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a b s t r a c t

Camelina (Camelina sativa L. Crantz) is a promising bioenergy crop, but a sustainable production system
for this crop has not yet been well developed. There is also concern about competing land use between
crop productions for bioenergy or food use. One approach to overcoming this concern and developing sus-
tainable production systems for bioenergy crops is potentially replacing the fallow period in wheat-based
cropping systems with bioenergy crops. The agronomic and economic benefits of growing camelina in
rotation with winter wheat were evaluated in a replicated rotation study from 2008 to 2011 in the North-
ern Great Plains (NGP), focusing on the effects on wheat yield and overall profitability of the cropping
system. Average winter wheat yields were 2401 and 1858 kg ha−1 following camelina and barley, respec-
tively, representing a 13.2 and 32.8% winter wheat yield reduction compared to the fallow–winter wheat
rotation (2766 kg ha−1). Lower winter wheat yield in the alternative systems were offset by 907 kg ha−1

camelina and 1779 kg ha−1 barley yields. Economic analyses revealed that at existing market prices and
production costs, the traditional fallow–winter wheat rotation provides greater net returns to growers
due to substantially lower variable costs of the system. Scenario analyses that use more optimized, lower
cost camelina production practices show that the net profits of camelina–wheat system could be closer to
those in the fallow–wheat system. However, higher grain price and/or greater grain yield of camelina are
essential to attract producers to include camelina in their cropping systems. Although the fallow–wheat
system resulted in higher short-run net returns, the total biomass production and crop residue return
to soil is much greater in camelina–wheat than fallow–wheat rotation, which is likely to improve soil
quality and productivity in the long run.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The traditional fallow–winter wheat rotation is the most widely
used dryland cropping system in the NGP. A fallow period allows
restocking of soil water recharge, thereby increasing yield stability
and reducing the risk of crop failure in subsequent growing periods
(Juergens et al., 2004; Nielsen et al., 2005). Land idling for extended

Abbreviations: BAR, barley; CAM, camelina; FAL, fallow; NGP, Northern Great
Plains; WW, winter wheat.
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periods (e.g., from 14 to 21 months depending on the type of wheat
and planting and harvest dates), however, has been shown to be
associated with numerous sustainability issues, including severe
soil erosion, reduction of soil organic matter and soil fertility, and
nitrate leaching (Peterson and Westfall, 2004; Machado, 2011). Fur-
thermore, Farahani et al. (1998) and Nielsen et al. (2009) pointed
out that fallowing is an extremely inefficient precipitation storage
method, especially during the second summer fallow period (May
through September).

The adverse effects of fallow–wheat systems have encouraged
NGP producers to slowly replace this predominant cropping sys-
tem with more intensive systems such as annual cropping without
fallowing (Halvorson et al., 2004; Chen et al., 2012). Moreover, the
adoption of no-till management practices has facilitated greater
cropping diversification and intensification in this region (Nielsen
et al., 2011; Halvorson et al., 2004). More diverse and intensive
systems have been shown to provide Great Plains producers with

http://dx.doi.org/10.1016/j.indcrop.2015.02.065
0926-6690/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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enhanced economic benefits (Dhuyvetter et al., 1996), increased
precipitation use efficiency (Farahani et al., 1998; Nielsen et al.,
2005), and improved soil properties (Peterson and Westfall, 2004).
Continued transition to more intensive cropping systems would not
only result in improved production efficiency, but will also increase
land availability. For example, in Montana, converting 30–50% of
cropland from fallow–crop to crop–crop systems would add 0.7–1.1
million ha of productive farmland.

Crops used for biofuel production are one category of candi-
dates for replacing fallow in winter wheat-based cropping systems.
Increasing biofuel production has been a major effort by the U.S.
government, which has directed programs such as the Advanced
Energy Initiative (AEI) that proposes displacing 30% of petroleum
use in the transportation sector with domestically produced renew-
able biofuels (Milliken et al., 2007). However, critics of such
initiatives have argued that bioenergy feedstock crops may com-
pete for farmland with food and feed crops, which is likely to
increase food prices and potentially have significant economic
destabilization effects. Therefore, the use of marginal land for
bioenergy feedstock production has been recommended (Gelfand
et al., 2013), and ideally, using a production system that can deliver
feedstock crops with minimal disruption to the production of exist-
ing agricultural commodities.

Camelina is an annual oilseed crop belonging to the Brassicaceae
family (Gesch, 2014). A shorter life cycle (60–90 days), higher seed
oil content (35–45%), and greater water use efficiency compared
to other oilseed crops such as canola make camelina a promising
biofuel feedstock for dryland farming systems (McVay and Khan,
2011). Recent studies evaluating jet fuel performance in commer-
cial airlines and military fighter jets have shown that camelina is a
superior feedstock for biodiesel and jet fuel production (BioEnergy
News, 2010). Previous studies in Montana, Wyoming, and Oregon
showed that camelina is well-adapted to the semi-arid region of the
NGP and Pacific Northwest regions (Schillinger et al., 2012 Wysocki
et al., 2013). In Montana, camelina yields from 700 to 2000 kg seed
ha−1 with 290 to 400 g kg−1 oil content, depending on precipita-
tion and planting date (McVay and Lamb, 2008). However, little
work has been done to evaluate the economic and environmental
feasibility of growing camelina in the NGP’s wheat dominated pro-
duction region, especially because replacing fallow with camelina
may adversely affect the yield of subsequent wheat crops.

In this study, we replaced fallow periods in the traditional dry-
land wheat–fallow cropping system in the NGP with camelina and
barley. We then evaluated: (1) the impact of camelina and bar-
ley on winter wheat yield; (2) the performance of camelina in the
dryland farming system of the region; and (3) differences in eco-
nomic returns between the wheat–fallow cropping system and the
alternative systems.

2. Materials and methods

2.1. Site description and experimental details

We compared the traditional fallow–winter wheat (FAL–WW)
with alternative barley–winter wheat (BAR–WW) and
camelina–winter wheat (CAM–WW) cropping systems. The
study was conducted at the Central Agricultural Research Center
(47◦03′N, 109◦57′W; 1400 m elevation) of Montana State Univer-
sity near Moccasin, MT from 2008 to 2012. The soil at this site
is classified as a Judith clay loam (fine-loamy, carbonatic, frigid
Typic Calciustolls) with the water holding capacity being limited
by gravel content and a shallow soil profile (60 cm). Prior to the
initiation of the study, the top soil (0–30 cm) has 31 g kg−1 organic
matter content, pH 7.7 (1:2 soil to water ratio), 19.6 kg ha−1 NO3-N,
8.3 ppm Olsen P, 185.3 ppm available K, and 35.0 meq per 100 g soil
CEC. Soil samples were taken in the fall and spring every year to
measure soil available N. Long term (l909–2013) average crop year
(September–August) precipitation in this area is approximately
390 mm with mean air temperature of 5.8 ◦C. Table 1 presents the
monthly precipitation and average temperature during the study
and the 20-year long-term averages.

The operation practices details for each system were as follow:
for the fallow period after winter wheat, one herbicide appli-
cation was performed in the fall with 1.12 L ha−1 of glyphosate
(N-[phosphonomethyl] glycine) to burn down the weeds. Addi-
tional two herbicide applications were sprayed with 1.12 L ha−1

glyphosate in the early spring and 1.12 L ha−1of glyphosate plus
1.68 L ha−1 2,4-D (2,4-dichlorophenoxyacetic acid) in early to mid-
summer.

For winter wheat following fallow, glyphosate (1.12 L ha−1)
was sprayed in the fall before seeding in early September, and
winter wheat (cv. Yellowstone) was direct-seeded using a Conser-
vaPak no-till air-seeder (ConservaPak Indian Head, SK, Canada) at
a seeding rate of 67 kg seed ha−1. Starter fertilizer N–P2O5–K2O–S
(20–20–20–10) was applied at a rate of 112 kg ha−1 at the time of
seeding as recommended by Jacobsen et al. (2003). In the follow-
ing spring, additional 90 kg N ha−1 was broadcasted in the form of
urea at late-tillering stage (Zadoks GS 30), and a broadleaf herbicide
named bronate (Bromoxynil) was applied at 1.68 L ha−1. Grain was
harvested using a Wintersteiger plot combine (Wintersteiger Inc.,
Salt Lake City, UT) in late July to early August. The same operation
procedures were also used for winter wheat following barley and
winter wheat following camelina.

For barley following winter wheat, herbicide (glyphosate at
1.12 L ha−1) was applied in the fall after winter wheat harvest and
in the spring before barley planting. Barley (cv. Haxbey) was then
planted in mid-April using a ConservaPak no-till air-seeder at a

Table 1
Monthly precipitation and average air temperature during the study and long term average (LTA) at Moccasin, Montana.

Month Precipitation (mm) Month Temperature (◦C)

2008 2009 2010 2011 LTA 200 200 2010 2011 LTA

September 28.2 32.3 20.6 49.0 35.8 September 13.6 12.4 17.3 12.8 12.7
October 23.6 19.1 73.9 11.2 23.1 October 8.7 9.2 1.8 10.6 7.2
November 23.1 14.2 4.8 40.9 14.5 November 1.4 4.7 3.9 −2.2 0.5
December 0.5 8.9 8.6 17.0 13.7 December −3.3 −8.8 −9.1 −3.3 −3.9
January 4.8 11.2 10.7 8.1 14.0 January −5.6 −3.0 −3.0 −5.0 −5.8
February 5.3 5.1 5.1 15.0 11.4 February −1.9 −1.5 −1.5 −8.3 −4.1
March 2.8 15.0 4.6 15.5 18.0 March 0.5 −0.6 4.8 −1.1 −4.1
April 11.2 36.6 27.9 59.9 30.5 April 2.8 4.2 5.3 3.3 5.0
May 109.7 14.2 85.3 186.7 65.5 May 9.8 10.2 7.6 8.3 10.1
June 74.7 23.9 66.3 107.4 79.5 June 13.6 13.7 13.6 13.3 14.3
July 11.4 54.9 37.3 20.8 42.4 July 19.3 18.6 17.6 19.4 18.8
August 22.6 39.6 96.0 18.0 41.7 August 19.4 18.3 18.1 20.0 18.3

Total 317.9 275.0 441.1 549.5 390.1 Average 6.5 6.5 6.4 5.7 5.8
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Table 2
Input costs estimates for winter wheat, barley and camelina production (2009–2011) and projected 2015 input costs in Moccasin, MT region.

Materials and activities Winter wheat costs ($/ha) Barley costs ($/ha)

2009 2010 2011 2015 2009 2010 2011 2015

Seed and treatment (fungicide) 41.99 29.64 29.64 31.62 33.30 25.73 25.74 44.24
Herbicide cost 31.42 33.64 33.64 43.91 44.46 28.45 28.45 40.92
Fertilizer cost 182.30 146.71 144.73 187.13 129.57 108.53 108.53 132.28
Farm operations (seeding, spraying and harvesting) 94.98 95.25 95.58 95.84 94.98 95.25 95.58 95.84

Total costs 350.69 305.24 303.59 358.5 302.31 257.96 258.3 313.28

Materials and activities Fallow costs ($/ha) Camelina costs ($/ha)

2009 2010 2011 2015 2009 2010 2011 2015

Seed and treatment (fungicide) 0.00 0.00 0.00 0.00 14.82 14.82 14.82 14.82
Herbicide cost 46.68 21.59 21.59 35.14 54.88 42.76 42.73 18.98
Fertilizer cost 0.00 0.00 0.00 0.00 129.80 108.53 108.53 77.91
Farm operations (seeding, spraying and harvesting) 9.87 9.94 10.03 10.10 94.98 95.25 95.58 95.84

Total costs 56.55 31.53 31.62 45.24 294.48 261.36 261.66 207.55

seeding rate of 76 kg ha−1 with 30 cm row spacing. Starter fertilizer
N–P2O5–K2O–S (20–20–20–10) was applied at a rate of 112 kg ha−1

at seeding, and additional 52 kg N ha−1 was broadcasted in the form
of urea in the spring. Bronate (1.68 L ha−1) was applied in the spring
at late tillering stage. Barley was harvested in late July using a Win-
tersteiger plot combine.

For camelina following winter wheat, one burn-down herbi-
cide (1.12 L ha−1 glyphosate) was applied in the early September
after harvesting winter wheat and another application (1.12 L ha−1)
in the spring prior to planting camelina. Camelina (cv. Blaine
Creek) were sown in late March to early April using a Conser-
vaPak no-till air-seeder at 3.4 kg ha−1 seeding rate with 30 cm
row spacing. Starter fertilizer N–P2O5–K2O–S (20–20–20–10) was
applied at the time of seeding at the rate of 112 kg ha−1. Additional
52 kg N ha−1 in the form of urea was broadcasted at rosette stage. A
grassy herbicide, Poast (2-[1-(ethoxyimino) butyl]-5-[2-(ethylthio)
propyl]-3-hydroxy-2-cycloxexen-1-one), was also applied in the
spring at late rosette stage at 1.12 L ha−1 to control wheat volun-
teers and other grasses. Camelina seed was harvested in early to
mid-July using a Wintersteiger plot combine.

The rotation plots have dimensions of 3.7 m wide × 18.3 m long
with four replications. To avoid the confounding effect of varying
weather conditions on crop rotations, each phase of the crops was
designed to appear in each rotation year. For the FAL–WW rotation,
for example, each year had one plot in fallow and another plot in
winter wheat, and was rotated in the following year. The experi-
ment was conducted in a randomized complete block design with
four replicates.

2.2. Data collection

Prior to grain harvesting, biomass samples were cut by hand
from an area of 1 m−2 and air dried to determine dry biomass yield.
Another sample was taken from the middle rows in each plot using
a plot combine (with a 1.5 m wide header) to determine grain yield.
Grain yield was then adjusted to 11% moisture content for wheat
and barley and 6% for camelina. The straw yield was determined
by subtracting grain yield from biomass yield. Harvested grains in
each plot were thoroughly mixed and a sample of 200 g was sepa-
rated for further analysis. The grain subsamples of wheat and barley
were ground using a Wiley Mill grinder (Thomas Scientific, Swedes-
boro, NJ) and camelina seed was ground using a coffee grinder
to pass through a 1 mm screen. Grain nitrogen content was mea-
sured based on the Dumas combustion method using a PerkinElmer
2410N analyzer (Waltham, MA). The nitrogen content was multi-
plied by 5.7 to determine grain protein content (Chen et al., 2011).

Camelina seed oil concentrations were determined using the NIR
method (Panford, 1990). Volumetric soil water contents in each plot
were measured in the fall and spring using the gravimetric method.

2.3. Data analysis

Data were statistically analyzed using the GLM procedure in
SAS (version 9.3). Means were compared according to Fisher’s least
significant difference test (LSD) at the P = 0.05 level.

2.4. Economic analysis

Discounted net present value returns for the three systems were
determined by developing enterprise budgets, which included vari-
able production costs and market returns during 2009–2011 (2008
data were considered as background and excluded in the analysis).
Future values of net returns were discounted by 2.02%, which was
the January 3, 2011 5-year U.S. Treasury bond rate. Fixed costs were
assumed to be comparable and variable production and ownership
costs were determined using the North Dakota State University
and Idaho University production cost estimates for each year of
the study. Table 2 provides the summaries of the nominal costs for
winter wheat, barley, camelina and fallow. Further details about
the costs of inputs and prices of outputs to calculate total costs,
gross incomes, and net returns are described in Chen et al. (2012).
Nominal winter wheat (by protein content level) and barley mar-
ket prices were obtained from the Montana Wheat and Barley
Committee (MWBC, 2015) (Table 3). Reasonable assumption about
camelina price was made based on numerous market reports and
personal communication with buyers and sellers about contracted
prices. We used two approaches to determine market conditions
under which there are sufficient incentives to use a camelina crop-
ping system. In the first approach, we examined whether past
market conditions were favorable for increasing camelina produc-
tion. In the second approach, we evaluated the market conditions
necessary for camelina production adoption and the likelihood that
those conditions will occur.

3. Results and discussion

3.1. Winter wheat yield and protein content

Table 4 shows that winter wheat yield varied across study
years due to the variation in precipitation. Three-year aver-
age winter wheat grain yields following camelina (CAM–WW)
and barley (BAR–WW) were 2401 and 1858 kg ha−1, respectively,
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Table 3
Wheat, barley, and camelina grain prices in 2009–2011 and their projected prices in 2014–2015 marketing years in Moccasin, MT region (wheat price determined based on
protein content).

Crop type Grain price ($/kg)

2009 2010 2011 2015

Barley 0.110 0.164 0.221 0.220
Camelina 0.353 0.265 0.199 0.275

Winter wheat
Protein
con-
tent
(%)

<11 0.160 0.148 0.21 0.232
11 0.173 0.164 0.238 0.240
12 0.184 0.179 0.263 0.242
13 0.194 0.190 0.283 0.243
>13 0.215 0.214 0.321 0.245

Table 4
Yields of wheat, barley, and camelina in different cropping systems at Central Agricultural Research Center, Moccasin, MT (2009–2011).

Cropping system Grain yield Kg ha−1 Straw yield Kg ha−1 Grain protein g kg−1 Oil g kg−1

Winter wheat
CAM–WWA 2401b 3286b 137a –
BAR–WWB 1858c 2522c 135a –
FAL–WWC 2766a 3876a 137a –
SED 101 148 4 –
2009 1934 2287 165 –
2010 3084 3618 119 –
2011 1998 3678 121 –
SE 88 129 3 –

Barley
BAR–WW 1806 1573 135 –
2009 2107 1709 138 –
2010 2145 1753 108 –
2011 1168 1256 161 –
SE 144 128 4 –

Camelina
CAM–WW 912 2510 271 370
2009 1087 2199 271 350
2010 1204 2335 255 373
2011 447 2995 286 385
SE 132 1012 5

Means within a column with a common letter are not statistically different at P < 0.05 by LSD test.
A Camelina–winter wheat.
B Barley–winter wheat rotation.
C Fallow–winter wheat rotation.
D Standard error.

representing 13.2 and 32.8% lower yield compared with the grain
yield of wheat in the traditional fallow–winter wheat system
(2766 kg ha−1). Wheat grain protein content ranged from 135 to
137 g kg−1 implying that wheat quality levels were not affected by
cropping system choice. Lower relative winter wheat grain yields
in rotation with camelina and barley could mainly be attributed
to lower stored water content in the soil compared to fallow,
thus reducing moisture availability for winter wheat in the inten-
sified cropping systems (Table 5). These results are consistent
with previous reports by Aiken et al. (2013), Lyon et al. (2004),
Miller et al. (2006), Nielsen and Vigil (2005), and Saseendran

et al. (2004). The highest grain yields for all crops and lowest
grain yield variability across systems occurred in 2010, when
annual precipitation was the highest observed during the study
period. This result is similar to Miller and Holmes (2005), who
reported that replacing fallow with a spring broadleaf crop in
the NGP resulted in modest (0–16%) yield reductions in nor-
mal years and greater yield reductions (21–41%) under drought
conditions. The lowest wheat grain yield was observed in the
barley–wheat rotation, which could be explained by a buildup of
grassy weed and possible root disease in cereal–cereal annual crop-
ping.

Table 5
The effect of crop rotation on soil moisture content (cm3 cm−3) in spring and fall from 2008–2010 at Central Agricultural Research Center, Moccasin, MT. The soil moisture
is presented in this table is cumulative soil water stored in the top 0–0.6 m soil depth. Results are means for four replications.

Cropping system Volumetric soil moisture content (cm3 cm−3)

Spring 2008 Fall 2008 Spring 2009 Fall 2009 Spring 2010

CAM–WWA 0.18a 0.08b 0.17a 0.09b 0.15a
BAR–WWB 0.18a 0.07b 0.17a 0.09b 0.14a
FAL–WWC 0.18a 0.11a 0.19a 0.14a 0.15a

Means within a column with a common letter are not statistically different at P < 0.05 by LSD test. Data for fall 2010 were not available.
A Camelina–winter wheat rotation.
B Barley–winter wheat rotation.
C Fallow–winter wheat rotation.
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Fig. 1. Total biomass produced from 2008–2011 in different cropping systems at
the Central Agricultural Research center, Moccasin, MT. Means were seprated using
LSD at P < 0.05. Vertical bars represent standard error. BAR, barley; CAM, camelina;
FAL, fallow; WW, winter wheat.

3.2. Camelina and barley yields following winter wheat

Similar to annual variability in winter wheat yields, camelina
and barley yields also varied from year to year. The three-year
average yield for camelina seed was 912 kg ha−1 with 271 g kg−1

protein and 370 g kg−1 oil (Table 4). Average barley grain yield
was 1806 kg ha−1 with 135 g kg−1 protein. Camelina yield was sig-
nificantly lower in 2011 than in the previous two years, which
was due to excessive rainfall during May and June (the camelina
blooming period) in this year. Excessive rainfall had detrimental
effects on camelina pollination and adversely affected camelina
seed formation and yield. High straw yield of camelina in 2011
also confirms this justification. Similarly, the Montana Agricul-
tural Statistics (NASS, 2012) reported considerably lower yield for
camelina and mustard across the state in 2011 compared to 2010.
The camelina grain yield in this study was lower than the previously
reported average yield of this crop (1280 kg ha−1) in Southeastern
Montana (McVay and Lamb, 2008), but comparable to camelina
yields reported in Northeastern Oregon (351–1715 kg ha−1), where
annual precipitation averaged 421 mm (Schillinger et al., 2012).

It is worth noting that there is always a yield gap between the
small plot variety trials and producers fields or cropping systems
trials. In some variety trials, camelina cultivars were grown in a
fallowed field which has more soil stored moisture, and therefore
camelina yielded higher than those grown in a re-cropped field,
such as the field in this crop rotation study. Moreover, several
recently developed camelina cultivars have shown to have consid-
erable yield advantages over existing cultivars (Chen unpublished
data). Using the new cultivars will likely improve the camelina
yields in the cropping systems. The oil content of camelina seed was
also within the range reported in southwestern Montana (McVay
and Khan, 2011) and west central Minnesota (Gesch, 2014), but
slightly lower than that reported by Gugel and Falk (2006) for west-
ern Canada (38–43% content).

3.3. Total biomass production

Considerably more plant biomass was produced in the intensi-
fied cropping systems compared with the FAL–WW system (Fig. 1).
The biomass yields of the CAM–WW and BAR–WW systems were
44 and 35% more than the biomass produced by the FAL–WW sys-
tem, respectively, indicating that precipitation was more efficiently
used in those systems (on the biomass basis). Greater biomass pro-
duction is one important advantage of intensified cropping systems
because more plant residues will return to the soil, which will
improve soil quality. Machado (2011) reported that only continu-
ous cropping systems increased soil organic carbon in a long-term
study. Increased soil organic matter and C sequestration in the
soil, improved soil infiltration, enhanced soil health, and reduced

Table 6
Total net profit of the studied cropping systems at the Central Agricultural Research
Center, Moccasin, MT using actual input costs and grain prices (2009–2011).

Cropping system ($/ha)

Market revenues Total costs Net return

CAM–WWa 1059 838 221
BAR–WWb 918 838 80
FAL–WWc 822 509 313

a Camelina–winter wheat rotation.
b Barley–winter wheat rotation.
c Fallow–winter wheat rotation.

soil degradation are important benefits of more plant residuals
added to the soil (Shaver et al., 2002; Peterson and Westfall, 2004).
Peterson and Westfall (2004) also point out that intensifying crop-
ping rotations, by shortening the summer fallow period and using
the precipitation nearer to the time it is received, would increase
the overall system precipitation use efficiency. Greater precipita-
tion use efficiency will ultimately increase soil productivity via
the increased annual amounts of residue added to the soil. How-
ever, further studies are needed to confirm the potential long-term
effects of the camelina–wheat cropping system on soil health and
quality.

3.4. Input costs and net economic returns

Despite potential agronomic benefits of the CAM–WW crop-
ping system, widespread adoption of this system depends on its
economic incentives compared to the traditional rotations. The
economic analysis showed that CAM–WW and BAR–WW crop-
ping systems had higher production costs compared to FAL–WW
(Table 6), which was due to considerably lower variable costs in fal-
low period (Table 2). The major added cost for camelina production
were the application of 112 kg ha−1 starter fertilizer and an in-crop
application of the herbicide Poast.

The CAM–WW rotation resulted in the highest gross returns,
while the FAL–WW had the lowest 3-year gross returns (Table 6).
The high gross returns for the camelina system were primarily
driven by the atypically high camelina prices during the 2009–2011
period, which were boosted by increased demand associated with
several U.S. government sponsored projects. However, the high
gross returns were not large enough to outweigh the high pro-
duction costs for the CAM–WW system. Under the 2009–2011
market conditions, the FAL–WW provided the highest three-year
discounted net present value of returns. BAR–WW was by far the
least profitable system, which was primarily due to unusually low
barley market prices in 2010 and 2011.

3.5. Economic returns scenario analyses

We conducted several different scenario analyses to charac-
terize production and market conditions under which camelina
production would and would not be favorable. First, we consid-
ered a very short-run scenario in which production practices, costs,
and market prices of all commodities do not change and compared
net returns under alternative camelina prices. The assumptions
underlying this short-run scenario are reasonable because camelina
production represents a small proportion of the overall U.S. agri-
cultural sector and small changes in its price are unlikely to
significantly affect the agricultural sector. Under each camelina
price alternative, we determined net returns ratios of the camelina
system relative to the other systems. When the ratio is less (greater)
than one, then the net return of the CAM–WW system would
be higher (lower) than an alternative system. For example, using
actual 2009–2011 market prices (Table 7), for every dollar of net
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Table 7
Net returns advantage of CAM–WW cropping system over FAL–WW and BAR–WW rotations based on real market price (2009–2011) and different price scenarios for camelina
(assuming barley and winter wheat prices were fixed).

Camelina prices scenarios ($/kg)

2009–2011 Prices 0.132 0.220 0.309 0.397

CAM–WWa 1.00 1.00 1.00 1.00 1.00
BAR–WWb 0.36 3.32 0.58 0.33 0.22
FAL–WWc 1.42 13.11 2.28 1.25 0.86

a Camelina–winter wheat rotation.
b Barley–winter wheat rotation.
c Fallow–winter wheat rotation.

returns in the CAM–WW rotation, using the BAR–WW system
would have resulted in net returns of $0.36 and in net returns of
$1.42 for the FAL–WW system, implying that the CAM–WW system
provided nearly three times as much net returns than the BAR–WW
rotation but substantially lower returns relative to FAL–WW rota-
tion. The scenario analysis indicates that the CAM–WW system
does not become preferable to the FAL–WW system until camelina
prices exceed the breakeven price $0.358 kg−1.

These scenario analyses provide insights about market con-
ditions when camelina can be part of a profitable winter wheat
system. But what is the likelihood that camelina market prices
would be sufficiently high for at least the breakeven scenario, mar-
ket prices of $0.358 kg−1, to occur in the future if the markets (i.e.,
demand) for camelina remained the same? To answer this question
requires access to historical camelina market prices, which would
enable the computation of an empirical market price distribution.
However, there is limited information about historical camelina
market prices because most transactions are forward contracted
and are not made publicly available. Therefore, we used histori-
cal prices of canola futures contracts (2000–2014) traded on the
Intercontinental Exchange (ICE) to get an appropriate proxy for
the distribution of camelina prices because canola and camelina
prices are likely highly correlated. Fig. 2 shows the fitted density
from the empirical histogram of canola futures prices (in 2014
U.S. dollars) and a rescaled fitted density to represent a likely
camelina distribution. That is, after comparing the mean canola
price to the mean camelina price, the canola price distribution
location parameter was rescaled such that central tendency of the

approximate camelina distribution reflected the relationship
between the mean canola and camelina prices, under the assump-
tion that the dispersion characteristics of the two crop prices were
relatively similar. The camelina distribution makes evident that in
existing market conditions, the likelihood of camelina prices being
above $0.358 kg−1 is approximately 0.94%.

These results imply that if no structural market shifts occur
and/or production practices and camelina yields remain similar to
those in the trials, there is a low likelihood that camelina market
prices would be sufficiently high to incentivize widespread adop-
tion. However, there is a potential to reduce camelina production
costs by refining agronomic practices. In fact, extensive research
efforts have been made in recent years to optimize the agronomic
practices in this crop especially in regard to fertilization and weed
control (Chen unpublished data). For example, our experiences
show that the application of a starter fertilizer (20–20–20–10) for
camelina following winter wheat may not be essential as suffi-
cient N, P, and S carry over from the previous crop. Furthermore,
the application of grassy herbicides (such as Poast) may also be
skipped for camelina if the field is clean of weeds. These optimiza-
tions would reduce camelina production costs and, thus, the overall
production costs of the CAM–WW rotation. Therefore, we examine
how future production and market changes could affect the poten-
tial for camelina adoption. We consider whether a more optimized
production approach and more recent market conditions provide
new insights relative to the 2009–2011 period analysis.

Assuming the optimized production approach, input and out-
put prices for the 2012–2014 production and marketing years

Fig. 2. Estimated density of historical canola futures prices (2000–2014, in 2014 U.S. dollars per kg) and location parameter re-scaled approximated density of camelina
prices.
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Table 8
Total net profit of the studied cropping systems at the Central Agricultural Research
Center, Moccasin, MT using 2009–2011 trial average yields and 2012–2014 average
inputs and grain market prices.

Cropping system ($/ha)

Market revenues Total costs Net return Net returnd

CAM–WWa 838 576 263 475
BAR–WWb 852 672 180 180
FAL–WWc 678 404 274 274

a Camelina–winter wheat rotation.
b Barley–winter wheat rotation.
c Fallow–winter wheat rotation.
d Net return estimated based on 1500 kg ha−1 camelina yield.

(assumed to be representative of likely 2015 market conditions;
Tables 2 and 3), and average yields from the three-year trials, we
re-calculate the 2-year discounted net present value of returns.
Table 8 shows that under these conditions, the returns for FAL–WW
and CAM–WW are closer than during the 2009–2011 period pri-
marily due to the lower production costs. However, the FAL–WW
system still outperforms CAM–WW by approximately $9 ha−1.
This implies that even with substantially lower costs, an increase
in camelina demand, and subsequently price, is required. Alter-
natively, increases in camelina yields are needed to sufficiently
increase gross returns at existing market prices. For example,
achieving typical camelina yields of 1500 kg ha−1 (an achievable
yield target during variety trials), along with using optimized low
input production practices, the net return of CAM–WW rotation
would be $475 ha−1 compared to $274 ha−1 in FAL–WW rotation
(Table 8).

It is necessary to note that longer-term research is necessary
to capture the potential indirect economic benefits of camelina. As
explained previously, repeated implementation of FAL–WW rota-
tion has been associated with soil degradation (nutrient depletion,
erosion, organic matter reduction, etc.) and can hinder crop diver-
sification and production system sustainability. Furthermore, due
to the shallow soil profile in central Montana, the fallow period
not only did not conserve much precipitation (Table 5), but could
also result in nitrogen and salt leaching down to the ground water.
Therefore, along with direct economic revenue, the long-term eco-
logical and environmental impacts and sustainability of cropping
systems should be taken into account when determining the suit-
ability of a cropping system.

4. Conclusions

The results of this study indicate that the current fallow–winter
wheat cropping system is economically more profitable than the
two alternative systems, primarily because market prices for bar-
ley and camelina were not sufficiently high to offset the additional
production costs. With optimization of crop management practices,
the net revenue for camelina–wheat rotation would be closer to the
fallow–wheat rotation. To attract producers to include camelina
in their cropping system, higher market prices and/or higher seed
yields are necessary. Releasing high yielding cultivars and more
research efforts in cropping systems to improve the crop yield,
and down-stream bio-products development to increase camelina
value are necessary to achieve the above-mentioned objectives.
An additional consideration is that although the fallow–winter
wheat cropping system results in short-term favorable net returns,
its long-term ecological sustainability as well as its long-term
agronomic-economic benefits still remains ambiguous.
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