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Abstract

This paper considers shape sensitivity analysis for the Laplace–Beltrami operator

formulated on a two-dimensional manifold with a fracture. We characterize the shape

gradient of a functional as a bounded measure on the manifold and decompose it into a

‘‘distributed gradient’’ supported on the manifold, plus a singular part that we derive as the

limit of a ‘‘jump’’ through the crack and Dirac measures at the crack extremities. The

important point is that we introduce a technique that is not dimension dependent, and makes

no use of classical arguments such as the maximum principle or continuation uniqueness. The

technique makes use of a family of envelopes surrounding the fracture which enable us to relax

certain terms and to overcome the lack of regularity resulting from the presence of the

fracture. We use the min–max differentiation in order to avoid taking the derivative of the

state equation and to manage the crack’s singularities. Therefore, we write the functional in a

min–max formulation on a space which takes into account the hidden boundary regularity

established by the tangential extractor method.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction and motivation

This work concerns techniques for detecting a fracture contained in an elastic
structure, usually a thin Shell. This study relies on the theory of intrinsic geometry
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(see [1,7,9]) and results on the Laplace–Beltrami operator established by Desaint–
Zolesio (see [12]).

Here, we provide a new shape sensitivity result for a non-smooth case which is
needed when dealing with control and shape optimization on non-smooth domains.

One of the aims of this paper is to get the boundary expression for the shape

gradient of the cost functional Jððo\sÞÞ ¼ 1
2

R
ðo\sÞðF� FdÞ2 (given in Theorem 6.1),

where o is a bounded open subset of a C2 two-dimensional manifold G (G in R3),
with the relative boundary @Go denoted by @o; s is a connected fracture contained in
o with ends s1 and s2: F is the solution to the tangential Neumann problem,

associated to the Laplace–Beltrami operator, with right-hand side in L2 formulated
on the non-Lipschitizian open set ðo\sÞ and Fd is a given heat measure.

On the one hand, from a heuristic point of view, looking for the shape sensitivity
consists in observing the perturbation effect on the solution defined in a perturbed
domain. For this we adopt the so-called velocity method [16] in order to move the
domain through the flow mapping associated to a vector field.

On the other hand, since we deal with an oriented compact manifold it is
convinient to use the space topology generated by the so-called oriented distance
function established by Delfour–Zolésio [7].

As a first step, we will investigate the tangential Neumann problem on a
Lipschitizian manifold o: In this case, we supply an existence result of the material

derivative ’F of the state as a unique solution of a variational problem. We begin by
establishing a uniform a priori estimate and by the reflexivity property of the
Sobolev space and a convergence in norms we get the result.

We recover the distributed shape gradient expression of the associated cost
functional governed by the Lipschitizian domain JðoÞ via the adjoint state.

We consider the piecewise smooth case (o is C2-piecewise). In order to supply the
shape gradient boundary expression of the associated cost functional JðoÞ; and to
avoid differentiating the state equation we use the min–max theory [13] through a
hidden boundary regularity of the state provided by the tangential extractor, see [17].
This theory requires building a family of vector fields vanishing in a neighborhood of
singularities.

We also give a continuity result for the tangential Neumann problem with respect
to a family of envelopes surrounding the fracture s: That allows us to avoid of the
lack of regularity due to the fracture.

The shape gradient dJðo\s;VÞ turns out to be characterized by a distributed
gradient supported on the closure of the fracture %s and the boundary g; its expression
is given as a sum of a distributed term on g; a jump distributed term in L1ðsÞ plus
Dirac measures at the two extremities si:

The second result deals with the shape boundary derivative. Indeed, according to

the identity F0
G ¼ ’FjG �rGFVð0Þ (see [16]), it transpires that F0

G is less regular than

the material derivative ’F of the state F; that point requires technicalities. On the one
hand, we consider the smooth case. We characterize the shape boundary derivative

F0
G of the state as the solution of a non-homogeneous elliptic tangential problem.

Thereafter, we extend the previous result to the piecewise smooth case. On the other
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hand, we relax the gradient tangential, normal component, of the shape boundary
derivative in the fractured case.

Finally, the last main result we prove the necessary optimality condition of the
initial domain and we establish the existence of an optimal domain by using the
Kuratowski continuity of the Sobolev spaces.

The techniques used allow us to deal with the situation in which the fracture s
needs not to be smooth.

2. Preliminaries

2.1. Velocity method

Let D be a smooth bounded domain of RN : We consider a regular open subset O
of D: Its relative boundary will be denoted by G ; G is an oriented compact manifold.

Let X be a given point of %D and tA½0; d½; where d is a positif number. We define the
point xðtÞ ¼ TtðXÞ which moves on the trajectory x-xðtÞ with velocity jj@txðtÞjj
equal to jj@tTtðX Þjj;

TtAC1ð½0; d½;C1ðD;RNÞÞ: ð1Þ

Let

Vðt; xÞ ¼ @Tt

@t
3T�1

t ðxÞ ð2Þ

it follows that

VAC0ð½0; d½;C1ðD;RNÞÞ: ð3Þ

Conversely, it is possible to associate transformations Tt to some vector fields V

satisfying (2).
Let V be the set of vector fields satisfying (3), with /Vðx; tÞ; n@DðxÞS ¼ 0 for

xA@D almost everywhere and Vðx; tÞ ¼ 0 for all singular point x of @D: The
transformation Tt is called the flow mapping associated to V :

We refer to [16] for the proof of the subsequent theorem.

Theorem 2.1. We have the two following assertions:

(i) Let V be a vector field of V: Transformations TtAC1ð½0; d½;C1ðD;RNÞÞ may be

associated to V ; moreover (2) holds.
(ii) Let Tt be a transformation satisfying (1) then there exists VAV verifying (2).

The transformations Tt is solution of the ordinary differential equation

@txðX ; tÞ ¼ VðxðX ; tÞ; tÞ; xðX ; 0Þ ¼ X :
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In the sequel, we point out that, in the general problem, an important issue is to
keep the surface G fixed in the perturbation process. Such constraint is obviously
solved by choosing, in a general setting, the speed vector field Vðt; xÞ tangent to the
surface G: Vðt; xÞ:nGðxÞ ¼ 0:

We consider an open subset o of G containing a fracture denoted by s: The
boundary of the open subset is also of class C2: We design by n the out normal field
on the surface G and by nðX Þ the normal field on g outside of o contained in the
tangent space to G at X (Fig. 1).

2.2. Intrinsic geometry

Given a bounded open set O in R3 we consider its boundary G that we assume to

be a C2 manifold, n being the unitary outgoing normal field. We recall here some
basic facts of intrinsic geometry from [7–9].

2.2.1. The oriented distance function

Definition 2.1. The oriented distance function is defined through R3 as follows:

bOðxÞ ¼
dGðxÞ if xA %Oc;

�dGðxÞ if xAO:

�

Among the intrinsic geometrical properties of the oriented distance function we
quote the following:

rbO is an extension of the normal field n on G:

DbO is the mean curvature H of the surface G ði:e: H ¼ DbOjGÞ:

ARTICLE IN PRESS

Γ

ω

σ
ss1 2γ

Fig. 1. Fractured manifold.
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2.2.2. The projection mapping

Let U be a tubular neighborhood of G given, for h small enough, by

UðGÞ ¼ fxAD; jbOðxÞjohg;

we can associate to the oriented distance function bO a projection mapping on the
compact manifold G:

Definition 2.2. The projection mapping p is defined in [7] by

p : U-G; pGðxÞ ¼ x � bOðxÞ:rbOðxÞ

2.2.3. Laplace–Beltrami operator

Definition 2.3. The Laplace–Beltrami operator is denoted by DG and specified, in [3],
for such a regular function j by

DGj ¼ divG rGj

with

rGj ¼ ðrf�/rf;rbOSrbOÞjG;f being any extension of j to a neighborhood of G

and

divG e ¼ ðdiv E �/DE:rbO;rbOSÞjG;E being any extension of e to a neighborhood of G:

2.3. The Neumann tangential problem

Let F be an element given in H
1
2
þdðDÞ such that F jo ¼ f and F jot ¼ ft:

We consider the tangential Neumann problem formulated in the fractured
subset o\s:

NT

�DGF ¼ f in o\s;
@F
@n

¼ 0 on @ðo\sÞ:

8<
:

Lemma 2.1. We notice that

(1) The previous problem has a unique solution in the following Hilbert space

H1
� ðo\sÞ ¼ fvAH1ðo\sÞ; /v; 1S ¼ 0g

where /v; 1S ¼ 0 means that
R
ðo\sÞ v ¼ 0:
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(2) The optimal regularity of the solution of the problem NT is H
3
2
�m with m40; and

to H2ðo0Þ for every open subset o0 contained in ðo\sÞ with empty intersection with

%s; we refer to [15].

The principal aim of this paper is to exhibit the shape gradient of the cost function
J and to characterize the shape boundary derivative of the state. But because of the
existence of the fracture the open subset o\s is not Lipschitzian, this lack of
regularity involves many technical problems.

As a first step, we will investigate the tangential Neumann problem successively in
a Lipschitzian and a piecewise smooth domain. Therefore, we will approach the
fractured manifold o\s by a family of piecewise smooth domains.

3. Study over manifolds in several cases

Throught out this section we deal with the shape gradient expressions
of the considered cost functional. In the first section we investigate the
tangential Neumann problem on a Lipshitizian manifold o: In this case, we supply

an existence result of the material derivative ’F of the state as an unique solution
of a variational problem. We begin by establishing an uniform a priori estimate and
by the reflexivity property of the Sobolev space and a convergence in norms we get
the result.

We then recover the shape gradient distributed expression of the associated
functional cost governed by the Lipshitizian domain JðoÞ via the adjoint state.

Thereafter, in the second section we consider the piecewise smooth case (o is

C2-piecewise). In order to supply the shape gradient boundary expression of the
associated cost functional JðoÞ we have to avoid differentiating the state equation
that’s why we use the min–max theory through a hidden boundary regularity of the
state provided by the tangential extractor. This theory requires a building of a family
of vector field vanishing in a neighborhood of singularities. thus, in this case it arises
the shape gradient boundary expression is splitting in a continuous term and a
pointwise one mapped on the singularities.

In the third section we deal with the fractured case. In fact the lack of regularity of
the fractured manifold and so of the solution prevents us to have an optimal
formulation for the shape functional, notably the shape gradient boundary
expression. This suggests the introduction of a regularization in order to estimate
the non-Lipschitzian open set by a family with parameter of piecewise smooth (and
so Lipschitzian) open subsets via a family of envelopes surrounding the fracture. That
allows us to get rid of the lack of regularity due to the fracture. Hence, we get the
associated family of parametrized shape gradients. We establish a continuity result
to the tangential Neumann problem with respect to the considered parameter
smooth family.

Therefore, the shape gradient dJðo\s;VÞ turns out to be characterized by a
distributed gradient supported on the closure of the fracture %s and the boundary g;
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its expression is given as a sum of a distributed term on g; a jump distributed term in

L1ðsÞ plus a Dirac measures at the two extremities si:

4. Case of a Lipschitzian manifold

Definition 4.1. We define a Lipschitzian open subset o in G assuming its relative
boundary @Go ¼ g being Lipschitz continuous in the following sense:

There exists an into mapping l : ½0; 1
-R3 such that lALipð
0; 1½;R3Þ; lð½0; 1
Þ ¼ g
and lð0Þ ¼ lð1Þ: l is a parametrization of g:

Throughout this section we assume o to be a such Lipschitz open subset which is
locally in G on one side of its boundary. The normal field n exists almost every where

(for the H1 Hausdorff measure, see [11]) on g:
We consider the tangential Neumann problem.

P

�DGF ¼ f in o;
@F
@n

¼ 0 on @o:

8<
:

Remark 4.1. Since the boundary @o is Lipschitzian, the Green formula holds.

4.1. Shape analysis

4.1.1. Moving domain

We consider the parameter family of open subsets ot generated by the family of
flows TtðVÞ associated with the vector field V : Thanks to the condition satisfied by
V ; the family of boundaries gt of ot is moving on the surface G:

From a heuristic point of view, looking for the shape sensitivity consists in
observing the perturbation effect on the solution defined in TtðVÞðoÞ ¼ ot when
t-0: For this we perturb the domain o by the transformation Tt; it follows that

Pt

�DGFt ¼ ft in ot;

@Ft

@nt

¼ 0 on @ot:

8<
:

Remark 4.2. It is clear that, 8tA½0; d½; there exists a unique solution Ft of the

perturbed problem under the condition
R
ot

ft ¼ 0; this motivates the choice of ft in

the following lemma.

Lemma 4.1. Let F belongs to H
1
2
þdðDÞ such that Fjo ¼ f and ft ¼ Fjot

� 1
joj
R
ot

F :

Then the mapping: t-f t ¼ ft3Tt is weakly differentiable in Hd�1ðoÞ:
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Furthermore: f t�f
t
-rGF :Vð0Þ weakly in H�1ðoÞ: The proof can be found in [16].

Lemma 4.2. We refer to [12] to introduce the Green’s formula associated

with a manifold o having a boundary g: Let E and j be regular functions, it

follows that

�
Z
o

divG E:j ¼
Z
o
fE:rGj� Hj/E; nSRNg �

Z
g
j/E; nS;

where H ¼ DbOjG is the mean curvature of the manifold G:

4.2. Material derivative

We are interested in the sequel in establishing the existence of the material

derivative ’F:

4.2.1. Existence of the material derivative of the state

In the following we intend to deal with the differentiability of the map: t-Ft3Tt

at zero.

Theorem 4.1. The map: t-Ft3Tt is differentiable at zero and its derivative ’F ¼
limt-0

Ft3Tt�F
t

; in H1
� ðoÞ; satisfies the equation

Z
o
rG ’FrGc ¼

Z
o
/2eðVÞrGF;rGcS

�
Z
o
/divG Vð0ÞrGF;rGcS

þ
Z
o

divGð f :Vð0ÞÞc: ð4Þ

Remark 4.3. A direct way to get the existence and characterization of ’F ¼
@
@t
ðFt3TtÞjt¼0 is to apply the implicit function theorem. This way, we would directly

get the result concerning the material derivative if the right-hand side FjG of the

equation is assumed more regular than L2ðGÞ: Here, that FjG belongs to L2ðGÞ does
not imply the strong convergence in H�1ðGÞ of the quotient f t�f

t
; as would be

required to apply the implicit function theorem. This lack of regularity requires

a delicate proof for the existence of ’F: In [16] there are counter examples for which

one can not expect the mapping to be strongly differentiable in H�1ðGÞ for any

f in L2ðGÞ:
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Lemma 4.3. Let d40 be a given real number. The mapping t-DT�1
t is differentiable

on 
0; d½ and we have 8tA
0; d½; (aA
0; 1½ such that

DT�1
t ¼ Id � tð�DT�1

at ðVÞ3T�1
at :VðatÞÞ:

Lemma 4.4. Let d40 be a given real number and jðtÞ the associated Jacobian to the

flow TtðVÞ:
The application tA½0; d½-jðtÞACk�1; kX1 is differentiable and

j0ð0Þ ¼ divVð0Þ � ðDVð0Þn; nÞ ¼ divG Vð0Þ:

Proof of Lemma 4.4. The boundary Jacobian jðtÞ ¼ detðDTtÞjj�DT�1
t :njj is

differentiable for transformations TtðVÞ in C1ð½0; d½;C2ð %D;RNÞÞ and we have

@jj�DT�1
t :njj

@t

����
t¼0

¼ � ðDVð0Þn; nÞ

@detðDTtÞ
@t

����
t¼0

¼ div Vð0Þ: &

4.2.2. Proof of Theorem 4.1

On the one hand, via Green’s formula given in Lemma 4.2, the weak formulation
of the perturbed problem is given byZ

ot

rGFtrGjt ¼
Z
ot

ftjt; 8jtAH1
� ðotÞ ð5Þ

whether return to the fixed domain:Z
ot

rGFtrGjt ¼
Z
o
ðrGFtÞ3Tt:ðrGjtÞ3Tt jðtÞ ð6Þ

whence

ðrGFtÞ3Tt ¼ rðFt3pÞ3TtjG ¼ �ðDTtÞ�1rðFt3p3TtÞjG: ð7Þ

We notice, via a suitable choice of test functions jt; that only the tangential
component of the vector rðjt3TtÞ does not vanish.

In fact, let jt ¼ c3T�1
t where c belongs to H

3
2ðDÞ; so its trace on G is in H1ðGÞ;

with @c
@n

¼ /rc; nS ¼ 0:

We note that

ðrjtÞ3TtjG ¼ �ðDTtÞ�1rcjG ¼ �ðDTtÞ�1rGc
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then, due to /rðFt3pÞ; nS ¼ 0; we get

/ðDTtÞ�1:�ðDTtÞ�1rðFt3p3TtÞ; nS ¼ 0

this means that the vector ðDTtÞ�1:�ðDTtÞ�1rðFt3p3TtÞ is tangential.
For the sake of brevity, let us use this mere change of functions:

yt ¼ jðtÞFt3p3Tt

which yields

Z
ot

rGFtrGjt ¼
Z
o
/DðtÞ:rðytÞ;rGðcÞS; ð8Þ

where

jðtÞ ¼ detðDTtÞjj�ðDTtÞ�1:njj

and

DðtÞ ¼ ðDTtÞ�1:�ðDTtÞ�1:

On the other hand

Z
ot

ftjt ¼
Z
o

f tcjðtÞ: ð9Þ

Definition 4.2. If the limt-0
yt�y

t
exists strongly in H1

� ðoÞ (denoted ’y) we say that y
has a material derivative in the direction of the vector field V :

The sequel will be devoted to proving the existence of the material derivative ’y
which provides the state with one.

Weak material derivative. Let zt ¼ yt�y
t

in H1
� ðoÞ; which satisfies for all cAH1ðoÞ:

Z
o
rGztrGc ¼ �

Z
o

DðtÞ � I

t
rðytÞ;rGðcÞ

� 	
þ
Z
o

f tjðtÞ � f

t
c: ð10Þ

By embedding the test function c ¼ zt � l in (10) where l verifies

Z
o

l ¼
Z
o

zt;
@zt

@n
¼ @l

@n
and rGl ¼ arGzt with aa1
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then we getZ
o
rGztrGzt ¼

Z
o
rGztrGl �

Z
o

DðtÞ � I

t
rðytÞ;rGðzt � lÞ

� 	

þ
Z
o

f tjðtÞ � f

t
ðzt � lÞ ð11Þ

which enables us to point out the following estimate, there exists a constant c

independent on the parameter t such that

jjrGztjjL2ðoÞpc:

It follows that zt is bounded in H1
� ðoÞ; so by a compacity argument one can extract a

subsequence still denoted by zt which converges weakly in the same space. Let ’y be
this weak limit, it fulfills the below equation:Z

o
rG ’yrGc ¼ �

Z
o
/D0ð0ÞrGy;rGcSþ

Z
o
½ fj0ð0Þ þ rFVð0Þ
c: ð12Þ

Obviously ’y is unique so the whole sequence zt is weakly convergent to ’y in the space

H1
� ðoÞ:
Strong material derivative. Via the same choice of test function we prove the

convergence in norm, in fact

lim
t-0

jjrGztjj2L2ðoÞ ¼
Z
o
rG ’yrGl �

Z
o
/D0ð0ÞrðyÞ;rGð’y� lÞS

þ
Z
o
½ fj0ð0Þ þ rF :Vð0Þ
 ð’y� lÞ

¼ jjrG ’yjj2L2ðoÞ: ð13Þ

We conclude that yt�y
t
-’y strongly in H1

� ðoÞ; which provides the existence of the state
’F in H1

� ðoÞ; indeed

’y ¼ j0ð0ÞF3p þ jð0Þ ’F3p:

Then by introducing this last identity in Eq. (12) we deduce that ’F satisfies the
following equation:Z

o
rG ’FrGc ¼ �

Z
o
/D0ð0ÞrGF;rGcS

�
Z
o
/j0ð0ÞrGF;rGcS

þ
Z
o
½ fj0ð0Þ þ rGF :Vð0Þ
c8cAH1

� ðoÞ: ð14Þ
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Thus, the equation verified by ’F is rewritten as

að ’F;cÞ ¼ lðcÞ 8 cAH1
� ðoÞ;

where a is the coercive bilinear form given as follows:

að ’F;cÞ ¼
Z
o
rG ’FrGc ð15Þ

and l is the following linear form:

lðcÞ ¼
Z
o

� D0ð0ÞrGFrGc�
Z
o

j0ð0ÞrGFrGc

þ
Z
o
½ fj0ð0Þ þ rGF :Vð0Þ
c; ð16Þ

where the expressions of D0ð0Þ and j0ð0Þ are given by Lemmas 4.3, 4.4:

�D0ð0Þ ¼ fDVð0Þ þ �DVð0Þg ¼ 2eðVÞ:

eðVÞ is the symmetrized of DV :

rGf :Vð0Þ þ f divG Vð0Þ ¼ divGð fVð0ÞÞ

which achieves the proof of Theorem 4.1. &

4.3. Shape gradient distributed expression

According to the existence of the material derivative, we are able to provide the
shape gradient dJðo;VÞ:

Proposition 4.1. The distributed expression of the shape gradient is given by:

dJðo;VÞ ¼
Z
o

1

2
ðF� FdÞ2 �rGFrGP


 �
divG Vð0Þ �

Z
o
ðF� FdÞrGFd :Vð0Þ

þ
Z
o
2/eðVÞrGF;rGPSþ

Z
o

divGð f Vð0ÞÞP; ð17Þ

where P is the adjoint state.

Proof of Proposition 4.1. A mere change of variable in the cost functional expressed
in ot leads to

JðotÞ ¼
1

2

Z
ot

ðFt � FdÞ2 ¼
1

2

Z
o
ðFt3Tt � FdÞ2jðtÞ
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which yields

dJðo;VÞ ¼
Z
o
ðF� FdÞð ’F�rGFd :Vð0ÞÞ þ 1

2

Z
o
ðF� FdÞ2 divG Vð0Þ: ð18Þ

In order to eliminate the material derivative ’F from the last expression, we use the
following adjoint problem:

�DGP ¼ ðF� FdÞ in o;
@P

@n
¼ 0 sur @o;

8<
: ð19Þ

where P the adjoint of the state F; belongs to H1
� ðoÞ:

Then thanks to the conjugate form and Green’s formula, it follows that

dJðo;VÞ ¼ að ’F;PÞ þ 1

2

Z
o
ðF� FdÞ2 divG Vð0Þ �

Z
o
ðF� FdÞrGFd :Vð0Þ

¼ lðPÞ þ 1

2

Z
o
ðF� FdÞ2 divG Vð0Þ �

Z
o
ðF� FdÞrGFd :Vð0Þ: ð20Þ

Thus, via the expression of the linear form l we deduce the announced
proposition. &

5. Shape gradient boundary expression

In this section we deal with the shape gradient boundary expression in the case of a
piecewise smooth manifold. Which requires some technicalities, indeed, we will use a
differentiation result provided by the min–max theory through a hidden boundary
regularity of the state. Let o be a piecewise smooth open subset of the manifold G
containing m singularities si: We consider the same problem P and also the moving
one Pt: We note that all the results established in the Lipschitzian case hold, mainly
Theorem 4.1 and Proposition 4.1.

5.1. Hidden boundary regularity

The hidden boundary regularity of the state F will be provided by the
extractor method. Therefore, we introduce the min–max theory in order to avoid
differentiating the state equation, it consists in establishing the saddle-points of the
Lagrangian related to the state-adjoint coupled problem (of which F and P are
solutions). We will need the hypothesis of a Dirichlet condition, let (H1 : F ¼ 0 on
g0 with g0CgÞ:

5.1.1. Extractor method

We begin by announcing the fundamental result.
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Theorem 5.1. We assume that G is a C2 manifold and @o a piecewise smooth curve.

The state F has a hidden boundary regularity on @o:
Indeed

rGFAL2ð@oÞ:

We start with this technical lemma:

Lemma 5.1. The set C2ð %oÞ is dense in H1
DðoÞ where

H1
DðoÞ ¼ fjAH1ðoÞ; such that DGjAL2ðoÞg:

Proof of Theorem 5.1. Let W be a vector field belonging to C1ðG;R2Þ and satisfying
the hypothesis of Theorem 1, such that W :n ¼ 0; we associate with W the flow
TsðWÞ; s is a parameter lays in ½0; d½: Thus, the tangential extractor related to W of

the function sequence cnAC1ð %oÞ such that ðcn;�DGcnÞ-ðF; f Þ strongly in H1ðoÞ �
L2ðoÞ; is given by

EW ðcnÞ ¼
d

ds

Z
Tso

jrGðcn3T
�1
s Þj2

� 

js¼0

¼
Z
o
/½D0ð0Þ þ j0ð0ÞI 
rGcn;rGcnS

¼
Z
@o

jrGcnj
2/W ; nS� 2

Z
o
DGcnrGcn:W

and so Z
@o

jrGcnj
2/W ; nS ¼

Z
o
/½D0ð0Þ þ j0ð0ÞI 
rGcn;rGcnS

þ 2

Z
o
DGcnrGcn:W :

We may choose W such that 0oaoW :nob on @o; indeed we use here the fact that
there is only a finite number of singular points. The mapping

xAL2 : x-
Z
@o

jxj2/W ; nS
� 
1

2

is a norm equivalent to the usual norm of L2ð@oÞ which is weakly lsc one.

Therefore there exists M40 such that
R
@o jrGcnj

2oM; from the weak compacity

of the closed ball in L2ð@oÞ; exists a subsequence x
!

nk
¼ rGcnk

converging weakly to

x
!

in L2ð@oÞ:
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It is required to prove that x
!

is exactly rGF: It is enough to use an integration by

part result existing in [14], indeed let pADð@oÞ with fs1;y; smgCðsupppÞc; soZ
@o

rGcnk
rGp ¼

Z
@o

cnk
FðpÞ;

where FðpÞ is the adequate expression existing in [14]. So we also compute the limit
with k; then under integration by part argument, one easily checks that:Z

@o
x
!
:rGp ¼

Z
@o

rGFrGp 8pADð@oÞ

which yields

x
!¼ rGF

thus, we conclude to the existence of a boundary hidden regularity of the state F on
@o: Let

rGFAL2ð@oÞ

and achieve the proof. &

5.2. The min–max theory

We look for the boundary expression to the last shape gradient, given in
Proposition 4.1, by the derivation method of the functional expressed in a min–max

(this means that we consider the state equation as a constraint).
In order to apply this method the state F and the adjoint P have to be more

regular than the variational regularity H1 used in the last section. In fact, we just
need the regularity of F and P only in neighborhoods of the points where the vector
field V does not vanish. The boundary g being piecewise so we have a finite number
of singular points s1;y; sm: On these points F and P are not enough regular
nevertheless, we can apply the min–max method where the points si are not moving.
That is why we build a family of vector field Vn; through the vector field V ; which
vanishes in a neighborhood Bn of the singular points. Therefore, we get the boundary
expression by min–max then we pass to the limit with n: For this we need to build the
neighborhood Bn and the field Vn satisfying the below lemma. This lemma is the tool
which allows us to pass to the limit in the shape gradient expression. Then we shall

consider the convex set Kt undertaking the hidden boundary regularity provided by
the extractor.

Lemma 5.2. The vector field V being given with (H2; V ¼ 0 on g0), let Bn be an union

of m-neighborhoods Bi
n of the singularities si; i ¼ 1;y;m:
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There exists a family of vector field Vn belongs to W 1;NðGÞ such that: Vn ¼ 0 on Bn:
Vn is given by

VnðxÞ ¼ VðxÞ �
X

i

yi
nV

 !
ðxÞ

notice that Vn verifies also H2:

Where Bi
n is a neighborhood of si ‘‘of size 1

n
’’ in the sense developed below, yi

n is a

function with support Bi ffiffi
n

p containing Bi
n such that

yi
nXwBi

n

and wBi
n

is the characteristic function associated to Bi
n:

We give hereafter explicitly yi
n3ðxiÞ�1; where xi is an associated projection

xi : Bi ffiffi
n

p -Tsi
G

such that xiðBi
nÞ is the ball of Tsi

G of which the ray is equal to 1
n
; where Tsi

G being the

tangent space to the manifold G on si:

The function zi
n ¼ yi

n3ðx
iÞ�1

defined in the ball xiðBi ffiffi
n

p Þ can be chosen as follows:

zi
n ¼ n

1�
ffiffiffi
n

p
� 


r�
ffiffiffi
n

p

1�
ffiffiffi
n

p

therefore

yi
n ¼

1 in Bi
n

zi
n3x

i in Bi ffiffi
n

p

(

Lemma 5.3. We have the following convergence results:

(i) The vector field Vn is star-weakly convergent to V in LNðoÞ
(ii) The vector field Vn converges all most everywhere to V in W 1;N:

Proof of Lemma 5.3. The proof is a direct consequence from the fact that the

function yi
n is star-weakly convergent to zero in LNðoÞ: &

Let us denote by ot;n ¼ TtðVnÞðoÞ the family of open subset generated by the flow

TtðVnÞ associated with the vector field Vn:
In the sequel, we introduce the Lagrangian saddle-points related to the coupled

state-adjoint problem in order to derive a min–max formulation for the shape
gradient.
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5.2.1. Lagrangian and saddle-points

We refer to [2,13] for characterizing the saddle-points.

Proposition 5.1. It is known that

ðj;cÞ is a saddle-point of the Lagrangian if and only if ðj;cÞ is a solution of the

coupled state-adjoint problem.

We come to

Lemma 5.4. Let tt be the tangent vector to ð@oÞ and set

Kt ¼ fjtAH1ðGÞ-H2
locðG\BnÞ;rGjt:ttAL2ð@otÞjt ¼ 0 on g0g

then the functional Jðot;n;VnÞ is the solution of the min–max problem:

Jðot;nÞ ¼
1

2

Z
ot;n

ðFt;n � FdÞ2

¼ min
jtAKt

max
ctAKt

Ltðjt;ctÞ

with Lt the associated Lagrangian given by

Ltðjt;ctÞ ¼
1

2

Z
ot;n

ðjt � FdÞ2 þ
Z
ot;n

½rGjtrGct � fct
:

In order to work over a fixed space, we carry out a classical change of functions.
Let j ¼ jt3Tt and c ¼ ct3Tt; it yields

Lemma 5.5. Let K be the fixed space, then

Jðot;nÞ ¼ min
jAK

max
cAK

Ltðj;cÞ;

where

Ltðj;cÞ ¼ 1

2

Z
ot;n

ðj3T�1
t � FdÞ2 þ

Z
ot;n

½rGðj3T�1
t ÞrGðc3T�1

t Þ � fc3T�1
t 


and

K ¼ fjAH1ðGÞ-H2
locðG\BnÞ;rGj:tAL2ð@oÞj ¼ 0 on g0g:

5.2.2. Min–max differentiation

In order to obtain the boundary expression of the shape gradient of the functional
J; we may use the following important theorem.
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Theorem 5.2. By applying min–max differentiation result (see [2]). The shape gradient

has the following form:

dJðo;VnÞ ¼
@

@t
LtðF; PÞjt¼0

:

For the proof we refer to [6,10].

This leads

Lemma 5.6. According to the previous results, the mapping: tA½0; d½-j3T�1
t ðVnÞA

H1ðGÞ-H2
locðG\BnÞ is continuous and differentiable in H1ðGÞ:

Moreover

lim
t-0

j3T�1
t ðVnÞ � j

t
� ð�rGj:Vnð0ÞÞ

����
����

����
����
H1ðGÞ

¼ 0:

Proof of Lemma 5.6. Under the regularity of j and the continuity of the flow T�1
t ;

the continuity of the previous mapping is obvious.
Concerning the differentiability, it will be deduced also from the same argument.
Notice that

j3T�1
t ðxÞ ¼ jðxÞ þ

Z 1

0

rGjðx þ sðT�1
t ðxÞ � xÞÞ:ðT�1

t ðxÞ � xÞ ds

it follows that

1

t
ðj3T�1

t ðxÞ � jðxÞÞ þ ðrGj:Vnð0ÞÞ ¼
Z 1

0

½rGjðx þ sðT�1
t ðxÞ � xÞÞ


�ðT�1
t ðxÞ � xÞ

t
ds �

Z 1

0

rGjðxÞ:
ðT�1

t ðxÞ � xÞ
t

ds

þ rGj:
ðT�1

t ðxÞ � xÞ
t

þ Vnð0; xÞ

 �

:

We come to investigate the following limit when t tends to 0:

lim
t-0

It ¼
1

t
ðj3T�1

t ðxÞ � jðxÞÞ þ ðrGj:Vnð0ÞÞ
����

����
����

����
H1ðGÞ

 !
:

First, let us begin by the L2ðGÞ norm. We denote it with I1t :
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It follows that

ðI1t Þ
2p 2

Z
G

Z 1

0

½rGjðx þ sðT�1
t ðxÞ � xÞÞ � rGjðxÞ
:

ðT�1
t ðxÞ � xÞ

t
ds

� �����
����
2

dG

þ 2

Z
G
rGj:

ðT�1
t ðxÞ � xÞ

t
þ Vnð0; xÞ


 �����
����
2

dG:

It is clear, according to the previous hypothesis and from the continuity of the

mapping t-rGj:
ðT�1

t ðxÞ�xÞ
t

þ Vnð0; xÞ
h i

in H1ðGÞ; that the second term tends to 0

with t: Then by applying Hôlder’s inequality and Lebesgue’s theorem, it arises that
the first term is overestimated by

c

Z 1

0

Z
G
½rGjeðx þ sðT�1

t ðxÞ � xÞÞ � rGjðxÞ
:
ðT�1

t ðxÞ � xÞ
t

����
����
2

dG

( )
ds:

Let hðs; tÞ ¼
R
G j½rGjðx þ sðT�1

t ðxÞ � xÞÞ � rGjðxÞ
:ðT
�1
t ðxÞ�xÞ

t
j2 dG; we remark that

hðs; tÞphð1; tÞ 8s:

Therefore limt-0 I1t ¼ 0:

Also the semi-norm j:j1;G denoted by I2t converges to zero with t: In fact, it is

clear that

ðI2t Þ
2p 2

Z
G
rG

Z 1

0

½rGjeðx þ sðT�1
t ðxÞ � xÞÞ � rGjðxÞ
:

ðT�1
t ðxÞ � xÞ

t
ds

� �����
����
2

dG

þ 2

Z
G
rG rGje:

ðT�1
t ðxÞ � xÞ

t
þ Vnð0; xÞ


 �� �����
����
2

dG:

Remark 5.1. It can be seen that we integrate entirely into G; indeed, since
ðT�1

t ðxÞ�xÞ
t

C� Vnð0Þ when t tends to zero and due to the regularity of j outside the

singularities si; the integration domain is reduced to ðG\BnÞ; which validates the
previous expressions.

By using the same arguments as previously, it comes that I2t converges to zero

with t: This implies the convergence of It to zero with t:
Which achieves the proof of the lemma. &

5.3. Shape gradient boundary expression

We begin by giving a first boundary expression of the shape gradient through the
min–max differentiation result, the second one will be given subsequently in the
shape boundary derivative section. We characterize the shape gradient boundary
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expression as a distributed term on the manifold’s boundary and a pointwise terms
on the singularities si:

5.3.1. First expression

The following technical lemma given in [12] will be useful.

Lemma 5.7. We consider a mapping

tA½0; d½-uðtÞ ¼ utAH1ðoÞ:

We suppose that uð:Þ is differentiable in H1ðoÞ: Then

@

@t

Z
ot

ut

� 

jt¼0

¼
Z
o

u0
Gðo;VÞ þ

Z
o

Hu/Vð0Þ; nS

þ
Z
@o

u/Vð0Þ; nS;

where u0
G is the shape boundary derivative.

By using the min–max differentiation result and the previous lemma, we get

dJðo;VnÞ ¼
Z
@o

1

2
ðF� FdÞ2 þrGFrGP � fP


 �
/Vnð0Þ; nS

þ
Z
o
ðF� FdÞð�rGFVnð0ÞÞ þ rGPrGð�rGFVnð0ÞÞ

þ
Z
o
rGFrGð�rGPVnð0ÞÞ � f ð�rGPVnð0ÞÞ:

The two last terms vanish since they represent the weak formulation of F and P in
the test function ð�rGPVnð0ÞÞ and ð�rGFVnð0ÞÞ which are vanishing on g0 with
Vnð0Þ: We deduce the following lemma;

Lemma 5.8.

dJðo;VnÞ ¼
Z
@o

1

2
ðF� FdÞ2 þrGFrGP � fP


 �
/Vnð0Þ; nS

5.3.2. Limit in the boundary expression

According to the hidden boundary regularity provided by the tangential

extractor the function rGFrGP belongs to L1ð@oÞ: Since Vnð0Þ-Vð0Þ in
LNð@oÞ weak star-topology. Moreover Vnð0Þ and Vð0Þ are in LNð@oÞ: Hence, we
deduce this result.
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Lemma 5.9. It easy to see that

lim
nmN

Z
@o

rGFrGP/Vnð0Þ; nS ¼
Z
@o

rGFrGP/Vð0Þ; nS:

Since we have

dJðo;VÞ ¼ dJðo;VnÞ þ dJ o;
X

i

yi
nV

 !

then

lim
nmN

dJ o;
X

i

yi
nV

 !
¼ dJðo;VÞ � lim

nmN
dJðo;VnÞ

so also

dJ o;
X

i

yi
nV

 !
¼ dJ o;

X
i

yi
n½V � VðsiÞ


 !
þ dJ o;

X
i

yi
nVðsiÞ

 !

thus

Lemma 5.10. Accordingly

lim
nmN

dJ o;
X

i

yi
n½V � VðsiÞ


 !
¼ 0; nmN:

Proof of Lemma 5.10. The proof is recovered from the distributed expression

given in Proposition 4.1. In deed we have terms such as
R
o /eGð yi

nðV �
VðsiÞÞÞrGF;rGPS; on the one hand from the construction of yi

n the

support of yi
nðV � VðsiÞÞ is contained in B ffiffi

n
p then it can be seen that yi

nðV �
VðsiÞÞ as well as DG½ yi

nðV � VðsiÞÞ
; eGð yi
nðV � VðsiÞÞÞ; divGð yi

nðV � VðsiÞÞÞ con-

verge to zero almost everywhere. On the other hand, yi
n can be chosen (its behaviour

in infinity with n) such that jjDG½ yi
nðV � VðsiÞÞ
jj is uniformly bounded on o : it

exists M40;

DG½ yi
nðV � VðsiÞÞ
::DG½ yi

nðV � VðsiÞÞ
pM

then we get

j/eGð yi
nðV � VðsiÞÞrGF;rGPSjpMrGFrGP

therefrom by dominated convergence theorem the limit of the integral is zero. &
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Lemma 5.11. In view of the result of last section we deduce that the sequence of

pointwise terms

dJ o;
X

i

yi
nVðsiÞ

 !
¼
X

i

/Gi;n
o ;VðsiÞS

has a limit, when nmN; which is independent on the choice of the sequence yi
n: Gi;n

o is a

vector given by the shape gradient distributed expression (17):

Gi;n
o ¼

Z
o

1

2
ðF� FdÞ2 þ fP �rGFrGP


 �
rGyi

n �
Z
o
½ðF� FdÞrGFd þrf 
yi

n

þ
Z
o
/rGyi

n;rGPSrGFþ
Z
o
/rGyi

n;rGFSrGP: ð21Þ

As a consequence of these lemmas, it is easy to check that the shape
gradient boundary expression is splitting in two terms; a continuous term and a
pointwise one.

Proposition 5.2. We have

dJðo;VÞ ¼
Z
@o

1

2
ðF� FdÞ2 þrGFrGP � fP


 �
/Vð0Þ; nSþ

X
i

/Gi
o;VðsiÞSRN ;

where

Gi
o ¼ lim

nmN
Gi;n

o ;

Gi
o ¼ lim

nmN

Z
o

1

2
ðF� FdÞ2 þ fP �rGFrGP


 �
rGyi

n

�

þ
Z
o
/rGyi

n;rGPSrGFþ
Z
o
/rGyi

n;rGFSrGP

�
: ð22Þ

It is relatively easy to establish the hereafter proposition.

Proposition 5.3. There are two possible cases concerning the pointwise term.

(i) If the singularity order of the solutions F and P in a neighborhood of si is

equal to 1
2

then Gi
o does not vanish (it corresponds to the flat case, (see

also [15])).
(ii) If the previous order is different of 1

2
then Gi

o vanishes.
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6. Fractured manifold

The lack of regularity of the open set ðo\sÞ and so of the solution F prevents
us to have an optimal formulation for the shape functional Jðo\sÞ; notably
the shape gradient boundary expression. This suggests the introduction of a
regularization in order to estimate the non Lipschitzian open set ðo\sÞ by
a family with parameter of piecewise smooth (and so Lipschitzian) open
subsets ðo\sÞe: We thus get the associated family of parametrized shape

gradients. Thereafter, we establish a continuity result for the Neumann
problem with respect to the parameter. Therefrom, we recover the shape gradient
distributed expression, as for the shape gradient boundary expression splits up into a

distributed term on g; a jump distributed term in L1ðsÞ plus a Dirac measure at the
end points si:

6.1. Regularized problem

We regularize the domain ðo\sÞ by using a family, with parameter, of singular
envelopes ee with extremities s1; s2 and surrounding the fracture s; which will be
defined subsequently. We denote by ðo\sÞe the obtained regular open subset (the

complementary of ee in ðo\sÞ) in which we formulate the following homogeneous
tangential problem.

ðNTÞe
�DGFe ¼ f in ðo\sÞe;
@Fe

@ne
¼ 0 on @ðo\sÞe:

8<
:

Remark 6.1. The family, with parameter e; of open subsets ðo\sÞe is Lipschitzian. As

a consequence Green’s formula holds.

6.2. Shape analysis

Since we are over a piecewise smooth subset ðo\sÞe; all the previous results

concerning the shape analysis given in Section 4 hold.

6.2.1. Material derivative

Let us consider the moving problem on ðo\sÞe;t at each fixed e:

ðNTÞe;t
�DGFe;t ¼ ft in ðo\sÞe;t;
@Fe;t

@ne;t
¼ 0 on @ðo\sÞe;t:

8<
:

We apply Theorem 4.1 and derive the following result.
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Proposition 6.1. At each fixed e; the map: t-Fe;t3Tt is differentiable at zero and its

derivative ’Fe ¼ limt-0
Fe;t3Tt�Fe

t
; in H1

� ððo\sÞeÞ; satisfies the equationZ
ðo\sÞe

rG ’FerGc ¼
Z
ðo\sÞe

/2eðVÞrGFe;rGcS

�
Z
ðo\sÞe

/divG Vð0ÞrGFe;rGcS

þ
Z
ðo\sÞe

½ fj0ð0Þ þ rGFVð0Þ
c: ð23Þ

6.2.2. Shape gradient

We recall these results from previous sections.

Proposition 6.2. The distributed expression of the shape gradient is given for each

fixed e by:

dJððo\sÞe;VÞ ¼
Z
ðo\sÞe

1

2
ðFe � FdÞ2 �rGFerGPe


 �
divGVð0Þ

�
Z
ðo\sÞe

ðFe � FdÞrGFd :Vð0Þ þ
Z
ðo\sÞe

2eðVÞrGFerGPe

þ
Z
ðo\sÞe

divGð f Vð0ÞÞPe ð24Þ

and also

Proposition 6.3. We have, for each fixed e; the shape gradient boundary derivative.

dJððo\sÞe;VÞ ¼
Z
@ðo\sÞe

1

2
ðFe � FdÞ2 þrGFerGPe � fPe


 �
/Vð0Þ; neS

þ
X

i

/Gi
ðo\sÞe ;VðsiÞSRN ; ð25Þ

where Gi
ðo\sÞe

is a vector having an expression analogous to that of Gi
o but written in

ðo\sÞe:

Gi
ðo\sÞe ¼ lim

nmN

Z
ðo\sÞe

1

2
ðFe � FdÞ2 þ fPe �rGFerGPe


 �
rGyi

n

(

þ
Z
ðo\sÞe

/rGyi
n;rGPeSrGFe þ

Z
ðo\sÞe

/rGyi
n;rGFeSrGPe

)

that element is independent on the choice of the function yi
n:
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6.3. Continuity of the Neumann problem

In this section, we study the behaviour of the shape gradient with respect to the
parameter e: It’s obvious that we have to prove a strong convergence result. In order
to get it, we will need to get the continuity of the Neumann tangential problem with
respect to the open subset ee which will be chosen hereafter.

6.3.1. A priori estimate

Lemma 6.1. We have the following estimates:

jj1ðo\sÞerGFejjL2ðo\sÞpl
�1
2
e jj f jjL2ðo\sÞ

jj1ðo\sÞeFejjL2ðo\sÞpl
�3
2
e jj f jjL2ðo\sÞ

where le is the first eigenvalue of the Laplace–Beltrami operator.

Proof of Lemma 6.1. By using Green’s formula we establish the weak formulation
associated with the regular problem, so

Z
ðo\sÞe

rGFerGj ¼
Z
ðo\sÞe

fj 8jAH1
� ððo\sÞeÞ

it yields

Z
o\s

j1ðo\sÞerGFej2pjj f jjL2ðo\sÞjjFejjL2ððo\sÞeÞ:

Thanks to Poincare’s inequality given by the space H1
� ððo\sÞeÞ; we come to the

result. &

Because of the dependence of the second term on e we are not able to get an
uniform estimate. A particular choice of the envelope ee enables us to overcome this
difficulty.

6.3.2. Choice of the Envelope ee
The envelope ee will be the open subset whose boundary is the convict of the

fracture s by the Tt at t ¼ e associated to the non autonomous vector field Es ¼
ðEþ

s ;E�
s Þ: The field Es satisfies the following conditions:

Eþ
s ACkðo\sþÞ; E�

s ACkðo\s�ÞEs:n ¼ 0; ½Es
a0 on s and Eþ
s :n40 therefore

E�
s :no0 on s: Et EsðsiÞ ¼ 0; where si are the extremities of the fracture s: So also

ð@eeÞþ¼ TeðEþ
s ÞðsþÞ; et ð@eeÞ� ¼ TeðE�

s Þðs�Þ:We denote by @ee ¼ ð@eeÞþ,ð@eeÞ� ¼
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TeðEsÞðsÞ: It is clear that @ðeeÞþ and @ðeeÞ� are two CN-manifolds, which enables us

to control the first eigenvalue of the Laplace–Beltrami operator (Fig. 2).

6.3.3. Boundeness of the first eigenvalue

We begin by giving this result:

Proposition 6.4. Let le be the first eigenvalue of the Laplace–Beltrami operator, i.e.

le ¼ inf ce; ce

Z
ðo\sÞe

v2ep
Z
ðo\sÞe

jrGvej28veAH1
� ððo\sÞeÞ

( )

so

(i) there exists jeAH1
� ððo\sÞeÞ;

R
ðo\sÞe

ðjeÞ
2 ¼ 1 such that

le ¼
Z
ðo\sÞe

jrGjej
2:

(ii) Under hypothesis H1; for all e; le is underestimated via l: Where l is the first

eigenvalue of the Laplace–Beltrami operator formulated in ðo\sÞ:

In order to prove the above result we have to specify the domain’s topology.

Remark 6.2. The open subset ðo\sÞe converges with e to ðo\sÞ for the Hausdorff

complementary topology endowed with the metric (see also [1,3])

dHcðo1;o2Þ ¼ dHð %o\o1; %o\o2Þ;

where

dHðK1;K2Þ ¼ max sup
xAK1

inf
yAK2

jx � yj; sup
yAK2

inf
xAK1

jx � yj
( )

:

is the Hausdorff distance between two closed subsets of the open set o:
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We say that ðo\sÞe converges in the measure sense to ðo\sÞ if the corresponding

characteristic functions converge strongly in L1ðoÞ:

Proof of Proposition 6.4. (i) It is sufficient to consult [17].
(ii) The proof is deduced directly from hypothesis H1 and the following

equivalence

jeAH1
g0
ððo\sÞeÞ 3 je3TeAH1

g0
ðo\sÞ

with jðeÞ-1 when ek0: &

Corollary 6.1. The sequences 1ðo\sÞeFe et 1ðo\sÞerGFe are uniformly bounded in

L2ðo\sÞ with respect to e:

6.3.4. Strong convergence

The last proposition enables us to obtain the following result.

Proposition 6.5. The sequences 1ðo\sÞeFe and 1ðo\sÞerGFe converge strongly respec-

tively to 1ðo\sÞF and 1ðo\sÞrGF:

Proof of Proposition 6.5. Thanks to Corollary 6.1, a compacity argument yields to
extract two subsequences denoted still further 1ðo\sÞeFe and 1ðo\sÞerGFe converging in

L2ðo\sÞ respectively to m and y
!
:

In order to prove that y
!¼ rGm; we will adopt the compactivor property which

consists in that the open set ðo\sÞe soaks up all compacts in the open set ðo\sÞ:
Indeed, for any compact KCo\s; ( nk such that 8nXnK we have KCðo\sÞen

:

Let j!ADðo\sÞ whose support is K ; then (nK such that for any nXnK ;
jAIDððo\sÞenÞ; which yieldsZ

o\s
y
!
:j!¼ lim

e-0

Z
o\s

1ðo\sÞerGFe j!¼ lim
e-0

Z
ðo\sÞe

rGFe j!

¼ lim
e-0

�
Z
ðo\sÞe

Fen
divG j!¼ lim

e-0
�
Z
o\s

1ðo\sÞeFe divG j!

¼ �
Z
o\s

m divG j!¼
Z
o\s

rGm:j!: ð26Þ

We set that

y
!¼ rGm:
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We should get the problem of which m is solution. It arises by passing to the limit in
the weak formulation having Fe for solution. SoZ

o\s
rGm:rGj ¼

Z
o\s

fj8jAH1
� ðo\sÞ:

It follows that m is the solution of the homogeneous Neumann problem posed in o\s:
Therefore,by uniqueness, m is equal to F:

Thus, all the sequence Fe converges weakly to m; so also to F:
As for strong convergence, it will be obtained also from the weak formulation.

Indeed, let Fe be the test function. ThenZ
ðo\sÞe

jrGFej2 ¼
Z
ðo\sÞe

fFe

but the right-hand side converges to
R
o\s fF; which is equal to

R
o\s jrGFj2: Hence the

convergence in norms in H1
� ðo\sÞ and so the strong convergence. Thus, the proof is

achieved. &

Remark 6.3. The Neumann problem is continuous with respect to the perturbation
TeðEsÞ:

Corollary 6.2. We have the same convergence result for the adjoint problem of which

Pe is solution. Let P be the corresponding limit.

6.4. Shape gradient convergence

Given the previous results, we are interested in computing the limit of the shape
gradient dJððo\sÞe;VÞ when e tends to zero. This result will be provided from the

continuity of the tangential Neumann problem.

Proposition 6.6. The distributed gradient expression converges and its limit is given by

lim
e-0

dJððo\sÞe;VÞ ¼
Z
o\s

2eðVÞrGFrGP þ
Z
o\s

divG Vð0ÞrGFrGP

þ
Z
o\s

ðF� FdÞ2 divG Vð0Þ �
Z
o\s

ðF� FdÞrGFd :Vð0Þ

þ
Z
o\s

divGð f VÞP

and we have

dJðo\s;VÞ ¼ lim
e-0

dJððo\sÞe;VÞ:
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Proof of Proposition 6.6. Obviously we have the Hausdorff convergence of the open
subset ðo\sÞe to o\s with e: From the previous continuity we can check:

lim
e-0

lðPeÞ ¼
Z
o\s

divG Vð0ÞrGFrGP þ
Z
o\s

2eðVÞrGFrGP

þ
Z
o\s

divGð f Vð0ÞÞP;

lim
e-0

Z
ðo\sÞe

ðFe � FdÞ2 divG Vð0Þ ¼
Z
o\s

ðF� FdÞ2 divG Vð0Þ;

lim
e-0

Z
ðo\sÞe

ðFe � FdÞrGFd :Vð0Þ ¼
Z
o\s

ðF� FdÞrGFd :Vð0Þ

then thanks to the homogeneous boundary Neumann condition on @ðo\sÞ the
material derivative of the state F exists and so we deduce the continuity result for the
shape gradient with respect to e: &

6.5. Jump through the crack

We have the splitting @ðo\sÞe ¼ g,ð@eeÞþ,ð@eeÞ�; then, by passing to the limit in

the shape gradient dJððo\sÞe;VÞ with e we provide the shape gradient boundary

expression.

Proposition 6.7. Let

ge ¼ ½rGFerGPe
 þ 1

2
½ðF� FdÞ2
 � f ½P


� �

then we have

dJðo\s;VÞ ¼ lim
e-0

Z
s

ge/Vð0Þ; nS dsþ 1

2

Z
g
ðF� FdÞ2/Vð0Þ; nS dg

�
Z
g

fP/Vð0Þ; nS dgþ
Z
g
rGFrGP/Vð0Þ; nS dg

þ
X

i

/Gi
ðo\sÞ;VðsiÞSRN ð27Þ

with

½rGFerGPe
s ¼ rGFe
þrGPe

þ � rGFe
�rGPe

�;

where

Fe
7 ¼ Fe3TeðE7ÞPe

7 ¼ Pe3TeðE7Þ
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and

Gi
ðo\sÞ ¼ lim

ek0
Gi

ðo\sÞe :

Proof of Proposition 6.7. It is enough to notice that: ne3Te ¼
jj�DGT�1

e :njj�1 �DGT�1
e :n and to remark, when e tends to 0; that:

(i) jðeÞ ¼ detðDTeÞjj�DGT�1
e :njj-1 in LNðsÞ;

(ii) ne3TeðEþ;E�Þ-ðnþ; n�Þ in LNðsÞ;
(iii) DðeÞ-Id in LNðsÞ: &

Remark 6.4. Proposition 6.6 provides that the shape gradient is independent
on the choice of the vector field Es ¼ ðEþ;E�Þ building the envelope ee: Indeed,
when Vð0Þ vanishes in neighborhoods of g and si; expression (27) may be
given by

dJðo\s;VÞ ¼ lim
e-0

Z
s

ge/Vð0Þ; nS ds:

As /Vð0Þ; nS belongs to C0ðsÞ; ge converges weakly star to g in the measure space
on s:Moreover g is independent on the construction. Hence we get the main result of
this section:

Theorem 6.1. The functional Jðo\sÞ has a shape gradient at s: The preventable

defined elements g and Gi are independent on the construction. Its boundary expression

is given by

dJðo\s;VÞ ¼ /G;Vð0ÞSD0ðG;TGÞ�DðG;TGÞ

with

G ¼ g�gðhnÞ þ g�sðgnÞ þ
X

i

Gi
ðo\sÞdsi

;

where

h ¼ fP þ 1

2
ðF� FdÞ2 þrGFrGP

and g� is the adjoint of the trace operator on the corresponding boundary; let S be a

boundary included in G; we get

gjS : DðG;TGÞ-DðS;TGÞ:

Remark 6.5. The shape gradient dJðo\s;VÞ turns out to be characterized by a
distributed gradient supported on the closure of the fracture %s and the boundary g;
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its expression is given as a sum of a distributed term on g; a jump distributed term in

L1ðsÞ plus a Dirac measures at the two extremities si:

7. Study of the shape boundary derivative

In this section we deal with the shape boundary derivative and the existence of an
optimal domain. The shape boundary derivative provides, withal, the derivatives
with respect to the surface G of cost functionals governed by the state F: Indeed,
according to the identity F0

G ¼ ’FjG �rGFVð0Þ (see [16]), it transpires that F0
G is less

regular than the material derivative ’F of the state F which requires technicalities. On
the one hand, we consider the smooth case. We characterize the shape boundary

derivative F0
G of the state as the solution of a non-homogeneous elliptic tangential

problem.
Thereafter, we extend the previous result to the piecewise smooth case. On the

other hand, we relax the gradient tangential, normal component, of the shape
boundary derivative in the fractured case.

Finally, we prove the necessary optimality condition of the initial domain and we
establish the existence of an optimal domain by using the Kuratowski continuity of
the Sobolev spaces.

8. Shape boundary derivative

In this section we deal with the shape boundary derivative in different cases. We
deal with the smooth case in a general setting where the flow mapping does not
preserve the manifold G; this means that the vector field is not tangent to G: One of
the main results in this case is the characterization of the shape boundary derivative
as the solution to a tangential elliptic problem linked to the Laplace–Beltrami
operator. Thereafter, it consists in extending the previous characterization to the
piecewise smooth case. We end by giving a relaxation for the normal trace of the
shape boundary derivative in the fractured case.

Definition 8.1. The shape boundary derivative F0
G is the element ð @@t

Yð0ÞÞjG where Y

is any smooth extension of F verifying:

(i) YAC1ð½0; d½;H
3
2ðDÞ-H1

� ðDÞÞ;
(ii) Y ð0; :ÞjG ¼ FðGÞ;
(iii) @

@n
Yð0Þ ¼ 0 on G:

From [12], we know that ð @@t
Y ð0ÞÞjG is independent on the choice of such

extension Y :
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Thus, we have the following proposition

Proposition 8.1. The shape boundary derivative F0
G; if it exists, is given in [16] by this

relation

F0
G ¼ ’FjG �rGF:Vð0Þ; ð28Þ

where ’FG is the restriction of the material derivative onto G:

8.1. Smooth case

We deal with this case in a general setting where the flow mapping does not
preserve the manifold G; this means that the vector field is not tangent to G (i.e.

/Vð0Þ; nSa0Þ; then Gt ¼ TtðGÞ: Let o be a manifold from the surface G with C2-
regularity. The main result in this case is to characterize the shape boundary
derivative as the solution to a tangential elliptic problem linked to the Laplace–
Beltrami operator.

Remark 8.1. The regularity of the solution of problem P is, at least, H2ðoÞ: Such
regularity is enough to exhibit the shape boundary derivative.

Theorem 8.1. Let Ft be the solution of problem Pt with second member ft ¼

FjGt
AH

1
2
þdðDÞ: The shape boundary derivative F0

G exists in H1ðoÞ and is the solution of

the following elliptic problem:

�DGF0
G ¼ �divG½ð2D2b � HÞrGF/Vð0Þ; nS


þ @F

@n
þ Hf

� 

/Vð0Þ; nS in o;

@F0
G

@n
¼ ð f � divg rgFÞ/Vð0Þ; nSþ ðrgF:tÞ/rgVð0Þ:t; nS

þ k/n; nFSðrgF:tÞ/Vð0Þ; tS on g;

8>>>>>>><
>>>>>>>:

where F is the solution to problem P in H1
� ðoÞ and H is the mean curvature of the

surface G; H ¼ 1
R1

þ 1
R2

with R�1
i are the principal curvatures—or eigenvalues different

to zero of the curvature matrix D2b: Then k is the curvature of the curve @o; nF is the

unitary normal field of the Frenet trihedral and t is the tangent vector to @o which

forms with n and n a local trihedral.

Remark 8.2. In dimension N ¼ 3; D2b � H
2
Id denotes the deviatoric part of the

curvature tensor. In [4], many intrinsic models of shell are formulated with the same
type of second order tangential operator. In [6] we find the intrinsic derivative with
respect to the domain related to the solution of the elastic thin shells equations with
respect to the mean surface. When ot is kept in G during the perturbation process,
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we take /Vð0Þ; nS ¼ 0 on G so also DGF0
G ¼ 0 in o; this problem generalizes the case

without curvature [16].

8.2. Proof of Theorem 8.1

The proof requires many technical lemmas.

Lemma 8.1 (see Desaint and Zolesio [12]). We characterize the shape boundary

derivative: of rGt
f as follows:

ðrGt
fÞ0G ¼ �D2b:rGf/Vð0Þ; nSþrGf:rGð/Vð0Þ; nSÞn:

Lemma 8.2 (see Desaint and Zolesio [12]). We establish a relation between the shape

derivative and the shape boundary one:

ðFt3ptÞ0 ¼ ðFt3ptÞ03p þ b/DGF3p;mðVÞS

which provides

rðFt3ptÞ0 ¼ rðF0
G3pÞ þ r½/DGF3p;mðVÞS


with

mðVÞ ¼ b�DV :rb þrðb/n3p;V3p � VSÞ

it easy to see that mðVÞ vanishes on G:

Lemma 8.3 (see Delfour and Zolésio [11]). Let ZðGÞ be an element of H1ðG;RÞ and

yðOÞ in H2ðO;RÞ; in the case when ZðGÞ ¼ yðOÞjG we have

ZðG;VÞ0 ¼ yNðO; vÞ0 þ @y

@n
ðOÞ/Vð0Þ; nS;

where yNðO;VÞ0 ¼ ’yðO;VÞ �/ryðOÞ;Vð0ÞS;

Lemma 8.4. Green’s formula supplies the weak formulation linked to problem Pt: For

all j in H1ðotÞ Z
ot

rGt
FtrGt

j ¼
Z
ot

ftj:
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Lemma 8.5. Let us choose test functions defined on the whole space R3 fulfilling @j
@n

¼
0; since ½rGt

j
0 ¼ 0; then Lemma 5.7 provides

@

@t

Z
ot

rGt
FtrGt

j
� 


jt¼0

¼
Z
o
r½ðFt3ptÞ0
rGjþ

Z
o
rðF3pÞ½rGt

j
0

þ
Z
o

@

@n
½rðF3pÞ:rj
 þ HrGFrGj

� 

/Vð0Þ; nS

þ
Z
g
rGFrGj/Vð0Þ; nS:

Remark 8.3. The structure theorem guarantees that we can choose a velocity field
other than V ; the only constraint is that it has to have the same normal component
as V to supply the same final result for the shape boundary derivative. Then if we
consider V3p; where p is the projection mapping onto G; instead of V ; the shape
boundary derivative result will remain. This simplifies the expression of mðVÞ which
becomes mðV3pÞ ¼ b�DðV3pÞ:rb:

Lemma 8.6. Accordingly

/r½/ðrGF3p;mðVÞS
jG ;rGjS ¼ 0:

Proof of Lemma 8.1. It is easy to see that

r½/ðrGF3p;mðVÞS
 ¼ �DmðVÞ:rGFþ �DGðrGFÞ:mðVÞ

the expression of DmjG is given in [12], it follows on one hand

DmðVÞjG :rGF ¼ n�n:DV :rGF� 2n�neðVÞn�n:rGF

¼ n�n:DGðVÞ:rGF

on the other hand

ð�DGðrGFÞ:mðVÞÞ ¼ �DGðrGFÞjG :mðVÞjG ¼ 0

therefore

/r½/ðrGF3p;mðVÞS
jG ;rGjS ¼/�DmðVÞ:rGF;rGjS

¼/n�n:DGV :rGF;rGjS

¼/DGV :rGF; n�nrGjS

¼ 0: &
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Lemma 8.7. It follows that

@

@t

Z
ot

rGt
FtrGt

j
� 


jt¼0

¼
Z
o
rGF0

GrGjþ
Z
o

@

@n
½rðF3pÞ:rj
/Vð0Þ; nS

þ
Z
o

HrGFrGj/Vð0Þ; nS

þ
Z
g
rGFrGj/Vð0Þ; nS

then

@

@t

Z
ot

ftj
� 
����

t¼0

¼
Z
o

f 0
Gjþ

Z
g

Hfj/Vð0Þ; nSþ
Z
g

fj/Vð0Þ; nS

with f 0
G ¼ @F

@n
/Vð0Þ; nS:

We will expand the last expression term by term.

Lemma 8.8. Green’s formula yieldsZ
o
rGF0rGj ¼ �

Z
o
DGF0jþ

Z
g

@F0

@n
jZ

o
rGFrGj/Vð0Þ; nSH ¼ �

Z
o

divGðrGF/Vð0Þ; nSHÞj

þ
Z
g

H/rGF; nS/Vð0Þ; nSj:

Lemma 8.9 (see Desaint and Zolesio [12]). Given c ¼ j3p; the normal derivative

is as follows:

@

@n
½rðF3pÞ:rc
jG ¼ �2/D2brGF;rGjS on G:

We come to

Lemma 8.10.Z
o
2/D2b:rGFrGjS/Vð0Þ; nS ¼ �

Z
o
2 divGðD2b:rGF/Vð0Þ; nSÞj

þ
Z
o
2H/Vð0Þ; nS/D2brGF; nSj

�
Z
g
/2D2brGF; nS/Vð0Þ; nSj;

whereas D2bðxÞ:nðxÞ ¼ 0 then
R
o 2H/Vð0Þ; nS/D2brGF; nSj ¼ 0:
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Let s be the curvilinear abscissa of the curve g; in the forthcoming, we shall adopt
the following notation:

@j
@s

¼ rGj:t;

divgðjÞ ¼
@j
@s

:t:

Proposition 8.2. The term defined on g is given as follows:

Z
g
rGFrGj/Vð0Þ; nS ¼ �

Z
g

divg rgF/Vð0Þ; nSj

þ
Z
g
ðrgF:tÞ/rgVð0Þ:t; nSj

þ
Z
g

k/n; nFS ðrgF:tÞ/Vð0Þ; tS

þ
Z
g
/D2b:n; tSðrgF:tÞ/Vð0Þ; nS:

The proof will be obvious via the subsequent lemmas.

Remark 8.4. We have

rGF ¼ ðrGF:nÞ:nþ ðrGF:tÞ:t

since rGF:n ¼ 0 then rGF ¼ ðrGF:tÞ:t ¼ ðrgF:tÞ:t ¼ @F
@s
:t; one can check

Z
g
rGFrGj/Vð0Þ; nS ¼

Z
g

@F
@s

:t
� 


:
@j
@s

:t
� 


/Vð0Þ; nS:

In order to integrate by part the last expression, we may use the parametrization
by arclength for the curve g; let ðI ; gÞ be such a parametrization where I is an open
interval in R and for all y in I ; gð yÞ ¼ s: Let t ¼ @yg be the tangential field to g on a

such point s: Hence,

Lemma 8.11.

Z
g

@F
@s

:t
� 


:
@j
@s

:t
� 


/Vð0Þ; nS ¼
Z

I

@ðF3gÞ
@y

� 

:

@ðj3gÞ
@y

� 

/Vð0Þ3g; nS j@ygj

¼ �
Z

I

@

@y

@ðF3gÞ
@y

/Vð0Þ3g; nS

 �

j3g
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@

@y

@ðF3gÞ
@y

/Vð0Þ3g; nS

 �

¼ @ðF3gÞ
@y

/@gVð0; gð yÞÞ:@yg; nS

þ @ðF3gÞ
@y

/Vð0Þ3g; @snS

þ @2ðF3gÞ
@y2

/Vð0Þ3g; nS:

Remark 8.5. Our local trihedral ðt; n; nÞ is different from the Frenet one (we can
distinguish the difference if we consider the curve g as a parallel of a sphere) which
forbids us to apply the Frenet formulas.

We have the following lemmas.

Lemma 8.12.

@2ðF3gÞ
@y2

¼ @2F
@s2

:t
� 


:tþ @ðF3gÞ
@s

:@2
yg ¼ divgðrgFÞ;

@ðF3gÞ
@y

¼rgF:t;

@gVð0; gð yÞÞ:@yg ¼rgVð0Þ:t:

Lemma 8.13.

/@sn; tS ¼ �k/n; nFS:

Proof of Lemma. Indeed, since jjnjj ¼ 1 we have /@sn; nS ¼ 0 then as /n; nS ¼ 0 it

follows /@sn; nS ¼ �/n; @snS but @sn ¼ @sðrb3p3gÞ ¼ �D2b3g:t; we deduce

/@sn; nS ¼ �/D2b3g:n; tS so also, with /n; tS ¼ 0 we obtain /@sn; tS ¼
�/n; @stS; but @st ¼ @2

s g ¼ knF ; where k is the curvature of the curve g and nF is

the Frenet trihedral normal, which achieves the result. &

Proof of Theorem 8.1. Lemmas 8.7, 8.8 and 8.10 provide the voluminal equation in
o then the boundary condition on g is supplied by Lemmas 8.8, 8.10 and
Proposition 8.2.

Thus, the result is proved. &

8.3. Piecewise smooth case

8.3.1. Existence of the shape boundary derivative

In this case, we will extend Theorem 8.1 characterizing the shape boundary

derivative provided by the smooth case (o is C2) to the piecewise smooth one (o is

C2 by part).
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Theorem 8.2. Assume that G is a C2 manifold and g is a piecewise C2 smooth curve,
then for any vector field V in V

(a) the gradient of the shape boundary derivative has a boundary regularity:

@F0
G

@n
belongs to H

�1
2 ð@oÞ:

(b) the shape boundary derivative is the solution to the following problem:

�DGF0
G ¼ 0 in o;

@F0
G

@n
¼ ð f � divg rgFÞ/Vð0Þ; nSþ ðrgF:tÞ/rgVð0Þ:t; nS

þ k/n; nFS ðrgF:tÞ/Vð0Þ; tS on @o:

8>><
>>: ð29Þ

Remark 8.6. Indeed, in this case, because of the shape boundary derivative’s lack of
regularity, the Neumann boundary condition on @o has no sense a priori.

In order to prove the last result and to overcome this difficulty, we shall
use on one hand the established first shape gradient boundary expression
for the functional cost provided by the min–max theory given in Proposition 5.2.
On the other hand, from Lemma 5.7 and by using the adjoint state we get
a second shape gradient boundary expression in which the Neumann boundary
condition appears. Thus, by uniqueness of the shape gradient we relax the boundary
condition on g:

8.3.2. Second boundary expression of the shape gradient

In the following, we attempt to show another expression of the boundary shape
gradient of the functional cost JðoÞ:

Proposition 8.3. The shape gradient boundary expression is given by

dJðo;VÞ ¼ 1

2

Z
@o

ðF� FdÞ2/Vð0Þ; nS�
Z
@o

P/rGF0
G; nS: ð30Þ

Remark 8.7. A priori the boundary term
R
@o P/rGF0

G; nS has no sense because of

the regularity lack of the shape boundary derivative F0
G in the neighborhood of

singularities.
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Proof of Proposition 8.3. Under Lemma 5.7 and Green’s formula, we come to

dJðo;VÞ ¼
Z
o
ðF� FdÞF0

G þ 1

2

Z
o

HðF� FdÞ2/Vð0Þ; nS

þ 1

2

Z
@o

ðF� FdÞ2/Vð0Þ; nS: ð31Þ

We use as before the method of adjoint state in order to get rid of the boundary

shape derivative F0
G from the last expression.

Hence

dJðo;VÞ ¼
Z
o
F0

GDGP þ 1

2

Z
o

HðF� FdÞ2/Vð0Þ; nS

þ 1

2

Z
@o

ðF� FdÞ2/Vð0Þ; nS ð32Þ

by Green’s formula, we come to

dJðo;VÞ ¼
Z
o

PDGF0
G þ 1

2

Z
o

HðF� FdÞ2/Vð0Þ; nS

þ 1

2

Z
@o

ðF� FdÞ2/Vð0Þ; nS�
Z
@o

P/rGF0
G; nS

þ
Z
@o

F0
G/rGP; nS

but since /rGP; nS ¼ 0; DGF0
G ¼ 0 in o and ðV ; nÞ ¼ 0 on G the proof is

achieved. &

8.3.3. Proof of the Theorem 8.2

Thanks to the last results, Proposition 5.2 and Proposition 8.3, one can easily
check the following relaxation of the boundary condition of the shape boundary
derivative.

Lemma 8.14. The shape boundary derivative F0
G is regular and is given as follows, for

all P in H1ðoÞ (i.e. for all Fd in H1ðoÞ),Z
@o

P/rGF0
G; nS ¼

Z
@o
f�rGFrGP þ fPg/Vð0Þ; nS�/Gi

o;VðsiÞSRN

so also,

@F0
G

@n
AH

�1
2 ð@oÞ:
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Thus, according to the previous results we come to the proof of Theorem 8.2.
Indeed, by embedding relation (28) in Eq. (4) and via the above lemma it will be
enough to refer to Theorem 8.1, and so the proof is achieved. &

8.4. Fractured case

The fractured manifold o\s is regularized by the family with parameter of
piecewise smooth domain ðo\sÞe: Therefore, we apply Theorem 8.2 and we get at

each fixed e:

Proposition 8.4. The shape boundary derivative is solution to the following problem:

�DGF0
eG ¼ 0 in ðo\sÞe

@F0
eG

@ne
¼ ð f � divg rgFeÞ/Vð0Þ; neSþ ðrgFe:teÞ/rgVð0Þ:te; neS

þ k/ne; neFSðrgFe:teÞ/Vð0Þ; teS on @ðo\sÞe

8>>><
>>>:

ð33Þ

and also,

Proposition 8.5. We have, at each e;

dJððo\sÞe;VÞ ¼ 1

2

Z
@ðo\sÞe

ðFe � FdÞ2/Vð0Þ; neS�
Z
@ðo\sÞe

Pe/rGF0
eG; neS ð34Þ

therefore,Z
@ðo\sÞe

Pe/rGF0
eG; neS ¼ �

Z
@ðo\sÞe

rGFrGP/Vð0Þ; nS dg

þ
Z
@ðo\sÞe

fp/Vð0Þ; nS�
X

i

/Gi
ðo\sÞe ;VðsiÞSRN :

Thanks to the continuity of the Neumann tangential problem with respect to the
envelope ee we supply this lemma.

Lemma 8.15. There exist x in H
1
2ðsÞ such that ½Pe3Te
s converges to x:

Proof of Lemma 8.15. Let j be in H1ðo\sÞ; thenZ
o\s

1ðo\sÞerGPerGj ¼
Z
ðo\sÞe

rGPerGj:
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Green’s formula yieldsZ
ðo\sÞe

rGPerGjþ
Z
ðo\sÞe

PeDGj ¼
Z
@ðo\sÞe

Pe/rGj; neS

the continuity of the Neumann problem result provides that the left hand side
converges with respect to e:Hence the right-hand one converges. Indeed, by a change
of variable we getZ

@ee

Pe/rGj; neS ¼
Z
s
½Pe3Te/rGj3Te; ne3TeS
 jðeÞ

therefore, the right-hand side converges for all j in H1ðo\sÞ so also for any

/rGj3Te; neS in H�1
2ðsÞ: Which provides the proof of the lemma. &

Therewith, we have an optimal relaxation of the normal component of the

gradient tangential of the shape boundary derivative F0
eG:

Proposition 8.6. Let Te be the flow mapping associated with the vector field Es: For

any x in H
1
2ðsÞ (i.e. for any Fd in H1ðo\sÞ), we have

lim
e-0

Z
s
½x/rGðF0

eG3TeÞ; nS
 ds ¼ �
Z
g
rGFrGP/Vð0Þ; nS dg

�
Z
g

fP/Vð0Þ; nS�
Z
s

g/Vð0Þ; nS ds

þ
X

i

/Gi
ðo\sÞ;VðsiÞSRN ð35Þ

and so rGF0
eG:ne converges toward a function q ¼ ðqþ; q�Þ in H

�1
2 ðsÞ:

The proof is a direct consequence of Eq. (34) and Lemma 8.15.

Remark 8.8. As far as we know, because of the lack of regularity, we are not able to
confirm whether the function q is a shape derivative of the state F:

9. Existence of an optimal domain

9.1. A necessary optimality condition

For a40; we consider the following penalization of the functional J:

Jaðo\sÞ ¼ Jðo\sÞ þ a
2

min
spASp

jjspjj2H2ð0;1Þ;
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where Sp is the set of parametrizations for the curve s linked to the open
interval ð0; 1Þ:

Sp ¼ fspAH2ð0; 1Þ; spð0Þ ¼ s1; spð1Þ ¼ s2; ðspÞ0a0g

Assume that o\s� is an optimal admissible domains, i.e.

Jaðo\s�Þ ¼ min
sAS

Jaðo\sÞ;

where

S ¼ fs ¼ spð0; 1Þg

S is compact with the Hausdorff topology.

Proposition 9.1. An admissible domain o\s� (with respect to fracture s�) within the set

S is optimal if and only if, for any field V in V; (see [2])

dJaðo\s�;VÞ ¼ 0

9.2. Existence of an optimal domain

Let sn converge towards s� with respect to the Hausdorff topology, i.e. o\sn

converges towards o\s� with respect to the Hausdorff complementary topology. We
will prove the Kuratowski continuity of the Sobolev space, (see [1,5]).

9.2.1. Kuratowski continuity of the Sobolev space

Theorem 9.1. Given j a test function belonging to H1
� ðo\sÞ; then there exists jn

belongs to H1
� ðo\snÞ; such that

1ðo\snÞjn-1ðo\s�Þj in L2ðoÞ;

1ðo\snÞrGjn-1ðo\s�ÞrGj in L2ðoÞ:

Proposition 9.2. Let sn be a sequence in S which converges toward s in S: There exists

hmax such for all 0ohohmax; there exists N40 such that

(i) for any n4N; sn lays in a tubular neighbourhood Uh of thickness 2h:
(ii) b; the oriented distance function to O is defined in Uh and belongs to C2ðUhÞ; the

projection p is also well-defined in Uh and belongs to C1ðUhÞ:
(iii) bn; the oriented distance function to On; is defined in Uh and belongs to C2ðUhÞ; the

projection pn is also well-defined in Uh and belongs to C1ðUhÞ:
(iv) bn converges towards b in C2ðUhÞ; and pn converges towards p in C1ðUhÞ:
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It follows for any n4N that

Proposition 9.3. For any x in sn; the intersection between the normal to sn at x and s is

reduced to a single point denoted gnðxÞ: Moreover the mapping gn is a C1-
diffeomorphism from sn to s and we have (Fig. 3)

8 xAsn; gnðxÞ ¼ x þ bn3gnðxÞ:rbnðxÞAs:

This formulation will allow us to build the test functions.

Proof of Theorem 9.1. Assume that the Jacobian of the diffeomorphism gn fulfills the
hypothesis: jðnÞ ¼ 1: Therefore, it’s enough to choose jn ¼ j3gn and to adapt the
same technicalities as for the proof of Proposition 6.4. &

9.2.2. Continuity of the cost functional with respect to the domain

Proposition 9.4. The mapping o\s-Jaðo\sÞ is lower semi-continuous.

In order to establish the proof, the following proposition will be needed.

Proposition 9.5. Let Fn be the solution to the Neumann problem in ðo\snÞ and 1ðo\snÞ
its characteristic. Then Fn converges strongly to F solution to the Neumann problem.
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Proof of Proposition 9.5. Using the same arguments than in the proof of Proposition

6.4, we can bound in L2ðoÞ the sequences 1ðo\snÞFn and 1ðo\snÞrGFn: Then, basically,

the compactivor property and Theorem 9.1 provide the result. &

Proof of Proposition 9.4. Let sn be any minimizing sequence of Ja in S: On the one
hand, according to Proposition 9.5 the functional Jðo\snÞ converges to Jðo\sÞ: On
the other hand, let sp

n be the parametrization related to the curve sn realizing the

minimum, since jjsp
njjH2pc one can extract a subsequence denoted also sp

n which

converges weakly towards a such l in H2ð0; 1Þ; then it converges strongly to l in

C1ð0; 1Þ; therefore lð0Þ ¼ sp
nð0Þ ¼ s1 and lð1Þ ¼ sp

nð1Þ ¼ s2 so l is an immersion:

ðl0a0Þ: We have to prove that l is the minimum-parametrization for s: Indeed,
when nXN; sp

n ¼ g�1
n 3sp where sp is any parametrization for s; hence g�1

n 3sp

converges strongly towards l in C1ð0; 1Þ; whereas g�1
n converges towards Id;

it follows that g�1
n 3sp converges strongly towards sp; whence by uniqueness l ¼ sp;

therefore sp is a parametrization for the curve s: By the truth that the norm H2 is
l.s.c., we come to

jjspjj2H2p lim inf
nmN

jjsp
njj

2
H2 :

Hence the curve s minimizes the functional Ja:
Thus the lower semi-continuity result is proved. &

10. Conclusion

We have investiguated the Laplace–Beltrami operator in a fractured manifold.
The boundary expression of the shape gradient of a cost functional governed by the
cracked manifold is provided. The shape boundary derivative is characterized in
smooth and non-smooth cases. The techniques used allow us to deal with the
situation in which the fracture needs not to be smooth and to extend the results to
lager classes of operators in the dimensional n:
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