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1. Introduction

Non-convex analysis, especially ordered normed spaces, normal cones and Topical functions [1–7], has several applica-
tions in optimization theory. In these cases an order is introduced by using vector space cones. Huang and Zang [5] used this
approach, and they replaced the real numbers by ordering Banach space and defined a cone metric space. Also, they proved
some fixed point theorems of contractive mappings on this new setting.
After the definition of the concept of cone metric space in [5], fixed point theory on these spaces has been developing

(see, e.g., [1,8–14,6,15–24,7,25–29]). Generally, this theory on conemetric space is used for contractive-type or contractive-
type mappings (see the related references [1–29]). On the other hand, fixed point theory on partially ordered sets has also
been developing recently [10,11,30–32].
In this paper, we introduce a partial order on a cone metric space and prove a Caristi-type theorem. Furthermore, we

prove fixed point theorems for single-valued nondecreasing and weakly increasing mappings, and multi-valued mappings
on an ordered cone metric space.
We recall the definition of cone metric spaces and some of their properties [5]. Let E be a real Banach space and P be a

subset of E. By θ we denote the zero element of E and by Int P the interior of P . The subset P is called a cone if and only if

(i) P is closed, nonempty and P 6= {θ},
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P H⇒ ax+ by ∈ P ,
(iii) x ∈ P and−x ∈ P H⇒ x = θ .

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if y − x ∈ P . We shall write
x < y if x ≤ y and x 6= y, and we shall write x� y if y− x ∈ Int P .
The cone P is called normal if there is a numberM > 0 such that, for all x, y ∈ E, θ ≤ x ≤ y implies that ‖x‖ ≤ M ‖y‖.
The least positive number satisfying the above is called the normal constant of P .
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The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if {xn}n≥1 is
a sequence such that x1 ≤ x2 ≤ · · · ≤ y for some y ∈ E, then there is x ∈ E such that limn→∞ ‖xn − x‖ = 0. Equivalently,
the cone P is regular if and only if every decreasing sequencewhich is bounded from below is convergent. It has been proved
in Lemma 1.1 in [25] that every regular cone is normal.
In the following, we always suppose that E is a Banach space, P is a cone in E with Int P 6= ∅ and ≤ is partial ordering

with respect to P .

Definition 1 ([5]). Let X be a nonempty set. Suppose the mapping d : X × X → E satisfies
(d1) θ < d(x, y) for all x, y ∈ X with x 6= y and d(x, y) = θ if x = y,
(d2) d(x, y) = d(y, x) for all x, y ∈ X ,
(d3) d(x, y) ≤ d(x, z)+ d(z, y) for all x, y, z ∈ X .
Then d is called a cone metric on X and (X, d) is called a cone metric space.

It is obvious that the cone metric spaces generalize metric spaces.

Example 1 ([5]). Let E = R2, P = {(x, y) ∈ E | x, y ≥ 0}, X = R and d : X × X → E such that d(x, y) = (|x− y| , α |x− y|),
where α ≥ 0 is a constant. Then (X, d) is a cone metric space.

Definition 2 ([5]). Let (X, d) be a cone metric space. Let {xn} be a sequence in X and x ∈ X . If for every c ∈ E with θ � c
there is N such that, for all n > N , d(xn, x)� c , then {xn} is said to be convergent and {xn} converges to x and x is the limit
of {xn}. We denote this by limn→∞ xn = x or xn → x as n → ∞. If for every c ∈ E with θ � c there is N such that, for all
n,m > N , d(xn, xm)� c , then {xn} is called a Cauchy sequence in X . (X, d) is a complete cone metric space if every Cauchy
sequence is convergent.

Lemma 1 ([5]). Let (X, d) be a cone metric space, P be a normal cone and let {xn} be a sequence in X. Then
(i) {xn} converges to x if and only if d(xn, x)→ θ (n→∞),
(ii) {xn} is a Cauchy sequence if and only if d(xn, xm)→ θ (n,m→∞).

Let (X, d) be a cone metric space, f : X → X and x0 ∈ X . Then the function f is continuous at x0 if for any sequence
xn → x0 we have fxn → fx0 [6].

2. Fixed point theorems for nondecreasing mappings

We begin by proving the following lemma. We can find the metric version of it in [33].

Lemma 2. Let (X, d) be a cone metric space with the Banach space E, P be a cone in E, ‘‘ ≤ ’’ be a partial ordering with respect to
P and φ : X → E. Define the relation ‘‘�’’ on X as follows:

x � y⇐⇒ d(x, y) ≤ φ(x)− φ(y).

Then ‘‘�’’ is a (partial) order on X, named the partial order induced by φ.

Proof. For all x ∈ X , d(x, x) = θ = φ(x)− φ(x); that is, ‘‘�’’ is reflexive. Again, for x, y ∈ X , let x � y and y � x. Then,

d(x, y) ≤ φ(x)− φ(y)

and

d(y, x) ≤ φ(y)− φ(x).

This shows that d(x, y) = θ ; that is, x = y. Thus ‘‘�’’ is antisymmetric. Now for x, y, z ∈ X , let x � y and y � z. Then,

d(x, y) ≤ φ(x)− φ(y) (2.1)

and

d(y, z) ≤ φ(y)− φ(z). (2.2)

Then, using (2.1) and (2.2) we have

d(x, z) ≤ d(x, y)+ d(y, z)
≤ φ(x)− φ(y)+ φ(y)− φ(z)
= φ(x)− φ(z).

This shows that x � z. �

Now we give some examples.

Example 2. Let E = R2, P = {(x, y) ∈ E | x, y ≥ 0}, X = {a, b, c} and d : X × X → E such that d(x, x) = (0, 0)
for all x ∈ X, d(a, b) = d(b, a) = (1, 2), d(a, c) = d(c, a) = (1, 3) and d(b, c) = d(c, b) = (2, 3). Then it is obvious
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that (X, d) is a cone metric space. Now let φ : X → E, φ(a) = (3, 4), φ(b) = (2, 2) and φ(c) = (2, 1). Now, since
d(a, b) = (1, 2) ≤ (1, 2) = φ(a) − φ(b), then a � b. Again, since d(a, c) = (1, 3) ≤ (1, 3) = φ(a) − φ(c), then a � c .
Since d(b, c) = (2, 3) 6≤ (0, 1) = φ(b)− φ(c) and d(c, b) = (2, 3) 6≤ (0,−1) = φ(c)− φ(b), b 6� c and c 6� b. Therefore,
by using Lemma 2, ‘‘�’’ is a partially order induced by φ.

Example 3. Let E, P, X and d be as in Example 1. Let φ : X → E, φ(x) = (−x,−αx) for all x ∈ X . Then we have the usual
order on X .

Our main result for single-valued nondecreasing mappings is as follows.

Theorem 1. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, ‘‘ ≤ ’’ be a partial
ordering with respect to P and φ : X → E be a bounded below function and ‘‘�’’ be the partial order induced by φ. If f : X → X
is a continuous nondecreasing function with x0 � fx0 for some x0 ∈ X, then f has a fixed point in X.

Proof. Consider a point x0 ∈ X satisfying x0 � fx0. Nowwe define a sequence {xn} in X such that xn = fxn−1 for n = 1, 2, . . . .
Then, since f is nondecreasing we have x0 � x1 � x2 � · · ·; that is, the sequence {xn} is nondecreasing. By the definition
of ‘‘�’’ we have · · · ≤ φ(x2) ≤ φ(x1) ≤ φ(x0); that is, the sequence {φ(xn)} is a nonincreasing sequence in E. Since P is
regular and φ is bounded from below, {φ(xn)} is convergent, and hence it is Cauchy. That is, for all ε > 0, there exists
n0 ∈ N such that, for all m > n > n0, we have ‖φ(xm)− φ(xn)‖ < ε. On the other hand, since xn � xm, we have
d(xn, xm) ≤ φ(xn)− φ(xm). Therefore, since P is regular and so normal, there existsM > 0 such that

‖d(xn, xm)‖ ≤ M ‖φ(xn)− φ(xm)‖
< Mε.

This implies that d(xn, xm) → θ (n,m → ∞). Hence {xn} is a Cauchy sequence. By the completeness of X , there is z ∈ X
such that xn → z (n→∞). Consequently, by the continuity of f , we have fz = z. �

If we assume that φ(X) is compact in E, then we can remove the boundedness of φ and regularity of P in Theorem 1, and
we can have the following theorem.

Theorem 2. Let (X, d) be a complete cone metric space with the Banach space E, P be a normal cone in E, ‘‘ ≤ ’’ the partial
ordering with respect to P, φ : X → E a function such that φ(X) is compact and ‘‘�’’ the partial order induced by φ. If f : X → X
is a continuous nondecreasing function with x0 � fx0 for some x0 ∈ X, then f has a fixed point in X.

Example 4. Let E, P, X, d and φ be as in Example 2. Let f : X → X , f (a) = b, f (b) = b and f (c) = c; then it is obvious that
all conditions of Theorem 1 or Theorem 2 are satisfied. Therefore f has a fixed point. But since f is not contractive, the result
of [5] is not applicable to this example.

Now we prove a Caristi-type theorem on cone metric spaces.
Let (X, d) be a cone metric space, C ⊂ X and φ : C → E a function; then φ is called a lower semicontinuous on C

whenever xn → x implies that φ(x) ≤ lim infn→∞ φ(xn) [9].

Theorem 3. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, ‘‘ ≤ ’’ the partial
ordering with respect to P and φ : X → E a lower semicontinuous and bounded below function. Now, if f : X → X satisfies

d(x, fx) ≤ φ(x)− φ(fx) (2.3)

for all x ∈ X, then f has a fixed point in X.

Proof. We define a partial order on X in the following way:

x � y⇐⇒ d(x, y) ≤ φ(x)− φ(y).

Wewish to show that X has amaximal element. Let {xα}α∈I be a nondecreasing chain; then {φ(xα)}α∈I is a nonincreasing net
in E. Let {αn} be an increasing sequence of element from I such that limn→∞ φ(xαn) = r (This is possible, since φ is bounded
from below and P is a regular cone). Using the definition of ‘‘�’’, one can show that {xαn} is Cauchy and therefore converges
to z ∈ X . By the lower semicontinuity of φ, we have φ(z) ≤ r . Now, for xαn � xαm , we have

d(xαn , xαm) ≤ φ(xαn)− φ(xαm),

and lettingm→∞, we have

d(xαn , z) ≤ φ(xαn)− φ(z).

This shows that xαn � z for all n ≥ 1, which means that z is an upper bound for {xαn}n≥1. In order to see that z is also an
upper bound for {xα}α∈I , let β ∈ I be such that xαn � xβ for all n ≥ 1. Then we have φ(xβ) ≤ φ(xαn) for all n ≥ 1, which
implies that φ(xβ) = r . Since d(xβ , xαn) ≤ φ(xβ)− φ(xαn), we get limn→∞ xαn = xβ , which implies that xβ = z. Therefore,
for any α ∈ I , there exists n ≥ 1 such that xα � xαn , which implies that xα � z; that is, z is an upper bound of {xα}α∈I .



1148 I. Altun, V. Rakočević / Computers and Mathematics with Applications 60 (2010) 1145–1151

Thus, by Zorn’s lemma, X has a maximal element v. Finally, we prove that v is the desired point. In fact, we have from (2.3)

d(v, f v) ≤ φ(v)− φ(f v);

that is, v � f v, and again by the maximality of v we have f (v) � v. Thus f (v) = v. �

In the following we provide multi-valued versions of the preceding theorem. The results are related to those in [34].
Let X be a topological space and� be a partial order on X . Let 2X denote the family of all nonempty subsets of X .

Definition 3 ([34]). Let A, B be two nonempty subsets of X; the relations between A and B are defined as follows:
(r1) If, for every a ∈ A, there exists b ∈ B such that a � b, then A≺1 B.
(r2) If, for every b ∈ B, there exists a ∈ A such that a � b, then A≺2 B.
(r3) If A≺1 B and A≺2 B, then A ≺ B.

Remark 1 ([34]). ≺1 and≺2 are different relations between A and B. For example, let X = R, A =
[ 1
2 , 1

]
, B = [0, 1],� be

the usual order on X; then A≺1 B but A 6≺2 B; if A = [0, 1], B =
[
0, 12

]
, then A≺2 Bwhile A 6≺1 B.

Remark 2 ([34]). ≺1,≺2 and≺ are reflexive and transitive, but are not antisymmetric. For instance, let X = R, A = [0, 3],
B = [0, 1] ∪ [2, 3],� be the usual order on X; then A ≺ B and B ≺ A, but A 6= B. Hence, they are not partial orders on 2X .

Definition 4 ([34]). A multi-valued operator T : X → 2X is called order closed if for monotone sequences {un}, {vn} ⊂
X, un → u0, vn → v0 and vn ∈ Tun imply that v0 ∈ Tu0.

The multi-valued version of the preceding theorem is as follows.

Theorem 4. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, ‘‘ ≤ ’’ the partial
ordering with respect to P, φ : X → E a bounded below function and ‘‘�’’ the partial order induced by φ. F : X → 2X is an order
closed operator with {x0}≺1 Fx0 for some x0 ∈ X. If ∀x, y ∈ X, x � y H⇒ Fx≺1 Fy (that is, F is nondecreasing with respect to
≺1), then F has a fixed point in X.

Proof. Since Fx is nonempty for all x ∈ X , there exists x1 ∈ Fx0 such that x0 � x1. Now, since Fx0≺1 Fx1, there exists x2 ∈ Fx1
such that x1 � x2. Continuing this process, we will get a nondecreasing sequence {xn}, which satisfies xn+1 ∈ Fxn. By the
definition of ‘‘�’’, we have · · · ≤ φ(x2) ≤ φ(x1) ≤ φ(x0); that is, the sequence {φ(xn)} is a nonincreasing sequence in E.
Since P is regular and φ is bounded from below, {φ(xn)} is convergent and hence it is Cauchy. By the same argumentation
as in the proof of Theorem 1, it follows that {xn} is a Cauchy sequence. By the completeness of X , there is z ∈ X such that
xn → z (n→∞). Consequently, we have z ∈ Fz since F is order closed and xn+1 ∈ Fxn. �

Similarly, we can prove the following theorem.

Theorem 5. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, ‘‘ ≤ ’’ the partial
ordering with respect to P, φ : X → E a bounded above function and ‘‘�’’ the partial order induced by φ. F : X → 2X is an order
closed operator with Fx0≺2{x0} for some x0 ∈ X. If ∀x, y ∈ X, x � y H⇒ Fx≺2 Fy (that is, F is nondecreasing with respect to
≺2), then F has a fixed point in X.

3. Fixed point theorems for weakly increasing mappings

Definition 5 ([35,36]). Let (X,�) be a partially ordered set. Two mappings f , g : X → X are said to be weakly increasing if
fx � gfx and gx � fgx hold for all x ∈ X .

Note that two weakly increasing mappings need not be nondecreasing. We can find the following examples in [30].

Example 5. Let X = R+ be endowed with the usual ordering. Let f , g : X → X be defined by

fx =
{
x if 0 ≤ x ≤ 1
0 if 1 < x <∞ and gx =

{√
x if 0 ≤ x ≤ 1
0 if 1 < x <∞;

then it is obvious that fx ≤ gfx and gx ≤ fgx for all x ∈ X . Thus f and g are weakly increasing mappings. Note that both f and
g are not nondecreasing.

Example 6. Let X = [1,∞) × [1,∞) be endowed with coordinate-wise ordering; that is, (x, y) � (z, w) ⇔ x ≤ z and
y ≤ w. Let f , g : X → X be defined by f (x, y) = (2x, 3y) and g(x, y) = (x2, y2); then f (x, y) = (2x, 3y) � gf (x, y) =
g(2x, 3y) = (4x2, 9y2) and g(x, y) = (x2, y2) � fg(x, y) = f (x2, y2) = (2x2, 3y2). Thus f and g are weakly increasing
mappings.

Example 7. Let X = R2 be endowed with lexicographical ordering; that is, (x, y) � (z, w) if and only if x < z or (x = z and
y ≤ w). Let f , g : X → X be defined by

f (x, y) = (max{x, y},min{x, y})
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and

g(x, y) =
(
max{x, y},

x+ y
2

)
;

then

f (x, y) = (max{x, y},min{x, y})
� gf (x, y)
= g (max{x, y},min{x, y})

=

(
max{max{x, y},min{x, y}},

max{x, y} +min{x, y}
2

)
=

(
max{x, y},

x+ y
2

)
and

g(x, y) =
(
max{x, y},

x+ y
2

)
� fg(x, y)

= f
(
max{x, y},

x+ y
2

)
=

(
max

{
max{x, y},

x+ y
2

}
,min

{
max{x, y},

x+ y
2

})
=

(
max{x, y},

x+ y
2

)
.

Thus f and g are weakly increasing mappings. Note that, since (1, 4) � (2, 3) but f (1, 4) = (4, 1) 6� (3, 2) = f (2, 3), then
f is not nondecreasing. Similarly g is not nondecreasing.

Let us remark that in the next theorem we remove the condition ‘‘there exists an x0 ∈ X with x0 � f (x0)’’ of Theorem 1.

Theorem 6. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, ‘‘ ≤ ’’ the partial
ordering with respect to P, φ : X → E a bounded below function and ‘‘�’’ the partial order induced by φ. If f , g : X → X are
two continuous weakly increasing functions, then f and g have a common fixed point in X.

Proof. Let x0 be an arbitrary point of X and let us define a sequence {xn} in X as follows:

x2n+1 = fx2n and x2n+2 = gx2n+1 for n ∈ {0, 1, . . .}.

Note that, since f and g are weakly increasing, we have

x1 = fx0 � gfx0 = gx1 = x2,
x2 = gx1 � fgx1 = fx2 = x3,

and continuing this process, we have

x1 � x2 � · · · � xn � xn+1 � · · · .

That is, the sequence {xn} is nondecreasing. By the definition of ‘‘�’’, we have · · ·φ(x2) ≤ φ(x1) ≤ φ(x0); that is, the
sequence {φ(xn)} is a nonincreasing sequence in E. Since P is regular and φ is bounded from below, {φ(xn)} is convergent,
and hence it is Cauchy. By the same argumentation as in the proof of Theorem 1, it follows that {xn} is a Cauchy sequence.
By the completeness of X , there is z ∈ X such that xn → z (n→ ∞). Therefore, x2n+1 → z and x2n+2 → z. Consequently,
by the continuity of f and g , we have fz = gz = z. �

Now we introduce the following definition.

Definition 6. Let (X,�) be a partially ordered set. Two mappings F ,G : X → 2X are said to be weakly increasing with
respect to≺1 if for any x ∈ X we have Fx≺1 Gy for all y ∈ Fx and Gx≺1 Fy for all y ∈ Gx. Similarly, two maps F ,G : X → 2X
are said to beweakly increasingwith respect to≺2 if for any x ∈ X we have Gy≺2 Fx for all y ∈ Fx and Fy≺2 Gx for all y ∈ Gx.

Now we give some examples.

Example 8. Let X = [1,∞) and ≤ be the usual order on X . Consider two mappings F ,G : X → 2X defined by Fx = [1, x2]
and Gx = [1, 2x] for all x ∈ X . Then the pair of mappings F and G are weakly increasing with respect to ≺2 but not ≺1.
Indeed, since
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Gy = [1, 2y] ≺2[1, x2] = Fx for all y ∈ Fx

and

Fy = [1, y2] ≺2[1, 2x] = Gx for all y ∈ Gx,

F and G are weakly increasing with respect to ≺2 but F2 = [1, 4] 6≺1 [1, 2] = G1 for 1 ∈ F2, so F and G are not weakly
increasing with respect to≺1.

Example 9. Let X = [0, 1] and≤ be the usual order on X . Consider twomappings F ,G : X → 2X defined by Fx = {0, 1} and
Gx = [x, 1] for all x ∈ X . Then the pair of mappings F and G are weakly increasing with respect to ≺1 but not ≺2. Indeed,
since

Fx = {0, 1}≺1[y, 1] = Gy for all y ∈ Fx

and

Gx = [x, 1] ≺1{0, 1} = Fy for all y ∈ Gx,

F and G are weakly increasing with respect to ≺1 but G1 = {1} 6≺2{0, 1} = F1 for 1 ∈ F1, so F and G are not weakly
increasing with respect to≺2.

Theorem 7. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, ‘‘ ≤ ’’ the partial
ordering with respect to P, φ : X → E a bounded below function and ‘‘�’’ the partial order induced by φ. If F ,G : X → 2X are
two order closed and weakly increasing mappings with respect to≺1, then F and G have a common fixed point in X.
Proof. Let x0 ∈ X be an arbitrary point. Since Fx0 6= ∅, we can choose x1 ∈ Fx0. Now, since F andG areweakly increasingwith
respect to≺1, we have x1 ∈ Fx0≺1 Gx1. Thus there exists some x2 ∈ Gx1 such that x1 � x2. Again, since F and G are weakly
increasing with respect to≺1, we have x2 ∈ Gx1≺1 Fx2. Thus there exists some x3 ∈ Fx2 such that x2 � x3. Continuing this
process, we will get a nondecreasing sequence {xn}∞n=1 which satisfies x2n+1 ∈ Fx2n, x2n+2 ∈ Gx2n+1, n = 0, 1, 2, . . . . By the
definition of ‘‘�’’, we have

· · · ≤ φ(x3) ≤ φ(x2) ≤ φ(x1);

that is, the sequence {φ(xn)} is a nonincreasing sequence in E. Since P is regular and φ is bounded from below, {φ(xn)} is
convergent and hence it is Cauchy. By the same argumentation as in the proof of Theorem 1, it follows that {xn} is a Cauchy
sequence. By the completeness of X , there is z ∈ X such that xn → z (n → ∞). Therefore, x2n+1 → z and x2n+2 → z.
Consequently, since F and G are order closed, {xn}∞n=1 monotone and x2n+1 ∈ Fx2n, x2n+2 ∈ Gx2n+1, we deduce that z ∈ Fz
and z ∈ Gz; i.e., z is a common fixed point of F and G. �

Theorem 8. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, ‘‘ ≤ ’’ the partial
ordering with respect to P, φ : X → E a bounded above function and ‘‘�’’ the partial order induced by φ. If F ,G : X → 2X are
two order closed and weakly increasing mappings with respect to≺2, then F and G have a common fixed point in X.
Proof. Let x0 ∈ X be arbitrary point. Since Fx0 6= ∅, we can choose x1 ∈ Fx0. Now since F and G are weakly increasing
with respect to≺2, we have Gx1≺2 Fx0. Thus there exists some x2 ∈ Gx1 such that x2 � x1. Again, since F and G are weakly
increasing with respect to≺2, we have Fx2≺2 Gx1. Thus there exists some x3 ∈ Fx2 such that x3 � x2. Continue this process,
wewill get a nonincreasing sequence {xn}∞n=1 which satisfies x2n+1 ∈ Fx2n, x2n+2 ∈ Gx2n+1, n = 0, 1, 2, . . . . By the definition
of ‘‘�’’, we have

ϕ(x1) ≤ ϕ(x2) ≤ ϕ(x3) ≤ · · · .

Since P is regular and φ is bounded from above, {φ(xn)} is convergent and hence it is Cauchy. By the same argumentation
as in the proof of Theorem 1, it follows that {xn} is a Cauchy sequence. By the completeness of X , there is z ∈ X such that
xn → z (n → ∞). Therefore, x2n+1 → z and x2n+2 → z. Consequently, since F and G are order closed, {xn}∞n=1 monotone
and x2n+1 ∈ Fx2n, x2n+2 ∈ Gx2n+1, we deduce that z ∈ Fz and z ∈ Gz; i.e. z is a common fixed point of F and G. �
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