebra by means of the following axiom and 
rules. 

Definition 8 (Computations). 

t:E % E’ t:E a E’, t:E’aE” 

t:E =S E t; t’ : E =a E” 
t; (t’; t”) = (t; t’); t” 

If t: E a E’, E is the source of t and E’ is the target of t as before. The set of 
computations is called %?ccs. 

The presentation we have given so far for CCS has an initial model, which contains 
CCS agents, (proofs of) transitions, and computations. As usual, the elements of the 
initial algebra are terms modulo the axioms. Besides the initial one, the set of formulas 
has many models: some of these models are transition systems, which may be of 
interest. For instance, in one of these models all transitions with the same label 
between a pair of agents are identified. Hence, a transition is uniquely determined by 
its source, target and label. Such a model is equivalent to Milner’s original transition 
system, where transitions are triples. 

Since we are only concerned with causality-based, location-based, and interleaving 
semantics for CCS, some of the information given in the proofs of the transitions is 
useless. Thus, we can choose another model (another transition system) by abstracting 
away the useless information from the proofs. In our case, it is enough to add the 
following rule: 

t:Pl s Pz, t':p, s Pz, sp(t) = sp(t’) 

t = t’ 

Transitions are now equivalence classes of terms. In what follows, a transition is 
defined by its source, target, label and spatial term. We will use the notation pap’ 

(read pi at Si) to denote it. Similarly, a computation of the form tl; t2;***; t, is 
Pl@S, P2@S2 A@% represented by a sequence of transitions p0 -pl - ... -p.. 
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Fig. 2. The class of transition systems for CCS. 

Fig. 2 shows the class of models of the axiomatization for CCS. The initial model is 
the proved transition system. There is one model where transitions are triples (agent, 
label, agent), the original Milner’s one. The transition system that we consider (called 
in the figure spatial transition system) is in between these models. Notice that 
a transition of the spatial transition system is uniquely determined by the triple 
(agent, label@spatial term, agent). 

2.2. Observing computations 

The next step in the parametric approach is to determine what is observed out of 
a single computation. Given a description of a computation of the system, what is seen 
by an external observer is established by means of an observationfinction, which maps 
computations of the system into their corresponding observations. 

Definition 9. An observation ohs is an observation domain (D, c ), where D is a set of 
observations and c is a partial order on D, together with a monotonic function 
o from computations ordered by prefix to the observation domain. 

We say that 0 E D is the observation of a computation c if o(c) = 0. 
Monotonicity is the only requirement on observation functions: if one observes 

a computation and obtains some information, observing a “longer” computation 
(i.e. a greater computation in the prefix ordering) one obtains more informa- 
tion. Formally, observation domains are ordered, and the observation function 
has to be monotonic on computations when ordered by prefix. We call an observa- 
tion the observation domain together with the function from the computations to 
the domain. 

In the following definition we introduce the observation for location equivalence, 
called lot. 
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Ir2@sz P” @ % Definition 10 (Obseroation lot). Given a computation p. * p1 - *se - pn, 

we associate to it a structure (Eu, < , <, d), where (Eu, < ) is a forest of events and 
< is a total generation ordering on events, defined in the following way: 

l EU = {eili = 1 . . . n} is a set of II different events, 

0 ei < t?j iff i < j, 

0 ei<ejiff(&Q.YjAi<j), 

0 /(ei) = /Ai* 

The observation lot is obtained from the structure (Eo, < , <, t’) by forgetting all 
elements having a z label, and by restricting the orderings and labeling to the 
remaining events. 

In the labeled forest (Eu, < , <, 4) an event e’ is a successor of e if e’ occurs in the 
same locality as e, or if e’ occurs in a sublocality of e. Intuitively, a branch in the forest 
corresponds to a “fork” operation, in which two (or more) sublocalities are created. 
Only visible actions are taken into account to construct the structure; in fact, this 
observation is “weak”, in the sense that it does not observe z’s. Moreover, 7’s have no 
influence in the construction of the observation. This fact corresponds to the idea that 
communications have no locality, and that locality (unlike causality) cannot be 
“transmitted” by synchronizations. 

The fact that location observations are forests relies strongly on the form of the 
relation of sublocalities in CCS, which has the form of a tree. In another language, the 
structure could not verify the property of being a forest, for example, if the language 
contains a “join” operation, which can put together many localities. In general, one 
could get an acyclic graph instead of a forest. 

We consider observations modulo isomorphism. This means that the names of the 
events, for example, have no relevance (but of course their labels do); two isomorphic 
location observations are considered to be the same. Observations are regarded as 
abstract entities. 

Example 11. Let c be the computation (a.rJ@.y.~)\~% (~.6l/?.r.~)\rm 

(y.Gly.~)\~% (~~E)\Y%(NILIE)\~% (NZLINZL)\y.Theforest (E, < , <, 

4) corresponding to the lot observation of c is shown in Fig. 3. The set E has four 
events, one for each no-tau transition, labelled with IX, /I, 6 and E, respectively. The 
total ordering < is indicated in the figure via the numbers labeling the events and it is 
obtained directly from the occurrence ordering in the computation c. 

The observation domain of locations is ordered in the following way: we have 
0 c 0’ if 0 is isomorphic to a left-closed subset of 0’ (i.e. 0’ is an extension of 0 with 
more events). It is easy to verify that this relation defines a partial ordering on location 
observations, and that the observation function is monotonic with respect on observa- 
tions. 
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a 

Fig. 3. Observation of c from Example 11. 

3. Observational equivalences 

3.1. Observation trees: equivalences and axiomatization 

Up to now, the observations of computations have been defined. In this section, we 
define observational equivalences with respect to such observations. To this aim, the 
computations an agent can perform are ordered by prefix, generating a tree-like 
structure. Notice that this structure is fixed, independently of the observation. These 
structures have been presented in [lo] with the name of nondeterministic measure- 
ment systems (NMS) and have also been studied, with the name of observation trees, in 
[12] where a parametric approach has been developed. In particular, there is a com- 
plete axiomatization of observational congruence on observation trees (for the finite 
case), parametric with respect to the observation. 

Definition 12 (Observation tree). The observation tree corresponding to a CCS agent 
E with observation obs is the tree of all the computations from E ordered by prefix, 
where each node is labeled by the observation ohs of the corresponding computation. 

Example 13. Fig. 4 shows the observation tree corresponding to the agent 
((tl + ~)I(LY./~.~))\#I with lot observations. 

We will denote an observation tree as (N, < , o), where N is the set of nodes, 
< the ordering relation and o the observation function. A node n’ is a successor of 

a node n in (N, < , o) if n < n’; and it is an immediate successor if n < n’ (i.e. n < n’ 
and n # n’) and there is no n” such that n < n” < n’. 

Several notions of bisimulation have been defined in [12] on node-labeled struc- 
tures. In particular, a notion of weak bisimulation has been introduced which is the 
natural extension of the same notion on arc-labeled structures. Instead, the definition 
and axiomatization of the jumping bisimulation of [ 123 are simpler. However, it is easy 
to show that for observations without atomic actions, and this is the case for all the 
observations presented in this work, jumping and weak bismulations coincide. Thus, 
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Fig. 4. The observation tree of ((a + p)l(a./?.y))\/I. 

we can use the simpler definition and still be consistent with the natural extension of 
bisimulation proposed in [ 121. 

Definition 14 (Weak bisimulation). Let t = (N, < , o) and t’ = (N’, < ‘, 0’) be two 
observation trees (over the same observation domain), and let R be a symmetric binary 
relation on N u N’. We will say that R is a weak bisimulation iff nl R n2 implies that 
l (ni) = o(n2), and 
l for every immediate successor n; of nl there exists a successor n; of n2 such that 

n; R n;, and for all n’; such that n2 < n; d n;, the observation of n’; coincides with 
the observation of n2 or with the observation of n; 

Definition 15 ((Jumping) bisimulation). Let t = (N, < , o) and t’ = (N’, < ‘, 0’) 
be two observation trees (over the same observation domain), and let R be a symmet- 
ric binary relation on N u N’. We will say that R is a bisimulation iff nl Rn2 
implies that 
l o(nl) = o(n,), and 
l for every successor n; of nI there exists a successor n; of n2 such that 4 R 4. 

In the sequel, we will call just bisimulation the jumping bisimulation. 

Definition 16 (Nonatomic observations). Let obs be an observation, with observation 
domain (0, c ) and observation function o from %ccs ordered by prefix to (D, c ). 
Then, obs satisfies the nonatomic property if and only if for each nl , n2 such that n2 is 
an immediate successor of nl in the observation tree of some p E CCS the following 
property holds: 

Vp’ E CCS if n; is a successor of n; and o(nj) = o(ni) for i = 1, 2, then n; is an 
immediate successor of n; . 
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A nonatomic observation grows step by step, and it does not allow long observa- 
tions (which correspond to computations of more than one step) all of a sudden. 

Lemma 17 (Bisimulation and weak bisimulation coincide over nonatomic do- 
mains). Let ohs be an observation satisfying the nonatomic property. Let p1 , p2 E CCS. 
Let ti be the observation tree associated with pi for i = 1,2. Then, there is a bisimulation 
between t and t’ if and only if there is a weak bisimulation between them. 

Proof. The if part is always true, since weak bisimulation is stronger than jumping 
bisimulation. For the only ifpart, suppose that two trees t and t’ are jumping bisimilar 
but not weakly bisimilar. Hence, there exists a jumping bisimulation R between the 
nodes oft and those oft’, and there exist nodes n, , n2 oft and 4, n$ oft’ such that n2 is 
an immediate successor of nl , n; is a successor of n; and ni R n: for i = 1,2 but for 
some n” which verifies n’, < n” < n;, the observation of n” is different from the 
observation of n\ and from the observation of n;. Since ni R n:, the observation of ni 
and n: coincide, for i = 1, 2, and hence, by definition of nonatomicity (since n2 is an 
immediate successor of nI), o(n”) = o(n;) or o(n;) or o(n”) = n;, which is an ab- 
surd. 0 

Definition 18 (Observational equivalence and congruence). Two trees t and t’ are 
observationally equivalent if there exists a bisimulation R such that the roots are in the 
relation R, and they are observationally congruent if there exists a bisimulation 
R rooted at the roots oft and t’, i.e. such that the roots are in the relation R and no 
other node is in the relation with them. 

We will say that two CCS agents E and E’ are observationally equivalent with 
respect to an observation obs (E zobs E’) if their corresponding obs observation trees 
are observationally equivalent. 

An interesting feature of observation trees is that a complete axiomatization has 
been given for observational congruence (parametric with respect to the observation) 
in the finite case. 

In [12] a particular syntax for representing (finite) observation trees as terms of an 
algebra is introduced. In fact, given a domain of observation D (in this case a domain 
of labeled forests), an observation term over D is defined in the following way: 
0, := NIL, A(O,), 0, 8 O,, where A E D. In addition, the operations are partial, and 
this restriction is expressed via a type system. Typed observation terms are denoted by 
P, Q, R. The interpretation of the operations on trees is as follows. Constant NIL 
denotes the empty tree. The operation A(P) prefixes the tree P with a node labeled with 
A, and it is defined only if the root of P (if any) is labeled with an observation equal 
or greater than A (because the observation function has to be monotonic on 
computations ordered by prefix). The operation 0 between observation trees merges 
two nonempty trees by collapsing their roots, hence it is defined only if both trees have 
the same observation associated to the root. 
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Table 1 

Axioms for observational congruence 

(Al) PcBQ=Q@P 

(A3 U’@Q)@~=P@(QQ~) 

643) a(NIL)@P=P 

644) P@P=P 

(AS) @@(P) 0 Q)) @ a(p) = &V’) @ Q) 

Observation terms, modulo axioms (Al)-(A3) of Table 1, are isomorphic to finite 
observation trees. 

In [12] it is proved that the set of axioms (Al)-(A5), shown in Table 1, are 
consistent and complete with respect to observational congruence over observation 
trees. That is, two trees represented by observation terms P and Q are observationally 
congruent iff (Al)-(A5) k P = Q. 

Example 19. Let p = (a.rlr./?)\~~ + (y.ul/?.fi\y and 4 = alp. Then, p wlOC q. 
Let E denote the empty location observation, GI denote the location observation with 

just one element labeled with U, and let fi denote the location observation with one 
element labeled /I. 

Let LX&/? denote the location observation with two elements, one labeled with c( and 
the other with /I, which are not related in the partial ordering and in the total ordering 
the element labeled with CI is minor than the element labeled fi. The observation term 
corresponding to p is s(a(tl(c&?(NZL)))) @.@(j?(/?&a(NZL)))) and the observation 
term corresponding to q is s(cc(c&~(NZL))) 0 c(/?(/?&a(NZL))). 

(1) By axiom (AS), letting P = NIL, Q = B(R), we deduce 

A(B(B(NIL) @B(R))) @ A(NIL) = A(B(NIL) @E(R)) 

(2) From (l), by applying axiom (A3), we prove the lemma: 

&(n(R))) = &J(R)) 
(3) As instances of the Lemma in (2), by substitution, we obtain 

&(a(a(a&jI(NZL)))) = ~(ol(c&j?(NZL))) and 

s(MWW(NW))) = WB&WW)) 

(4) By congruence, 

e(~(~(aWW~L)))) @ c(B(P(P&~(NW))) = ++W(NIL))) @ e(B(B&a(NIL))). 

3.2. Location equivalence 

In this section the correspondence between the equivalence defined so far and the 
location equivalence of [6,16] is established. 

In [5,6,16] the grammar of CCS is extended with an operator of local cause 
prefixing 1 ::E where 1 is a location and E a process. Locations form a fixed, countable 
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set. The idea is that each (sequential) process is assigned to a different location where it 
executes, and an observer of the system perceives the visible actions of the system and 
also the location where they take place. More precisely, location transitions are of the 

form E - or”1’2.‘.‘” E’ where a is the action and 1 1 1 2 . . . I, is a sequence of location names. 

The prefix ordering in strings of location names represents the concept of sublocality. 
For example in the process a.(/?[ y), action a may occur at any location name, for 
example, I (names of locations are arbitrarily chosen at each step), and /I and y both 
are performed at different sublocations of 1, for example, 1 I’ and II”. 

The operational semantics of the language is defined by means of two transition 
relations: one giving location transitions discussed above, and another giving standard 
transitions, where no location is assigned to transitions. The second transition relation 
defines the r-moves, corresponding to both r prefixing and communication. A bi- 
simulation-like equivalence is defined on these transition systems, and the resulting 
equivalence (called location equivalence and denoted with xl) is shown to be 
consistent with the original interleaving semantics for CCS agents. 

Definition 20. Location terms are defined by the following abstract syntax: 

P = nil, P.P, P + P, PIP, pC@l, p\a, l::p, x, recx. p 

where 1 E Lot and x is a variable. 

Location agents are guarded, closed location terms. We call PIOc the set of all 
location agents. 

If p E PIOC, pure(p) is the agent obtained by removing all locations from p and lot(p) 
denotes the set of location names that occur in p. 

In [6] the syntax of the language is extended also with variables for localities. We 
consider here the version without location variables, more similar to the syntax of 

P, 161. 

Definition 21. Location transitions: 

a.p-%l::p 

n:u 
P-P’ 

t(;” 
P-P’ 

IELOC 

implies k :: p p * k :: p 

implies p + p” zp’ and p” + p;ff,p’ 

cL;u 

P-P’ implies p 1 p” ~p,lp/l and p”,p~p,,,p, 

oL;u 
P-P’ implies p[@] %p’[@] 

P$P, implies p\a&p’Ia /I$ {a,E} 

p Crec x. p/xl Xp’ implies recx. p-%p’ 
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Definition 22. Standard transitions 

P s P’ implies k::p % k::p’ 

P s P’ 

P lit P’ 

P s P’ 

implies p + p ” % p’ and p” + p 4 p’ 

implies pip” % p’Ip”and p”Ip 3 ~“1 p’ 

implies p[@] %p’[@] 

P It-, PI implies p\a 5 p’ I a p $ {a, Cc} 

p[rec x. p/x] % p’ implies ret x. p li, p’ 

a;u 
P-P’ and q “” -4’ implies pIgA p’lq’ 

Some definitions (as weak transitions, etc.) are given for transition systems contain- 

ing an internal T action. In this way, some of the theorems of this section are also valid 

for a general class of systems, not only for the one considered here. This is an 

advantage of the parametric approach: some general results can be established which 

are then applied to many particular cases. 

Notation 23 (Weak transitions). Let TS = (S, T, A) be a transition system such that 

A includes a distinguished invisible action z. Then, for p, p’ E S, 

0 p%p’iffpI, p1 I, ... 1-, pI=p’forsomepl,...,p,ESorp=p’, 

l p~p’iffp~pp,5p,~p’forsomep,,p,~S, 

0 c : p * p’ if c is a computation (i.e. sequence of transitions) from p to p’, 

l if c : p * p’ and c’ : p’ a p”, with p” E S, c; c’ : p = p” is the concatenation of c and c’, 

l cp is the empty computation from p to p. 

Definition 24 (Location equivalence). A symmetric relation R E PIOC x PIOC is called 

a location bisimulation iff (p, q) E R implies 

l p % p’ implies q % q’ for some q’ such that (p’, q’) E R, 

l p g p’ implies q g q’ for some q’ such that (p’, q’) E R. 

Two agents p and q are said to be location equivalent, p x, q, iff there is a location 

bisimulation R such that (p, q) E R. 

The transition system given above, following [6] is infinitely branching, because on 

each step a location name is chosen from an (infinite) set of location names. Each place 

has an explicit name, and hence observations are not considered up to isomorphism, 

that is, the isomorphism has to be explicitly constructed. 
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As has been pointed out by Kiehn [16], an important point about the name of 
locations is that, when one chooses a new name to be used in a computation, one has 
to assure that the name does not appear in the agent. In some sense, the name of 
a location is similar to the name of an event (the name determines the event in 
a unique way). Choosing twice the same location name in a computation, no 
information is added. In fact, the most discriminating computations are those in 
which a different name is chosen each time. The other computations can be construc- 
ted by renaming some locations, and it has been proved [16, Proposition 2.81 that this 
operation of renaming does not affect the equivalences, i.e., it is irrelevant. 

Following these considerations, the proof of coincidence of the semantics proceeds 
in three steps: 

(1) The formal definitions and results showing that infinite branching is not needed 
are introduced. If one is interested only in CCS terms (and this is our case), it is 
possible to systematically use natural numbers as location names, introducing them in 
order and using them only once in each execution sequence. With this aim, 
a transition system called numbered localities is defined. 

(2) For the transition system introduced in (I), bisimulation over the transition 
system and bisimulation over the associated observation trees (considering as obser- 
vation of a computation just the sequence of its labels), is shown to coincide for CCS 
terms. This result is proved in a rather general theorem, that may be applied to many 
transition systems. 

(3) The observation tree that we associate with a CCS term and the observation 
tree associated in step (2) are observational equivalent. That is, it is possible to 
construct a bisimulation that relates observation trees and the trees of computations 
introduced in the second step. For this, it is necessary to show how to recover the 
labels of the trees from location observations and vice versa. 

Since the notion of bisimulation of observation trees considered for (2) and (3) is the 
same, and bisimulation is a transitive relation, the correspondence of the semantics 
follows from the steps above. 

In the sequel, Lot = N, that is, location names are natural numbers. 

Notation 25. The set of all the computations of the location transition system is called 
VI. If u is a sequence of location names and 1 is a location name, 1 E u iff I appears in the 
sequence u. A sequence of elements el, . . . , e, is denoted el * e2 a.. e,, and the concatena- 
tion of two sequences’ s and s’ is denoted s. s’. 

Definition 26. Let c E ‘%‘r. We define the norm of c, written 11 c 11, as the number of 
events in c labeled with an observable action. 

The norm of c is less than or equal to the length of c. 

‘Note that a different notation is used for concatenation of labels and for concatenation of computations. 
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Definition 27. We type location terms with the following type system: 

nil:0 X:0 

p:0 p:M p:M - ___ 
CL.p:Q p\a: M PC@] : M 

p:0, p’:0 p:M, p’:M MnM’=0 p:M 

p + p’:0 pIp’:M u M recx. p:M 

P:M, I c min(M) p: {l...n} p:0 

(l::p):(M u {I}) p : camp(n) p: ccs 

where min(M) returns the minimum number in the set M. By convention, min(0) > n 
for any number n. 

Notice that not all terms in PIOC have a type and that some have more than one type. 
Each type gives a different kind of information about the term. 

Proposition 28. Let p E Pl,,. Then, p E CCS ifs p : CCS. 

If p: M where M is a set, the location names appearing in p are exactly those 
of M. 

Proposition 29. Let p: M. Then, lot(p) = M. 

Lemma 30. Let p : camp(n). Then, 

0 ifp- OL”‘” + ’ p’ then p’: comp(n + l), 

l if p It p’ then p’ : camp(n), 

0 max(loc(p)) = n. 

Proof. The first point is proved by induction on the rules of location transitions. The 
second is immediate, since the transition does not change the location names appear- 
ing in the term. The third is implied by the previous proposition. 0 

Definition 31. The transition system for numbered localities (NL) has as set of states S, 
where S = (p E Plot 1% p: camp(n)}, and the transitions are defined as follows: 

p a;u’n ,p, iff p 0r;u.l 
-p” is a location transition and I does not appear in p, 

where p’ = p” [l+ n] and n = max(loc(p)) + 1, and 

p I, p’ iff p It p’ is a standard transition 
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The transition system for numbered localities is finitely branching. In this transition 
system location names are introduced in order, and each location name is used only 
once. 

For CCS terms, the bisimulation equivalence that results from the use of the NL 
transition system coincides with location equivalence. 

The next definition recalls the weak bisimulation equivalence for states of 
a transition system. 

Definition 32. Let TS = (S, T, A) be a transition system such that A includes a distin- 
guished invisible action r, and let so, i. E S. The states so and sb are observational 
equivalent (written so z rs sb) iff there exists a symmetric relation R E S x S such that 
(so, sb) E R, and (si, s;) E R implies that 

l whenever s1 2 s2 there exists s; such that s2 2 s; and (s2, s;) E R, and 

l whenever s1 2 s2 there exists s; such that s2 % s; and (s2, s;) E R. 

Lemma 33. Let p, p’ E CCS. Then p E I p’ iflp z NL p’. 

Proof. (Only if) Since one can choose any location name at each step in the bisimula- 
tion, in particular one can choose n as location name in the nth step of the bisimula- 
tion, and in this way one obtains a bisimulation of NL. 

(If) Suppose that p x NL p’. Then, there exists a bisimulation R of NL. Let 
R’ = {(PI, p2)13p;, pi such that (pi, pi) E Rand p(pi) = pi, i = 1,2} where p is a func- 
tion from location names to location names, i.e., a renaming. To check that R’ is 
a location bisimulation is straightforward. 0 

The set of computations of NL is called %Z”. Notice that with Lot = N, we have that 
%” 5 V,. 

Lemma 34. Let p’ E Ploe such that p’ : camp(n). Then, there exist p E CCS and c E ‘3, 
such that c:p =z. p’ and jjcjj = n. 

Proof. We have that loc(p’) = (1. ..n}. Suppose that a, . . . a, do not appear in p. Let , 
pi=p[i+ai][i+ l+ai+l]...[n+a,]. It is easy to see that pi~pi+l 

Vi E { 1.. .n - l} (where ai is possibly a relabeling of ai). Then, there exists a computa- 
tion from p1 to p’, and p1 E CCS. 0 

Definition 35. Let TS = (S, T, A) be a transition system such that A includes a distin- 
guished invisible action r, and let so E S. Then, obtreeTs(so) is the observation tree of so 
in TS such that the labels of the nodes are the sequences of observable labels of the 
computation (i.e. different from r). 

Given a computation c, its label is denoted by label(c). 
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Theorem 36. Let TS = (S, T, A) be a transition system such that A includes a distin- 
guished invisible action z, and let so, sb E S. Then, so FZ rs sb ijfobtreers(so) is observa- 
tionally equivalent to obtreers(sb). 

Proof. (Only if) Suppose that so z rS sb. Then, there exists a bisimulation R such that 
(so, sb) E R. Let R’ = {(cl, cz)Icl, c2 are computations of TS, label(cl) = label(cz) and 
(target( target( E R}. Then, R’ is a bisimulation of observation trees. It is easy 
to see that (E,,,, E,,) E R’. Now, let (ci, c2) E R’ and c; be a successor of cl. Then, there 
are two cases: 

1. target % s1 and label(c;) = label(c,), 

2. target(c, 5 s1 and label(c;) = label(c,); a. 

Since (target( target( E R, we have that 

1. target 2 s2 and (sl, s2) E R or, 

2. target %- s2 and (si, s2) E R, 

respectively. Let c be the computation from target to s2, and let c; = c2;c. The 
computation c$ has target sl. Hence, since the labels of c; and c; coincide and their 
targets are in R, (c;, c;) is in R’. 

(If) Let R be a bisimulation such that (E,~, E,,) E R. Define R’ = ((target( 
target(c2))l(cI, c2) E R}. It is immediate that (so, ~6) E R’. Now, suppose that 

(si, s2) E R’ and s1 % s;. Since (sl, s2) E R’, there exist computations cl and c2 such 

that (c,, c2) E R’, label(ci) = seq and target = si for i = 1,2. Let C; be the 
result of concatenating cl and the computation from s1 to s;. Then, the label of c; 
is seq; a and there exists c;, successor of c2 with label seq; a. Hence, there exists 

computation from target to target(&) with label a. Thus, s2 % s; (where 

s; = target(&)) and by definition (s’, , s;) E R’. 

Corollary 37. Let p, p’ E CCS. Then, p z, p’ tJfobtreewl(p) is observationally equivalent 

to obtree,,(p’). 

Proof. From the previous lemma, obtree,,(p) is observationally equivalent to ob- 

treem,(p’) iff p z NL! p’, and by Lemma 33, p x,,p’ iff p xt p’. Cl 

The function where defined below finds out where a location name appears in 
a term. This place is described with a spatial term, and 0 is used to represent that the 
location name does not appear. For example, where(a.j?I 1:: 2::B, 2) = @I*, and 
where(a.j?11::2::/?, 3) = 010 = 0. 

Definition 38 (Function where). Given a term p of PloC and a location i, the place 
where location i occurs in p is described by the spatial term given by the following 
function: 

where(NIL, i) = 0, 

where(u.p, i) = 0, 
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where(plp’, i) = where@, i)(where(p’, i), 

where(p + p’, i) = 8 

where(p[@], i) = where(p, i), 

where (p\a, i) = where(p, i), 

where(i :: p, i) = 0, 

where(i::p,j) = where(p,j) if i #j, 

where(rec x. p, i) = where(p [ret x. p/x], i). 

We now need a function that given a computation in %cCS abstract away the 
irrelevant information and returns a computation of ‘Xs,. Evidently, each computation 
of ws, may have many corresponding computations in Vc CS, since the spatial informa- 
tion given in the spatial transition system is more concrete than that given in NL: each 
event has an address describing the exact place in the term where it occurs, whether in 
NL this address is relative to previous events. However, it can be shown that some 
computations of %?cc, may have more than one ‘3, corresponding ones, since the latter 
do not contain any information about locations. Thus a relation, rather than a func- 
tion, is defined. 

The relation ch defines a correspondence between the computations from an agent 
in the CCS transition system and in NL. The intuition of c ch c’ is that the computa- 
tions c and c’ describe the same behavior, this implies, in particular, that they have the 
same observation. 

Definition 39 (Relation ch). The relation ch E W,, x Wccs, given a computation 
Ir,:u, 

PO-P1 “‘P.-l 5~. of %?” such that p. : CCS, is defined as follows: 

PO ch web) 

cchc’ 

c; p. * pn+ I ch c’; pure(p,) Or0 where(p*+“m’ b pure@,,+ I) 

cchc’ 

c; p. 1* pn+ 1 ch c’; web,) I* pure@,+ I 1 

Lemma 40 (From NL transitions to CCS transitions). 

l Let pz p’ be a transition of NL. Then, pure(p)apure(p’) is a CCS 

transition, with s = where@‘, m). 

l Let p I, p’ be a transition of NL. Then, there exists s such that pure(p)% pure(p’) 

is a CCS transition. 
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Proof. In order to prove the first item, we actually prove a stronger result, namely: let 

p;u’1:p’ be a location transition, such that m # lot(p) and each location name occurs 

at most once in p. Then, pure(p) Or’@’ -pure($) is a CCS transition, with s = where 

(P’, m). 
This stronger result is proved by induction on transitions. For the axiom, 

a.q-% 1:: q, we have that pure(q) is a CCS agent (since q is in P1,,) and hence 

a.pure(q) ‘@* -pure(q) is a CCS transition, and where(l :: q, l) = l by definition. 

The inductive step is similar for all the rules. Let us show the case of the left-parallel, 

which is very representative. Suppose that pip” Zp’Ip” is a location transition, 

with rn$ loc(plp”) and location names occurring only once in pip”. By inductive 

hypothesis, pure(p) Or@’ -pure@‘) is a CCS transition, with s = where@‘, m). By the 

rules for CCS transitions, pure(p) I pure(f) ‘@“’ - pure(p’) I pure(p”) is a CCS transition. 

By definition, where(p’lp”, m) = where(p’, m)l where(p”, m). Since m 4 loc(plp”), we have 
that m 4 lot@“) and it is immediate to see in that case where@“, m) = 8. Hence, 
where(p’I p”, m) = where@‘, m) 18 = s 10. 0 

We now show some properties of the relation ch. 

Proposition 41 (Correctness of 4). Zf c ch c’ then c E %Zs, and c’ E Wccs. 

Proof. The first argument is clearly in GzZ”. By induction on the length of the computa- 
tion, using the previous lemma, the second argument is in qccs. 0 

Proposition 42. Let c E Gff” and c’ E Wccs. Then, cch c’ implies that target = 

pure(target(c)). 

Proposition 43. Let cl, c2 E Wn and c’, , c; E %’ ccs such that cichci, i = 1,2 and ~1; ~2 

and c; ; c; are dejned. Then, cl ; c2 ch c\ ; c;. 

The information about locations is syntactically included in location agents. When 
a transition occurs, this information is used to find out the location of the event. The 
function site uses this information to describe locations of events with an observable 
label. Hence, it takes as arguments two agents and a spatial term and returns the 
location, described as a string of location names, of an event which occurs in the 
location described by the spatial term. 

Definition 44 (Function site). The (partial) function site : Plot x ST x Plot + Lot* is 
defined as follows: 

site(a.p, l , m :: p) = E, 

~Whlp2,~l0,p~lp~) = siWl,s,p\L 

Mp~lp2,0Is,~ilp;) = sWp2, s,P;), 
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site(pl + p2, 0, p’) = E, 

site(p[@], s, p’[@]) = sit&, s, p’), 

site@\a, s, $\a) = site(p, s, p’), 

site(m::p,s,m::p’)= m.site(p,s,p’), 

site(rec x. p, s, p’) = site@[rec x. p/x], s, p’), 

site(p, s, ret x. p’) = site(p, s, p’[rec x. p’/x]). 

Lemma 45 (From CCS transitions to NL transitions). 

0 Let p %p’ be a CCS transition. Then, Vq E PIOc such that pure(q) = p and q : M, 

there exists q’ such that qw q’ is a location transition, and pure(q’) = p’ and 

u = site(q, s, q’)for any n 2 max(M). 

0 Let p- I@’ p’ be a CCS transition. Then, Vq E Ploe such that pure(q) = p and q: M, 

there exists q’ with pure(q’) = p’ such that q s q’ is a standard transition. 

Proof. By induction on transitions. For the axiom, let a.p -% p. Let q : M such that 

pure(q) = a.p. Then, q = i :: ... :: n :: a.p (since agents of type M cannot contain 
location names inside any a. context). By the location transition rules, i :: ..+ :: n :: 

cf;i...n.n + I 
a.p- i :: ... :: n:: n + 1 :: p, and, by definition, site(i :: ... :: n :: a.p, 0, i :: ... :: n :: 

n + 1 :: p) = i...n*site(a.p,*,n + 1 :: p) = i...n*n + 1. 
The inductive step is very similar for the other rules. Let us show the case of the 

left-parallel, which is representative. 

Let pip” ‘@“’ - p’lp” be a c CCS transition. Let q : M such that pure(q) = pip”. 

Then, q= i ::-a.:: m :: @If’) with pure@) = p and pure@‘) = p”. Moreover, 
p: M’ and ~7 : M” with M’, M” E M. Note that p may contain j :: prefixings. 

By inductive hypothesis, we have that P-J?’ is a location transition and 

pure@-‘) = p’ and u = site@-, s, p’) for any n 2 max(M’), and in particular for any 
n 2 max(M) 2 max(M’). 

Then, by the location transition rules, i :: +.. :: m :: (jlp”)w i :: . . . :: m :: 

($1 p”) is a location transition. Moreover, site(i :: e.. :: m :: (jlp”), sl@, i :: . . . :: m :: 
($lp”)) = c . . . me.&@I$‘, ~10, p’lp”) and by definition of site and inductive 
hypothesis site @(p”, ~10. p’lp”) = site@, s, p’) = u and thus site(i :: a-- :: m :: @Ip”), ~10, 
i 1: . . . . . . . m :: ($I$‘)) = p . ..-m.u. 0 

Lemma 46 (From CCS transitions to NL transitions). 

0 Let p- ‘@’ p’ be a CCS transition. Then, Vq: camp(n) such that pure(q) = p, there 

exists q’ such that q ““’ + ’ -4’ in NL and pure(q’) = p’ and u = site(q, s, q’). 

‘@’ l Letp- p’ be a CCS transition. Then, Vq:comp(n) such that pure(q) = p, there 

exists q’ with pure(q) = p’ such that q J+ q’ is a transition of NL. 
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Proof. If q: camp(n) then q: A4 for M = { 1, . . ..n}. Hence, by the previous Lemma, 

q a q’ is a location transition. 

By Lemma 30, if q : camp(n) and qm q’ then q’ : comp(n + 1) and thus 

qe q’ is in NL. The same reasoning applies to standard transitions. 0 

The function where shows how to describe locations as spatial terms, and the 
functions site recovers locations from agents and spatial terms. We now show the 
relation between these functions. 

Lemma 47. Let p: coy(n) and p or’u’n+ ’ - p' be a transition of NL, with where 

cp’, n + 1) = s. Then, site@, s, p’) = u. 

Fact 48. Let c E gccs, c : p * p’. Then, for all q E PIOC such that pure(q) = p there exist 
c’ E WB,, q’ E Ploe such that C’ : q =S q’ and pure(q’) = p’ and c’ch c. 

Fact 49. Let c E V,, c : p * p’. Then, there exists c’ E Wccs, c’ : pure(p) =S pure@‘) such 
that c ch c’. 

The label of a computation in obtreeN1( ) is just the sequence of the observable 
labels that occur in the computation. These sequences can be seen as representations 
of forests of events. The following definition shows how to build lot observations from 
labels of obtreeNL( ). 

Definition 50. Let V be the function from labels of obtree,,( ) to lot observations 
defined in the following way: 

V(R; ~,).(a,; UZ)...(CG 4) = (Eu, G , -x, lab), 

where 
l Eu = {l,...,n}, 
0 jii iff j appears in Uip 

l < is the usual order on natural numbers restricted to Eu, 
l lab(i) = ai. 

Actually, the information given in lot observations and the information given 
in the labels of obtreeNhrl( ) is the same, in the following sense: given any lot 
observation it is possible to construct an equivalent obtreewl( ), label, and 
given a obtreew,( ) label it is possible to construct a corresponding lot observ- 
ation. 

Proposition 51. The function V has an inverse V- ’ given by V- ‘(Eu, < , 

<, lab) = (aI; uI)*(a2; u2) . ..(c(.,; u,), where, denoting by ei the ith element in the total 



U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 325 

order < , 
0 Qi = lUb(ei), 
l ui = {m ( e,<ei} sorted with the usual order on natural numbers, 

which oerifies that V(V-‘(S)) z S and V-‘(V(S)) z S. 

Lemma 52 (Observations). Given c E V, with label(c) = seq, let c’ E ‘is,,, such that 
cchc’. Then, V(seq) = obs(c’). 

Lemma 53. Let cl, c2 E 5f,, and let c;, c; E %‘ccs such that cich cj. Then, 
label(cI) = label(c2) if and only ifobs = obs(c;). 

Definition 54. Let O(p) be obtree&) where each label seq is replaced by V(seq). 

Lemma 55. Let p : CCS. Then, O(p) is observational equivalent to the observation tree of 
p in the transition system of CCS with labels lot. 

Proof. Let R= {(c,c’)(c~G??~,c’~bP ccs, source(c) = p, source(c’) = p, c ch c’}. Then, 
R is a bisimulation of observation trees. Suppose (ci , c;) E R and let c2 be a successor 
of cl. Then, c2 = cl; AC, where AC : target * target( By Lemma 40, there exists 
AC’: pure(target(cl)) * pure(target(c2)) and AC ch AC’. Since pure(target(c,)) = tar- 
get(c;) if is possible to define c; = c;; AC’. From Proposition 43, c2 ch c;, and hence 
there exists a successor of c; with obs(c2) = obs(c;) (since they are in ch) and 

(cz,c;)~R. 

If c; is a successor of c; , c; = c; ; AC’, and using Lemma 46 the proof proceeds as 
before. Cl 

Now we are ready to prove the main theorem which shows that both equivalences 
coincide. 

Theorem 56. Let p, p’ E CCS. Then, p x I p’ if and only if p % toe p’. 

Proof. It follows immediately from Lemma 33, Lemma 55 and Corollary 37. •i 

4. Other observations 

In this section we fix the transition system for CCS and the equivalence (observa- 
tional equivalence), and we experiment with different observations. In this way, many 
different equivalences are defined for the same language, changing the assumptions on 
what an observer can see. 

Some of these equivalences can be defined via bisimulation directly on a suitably 
defined transition system (without explicitly constructing the computations). For 
example, the equivalence induced by mixed ordering causal observations, as presented 
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below, has been defined on a transition system for a language including CCS in [8]. 
However, it is not immediate to define the equivalence induced by other observations 
directly on a transition system. 

For instance, the observation corresponding to location equivalence gives 
information on the forest induced by locations but also on the generation ordering. 
In the classical approach to causality [ll] one can choose between a mixed and 
a partial ordering (in the former the generation ordering is observed, while in 
the latter it is not). Here, one can choose either to observe or not to observe 
the generation ordering. The model where the generation ordering is not observed 
is to some extent more intuitive: it assumes that it is not possible to determine 
the order between two events that occur in different places. It is not obvious 
how to modify the definitions of [6,16] to obtain this equivalence. Instead, 
in our parametric approach, just by performing a simple change on the observa- 
tions of computations, namely by forgetting the total ordering and by leaving 
the rest (transition system, bisimulation) unchanged, this equivalence is 
obtained. 

For each observation in this chapter, an axiomatization of the observational 
congruence induced can be obtained as an instance of the axioms of Table 1. 

4.1. Abstract localities 

Given a computation, the observation aloe is defined as a labeled forest 
(E, <, 8) where E, < and e are defined as in Definition 10 for location observa- 
tions. 

As it has been pointed out above, this observation captures the intutive idea that 
there is no global clock, and that it is not possible to establish the order of occurrence 
of events in different, unrelated places. An interesting point is whether this observation 
induces a different equivalence (and hence different semantics). In fact, the equivalence 
x l0c is finer than ZZ~~,,~, and the example showing this fact is the same example used to 

show that mixed ordering causal observations induces a finer ordering than partial 
ordering causal observations [ 111. 

Example 57. Let p = (((0~18) + cr.B)la.b.B)\6 and q = ((c( + cr.b./?)la.~?.j?l~)\iL Then, 
we have that p xolOC q but p +ilOC q. 

The example above, while being finite, is not trivial. It has been checked, together 
with other examples of this work, by the automatic parametric verification tool of 
Cl.51 (which is based on the theory of observation trees). 

Using lot observations, when p has performed two CL actions in two different 
locations, it has decided if the fi will take place in the same location where the first or 
the second u has been performed. Instead, when q has executed two c1 actions in 
two different locations, it may still choose where to perform /?, and thus the processes 
are different. This difference is detected by the total ordering, but leaves no trace in 
the tree. 
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Although the intuitive nature of localities is to assign locations to events up to 
isomorphism, it is sensitive to a global clock, distinguishing two computations where 
an action occurs in a location which has been “the first” in executing an a, or in 
a location which has been “the second” in performing an ~1. 

4.2. Observing causality 

A different, well-known notion of observation is suggested by the causal approach. 
In these models, the observer of a system is supposed to be able to determine the 
causal dependencies between event occurrences. 

Here we first define mixed ordering causal observations. This observation has been 
proposed previously in [ 111, and the equivalence that it induces coincides with the 
causal bisimulation of [8] and with the history preserving bisimulation of [24]. 

The main difference between this observation and the one defined for localities is the 
treatment of r’s. While localities are not affected by events labeled with r’s, causes can be 
inherited by means of communications. Hence, we have to extend the sublocality 
relation to deal with events labeled with r’s, i.e., with spatial terms with more than one 0. 

We will now define a relation between spatial terms which includes the idea of 
overlap: two spatial terms are overlapping if they both cover some part of the system. 

Definition 58 (Overlapping localities) 

s # 0 implies l - s, 

s1 -s2 implies sl(s’-s21sN, 

s1 -s2 implies ~‘1s~ -s”Is2. 

A dot in a spatial term represents the position where an action takes place. The idea 
of overlapping is that some “active” position of one spatial term coincides, or is 
a refinement of, an active position of the other spatial term. Notice that - is neither 
symmetric nor antisymmetric. 

A particular case of overlapping localities is when s1 and s2 are of type ST, (i.e. have 
only one l ) and both s’ and s” in the last two rules are 8: in that case the sublocality 
ordering is obtained. 

Definition 59 (Mixed and partial ordering causal observations). Given a computa- 

tion p. 818Sl 
-Pl 

Pz@Sz - ...%pn we associate with it a structure (Ev, < , c, , t), 

where 

l Ev = { ei 1 i = 1.. .n} is a set of different events, 
0 ei < ej iff i < j, 

l si-sjandi<jimplieseizej, 

l eiz ekande,L ejeizej, 

0 r!(Q) = /Ji. 
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The mo observation of the given computation is given by the structure obtained 
from (Eu, < , t, , 4) by forgetting all elements having a r label, and by restricting the 
orderings and labeling to the remaining events. 

The observation for causal partial orderings is obtained from causal mixed 
orderings as abstract localities from localities, i.e., by forgetting the total 
ordering G . 

The construction of the causal partial ordering given above is straightforward. The 
only difference between the approaches based on causality and on locality is whether 
to allow causality to be inherited from communications or not. Thus, < z c, . 

The causality relation is the least partial order which contains < n -. 
The coincidence of the mixed ordering equivalence of [l l] with the observational 

equivalence with mo observations defined above is immediate. In fact, the definition of 
[l l] employed NMS, but they are essentially the same as observation trees. A proof of 
the coincidence of mixed ordering bisimulation, causal bisimulation and history- 
preserving bisimulation for event structures can be found in [2]. 

4.3. Partial ordering localities 

Locality and mixed ordering observations give different information about the 
system. Combining them, we have a third kind of observations, namely a structure 
(Ev, < , <, c, , &‘) where (Ev, < , i, 8) is the lot observation and (Ev, -C , c, , t’) 

is the mo observation. Since < E c, , we can give a graphical representation of these 
observations with colored partial orderings, i.e. with partial ordering diagrams where 
arcs belonging to both relations are painted with a color different from the color used 
for t, (here we use plain lines for arcs belonging to both relations and dotted lines for 
arcs which are only in the causal ordering). We will call this observation pol, for partial 
ordering localities. The equivalence induced by this observation coincides with the 
local/global cause equivalence of [ 163. 

Example 60. Fig. 5 shows the colored partial orderings corresponding to 
computation c of Example 11 and to the computation (cr.r.el/?.T.@\r 

~(Y.EIB.y.G)\y~(y.EIy.6)\y~(EI.s)\y~(EINzL)\1,~(NzL( 

NIL)\y. 

Fig. 5. Partial ordering localities observations for (a.y.6lj?.~.e)\y and (a.y.sIB.~.@\y. 



U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 329 

Notice that with location or colored partial (or mixed) orderings they are different. 
However, with partial (or mixed) causal orderings the two computations have the 
same observation. 

The equivalence w rl is stronger than both the causality-based an the locality-based 
equivalences, i.e. E x Pl E’ implies E w m. E’ and E x lot E’, and it is stronger than the 
intersection of the equivalences x,, and zloe, as shown by the following example. 

Example 61. Let I = (alp) + (a.yIT./?)\y + E./I and s = (al/?) + a./?. Then, IX,, s, 
since (a. y 17. /?)\y is causally absorbed by a. /3, and r x lee s, since (a. y 15. /$\y is locally 

absorbed by (al/?), but I &,0l s. The last inequality arises because r has a computation 
whose observation is the structure ({1,2}, < , i, t, , t), with 1 c 2, e(l) = u, 
~(2) = /I, 1 c, 2 and < = 8 while s has not. 

4.4. Weak and strong interleaving observations 

Of course, as a particular case, interleaving observations can be defined in this 
context. The interesting point is that the difference between weak and strong equiva- 
lence is given here at the level of observations, and not at the level of equivalences. 

Definition 62 (Interleaving observation). Given a computation p,, a p1 
PZ@Sl - ... * pn, we associate with it the sequence of labels pl; pz; . . . ; pn. 

The weak version of the interleaving observation is obtained by deleting r labels 
from the sequence pr; pLz; ..-; ~1.. 

The correctness of this definition is an immediate corollary of Theorem 36. 

Corollary 63. Let E, E’ E CCS. Then, E x int E’ iff E z E’, where x denotes the 
interleaving weak observational equivalence [19]. 

Fig. 6 shows all the weak observations presented in this work. An arrow from 
x to y means “y is more abstract than x”, and hence the equivalence induced by 
observation x is finer than the equivalence induced by y. Observations which are not 
related by an arrow are incomparable, and counterexamples have been shown in the 
paper. 

5. Related work 

Location equivalence has been introduced in [S, 6,161. A static version of localities, 
where location names are associated with sites at “compile time” has been proposed in 
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Mixed Causal 

Orderings 

partial Causal 

Orderings 

Localities 
Abrtract 

Localities 

Fig. 6. The observations presented in the paper and their relationships. 

[3] for a subset of CCS. This version may be useful for the development of algorithms 
for location equivalence checking. A variation of location equivalence has been 
introduced in [17] with many examples showing that this notion is useful for 
specifying protocols, in particular taking into account routing and distribution 
properties. 

Kiehn studied the relationship between locality and causality-based equivalences 
[16] and proposed a model merging them. She extended the notion of locations 
to local and global causes. While local causes correspond to locations, global 
causes are used to represent the causal relation, in a similar way to the backward 
pointers of [S]. This approach can be viewed as dual to ours: the information needed 
to keep track of the history of a process is inserted into the process itself, by means 
of a constructor defined with this purpose. Dually, we here observe the computations, 
not the states. 

However, given a generic observation, no systematic way has been given in [16,8] 
for inserting the information in the processes, and the syntax of the processes cannot 
be chosen independently of the technical requirements, since certain constructors are 
used to represent part of the history of the process. Another general approach to 
observational equivalences for locality and causality, similar to the previous one, is 
discussed in [13]. This approach is more semantic than the one in [16], since the 
information about the history is not syntactically included in the processes. The main 
difference with our work is that the first and the second step (and part of the third step) 
of our approach are merged in [13] in the construction of a tree whose arcs are labeled 
by proofs. An advantage of the proposals in [16,13] is that they are incremental, in the 
sense that the observation of each transition yields a single event. However, their 
proposals are likely to be less general than ours: the generation ordering is intrinsi- 
cally included in their semantics and abstracting out from it may be difficult if at all 
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possible. In addition, our notion of observation, being defined on computations, is 
more explicit and makes comparisons easier, since each observation has an associated 
domain. 

Acknowledgements 

We wish to thank Ilaria Castellani for her helpful comments on an early version of 
this work, and Ed Harcourt for correcting many english flaws. Two anonymous 
referees also gave insightful comments. 

References 

Cl1 

PI 

c31 

M 

c51 

C61 

c71 

C81 

c91 

Cl01 

[III 

CI21 

CI31 

CI41 

Cl51 

Cl61 
Cl71 

Cl81 

Proceedings 19th ICALP, Vienna, Lecture Notes in Computer Science, Vol. 623 (Springer, Berlin, 

1992). 
L. Aceto, History preserving, causal and mixed-ordering equivalence for stable event structures (note), 

Technical Memo HPL-PSC-91-28, Hewlett-Packard Laboratories, Pisa Science Center, Pisa, 1991; 

Fundam. Inform., to appear. 

L. Aceto, A static view of localities, Rapport de Recherche 1483, INRIA, Sophia Antipolis, Valbonne, 

July 1991, Formal Aspects Comput., to appear. 

G. Boudol and I. Castellani, A non-interleaving semantics for CCS based on proved transitions, 

Fundam. Inform. 11 (1988) 433-452. 
G. Boudol, I. Castellani, M. Hennessy and A. Kiehn, Observing localities, Theoret. Comput. Sci. 114 
(1993) 31-61. 
G. Boudol, I. Castellani, M. Hennessy and A. Kiehn, A theory of processes with localities, Tech. 

Report 13/91, University of Sussex, December 1991, Formal Aspects Comput., to appear. 

I. Castellani and M. Hennessy, Distributed bisimulations, J. ACM, 36 (1989) 887-911. 
P. Darondeau and P. Degano, Event structures, causal trees and refinements, Theoret. Comput. Sci. to 

appear. 

N. De Francesco, U. Montanari and D. Yankelevich, Axiomatizing different views of distributed 

systems, in: Proc. ERCIM Workshop on Theory and Practice in Verification, Pisa, 1992. 

P. Degano, R. De Nicola and U. Montanari, Observational equivalences for concurrency models, in: 

M. Wirsing, ed. Formal Description of Programming Concepts - III, Proc. 3rd IFIP WG 2.2 Working 
Conf., Ebberup, 1986 (North-Holland, Amsterdam, 1987) 105-129. 

P. Degano, R. De Nicola and U. Montanari, Partial orderings descriptions and observations of 

nondeterministic concurrent processes, in: J. d. Bakker, W.-P. d. Roever and G. Rozenberg, eds., REX 
School/Workshop on Linear Time, Branching Time and Partial Order in Logics and Models for 
Concurrency, Noordwijkerhout, Lecture Notes in Computer Science, Vol. 354 (Springer, Berlin, 1989) 

438-466. 
P. Degano, R. De Nicola and U. Montanari, Universal axioms for bisimulation, Theoret. Comput. Sci. 
114 (1993) 63-91. 

P. Degano and C. Priami, Proved trees, in: Proc. 19th ICALP, Vienna, Lecture Notes in Computer 

Science, Vol. 623 (Springer, Berlin, 1992) 629-640. 

G. Ferrari, Unifying models of concurrency, Ph.D. Thesis, Dipartimento di Informatica, Universita di 

Pisa, 1990. Available as report TD-4/90. 
P. Inverardi, C. Priami and D. Yankelevich, Verification of concurrent systems in SML, in: Proc. 
ACM SIGPLAN Workshop on ML and ifs Applications (1992) 169-175. 
A. Kiehn, Local and global causes, Tech. Report 342/23/91, Technische Universitat Munchen, 1991. 
P. Krishnan, Distributed CCS, in: Proc. CONCUR’91, Lecture Notes in Computer Science, Vol. 527 

(Springer, Berlin, 1991) 393407. 
V. Manta, A Salibra and G. Scollo, Equational type logic, Theoret. Comput. Sci., 77 (1990) 131-159. 



332 U. Montanari, D. Yankelevich / Theoretical Computer Science 149 (1995) 299-332 

[19] R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, NJ, 1989). 
[20] U. Montanari and D. Yankelevich, An algebraic view of interleaving and distributed operational 

semantics for CCS, in: Proc. Category Theory and Computer Science ‘89, Lecture Notes in Computer 
Science, Vol. 389 (Springer, Berlin 1991) 5-20. 

[21] U. Montanari and D. Yankelevich, A parametric approach to localities, in: Proc. 19th ICALP, 
Vienna, Lecture Notes in Computer Science, Vol 623 (Springer, Berlin, 1992) 617-628. 

[22] D. Park, Concurrency and automata on infinite sequences, in: P. Deussen, ed. Proc. 5th GI Conf: 
Lecture Notes in Computer Science, Vol. 104 (Springer, Berlin, 1981) 167-183. 

[23] G. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Computer 
Science Department, Aarhus University, 1981. 

[24] A. Rabinovich and B. Trakhtenbrot, Behavior structures and nets, Fundam. Inform., 11 (1988) 
357-404. 

[25] D. Yankelevich, Parametric view of process description languages, Ph.D. Thesis, Dipartimento di 
Informatica, Universita di Pisa, 1993. Available as report TD-23/93. 


