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1. Introduction

Non-convex analysis, especially ordered normed spaces, normal cones and Topical functions [1-7], has several applica-
tions in optimization theory. In these cases an order is introduced by using vector space cones. Huang and Zang [5] used this
approach, and they replaced the real numbers by ordering Banach space and defined a cone metric space. Also, they proved
some fixed point theorems of contractive mappings on this new setting.

After the definition of the concept of cone metric space in [5], fixed point theory on these spaces has been developing
(see, e.g.,[1,8-14,6,15-24,7,25-29]). Generally, this theory on cone metric space is used for contractive-type or contractive-
type mappings (see the related references [1-29]). On the other hand, fixed point theory on partially ordered sets has also
been developing recently [10,11,30-32].

In this paper, we introduce a partial order on a cone metric space and prove a Caristi-type theorem. Furthermore, we
prove fixed point theorems for single-valued nondecreasing and weakly increasing mappings, and multi-valued mappings
on an ordered cone metric space.

We recall the definition of cone metric spaces and some of their properties [5]. Let E be a real Banach space and P be a
subset of E. By & we denote the zero element of E and by Int P the interior of P. The subset P is called a cone if and only if

(i) P is closed, nonempty and P # {6},
(ii) a,beR,a,b>0,x,y e P—ax+ by € P,
(iii) x e Pand —x € P = x = 0.

Given a cone P C E, we define a partial ordering < with respect to P by x < y if and only if y — x € P. We shall write
x < yifx <yandx # y, and we shall write x < y ify — x € Int P.

The cone P is called normal if there is a number M > 0 such that, forallx,y € E,0 < x < y implies that ||x|| < M ||y|l.

The least positive number satisfying the above is called the normal constant of P.
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The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if {x, },>1 is
a sequence such thatx; < x, < ... < yforsomey € E, then there is x € E such that lim,_, , ||x, — x|| = 0. Equivalently,
the cone P isregular if and only if every decreasing sequence which is bounded from below is convergent. It has been proved
in Lemma 1.1 in [25] that every regular cone is normal.

In the following, we always suppose that E is a Banach space, P is a cone in E with Int P # & and < is partial ordering
with respect to P.
Definition 1 (/5]). Let X be a nonempty set. Suppose the mapping d : X x X — E satisfies

(d1) 0 < d(x,y) forallx,y € X withx # yand d(x,y) = 0 ifx =y,
(dy) d(x,y) =d(y,x) forallx,y € X,
(d3) d(x,y) <d(x,z) +d(z,y) forallx,y,z € X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.
It is obvious that the cone metric spaces generalize metric spaces.

Example 1 ([5]).LetE = R?,P = {(x,y) €E | x,y > 0},X =Randd : X x X — Esuchthatd(x,y) = (|x —y|, « [x — y|),
where @ > 0 is a constant. Then (X, d) is a cone metric space.

Definition 2 (/5]). Let (X, d) be a cone metric space. Let {x,} be a sequence in X and x € X.If foreveryc € E with9 « ¢
there is N such that, for alln > N, d(x,, X) < c, then {x,} is said to be convergent and {x,} converges to x and x is the limit
of {x,}. We denote this by lim, .., x, = xorx, — xasn — oo. If for every ¢ € E with 8 « c there is N such that, for all
n,m > N, d(x,, xn) < c, then {x,} is called a Cauchy sequence in X. (X, d) is a complete cone metric space if every Cauchy
sequence is convergent.

Lemma 1 ([5]). Let (X, d) be a cone metric space, P be a normal cone and let {x,} be a sequence in X. Then

(i) {xn} converges to x if and only if d(x,,x) — 6 (n — 00),
(ii) {x,} is a Cauchy sequence if and only if d(x,, xn) — 6 (n, m — ©0).

Let (X, d) be a cone metric space, f : X — X and xy € X. Then the function f is continuous at x, if for any sequence
Xn — Xo we have fx, — fxq [6].

2. Fixed point theorems for nondecreasing mappings

We begin by proving the following lemma. We can find the metric version of it in [33].

Lemma 2. Let (X, d) be a cone metric space with the Banach space E, P be a cone in E, “ < ” be a partial ordering with respect to
P and ¢ : X — E. Define the relation “<” on X as follows:

XXy <= dxy) < ox) — o).
Then “<"is a (partial) order on X, named the partial order induced by ¢.
Proof. Forallx € X, d(x,x) = 0 = ¢(x) — ¢(x); that is, “<" is reflexive. Again, forx, y € X,letx < yandy < x. Then,
dix,y) < ¢(x) — 1)
and
d@y,x) < () — ¢ ().
This shows that d(x, y) = 6; that is, x = y. Thus “<" is antisymmetric. Now for x, y, z € X, letx < yand y < z. Then,
dix,y) < ¢(x) — o) (2.1)
and
d@y,z) < ¢) — ¢(2). (2.2)
Then, using (2.1) and (2.2) we have
d(x,z) < dx,y) +d,2)
o) — o) + o) — ¢(2)
= ¢(x) — ¢(2).
This shows thatx < z. O
Now we give some examples.

Example 2. let E = R?> P = {(x,y) € E | x,y > 0},X = {a,b,c}andd : X x X — E such that d(x,x) = (0,0)
forallx € X,d(a,b) = d(b,a) = (1,2),d(a,c) = d(c,a) = (1,3) and d(b,c) = d(c,b) = (2, 3). Then it is obvious
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that (X, d) is a cone metric space. Now let ¢ : X — E, ¢(a) = (3,4), ¢(b) = (2,2) and ¢(c) = (2, 1). Now, since
d(a,b) = (1,2) < (1,2) = ¢(a) — ¢(b), then a < b. Again, since d(a,c) = (1,3) < (1,3) = ¢(a) — ¢(c), thena < c.
Since d(b,c) = (2,3) £ (0,1) = ¢(b) — ¢(c) and d(c,b) = (2,3) £ (0, —1) = ¢(c) — ¢(b), b £ cand ¢ £ b. Therefore,
by using Lemma 2, “<" is a partially order induced by ¢.

Example 3. Let E, P, X and d be as in Example 1. Let ¢ : X — E, ¢(x) = (—x, —ax) for all x € X. Then we have the usual
order on X.

Our main result for single-valued nondecreasing mappings is as follows.

Theorem 1. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, “ < ” be a partial
ordering with respect to P and ¢ : X — E be a bounded below function and “<" be the partial order induced by ¢.If f : X — X
is a continuous nondecreasing function with xo < fxo for some xo € X, then f has a fixed point in X.

Proof. Consider a pointxy € X satisfyingxo < fxo. Now we define a sequence {x,} in X such thatx, = fx,_;forn=1,2,....
Then, since f is nondecreasing we have xqg < x; < x, < ---; that is, the sequence {x,} is nondecreasing. By the definition
of “<” we have --- < ¢(x2) < ¢p(x1) < ¢(xp); that is, the sequence {¢(x,)} is a nonincreasing sequence in E. Since P is
regular and ¢ is bounded from below, {¢(x,)} is convergent, and hence it is Cauchy. That is, for all ¢ > 0, there exists
ng € N such that, forallm > n > ng, we have ||¢p(xn) — ¢(x,)]| < &. On the other hand, since x, < x,, we have
d(xn, Xm) < ¢(xn) — ¢(x;m). Therefore, since P is regular and so normal, there exists M > 0 such that

||d(Xn, xm)” = M ”({b(xn) - ¢(xm)||
< Me.

This implies that d(x,, x,) — 6 (n, m — o0). Hence {x,} is a Cauchy sequence. By the completeness of X, there is z € X
such that x, — z (n — o0). Consequently, by the continuity of f, we have fz =z. O

If we assume that ¢(X) is compact in E, then we can remove the boundedness of ¢ and regularity of P in Theorem 1, and
we can have the following theorem.

Theorem 2. Let (X, d) be a complete cone metric space with the Banach space E, P be a normal cone in E, “ < ” the partial
ordering with respect to P, ¢ : X — E a function such that ¢(X) is compact and “=<" the partial order induced by ¢.If f : X — X
is a continuous nondecreasing function with xo < fxo for some xo € X, then f has a fixed point in X.

Example 4. LetE, P, X, d and ¢ be as in Example 2. Let f : X — X, f(a) = b, f(b) = b and f(c) = c; then it is obvious that
all conditions of Theorem 1 or Theorem 2 are satisfied. Therefore f has a fixed point. But since f is not contractive, the result
of [5] is not applicable to this example.

Now we prove a Caristi-type theorem on cone metric spaces.
Let (X, d) be a cone metric space, C C X and ¢ : C — E a function; then ¢ is called a lower semicontinuous on C
whenever x, — x implies that ¢(x) < liminf,_, - ¢(x,) [9].

Theorem 3. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, “ < ” the partial
ordering with respect to P and ¢ : X — E a lower semicontinuous and bounded below function. Now, if f : X — X satisfies

d(x, fx) = ¢(x) — ¢ (fx) (2.3)
forallx € X, then f has a fixed point in X.

Proof. We define a partial order on X in the following way:

X2y <= dx,y) =X —oQ).

We wish to show that X has a maximal element. Let {x, },; be a nondecreasing chain; then {¢ (x,)}«¢s is a nonincreasing net
inE. Let {&,} be an increasing sequence of element from I such that lim,_, o, ¢(X4,) = r (This is possible, since ¢ is bounded
from below and P is a regular cone). Using the definition of “<”, one can show that {x,, } is Cauchy and therefore converges
to z € X. By the lower semicontinuity of ¢, we have ¢(z) < r. Now, for x,, < X,,,, we have

d(xﬂtn’ Xam) S ¢(Xan) - ¢(Xolm)7

and letting m — oo, we have

d(Xey, 2) < $(Xey) — $(2).

This shows that x,, < z for alln > 1, which means that z is an upper bound for {x, },>1. In order to see that z is also an
upper bound for {x,}qer, let B € I be such that x,, < xg foralln > 1. Then we have ¢(xg) < ¢(xy,) foralln > 1, which
implies that ¢ (xg) = r. Since d(xg, Xs,) < ¢(Xg) — P (Xy,), We get limy_, o, Xo, = Xg, Which implies that xg = z. Therefore,
for any o € I, there exists n > 1 such that x, < X,,, which implies that x, < z; that is, z is an upper bound of {x, }4¢/-.
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Thus, by Zorn’s lemma, X has a maximal element v. Finally, we prove that v is the desired point. In fact, we have from (2.3)

d(v, fv) < ¢() — ¢(fv);
thatis, v < fv, and again by the maximality of v we have f(v) < v.Thusf(v) =v. O

In the following we provide multi-valued versions of the preceding theorem. The results are related to those in [34].
Let X be a topological space and < be a partial order on X. Let 2X denote the family of all nonempty subsets of X.

Definition 3 (/34]). Let A, B be two nonempty subsets of X; the relations between A and B are defined as follows:

(rp) If, for every a € A, there exists b € B such thata < b, then A < B.
(rp) If, for every b € B, there exists a € A such thata < b, then A <, B.
(r3) IfA<;Band A <; B, thenA < B.

Remark 1 ([34]). <; and <, are different relations between A and B. For example, let X = R, A = [%, 1], B =10, 1], < be
the usual order on X; then A <; Bbut A £, B; if A = [0, 1], B= [0, 1], then A <, Bwhile A 4, B.

Remark 2 ([34]). <1, <3 and < are reflexive and transitive, but are not antisymmetric. For instance, let X = R, A = [0, 3],
B = [0, 1] U [2, 3], < be the usual order on X; then A < Band B < A, but A # B. Hence, they are not partial orders on 2X.

Definition 4 ([34]). A multi-valued operator T : X — 2X is called order closed if for monotone sequences {u,}, {v,} C
X, u, — ug, vy — vg and v, € Tu, imply that vy € Tuo.

The multi-valued version of the preceding theorem is as follows.

Theorem 4. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, “ < ” the partial
ordering with respect to P, ¢ : X — E a bounded below function and “<" the partial order induced by ¢. F : X — 2X is an order
closed operator with {xo} <1 Fxo for some xo € X. If Vx,y € X,x <y = Fx <1 Fy (that is, F is nondecreasing with respect to
<1), then F has a fixed point in X.

Proof. Since Fx is nonempty for all x € X, there exists x; € Fxg such that xg < x;. Now, since Fxg <1 Fx1, there exists x, € Fx;
such that x; < x,. Continuing this process, we will get a nondecreasing sequence {x,}, which satisfies x,; € Fx,. By the
definition of “<”, we have - - - < ¢(x3) < ¢(x1) < ¢(Xo); that is, the sequence {¢(x,)} is a nonincreasing sequence in E.
Since P is regular and ¢ is bounded from below, {¢(x,)} is convergent and hence it is Cauchy. By the same argumentation
as in the proof of Theorem 1, it follows that {x,} is a Cauchy sequence. By the completeness of X, there is z € X such that
Xn — z (n — 00). Consequently, we have z € Fz since F is order closed and x,1 € Fx,. O

Similarly, we can prove the following theorem.

Theorem 5. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, “ < ” the partial
ordering with respect to P, ¢ : X — E a bounded above function and “<” the partial order induced by ¢. F : X — 2X is an order
closed operator with Fxg <2{xo} for some xo € X.If Vx,y € X, x <y = Fx <, Fy (that is, F is nondecreasing with respect to
<), then F has a fixed point in X.

3. Fixed point theorems for weakly increasing mappings

Definition 5 ([35,36]). Let (X, <) be a partially ordered set. Two mappings f, g : X — X are said to be weakly increasing if
fx < gfx and gx < fgx hold for all x € X.

Note that two weakly increasing mappings need not be nondecreasing. We can find the following examples in [30].
Example 5. Let X = R, be endowed with the usual ordering. Let f, g : X — X be defined by

Jx ifo<x<1

= x ifo<x<i1 and _
- & =10 ifl <x < oo;

0 ifl<x<oo

then it is obvious that fx < gfx and gx < fgx forall x € X. Thus f and g are weakly increasing mappings. Note that both f and
g are not nondecreasing.

Example 6. Let X = [1, o0) x [1, o0) be endowed with coordinate-wise ordering; that is, (x,y) < (z, w) < x < z and
y < w.letf,g : X — X be defined by f(x,y) = (2x,3y) and g(x,y) = (x*,y%); then f(x,y) = (2x,3y) < gf(x,y) =
g(2x,3y) = (4x%,9%) and g(x,y) = (X%, ¥%) < fe(x,y) = f(x*,y*) = (2x*, 3y?). Thus f and g are weakly increasing
mappings.

Example 7. Let X = R? be endowed with lexicographical ordering; that is, (x, y) < (z, w) ifand only ifx < z or (x = z and
y <w).Letf, g : X — X be defined by

fx,y) = (max{x, y}, min{x, y})
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and
gx,y) = <max{x, vl %) ;
then
f(x,y) = (max{x, y}, min{x, y})
<gxy)
= g (max{x, y}, min{x, y})
= (max{max{x, y}, min{x, y}}, max{x, y} —2|_ min{x, y})
_ Xty
= (max{x, v}, 5 )
and

g0xy) = (max{x,y}, %)

< fgix,y)
—f (max{x,y}, %)

X+y . x+y
= <max {max{x, v}, T} , min {max{x, v} 7}>

2
X+y
= | max({x, y}, > )

Thus f and g are weakly increasing mappings. Note that, since (1,4) < (2,3)butf(1,4) = (4, 1) £ (3,2) = f(2, 3), then
f is not nondecreasing. Similarly g is not nondecreasing.

Let us remark that in the next theorem we remove the condition “there exists an xo € X with xg < f(xg)” of Theorem 1.
Theorem 6. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, “ < ” the partial

ordering with respect to P, ¢ : X — E a bounded below function and “<" the partial order induced by ¢.If f,g : X — X are
two continuous weakly increasing functions, then f and g have a common fixed point in X.

Proof. Let xy be an arbitrary point of X and let us define a sequence {x,}in X as follows:
Xony1 = fxon and  Xppip = gxony1 forne {0, 1,...}
Note that, since f and g are weakly increasing, we have
X1 = fxo X gfxo = gx1 = X2,
Xy = gx1 X fgx1 = fxa = X3,
and continuing this process, we have
X1 XX X XX X Xpyp1 X0

That is, the sequence {x,} is nondecreasing. By the definition of “<”, we have - -- ¢ (x2) < ¢(x1) < ¢(xo); that is, the
sequence {¢(x,)} is a nonincreasing sequence in E. Since P is regular and ¢ is bounded from below, {¢(x,)} is convergent,
and hence it is Cauchy. By the same argumentation as in the proof of Theorem 1, it follows that {x,} is a Cauchy sequence.
By the completeness of X, there is z € X such thatx, — z (n — o0). Therefore, x,,11 — z and Xy, — z. Consequently,
by the continuity of f and g, we havefz =gz =2z. O

Now we introduce the following definition.
Definition 6. Let (X, <) be a partially ordered set. Two mappings F, G : X — 2X are said to be weakly increasing with

respect to < if for any x € X we have Fx <; Gy for all y € Fx and Gx < Fy for all y € Gx. Similarly, two mapsF, G : X — 2%
are said to be weakly increasing with respect to < if for any x € X we have Gy <, Fxforally € Fxand Fy <, Gxforally € Gx.

Now we give some examples.
Example 8. Let X = [1, c0) and < be the usual order on X. Consider two mappings F, G : X — 2X defined by Fx = [1, x*]

and Gx = [1, 2x] for all x € X. Then the pair of mappings F and G are weakly increasing with respect to <, but not <.
Indeed, since
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Gy = [1, 2y] <,[1,x*] = Fx forally € Fx
and
Fy = [1,¥*] <2[1,2x] = Gx forally € Gx,

F and G are weakly increasing with respect to <, but F2 = [1,4] £,[1,2] = G1for 1 € F2, so F and G are not weakly
increasing with respect to <.

Example 9. Let X = [0, 1] and < be the usual order on X. Consider two mappings F, G : X — 2X defined by Fx = {0, 1} and
Gx = [x, 1] for all x € X. Then the pair of mappings F and G are weakly increasing with respect to <; but not <. Indeed,
since

Fx ={0,1} <4[y, 1] =Gy forally € Fx
and
Gx =[x, 1] <1{0, 1} = Fy forally € Gx,

F and G are weakly increasing with respect to <; but G1 = {1} £,{0,1} = F1for 1 € F1, so F and G are not weakly
increasing with respect to <;.

Theorem 7. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, “ < ” the partial
ordering with respect to P, ¢ : X — E a bounded below function and “<” the partial order induced by ¢.If F, G : X — 2X are
two order closed and weakly increasing mappings with respect to <1, then F and G have a common fixed point in X.

Proof. Letx, € X be an arbitrary point. Since Fxy # @, we can choose x; € Fxo. Now, since F and G are weakly increasing with
respect to <q, we have x; € Fxy <1 Gx;. Thus there exists some x, € Gx; such that x; < x,. Again, since F and G are weakly
increasing with respect to <1, we have x, € Gx; <1 Fx,. Thus there exists some x3 € Fx; such that x, < x3. Continuing this
process, we will get a nondecreasing sequence {x,},2 ; which satisfies Xy, 11 € Fxon, Xon42 € GXppyq,n =0, 1,2,....By the
definition of “<”, we have

< P(X3) < P(x2) < P(x1);

that is, the sequence {¢(x;)} is a nonincreasing sequence in E. Since P is regular and ¢ is bounded from below, {¢(x,)} is
convergent and hence it is Cauchy. By the same argumentation as in the proof of Theorem 1, it follows that {x,} is a Cauchy
sequence. By the completeness of X, there is z € X such that x, — z (n — o0). Therefore, x,1+17 — z and X342 — z.
Consequently, since F and G are order closed, {x;};°; monotone and Xyn+1 € FXan, Xon42 € GXap41, we deduce thatz € Fz
and z € Gz; i.e., z is a common fixed point of Fand G. O

Theorem 8. Let (X, d) be a complete cone metric space with the Banach space E, P be a regular cone in E, “ < ” the partial
ordering with respect to P, ¢ : X — E a bounded above function and “<" the partial order induced by ¢.If F, G : X — 2X are
two order closed and weakly increasing mappings with respect to <, then F and G have a common fixed point in X.

Proof. Let X, € X be arbitrary point. Since Fx, # (, we can choose x; € Fxo. Now since F and G are weakly increasing
with respect to <;, we have Gx; <5 Fxo. Thus there exists some x, € Gx; such that x, < x;. Again, since F and G are weakly
increasing with respect to <,, we have Fx, <, Gx1. Thus there exists some x3 € Fx, such that x3 < x,. Continue this process,
we will get a nonincreasing sequence {x,},2 ; which satisfies xo,41 € FXan, Xant2 € GXang1, 1 =0, 1, 2, .. .. By the definition
of “<”, we have

0(X1) < P(X) < P(X3) < ---.

Since P is regular and ¢ is bounded from above, {¢(x,)} is convergent and hence it is Cauchy. By the same argumentation
as in the proof of Theorem 1, it follows that {x,} is a Cauchy sequence. By the completeness of X, there is z € X such that
Xn — z (n — 00). Therefore, X,n41 — z and x,,4, — z. Consequently, since F and G are order closed, {x,};2; monotone
and Xopt1 € Fxop, Xont+2 € GXanyq, we deduce that z € Fz and z € Gz; i.e. z is a common fixed pointof Fand G. O
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