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Abstract

This paper considers shape sensitivity analysis for the Laplace—Beltrami operator
formulated on a two-dimensional manifold with a fracture. We characterize the shape
gradient of a functional as a bounded measure on the manifold and decompose it into a
“distributed gradient” supported on the manifold, plus a singular part that we derive as the
limit of a “jump” through the crack and Dirac measures at the crack extremities. The
important point is that we introduce a technique that is not dimension dependent, and makes
no use of classical arguments such as the maximum principle or continuation uniqueness. The
technique makes use of a family of envelopes surrounding the fracture which enable us to relax
certain terms and to overcome the lack of regularity resulting from the presence of the
fracture. We use the min-max differentiation in order to avoid taking the derivative of the
state equation and to manage the crack’s singularities. Therefore, we write the functional in a
min—max formulation on a space which takes into account the hidden boundary regularity
established by the tangential extractor method.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction and motivation

This work concerns techniques for detecting a fracture contained in an elastic
structure, usually a thin Shell. This study relies on the theory of intrinsic geometry
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(see [1,7,9]) and results on the Laplace—Beltrami operator established by Desaint—
Zolesio (see [12]).
Here, we provide a new shape sensitivity result for a non-smooth case which is
needed when dealing with control and shape optimization on non-smooth domains.
One of the aims of this paper is to get the boundary expression for the shape

gradient of the cost functional J((w\0)) =3 f(w\a)(d) — @,)? (given in Theorem 6.1),

where o is a bounded open subset of a C2 two-dimensional manifold I' (I in R?),
with the relative boundary drw denoted by dw, ¢ is a connected fracture contained in
o with ends s; and s;. @ is the solution to the tangential Neumann problem,
associated to the Laplace-Beltrami operator, with right-hand side in L? formulated
on the non-Lipschitizian open set (w\c) and @, is a given heat measure.

On the one hand, from a heuristic point of view, looking for the shape sensitivity
consists in observing the perturbation effect on the solution defined in a perturbed
domain. For this we adopt the so-called velocity method [16] in order to move the
domain through the flow mapping associated to a vector field.

On the other hand, since we deal with an oriented compact manifold it is
convinient to use the space topology generated by the so-called oriented distance
function established by Delfour—Zolésio [7].

As a first step, we will investigate the tangential Neumann problem on a
Lipschitizian manifold w. In this case, we supply an existence result of the material
derivative & of the state as a unique solution of a variational problem. We begin by
establishing a uniform a priori estimate and by the reflexivity property of the
Sobolev space and a convergence in norms we get the result.

We recover the distributed shape gradient expression of the associated cost
functional governed by the Lipschitizian domain J(w) via the adjoint state.

We consider the piecewise smooth case (w is C>-piecewise). In order to supply the
shape gradient boundary expression of the associated cost functional J(w), and to
avoid differentiating the state equation we use the min—-max theory [13] through a
hidden boundary regularity of the state provided by the tangential extractor, see [17].
This theory requires building a family of vector fields vanishing in a neighborhood of
singularities.

We also give a continuity result for the tangential Neumann problem with respect
to a family of envelopes surrounding the fracture o. That allows us to avoid of the
lack of regularity due to the fracture.

The shape gradient dJ(w\o, V) turns out to be characterized by a distributed
gradient supported on the closure of the fracture 6 and the boundary y, its expression
is given as a sum of a distributed term on y, a jump distributed term in L!(c) plus
Dirac measures at the two extremities s;.

The second result deals with the shape boundary derivative. Indeed, according to
the identity @ = @|. — V@V (0) (see [16]), it transpires that @/ is less regular than
the material derivative & of the state @, that point requires technicalities. On the one
hand, we consider the smooth case. We characterize the shape boundary derivative
@' of the state as the solution of a non-homogeneous elliptic tangential problem.
Thereafter, we extend the previous result to the piecewise smooth case. On the other
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hand, we relax the gradient tangential, normal component, of the shape boundary
derivative in the fractured case.

Finally, the last main result we prove the necessary optimality condition of the
initial domain and we establish the existence of an optimal domain by using the
Kuratowski continuity of the Sobolev spaces.

The techniques used allow us to deal with the situation in which the fracture o
needs not to be smooth.

2. Preliminaries
2.1. Velocity method

Let D be a smooth bounded domain of RY. We consider a regular open subset Q
of D. Its relative boundary will be denoted by I' ; I is an oriented compact manifold.
Let X be a given point of D and t€(0, [, where ¢ is a positif number. We define the
point x(f) = T;(X) which moves on the trajectory x— x(#) with velocity ||0,x(?)||
equal to |0, T:(X)||,

T,eC'(]0,5[, C'(D; RY)). (1)
Let
V() = g )
it follows that
VeC([0,5], C'(D; RY)). (3)

Conversely, it is possible to associate transformations 7; to some vector fields V'
satisfying (2).

Let 7~ be the set of vector fields satisfying (3), with { V' (x,1),ngp(x)> =0 for
xedD almost everywhere and V(x,f) =0 for all singular point x of dD. The
transformation 7 is called the flow mapping associated to V.

We refer to [16] for the proof of the subsequent theorem.

Theorem 2.1. We have the two following assertions:

() Let V be a vector field of . Transformations T,e C'([0,5], C'(D;RN)) may be
associated to V', moreover (2) holds.
(i) Let T, be a transformation satisfying (1) then there exists VeV~ verifying (2).

The transformations T, is solution of the ordinary differential equation

ax(X, 1) = V(x(X,0),1); x(X,0)=X.
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Fig. 1. Fractured manifold.

In the sequel, we point out that, in the general problem, an important issue is to
keep the surface I' fixed in the perturbation process. Such constraint is obviously
solved by choosing, in a general setting, the speed vector field V' (z, x) tangent to the
surface I': V (¢t,x).nr(x) = 0.

We consider an open subset @ of I' containing a fracture denoted by o. The
boundary of the open subset is also of class C?>. We design by n the out normal field
on the surface I' and by v(X) the normal field on y outside of w contained in the
tangent space to I' at X (Fig. 1).

2.2. Intrinsic geometry
Given a bounded open set Q in R} we consider its boundary I' that we assume to

be a C? manifold, n being the unitary outgoing normal field. We recall here some
basic facts of intrinsic geometry from [7-9].

2.2.1. The oriented distance function

Definition 2.1. The oriented distance function is defined through R* as follows:

bo(x) = { dr(x) if xeQ,

—dr(x) if xeQ.

Among the intrinsic geometrical properties of the oriented distance function we
quote the following:

Vbg is an extension of the normal field n on I

Abg is the mean curvature H of the surface I' (i.e. H = Abg|,).
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2.2.2. The projection mapping
Let U be a tubular neighborhood of I' given, for 4 small enough, by

U(T') = {xeD; |bo(x)|<h};

we can associate to the oriented distance function bg a projection mapping on the
compact manifold I'.

Definition 2.2. The projection mapping p is defined in [7] by

p:U-T;pr(x) =x—bo(x).Vbgo(x)

2.2.3. Laplace—Beltrami operator

Definition 2.3. The Laplace—Beltrami operator is denoted by A, and specified, in [3],
for such a regular function ¢ by
Aro = divp Vi
with
Vip = (Vo — V¢, Vba)»Vhg)|,, ¢ being any extension of ¢ to a neighborhood of I’

and

divr e = (div E — { DE.Nbq,Vbg )|, E being any extension of ¢ to a neighborhood of I

2.3. The Neumann tangential problem

1
Let F be an element given in H2™(D) such that F |w = f and F|w, = f,.
We consider the tangential Neumann problem formulated in the fractured
subset w\o:

—Ar® =1 in w\o,
NTES 0P
?3—‘) =0 on J(w\o).
Lemma 2.1. We notice that
(1) The previous problem has a unique solution in the following Hilbert space
H,(0\0) = {veH'(0\0); {v,1) =0}
where {v,1) = 0 means that f<w\g) v=0.
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3
(2) The optimal regularity of the solution of the problem AT is H2™" with u>0, and
to H*(o') for every open subset o' contained in (w\c) with empty intersection with
G, we refer to [15].

The principal aim of this paper is to exhibit the shape gradient of the cost function
J and to characterize the shape boundary derivative of the state. But because of the
existence of the fracture the open subset w\c is not Lipschitzian, this lack of
regularity involves many technical problems.

As a first step, we will investigate the tangential Neumann problem successively in
a Lipschitzian and a piecewise smooth domain. Therefore, we will approach the
fractured manifold w\c by a family of piecewise smooth domains.

3. Study over manifolds in several cases

Throught out this section we deal with the shape gradient expressions
of the considered cost functional. In the first section we investigate the
tangential Neumann problem on a Lipshitizian manifold w. In this case, we supply
an existence result of the material derivative @ of the state as an unique solution
of a variational problem. We begin by establishing an uniform a priori estimate and
by the reflexivity property of the Sobolev space and a convergence in norms we get
the result.

We then recover the shape gradient distributed expression of the associated
functional cost governed by the Lipshitizian domain J(w) via the adjoint state.

Thereafter, in the second section we consider the piecewise smooth case (w is
C?-piecewise). In order to supply the shape gradient boundary expression of the
associated cost functional J(w) we have to avoid differentiating the state equation
that’s why we use the min—max theory through a hidden boundary regularity of the
state provided by the tangential extractor. This theory requires a building of a family
of vector field vanishing in a neighborhood of singularities. thus, in this case it arises
the shape gradient boundary expression is splitting in a continuous term and a
pointwise one mapped on the singularities.

In the third section we deal with the fractured case. In fact the lack of regularity of
the fractured manifold and so of the solution prevents us to have an optimal
formulation for the shape functional, notably the shape gradient boundary
expression. This suggests the introduction of a regularization in order to estimate
the non-Lipschitzian open set by a family with parameter of piecewise smooth (and
so Lipschitzian) open subsets via a family of envelopes surrounding the fracture. That
allows us to get rid of the lack of regularity due to the fracture. Hence, we get the
associated family of parametrized shape gradients. We establish a continuity result
to the tangential Neumann problem with respect to the considered parameter
smooth family.

Therefore, the shape gradient dJ(w\o, V) turns out to be characterized by a
distributed gradient supported on the closure of the fracture 6 and the boundary y,
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its expression is given as a sum of a distributed term on 7, a jump distributed term in
L'(o) plus a Dirac measures at the two extremities s;.

4. Case of a Lipschitzian manifold

Definition 4.1. We define a Lipschitzian open subset w in I' assuming its relative
boundary drw = y being Lipschitz continuous in the following sense:

There exists an into mapping / : [0, 1]— R? such that 1€ Lip(]0, 1[; R*), A([0,1]) =y
and 2(0) = A(1). A is a parametrization of y.

Throughout this section we assume w to be a such Lipschitz open subset which is
locally in I" on one side of its boundary. The normal field v exists almost every where
(for the #' Hausdorff measure, see [11]) on 7.

We consider the tangential Neumann problem.

—Ar®=f in o,
P

8—(1) =0 on Jw.

ov

Remark 4.1. Since the boundary dw is Lipschitzian, the Green formula holds.

4.1. Shape analysis

4.1.1. Moving domain

We consider the parameter family of open subsets w, generated by the family of
flows T;(V) associated with the vector field V. Thanks to the condition satisfied by
V, the family of boundaries y, of w, is moving on the surface I.

From a heuristic point of view, looking for the shape sensitivity consists in
observing the perturbation effect on the solution defined in 7,(V)(w) = w, when
t—0. For this we perturb the domain w by the transformation T7; it follows that

_Ar¢t :ﬁ in @y,
P [}
! @ =0 on dw,.
ov,

Remark 4.2. Tt is clear that, Vze[0,J], there exists a unique solution @, of the
perturbed problem under the condition f( " f: = 0, this motivates the choice of f; in
the following lemma.

1 s
Lemma 4.1. Let F belongs to H2™(D) such that F, =f and f; = F, — \lﬁ\fw, F.
Then the mapping: t—f" = f,oT; is weakly differentiable in H°~"(w).
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Furthermore: L —>VrF V(0) weakly in H~!(w). The proof can be found in [16].

Lemma 4.2. We refer to [12] to introduce the Green’s formula associated
with a manifold o having a boundary 7. Let E and ¢ be regular functions, it
follows that

—/ dier.q):/ {E.quo—Hq)(E,n}RN}—/ ol{E,v),

where H = Abg| is the mean curvature of the manifold I'.

4.2. Material derivative

We are interested in the sequel in establishing the existence of the material
derivative .

4.2.1. Existence of the material derivative of the state
In the following we intend to deal with the differentiability of the map: t— @,T,
at zero.

Theorem 4. 1 The map: t— ®,oT, is differentiable at zero and its derivative ® =

DT, —P T,

lim, , in H (), satisfies the equation

/ VbV = / V)0, Vi
- / <diUr V(O)Vr@,Vrl//>

+ / divr(f.V(0)). (4)

Remark 4.3. A direct way to get the existence and characterization of & =
g(@,oT,)\ —o 1s to apply the implicit function theorem. This way, we would directly
get the result concerning the material derivative if the right-hand side F| of the
equation is assumed more regular than L*(I'). Here, that F| belongs to L*(I") does
not imply the strong convergence in H~'(I') of the quotient -ﬂT_f, as would be
required to apply the implicit function theorem. This lack of regularity requires
a delicate proof for the existence of @. In [16] there are counter examples for which
one can not expect the mapping to be strongly differentiable in H~'(I') for any

fin LX(I').
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Lemma 4.3. Let 6>0 be a given real number. The mapping t— DT, " is differentiable
on |0, 9[ and we have Vt€10, 5[, Jue]0, 1] such that

DT ' =1d —t(*DT, V)T, .V (at)).

Lemma 4.4. Let 6>0 be a given real number and j(t) the associated Jacobian to the

flow T,(V).
The application te[0,5[—j(t)e C*=', k=1 is differentiable and

J(0) = divV (0) — (DV(0)n,n) = divr V(0).

Proof of Lemma 4.4. The boundary Jacobian j(¢) = det(DT,)||*DT, ' .n|| is
differentiable for transformations T;(¥) in C'([0,d[, C*(D,R")) and we have

o|[*DT,; .|| B
0 e — (DV(0)n,n)
9det(DT)| - _ i v(0). OO
ot -0 '

4.2.2. Proof of Theorem 4.1
On the one hand, via Green’s formula given in Lemma 4.2, the weak formulation
of the perturbed problem is given by

/ Vrd,Vro, :/ ft‘Pt? V@teHl (wt) (5)
[on [oF]
whether return to the fixed domain:

/ Vid,. Vo, — / (V1@,)T,. (V)T (1) (6)

w

whence
(Vr®)oT, = V(®,op)eTi|p = *(DT,) 'V (DyopeT,)| . (7)

We notice, via a suitable choice of test functions ¢,, that only the tangential
component of the vector V(¢p,oT;) does not vanish.
3
In fact, let ¢, = o7, ! where ¢ belongs to H2(D), so its trace on I' is in H'(I'),
with & = (Vy,n) = 0.
We note that

(Vo) Tilr = "(DT) " V| = “(DT)) "'V
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then, due to {V(®,op),n) =0, we get

(DT H(DT) 'V (DropeT)),nd =0

this means that the vector (DT;)”'.*(DT,)"'V(®,op=T}) is tangential.
For the sake of brevity, let us use this mere change of functions:

Ht :j(t)¢topoT[

which yields

/ V0V, - / (D)), Vi), (8)

w

where
j(t) = det(DT,)|[(DT,) ™" |
and
D(t) = (DT,) "' *(DT,)"".

On the other hand

/w i, / 1 (0). (9)

Definition 4.2. If the lim,_, ¢ LI—O exists strongly in H!(w) (denoted 0) we say that 0
has a material derivative in the direction of the vector field V.

The sequel will be devoted to proving the existence of the material derivative 60

which provides the state with one.
Weak material derivative. Let z' = “=! in H!(w), which satisfies for all yy € H' (o):

[v=v=-[ < Mv<9’>,w<w>> s [HOZLy )

t

By embedding the test function = z' — [ in (10) where / verifies

t
/l:/zf7 g—i:g—i and Vil =oaVrz' with a#1
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then we get

/w VAV = / VeV — / <MV((¥),VF(2’—I)>
+ /wftj(’i_f(zf_z) (1)

which enables us to point out the following estimate, there exists a constant c
independent on the parameter ¢ such that

IVrz'l| o) <c

It follows that z* is bounded in H!(w), so by a compacity argument one can extract a

subsequence still denoted by z' which converges weakly in the same space. Let 6 be
this weak limit, it fulfills the below equation:

/ VOV = — / (D)0, V> + / 7(0) + VEVO . (12)

Obviously 6 is unique so the whole sequence z' is weakly convergent to 6 in the space
Strong material derivative. Via the same choice of test function we prove the
convergence in norm, in fact

liny V721 = [ Vr0¥e1 = [ <0090, 910 D)

+ / [£7(0) + VE.V(0)] (0 — 1)

:||VF0 iz(m)‘ (13)

We conclude that 9’—[‘9—>9 strongly in H!(w), which provides the existence of the state
@ in H!(w), indeed

0 =7 (0)@p +j(0)dop.

Then by introducing this last identity in Eq. (12) we deduce that & satisfies the
following equation:

/ VbV = — / (D(0)Vrd, Vi)
- / GOV, V>

+ / [£7(0) + VF.V(0)yVy e H (w). (14)
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Thus, the equation verified by @ is rewritten as
a(dy) =1()) VyeH, (),

where a is the coercive bilinear form given as follows:
a(d,y) = /w VrdViry
and / is the following linear form:
1) = [ =D Ovovry - [ jOvevy

+ / LG(0) + VrE.V(0)ly,

where the expressions of D’(0) and j/(0) are given by Lemmas 4.3, 4.4:

—D'(0) ={DV(0) + *DV(0)} = 2¢(V).
&(V) is the symmetrized of DV.
Vs V(0) + 1 divr V(0) = divr(V/(0))

which achieves the proof of Theorem 4.1. [

4.3. Shape gradient distributed expression

351

According to the existence of the material derivative, we are able to provide the

shape gradient dJ(w, V).

Proposition 4.1. The distributed expression of the shape gradient is given by:

dJ(w,V) = / B (@ —dy)" — vpcpvpp} divr V(0) — / (@ — Dg)V Py V(0)

+ /2<8(V)Vr¢,VpP>+/ divr(f V(0)P,

where P is the adjoint state.

(17)

Proof of Proposition 4.1. A mere change of variable in the cost functional expressed

in w, leads to

J(w;) = 3 / (D, — y)* :% / (0T, — Dy)2j(1)
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which yields

dJ(w,V) = / (D — &g)(D — VgV (0)) +% / (@ — ®y)* divr V(0). (18)

In order to eliminate the material derivative & from the last expression, we use the
following adjoint problem:

—ArP=(®—d;) in w,

19
%:0 sur do, (19)
av

where P the adjoint of the state @, belongs to H!(w).
Then thanks to the conjugate form and Green’s formula, it follows that

dJ(w, V) =a(d,P) +% / (@ — @4)* divy V(0) —/ (@ — @)V rd,.V(0)

w (0]

=I(P) +% / (@ — @4)* divy V(0) — / (D — D)V Py V(0). (20)

()

Thus, via the expression of the linear form / we deduce the announced
proposition. [

5. Shape gradient boundary expression

In this section we deal with the shape gradient boundary expression in the case of a
piecewise smooth manifold. Which requires some technicalities, indeed, we will use a
differentiation result provided by the min—-max theory through a hidden boundary
regularity of the state. Let w be a piecewise smooth open subset of the manifold I’
containing m singularities s;. We consider the same problem £ and also the moving
one Z;. We note that all the results established in the Lipschitzian case hold, mainly
Theorem 4.1 and Proposition 4.1.

5.1. Hidden boundary regularity

The hidden boundary regularity of the state @ will be provided by the
extractor method. Therefore, we introduce the min—max theory in order to avoid
differentiating the state equation, it consists in establishing the saddle-points of the
Lagrangian related to the state-adjoint coupled problem (of which @ and P are
solutions). We will need the hypothesis of a Dirichlet condition, let (#; : @ =0 on
70 With o =y).

5.1.1. Extractor method
We begin by announcing the fundamental result.
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Theorem 5.1. We assume that T is a C*> manifold and Ow a piecewise smooth curve.
The state @ has a hidden boundary regularity on dw.

Indeed

VideLl*(0w).

We start with this technical lemma:

Lemma 5.1. The set C*(®) is dense in H\(w) where
H\(0) = {pe H (w); such that ArpeL*(w)}.

Proof of Theorem 5.1. Let W be a vector field belonging to C!(I", R?) and satisfying
the hypothesis of Theorem 1, such that W.n = 0; we associate with W the flow
T(W), s is a parameter lays in [0, J[. Thus, the tangential extractor related to W of

the function sequence ¥, € C' (&) such that (y,,, —Ary,,) — (@, f) strongly in H' (w) x
L*(w), is given by

d
gW(lpn) :%< /T |vf(lpnoTs_l)|2)l

- / {D0) + (O Nry,,, Vi, >

5=0

=/ |vrwn\2<W,v>—2/ ArY, Vi, W
dw %)
and so
/a VP vy = / [D'(0) + (O iy, Vi,
+ 2/ Ary, Ny, . W.

We may choose W such that 0<a< W.v<f on dw, indeed we use here the fact that
there is only a finite number of singular points. The mapping

1
L?: &5 < 2 W, )2
CE é /?)w |§| < v>

is a norm equivalent to the usual norm of L?(dw) which is weakly Isc one.

Therefore there exists M >0 such that [, |Vplpn\2 < M; from the weak compacity
of the closed ball in L?(0w), exists a subsequence ?nk = Vry, converging weakly to

Ein L2(00).

ny



354 J. Ferchichi, J.-P. Zolésio | J. Differential Equations 196 (2004) 340-384

It is required to prove that ? is exactly Vr@. It is enough to use an integration by
part result existing in [14], indeed let e D(dw) with {sy, ..., s, } <= (suppn)®, so

VFlpnern = WH;{‘QJ;(T(%
Ow ow

where Z (r) is the adequate expression existing in [14]. So we also compute the limit
with k, then under integration by part argument, one easily checks that:

EVrn= | VoV VYreD(dow)
dw ow

which yields
R
E=Vrd

thus, we conclude to the existence of a boundary hidden regularity of the state & on
Ow. Let

Videl*(0w)

and achieve the proof. [

5.2. The min—-max theory

We look for the boundary expression to the last shape gradient, given in
Proposition 4.1, by the derivation method of the functional expressed in a min—-max
(this means that we consider the state equation as a constraint).

In order to apply this method the state @ and the adjoint P have to be more
regular than the variational regularity H' used in the last section. In fact, we just
need the regularity of @ and P only in neighborhoods of the points where the vector
field ¥ does not vanish. The boundary y being piecewise so we have a finite number
of singular points sy, ...,s,. On these points ¢ and P are not enough regular
nevertheless, we can apply the min—-max method where the points s; are not moving.
That is why we build a family of vector field V,, through the vector field V', which
vanishes in a neighborhood B, of the singular points. Therefore, we get the boundary
expression by min—max then we pass to the limit with #. For this we need to build the
neighborhood B, and the field V, satisfying the below lemma. This lemma is the tool
which allows us to pass to the limit in the shape gradient expression. Then we shall
consider the convex set ¢ undertaking the hidden boundary regularity provided by
the extractor.

Lemma 5.2. The vector field V' being given with (#; V = 0 on vy,), let B, be an union
of m-neighborhoods B! of the singularities s;; i =1, ...,m.
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There exists a family of vector field V,, belongs to W= (I') such that: V,, = 0 on B,.
V, is given by

Vo) = V() - ( S V) (x)

notice that V, verifies also .
Where B, is a neighborhood of s; “of size %” in the sense developed below, y' is a
function with support B"ﬁ containing B!, such that

U
YuZ 1B

and ypi is the characteristic function associated to B:.

We give hereafter explicitly y;o(f")fl, where & is an associated projection
& Bi/ﬁ - T,
such that &' (BL) is the ball of Ty, of which the ray is equal to L where T, I being the

tangent space to the manifold I on s;.
The function z = y'o(£") ™" defined in the ball ii(BiJﬁ) can be chosen as follows:

2= (A

therefore

i 1 in B,
In = Z[ Ofi in Bi
’ i

Lemma 5.3. We have the following convergence results:

(i) The vector field V,, is star-weakly convergent to V in L* (w)
(i) The vector field V, converges all most everywhere to V in W

Proof of Lemma 5.3. The proof is a direct consequence from the fact that the
function y! is star-weakly convergent to zero in L* (w). O

Let us denote by w,, = T;(V,)(w) the family of open subset generated by the flow
T,(V,) associated with the vector field V,.

In the sequel, we introduce the Lagrangian saddle-points related to the coupled
state-adjoint problem in order to derive a min-max formulation for the shape
gradient.
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5.2.1. Lagrangian and saddle-points
We refer to [2,13] for characterizing the saddle-points.

Proposition 5.1. It is known that
(¢,¥) is a saddle-point of the Lagrangian if and only if (¢,y) is a solution of the
coupled state-adjoint problem.

We come to

Lemma 5.4. Let t, be the tangent vector to (0w) and set

A" ={p,e H(I') " H}

loc

(F\Bn)v Vr(p,.‘c,GLz(aw,)(p, =0 on VO}

then the functional J(w;,, Vy) is the solution of the min—-max problem:

1
Jou) =5 [ (@000

= min max %'
e e (@0 ¥,)

with &' the associated Lagrangian given by

Z(oui) = [

(&

((/)t - ¢d)2 + / [vf‘/)tvf‘//r _f‘//z}~

Dtn

In order to work over a fixed space, we carry out a classical change of functions.
Let ¢ = ¢,oT, and W = ,oT}; it yields

Lemma 5.5. Let A" be the fixed space, then

J(wt,n) = gl[')réljl} Il/‘/nea}( Lt((pv l/’)?
where

Lo =5 [ (ot =00+ [ Vet Vet ) et )

Wy n
and

A ={peH"(I') N H}

loc

(N\B,),Vrp.te L*(0w)p =0 on y,}.

5.2.2. Min-max differentiation
In order to obtain the boundary expression of the shape gradient of the functional
J, we may use the following important theorem.
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Theorem 5.2. By applying min—max differentiation result (see [2]). The shape gradient
has the following form:

2L’(di, P)

dJ(w7 Vn) = ot

li=o"

For the proof we refer to [6,10].

This leads

Lemma 5.6. According to the previous results, the mapping: te[0,8[— T, (V,)e
HY(I')"HZ (I'\B,) is continuous and differentiable in H'(T).
Moreover

T (V) — @
t

lim
t—0

- <—vrgo.vn<o>>H 0.
H\(T)

Proof of Lemma 5.6. Under the regularity of ¢ and the continuity of the flow 7!,
the continuity of the previous mapping is obvious.
Concerning the differentiability, it will be deduced also from the same argument.
Notice that

(poT / Vre(x+s(T, ( X) — x)).(Tf'(x) —Xx)ds
it follows that

1
Lo Ty () — () + (Vrg Va(0)) = /0 [vrm<x+s(T;1<x>—x>>]

( ds—/ Vre(x () )ds

+ Vro. {%Z)H Vn(O,X)}

H1<r>>'

We come to investigate the following limit when ¢ tends to 0:

t—0

lim (It = H%((poT,l(x) —¢(x)) + (Vre.V,(0))

First, let us begin by the L?(I') norm. We denote it with I/
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It follows that

1 —
ap<z [|f [ @rotsestr - - rpn =0 0]

v f
r

It is clear, according to the previous hypothesis and from the continuity of the
mapping r— Vre. {W—&— V,,(O,x)] in H'(I'), that the second term tends to 0

with 7. Then by applying Holder’s inequality and Lebesgue’s theorem, it arises that
the first term is overestimated by
2
dar } ds.

J{J

Let (s, 1) = [ |[Vro(x+s(T; ' (x) — x)) — Vﬂp(}C)}.WF dI', we remark that
h(s,t)<h(l,1) Vs.

Therefore lim,_, ¢ It1 =0.

Also the semi-norm |.|, . denoted by I} converges to zero with z. In fact, it is
clear that

(7)<2 /r

v2 |
r

Remark 5.1. It can be seen that we integrate entirely into I'; indeed, since
w: — V,(0) when ¢ tends to zero and due to the regularity of ¢ outside the
singularities s;, the integration domain is reduced to (I'\B,), which validates the

previous expressions.

2
dar

T (x) - ?

qu).[(’ t X)+V,,(O,x)] dr.

Vi, (x + (T (x) — x)) — Vr(p(x)].w

1
vr{ /0 Vr(x + (T, (x) = x)) — Vi)

VF{VF(PS- [WJr Vn(O,X)]} 2

dr.

By using the same arguments as previously, it comes that I? converges to zero
with z. This implies the convergence of I; to zero with .
Which achieves the proof of the lemma. [

5.3. Shape gradient boundary expression
We begin by giving a first boundary expression of the shape gradient through the

min-max differentiation result, the second one will be given subsequently in the
shape boundary derivative section. We characterize the shape gradient boundary
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expression as a distributed term on the manifold’s boundary and a pointwise terms
on the singularities s;.

5.3.1. First expression
The following technical lemma given in [12] will be useful.

Lemma 5.7. We consider a mapping
te0,8[—u(t) = u,e H' (o).

We suppose that u(.) is differentiable in H'(w). Then

al [ )

:/wu}(a)7 V)—i—/GJHu(V(O),n)

‘170

+ /a u( V(0), v,

where u}. is the shape boundary derivative.

By using the min—max differentiation result and the previous lemma, we get

F (@ — ®y)* + VOV P _fP] <Va(0),v)

A, Vy) = / :

[9[0}

+ / (@—@d)(—vl"@Vn(O))+VFPVF(—V1"@V,1(O)>
+ / Vr®V (=Y PV,(0) — f(=VrPV,(0)),

The two last terms vanish since they represent the weak formulation of @ and P in
the test function (—VrPV,(0)) and (—Vr®V,(0)) which are vanishing on y, with
V,(0). We deduce the following lemma;

Lemma 5.8.

ar. V) = [

0 [;(@ — By’ £ VrOVLP — fP| { V,(0), 0

5.3.2. Limit in the boundary expression

According to the hidden boundary regularity provided by the tangential
extractor the function V,®VrP belongs to L'(0w). Since V,(0)—V(0) in
L™ (0w) weak star-topology. Moreover V,(0) and ¥ (0) are in L* (dw). Hence, we
deduce this result.
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Lemma 5.9. [t easy to see that
lle VFQDVFP< V;I(O),V> = VF@VFP< V(O),V>
nro Jow dw

Since we have

dJ(w, V) =dJ(w, V) +dJ< Zyn )

then
hde J(w, V) = lim dJ(w, V,
nl oo ( Zyn ) ) nl oo ( )
so also
dJ(aLZ yiV) :dJ<a),Z VIV = V(s) ) +dJ< Zy V(s )
thus

Lemma 5.10. Accordingly

lim dJ(w,Z YV — V(s,)]) =0, nlo.

nl oo

Proof of Lemma 5.10. The proof is recovered from the distributed expression
given in Proposition 4.1. In deed we have terms such as fw Cer(yi(V —
V(s))))Vr®,VrP), on the one hand from the construction of y! the
support of yi(V — V(s;)) is contained in B j; then it can be seen that y/(V —
V(s;)) as well as D[y (V — V(si)], er(y.(V = V(s:))),divr(y.(V — V(s;))) con-
verge to zero almost everywhere. On the other hand, )/, can be chosen (its behaviour
in infinity with n) such that ||[Dr[y! (V — V(s;))]|| is uniformly bounded on o : it
exists M >0;

Dr[y,(V = V(s))]..Dr[y,(V = V()| <M
then we get
[ <er(y,(V = V(5:))Vr®,VrP)| <MV &V P

therefrom by dominated convergence theorem the limit of the integral is zero. [
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Lemma 5.11. In view of the result of last section we deduce that the sequence of
pointwise terms

dJ (w,z YV (s:) ) Z (G YV

has a limit, when n1 oo, which is independent on the choice of the sequence y',. G is
vector given by the shape gradient distributed expression (17):

1 . )
G:U” = / |:§ ((P — (Pd)z —|—fP - VF(PVFP] pril - / [((D - ¢d)Vr(Dd + Vf]y;
+/ (Vryh , VrPYVrd +/ (VY Nr®>VrP. (21)

As a consequence of these lemmas, it is easy to check that the shape
gradient boundary expression is splitting in two terms; a continuous term and a
pointwise one.

Proposition 5.2. We have
1
Al (o, V) :/ [_(qs—(pd) VOV P - fP]<V N +Z (G V() > gvs
ow
where

G = 11m G

] w

1 .
G = hm{ / {5 (D — ®y)* + [P — vrcbvpp] Yyl

nl oo

+/ <Vry;,vpp>vr¢+/ <vry;,vrq5>vrp}. (22)

It is relatively easy to establish the hereafter proposition.

Proposition 5.3. There are two possible cases concerning the pointwise term.

(1) If the singularity order of the solutions ® and P in a neighborhood of s; is
equal to % then G! does not vanish (it corresponds to the flat case, (see
also [15))).

(i) If the previous order is different of } then G') vanishes.
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6. Fractured manifold

The lack of regularity of the open set (w\o) and so of the solution @ prevents
us to have an optimal formulation for the shape functional J(w\o), notably
the shape gradient boundary expression. This suggests the introduction of a
regularization in order to estimate the non Lipschitzian open set (w\o) by
a family with parameter of piecewise smooth (and so Lipschitzian) open
subsets (w\o),. We thus get the associated family of parametrized shape
gradients. Thereafter, we establish a continuity result for the Neumann
problem with respect to the parameter. Therefrom, we recover the shape gradient
distributed expression, as for the shape gradient boundary expression splits up into a
distributed term on y, a jump distributed term in L'(c) plus a Dirac measure at the
end points s;.

6.1. Regularized problem

We regularize the domain (w\o) by using a family, with parameter, of singular
envelopes e, with extremities sy, s, and surrounding the fracture o, which will be
defined subsequently. We denote by (w\o), the obtained regular open subset (the
complementary of ¢, in (w\g)) in which we formulate the following homogeneous
tangential problem.

7AF¢1: :f in (w\a)m
(NT), 90,
o,

0 on J(w\o),.

Remark 6.1. The family, with parameter ¢, of open subsets (w\o), is Lipschitzian. As
a consequence Green’s formula holds.

6.2. Shape analysis

Since we are over a piecewise smooth subset (w\o),, all the previous results

concerning the shape analysis given in Section 4 hold.

&l

6.2.1. Material derivative
Let us consider the moving problem on (w\o),, at each fixed &

_Al"q)s.t :ff in ((U\G)

(JVT)J:J adjz:,r
OVey

&,

=0 on d(w\o),,-

We apply Theorem 4.1 and derive the following result.
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Proposition 6.1. At each ﬁxed &, the map: t— @, T, is differentiable at zero and its

T . @,
derivative @, = lim,_,q L

in H!((w\0),), satisfies the equation
[ vrevi= [ unvie, v
(w\o) (w\o)
- [ e vO)vio. T
(w\o),
o[ oo 23)
\g),
6.2.2. Shape gradient

We recall these results from previous sections.

Proposition 6.2. The distributed expression of the shape gradient is given for each
fixed € by:

ar(@a), V)= [

(o),

— / (@E — @tg)vl"d)d. +/ Vr‘p VrP,
(w\o)

B (D, — ®y)* — V VP, } divr V(0
+ / divr(f V(0))P, (24)
(©\0),

and also

Proposition 6.3. We have, for each fixed ¢, the shape gradient boundary derivative.

dJ((w\J)w V) = /< A ) |:% (©e; - dsd)z + VF¢;;VFP;; _fps < V(O), V;:>
+ Z <le\g V(si) >y, (25)

where Gé o), is a vector having an expression analogous to that of G' but written in

(@\0),;:

Gé(g\o’)ﬁ = lim { /( ) |:§ (¢l) - 45(!)2 +fP1 - VF¢IIVFPII:| Vryﬁ,

nt oo

+/ (Vid VPV, +/
(0\0)

{Vryh, VF‘DQVFPS}
(0\o),

that element is independent on the choice of the function y'.
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6.3. Continuity of the Neumann problem

In this section, we study the behaviour of the shape gradient with respect to the
parameter ¢. It’s obvious that we have to prove a strong convergence result. In order
to get it, we will need to get the continuity of the Neumann tangential problem with
respect to the open subset ¢, which will be chosen hereafter.

6.3.1. A priori estimate

Lemma 6.1. We have the following estimates:
;l "
||1(w\0);-,vr¢8| |L2(w\a) <;‘€2 ||f | |L2(w\a')

3
|| 1(0)\0),; @, | |L2 (w\o) < 152 ||f| |L2<w\g)

where 2, is the first eigenvalue of the Laplace—Beltrami operator.

Proof of Lemma 6.1. By using Green’s formula we establish the weak formulation
associated with the regular problem, so

/( ViTre= [ fp WoeH! (@)
w\o w\o

B e

it yields
2
/ i, T <194

Thanks to Poincare’s inequality given by the space H!((w\c),), we come to the
result. [

Because of the dependence of the second term on ¢ we are not able to get an
uniform estimate. A particular choice of the envelope e, enables us to overcome this
difficulty.

6.3.2. Choice of the Envelope e

The envelope e, will be the open subset whose boundary is the convict of the
fracture o by the T; at ¢t = ¢ associated to the non autonomous vector field E, =
(ES,E;). The field E, satisfies the following conditions:

EfeCK(w\c,), E; eCK(w\c_)E,n=0, [E,]#0 on ¢ and E.v>0 therefore
E_.v<0 on . Et E;(s;) =0, where s; are the extremities of the fracture ¢. So also

(Oe;), = T.(ES)(0+), et (Te.)

= T,(E, )(o-). We denote by de, = (de;), U (de,)_ =
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3

Fig. 2. Building of the Envelope.

T.(E;)(o). Itis clear that d(e,), and J(e;)_ are two C*-manifolds, which enables us
to control the first eigenvalue of the Laplace—Beltrami operator (Fig. 2).

6.3.3. Boundeness of the first eigenvalue
We begin by giving this result:

Proposition 6.4. Let /, be the first eigenvalue of the Laplace—Beltrami operator, i.e.

le = lnf Ce; CI:/ Ug < /
(w\o) (w\o)

|vas|2v”é: eH: (0\o),) }

& &

N

i) there exists ¢.€ H ((w\o V2 =1 such that
() (pz, * el (w\a) (pz,

&

2= / Vo
(@\0)

&

(1) Under hypothesis #1, for all ¢, 1, is underestimated via . Where A is the first
eigenvalue of the Laplace—Beltrami operator formulated in (0\o).

In order to prove the above result we have to specify the domain’s topology.

Remark 6.2. The open subset (w\o), converges with ¢ to (w\o) for the Hausdorff
complementary topology endowed with the metric (see also [1,3])

dye ((,()1 s w2) = dH(u_)\wl ) (1_)\6()2),

where

dy(Ki,Ky) = max{ sup inf |x—y|, sup inf |x—y|,.
xek, YKz yek, €Ki

is the Hausdorff distance between two closed subsets of the open set w.
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We say that (w\o), converges in the measure sense to (w\o) if the corresponding
characteristic functions converge strongly in L'(w).

Proof of Proposition 6.4. (i) It is sufficient to consult [17].
(i) The proof is deduced directly from hypothesis #; and the following
equivalence

0. € H) (0\0),) < ¢, T, eH,(\0)

with j(¢) > 1 when ¢|0. O

Corollary 6.1. The sequences 1(yq) P: €t l(we) Vr®, are uniformly bounded in
L?(w\o) with respect to &.

6.3.4. Strong convergence
The last proposition enables us to obtain the following result.

Proposition 6.5. The sequences 1(yq) P and 1(, 0 Vr®, converge strongly respec-
tively 10 1(4q)® and 145 Vr®.

Proof of Proposition 6.5. Thanks to Corollary 6.1, a compacity argument yields to
extract two subsequences denoted still further 1, 5) @, and 1(44), Vr®, converging in

L*(w\o) respectively to u and 7.
In order to prove that 0 = Vru, we will adopt the compactivor property which
consists in that the open set (w\o), soaks up all compacts in the open set (w\o).
Indeed, for any compact K =w\o, 3 n such that Va>ng we have K < (w\o), .
Let @ eD(w\c) whose support is K; then 3ng such that for any n>ng,
peID((w\o),,), which yields

0.9 = lim L), Vr®, @ = lim Vid G
w\o =0 Joo ) e (w\o),
= 1in?) — @, divr ¢ = lim — l(w\e), ®: divr 4
- (0\0), &= o\o
= - / pudivy ¢ = Ving. (26)
o\ o\

We set that

—
0 = Vr,u
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We should get the problem of which p is solution. It arises by passing to the limit in
the weak formulation having @, for solution. So

VruNVre = foVpe H! (w\o).

w\o w\o

It follows that u is the solution of the homogeneous Neumann problem posed in w\o.
Therefore,by uniqueness, u is equal to @.

Thus, all the sequence &, converges weakly to u, so also to @.

As for strong convergence, it will be obtained also from the weak formulation.
Indeed, let @, be the test function. Then

/ |v1"d)s|2 = / fd)s
(w\o) (w\o)

B e

but the right-hand side converges to fw\a f @, which is equal to fo 2\ |Vrd>|2. Hence the

convergence in norms in H!(w\¢) and so the strong convergence. Thus, the proof is
achieved. [

Remark 6.3. The Neumann problem is continuous with respect to the perturbation
T.(E;).

Corollary 6.2. We have the same convergence result for the adjoint problem of which
P, is solution. Let P be the corresponding limit.

6.4. Shape gradient convergence

Given the previous results, we are interested in computing the limit of the shape
gradient dJ((w\o),, V) when ¢ tends to zero. This result will be provided from the
continuity of the tangential Neumann problem.

Proposition 6.6. The distributed gradient expression converges and its limit is given by

lim dJ((w\),, V) = / 26(V)Vr®V P+ | divp V(0)V &V, P

w\o o\o

+ / (@ — @) divy V(0) —/ (@ — &4)Vr®y.V(0)

w\o

+ divr(f V)P

w\o
and we have

dJ (w\e, V) = li_r}(l) dJ((w\o),, V).
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Proof of Proposition 6.6. Obviously we have the Hausdorff convergence of the open
subset (w\g), to w\c with &. From the previous continuity we can check:

lim /(P,) = / divy V(0)V &V P + / 26(V)V &V P
w\o

Y w\o

+ /\ divr(f V(0))P,

lim (@, — ®,)* divy V(0) = / (@ — @4)* divy V(0),
&= (0\0), w\o
lim (@, — B)V By V(0) = / (& — &)V B, V(0)
=0 J(o\o), o\

then thanks to the homogeneous boundary Neumann condition on Jd(w\o) the
material derivative of the state @ exists and so we deduce the continuity result for the
shape gradient with respect to e. [

6.5. Jump through the crack

We have the splitting d(w\a), = y U (de;), U (e,)_; then, by passing to the limit in
the shape gradient dJ((w\o),, V') with ¢ we provide the shape gradient boundary
expression.

Proposition 6.7. Let

0.~ {[Vre P (0 - 007 - 11}

then we have

1
ar@e, V) =tim [ g.CVO)L>do+s [ (@07 VO

]
v

= [ v ars [ Vrovepcro)ey di
7 Y
3 Gl Vs @)
with
Vr@*VrP|, =Vrd, VP, = Vrd* VP,
where

¢8+ = qu:OTs(Ei)Psi = PoT(Ex)
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and

Géw\(:) = 1}?8 GE(U\J)n'

Proof of Proposition 6.7. It is enough to notice that: v,oT,=
\I*Dr T v|| " *Dp T v and to remark, when ¢ tends to 0, that:

(@) j(e) = det(DT,)||*Dr T, ' v||> 1 in L*(0),
(i) veoT,(ET,E")—>(vF,v7) in L*(0),
(iii) D(¢)—1Id in L*(0). O

Remark 6.4. Proposition 6.6 provides that the shape gradient is independent
on the choice of the vector field E, = (E,, E_) building the envelope e,. Indeed,
when 7(0) vanishes in neighborhoods of y and s;, expression (27) may be
given by

dI(\o, V) = lim / 6. <V(0),v> do.

As {V(0),v) belongs to C°(a), g, converges weakly star to g in the measure space
on . Moreover g is independent on the construction. Hence we get the main result of
this section:

Theorem 6.1. The functional J(w\o) has a shape gradient at o. The preventable
defined elements g and G' are independent on the construction. Its boundary expression
is given by

dJ(w\o, V) = <G, V(0) >§/(r,Tr)x@(r,Tr)
with
G =3 (1) +73(gv) + 3 Gl
i
where
h=fP+ % (@ — &y)* + VOV P

and y* is the adjoint of the trace operator on the corresponding boundary; let S be a
boundary included in I', we get
Ve P 2L TT)>2(S,TT).

Remark 6.5. The shape gradient dJ(w\o, V) turns out to be characterized by a
distributed gradient supported on the closure of the fracture 6 and the boundary y,
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its expression is given as a sum of a distributed term on 7, a jump distributed term in
L'(o) plus a Dirac measures at the two extremities s;.

7. Study of the shape boundary derivative

In this section we deal with the shape boundary derivative and the existence of an
optimal domain. The shape boundary derivative provides, withal, the derivatives
with respect to the surface I' of cost functionals governed by the state @. Indeed,
according to the identity @) = @[ — V@V (0) (see [16]), it transpires that @/ is less
regular than the material derivative @ of the state @ which requires technicalities. On
the one hand, we consider the smooth case. We characterize the shape boundary
derivative @/ of the state as the solution of a non-homogeneous elliptic tangential
problem.

Thereafter, we extend the previous result to the piecewise smooth case. On the
other hand, we relax the gradient tangential, normal component, of the shape
boundary derivative in the fractured case.

Finally, we prove the necessary optimality condition of the initial domain and we
establish the existence of an optimal domain by using the Kuratowski continuity of
the Sobolev spaces.

8. Shape boundary derivative

In this section we deal with the shape boundary derivative in different cases. We
deal with the smooth case in a general setting where the flow mapping does not
preserve the manifold I'; this means that the vector field is not tangent to I'. One of
the main results in this case is the characterization of the shape boundary derivative
as the solution to a tangential elliptic problem linked to the Laplace—Beltrami
operator. Thereafter, it consists in extending the previous characterization to the
piecewise smooth case. We end by giving a relaxation for the normal trace of the
shape boundary derivative in the fractured case.

Definition 8.1. The shape boundary derivative ®/. is the element (£ Y (0))|, where Y
is any smooth extension of @ verifying:

(i) YeC'((0,0], H3(D)nH!(D)),
(i) (0, )] = (I,

From [12], we know that (Z

5 Y(0))[; is independent on the choice of such
extension Y.
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Thus, we have the following proposition

Proposition 8.1. The shape boundary derivative @}, if it exists, is given in [16] by this
relation

b = ‘j)|r - Vro.V(0), (28)
where ®r is the restriction of the material derivative onto T .
8.1. Smooth case

We deal with this case in a general setting where the flow mapping does not
preserve the manifold I'; this means that the vector field is not tangent to I" (i.e.
{V(0),n)#0), then I', = T,(I'). Let ® be a manifold from the surface I" with C2-
regularity. The main result in this case is to characterize the shape boundary
derivative as the solution to a tangential elliptic problem linked to the Laplace—
Beltrami operator.

Remark 8.1. The regularity of the solution of problem 2 is, at least, H*(w). Such
regularity is enough to exhibit the shape boundary derivative.

Theorem 8.1. Let @, be the solution of problem 2, with second member f; =

1
K € H2 (D). The shape boundary derivative @) exists in H' (w) and is the solution of
the following elliptic problem:

—Ar®, = —divr[(2D* — H)V & V(0),n)]

#(Ge 1) <rOLm> o
OO0 (f — dity V@) CV(0).v) + (V,00) <V, V()5

+ kv, vp > (V,@2.1)V(0),7) on y,

where ® is the solution to problem 2 in H!(w) and H is the mean curvature of the
surface I'y H = R% + R% with R:" are the principal curvatures—or eigenvalues different
to zero of the curvature matrix D*b. Then k is the curvature of the curve Ow, v is the

unitary normal field of the Frenet trihedral and t is the tangent vector to 0w which
forms with v and n a local trihedral.

Remark 8.2. In dimension N =3, D?b —%Id denotes the deviatoric part of the
curvature tensor. In [4], many intrinsic models of shell are formulated with the same
type of second order tangential operator. In [6] we find the intrinsic derivative with
respect to the domain related to the solution of the elastic thin shells equations with
respect to the mean surface. When w;, is kept in I" during the perturbation process,
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we take ( V(0),n) = 0on I soalso Ar®} = 0 in w; this problem generalizes the case
without curvature [16].
8.2. Proof of Theorem 8.1
The proof requires many technical lemmas.
Lemma 8.1 (see Desaint and Zolesio [12]). We characterize the shape boundary
derivative: of Vr,¢ as follows:
(Vr,d)p = =D*b.Nrp< V(0),n) + V.V ({V(0),n))n.

Lemma 8.2 (see Desaint and Zolesio [12]). We establish a relation between the shape
derivative and the shape boundary one:

(Diops)' = (®repy)'op + b{ Dr®p,m(V))
which provides
V(®iopy) = V(Ppep) + V[ Drdop,m(V))]
with
m(V) =b"DV.Nb+ N (b<{nop,Vop — V)

it easy to see that m(V') vanishes on I'.

Lemma 8.3 (see Delfour and Zolésio [11]). Let Z(I') be an element of H'(I',R) and
y(Q) in H*(Q,R), in the case when Z(I') = y(Q)| we have

2 V) = (@) + 2 @)V (0),m).
where yN(‘Q7 V), :y(97 V) - <Vy(9)7 V(O)>a

Lemma 8.4. Green’s formula supplies the weak formulation linked to problem %,. For

all ¢ in H'(w;)
[ vrovro=[ so
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. 3 . . 9p
Lemma 8.5. Let us choose test functions defined on the whole space R’ fulfilling 57 =
0; since [Vr,p]' = 0, then Lemma 5.7 provides

0
m( / | vr,qwr,qo)

- / V((®p) Vi + / Y (@op)[Vr, 0]

|1:4‘l

+ / VrdV o V(0),v).

Remark 8.3. The structure theorem guarantees that we can choose a velocity field
other than V; the only constraint is that it has to have the same normal component
as V to supply the same final result for the shape boundary derivative. Then if we
consider Vop, where p is the projection mapping onto I', instead of V', the shape
boundary derivative result will remain. This simplifies the expression of m(V") which
becomes m(Veop) = b*D(Vop).Vbh.

Lemma 8.6. Accordingly

CV[C(Trdep,m(V)D],, Vip) =0.

Proof of Lemma 8.1. It is easy to see that
VIK(Vr®op,m(V)>] = "Dm(V).Vr® +*Dr(Vr®).m(V)
the expression of Dm_is given in [12], it follows on one hand
Dm(V), Nr® =n"n.DV.N3® —2n"ne(V)n'n.Vr®
=n'n.Dr(V).NVré
on the other hand
("Dr(Vr®).m(V)) ="Dr(Vr®) m(V) =0
therefore
CVIK(Vr®ep,m(V) )] Vre) = Dm(V).Nr®, Vg
=Ln*'n.DrV.Nr®,Vro)
={DrV.Nr®,n'nVro)

=0. ]
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Lemma 8.7. It follows that

0
2 o)

_ / V0, Vi + / O [9(). V0] V(0),n>
li=o @ @

+ /HV[@V}“QD<V(O),H>

+/ VF(DVF(/)<V(0),V>
b

then

g(éﬁ@

with f. = g—5< V(0),n>.

t_o:/wf;(H/,, Hf(P<V(0),n>+/yfq)<V(0)7v>

We will expand the last expression term by term.

Lemma 8.8. Green’s formula yields

0P’
/Vrd"vr(/)z —/ AF‘P'(/H-/ @
[0 1) y 8v

/ VF(DVr(p<V(0),I’Z>H: —/ diUF(VF¢<V(O),n>H)QD

+[ H{Vr@,vy (V(0),v) 0.

Lemma 8.9 (see Desaint and Zolesio [12]). Given = @op, the normal derivative
is as follows:

d
o [V(®op). VY], = —2{D°bV @, Vo) onT.

We come to

Lemma 8.10.
/w2<Dzb-Vr‘DVF<P> CV(O)ny = _/w 2divr (D*b.Vr @ V(0).n) )

N LZH(V(O),n) (DbVrd,n )¢
— / 2DV d, vy (V(0),n) 0,

whereas D*b(x).n(x) =0 then [ 2H{V(0),n) {D*bVr®,n)¢p = 0.
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Let s be the curvilinear abscissa of the curve y; in the forthcoming, we shall adopt
the following notation:

o

D5 = Vroe.t,
) o

div, (@) = s

Proposition 8.2. The term defined on v is given as follows:

/ Vir®VrelV(0),v) = —/ div, V,@{V(0),v> ¢

7 b

+ / (V,@2.0) <V, V(0).71,v)

)

+ / k{v,ve )y (V,@.71) {V(0),7)

+ / (D*hv, Y (V,®.7) {V(0),n).

7

The proof will be obvious via the subsequent lemmas.

Remark 8.4. We have
Vr® = (Vrdv)v+ (Vrd.a)1

since Vr®.v =0 then V@ = (Vr®.1).1 = (V,®.1).T = 2.1, one can check

9 9
/qusvr(pwm),w [(6—f.1>.(8—f.r)<1/(0),v>.

In order to integrate by part the last expression, we may use the parametrization
by arclength for the curve y; let (I, ¢g) be such a parametrization where 7 is an open
interval in R and for all yin I, g(y) = s. Let © = 0,¢ be the tangential field to y on a
such point s. Hence,

Lemma 8.11.

[(222).(222) v -

|
\\
7~ N\
S
2|9
&
N———
7~ N
>
\SJ‘S
&
N———
VS
=
=
[}
<
<
N
S
S




376 J. Ferchichi, J.-P. Zolésio | J. Differential Equations 196 (2004) 340-384

8 adjo alpo
i (ayg)w(o)og,w = <8yg><agV<0’g<y>>-3yg’V>
A(Pog)
5 <V (0)eg, 05>
D*(Po
+ éyzg)<V(0)°gav>~

Remark 8.5. Our local trihedral (z,v,n) is different from the Frenet one (we can
distinguish the difference if we consider the curve y as a parallel of a sphere) which
forbids us to apply the Frenet formulas.

We have the following lemmas.

Lemma 8.12.
P (Pog) (0P A(Peg) .
ayz = <W'E> T+ 85 .ayg = dlUn',(v}-¢)7
Do
a(ayy) V0,

Lemma 8.13.
<a\'var> = 7k<V,VF>.

Proof of Lemma. Indeed, since ||v|]| = 1 we have {9v,v) =0 then as {v,n) =0 it
follows < Oyw,n) = —<v,0n) but 0On = dy(Vhopog) = *D*bog.t, we deduce
{Oyv,n)y = —{(D?hog.v,ty so also, with <(v,t> =0 we obtain (v, 1) =
—<{v,0st ), but 9yt = Bfg = kvp, where k is the curvature of the curve y and vg is
the Frenet trihedral normal, which achieves the result. O

Proof of Theorem 8.1. Lemmas 8.7, 8.8 and 8.10 provide the voluminal equation in
o then the boundary condition on 7y is supplied by Lemmas 8.8, 8.10 and
Proposition 8.2.

Thus, the result is proved. O

8.3. Piecewise smooth case

8.3.1. Existence of the shape boundary derivative

In this case, we will extend Theorem 8.1 characterizing the shape boundary
derivative provided by the smooth case (w is C?) to the piecewise smooth one (w is
C? by part).
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Theorem 8.2. Assume that I' is a C* manifold and y is a piecewise C*> smooth curve,
then for any vector field V in v~

(a) the gradient of the shape boundary derivative has a boundary regularity:

r e H2 (0
5, belongs to (Ow).

(b) the shape boundary derivative is the solution to the following problem:

—Ar® =0 in o,
0P},
ov

= (f — div, V,®) {V(0),v)> + (V,®.1) {V,V(0).1,v)> (29)
+ kv, vy (V,@.17) (V(0),7) on dw.

Remark 8.6. Indeed, in this case, because of the shape boundary derivative’s lack of
regularity, the Neumann boundary condition on dw has no sense a priori.

In order to prove the last result and to overcome this difficulty, we shall
use on one hand the established first shape gradient boundary expression
for the functional cost provided by the min—max theory given in Proposition 5.2.
On the other hand, from Lemma 5.7 and by using the adjoint state we get
a second shape gradient boundary expression in which the Neumann boundary
condition appears. Thus, by uniqueness of the shape gradient we relax the boundary
condition on y.

8.3.2. Second boundary expression of the shape gradient
In the following, we attempt to show another expression of the boundary shape
gradient of the functional cost J(w).

Proposition 8.3. The shape gradient boundary expression is given by

dJ(o, V):%/? (¢—¢¢,)2<V(0),v>—/? PV r® v, (30)

Remark 8.7. A priori the boundary term [, P{Vr®},v) has no sense because of
the regularity lack of the shape boundary derivative @} in the neighborhood of
singularities.
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Proof of Proposition 8.3. Under Lemma 5.7 and Green’s formula, we come to

dJ(w, V) = /

w

(@ =20 +5 [ H@=0)' VO

1
+§/Ow (D — Dg)* <V (0),v). (31)

We use as before the method of adjoint state in order to get rid of the boundary
shape derivative @} from the last expression.

Hence
dJ(w, V) = / @ ArP +% / H(® — &4)*<V(0),n>
+ % /d (@ — Dg)* <V (0),v) (32)

by Green’s formula, we come to

dJ (o, V):/ PAF¢’F+%/ H(® — &4)* < V(0),n)
1

+5 [ @=0rvorny - [ peviagy

+/6 Q- (VrP,v)

but since {(VrP,v) =0, Ar®, =0 in w and (V,n)=0 on I' the proof is
achieved. O

8.3.3. Proof of the Theorem 8.2

Thanks to the last results, Proposition 5.2 and Proposition 8.3, one can easily
check the following relaxation of the boundary condition of the shape boundary
derivative.

Lemma 8.14. The shape boundary derivative @' is regular and is given as follows, for
all P in H' (o) (i.e. for all &4 in H'(w)),

/8 PV v = /a (—Vr®V P+ [P} V(0).v> — (G V(s) Do

so also,

0P’
ov

e H? (9o).
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Thus, according to the previous results we come to the proof of Theorem 8.2.
Indeed, by embedding relation (28) in Eq. (4) and via the above lemma it will be
enough to refer to Theorem 8.1, and so the proof is achieved. [

8.4. Fractured case

The fractured manifold w\c is regularized by the family with parameter of
piecewise smooth domain (w\¢),. Therefore, we apply Theorem 8.2 and we get at
each fixed e.

Proposition 8.4. The shape boundary derivative is solution to the following problem:

—Ar®. =0 in (w\o),

86(11::1“ - (f - divy V7¢z;) < V(0)> ve) + (V}'¢z;-fz:) < vy V(O)-Tz:; Ve ) (33)

+ ke, ver > (VyP,.7,) < V(0), 7. ) on O(w\o),

and also,

Proposition 8.5. We have, at each ¢;

1

dJ(((D\O’)s, V) = 5 /d( ) (¢s: - ¢d>2< V(O)7Vs> - /d( ) Pé}<vF®;F7v8> (34)
w\o \0),

therefore,

/ P;;<vf¢;rav;;> = _/ VF¢VFP< V(O),v>dy
d(w\o) O(w\o)

B &

+ /mw\ﬁ) pLV(0),v) — Z (Gl V(i) s

&

Thanks to the continuity of the Neumann tangential problem with respect to the
envelope e, we supply this lemma.

1
Lemma 8.15. There exist & in H2(a) such that [PeoT,), converges to &.
Proof of Lemma 8.15. Let ¢ be in H'(w\o), then

/ l(w\a)uvl"Pva"(P = / VrP.NVro.
w\o

(w\o),
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Green’s formula yields

/ VrP.NVrop+ / PAro = / P.(NVrp,v.)
(w\o) (0\o), d(w\o),

B

the continuity of the Neumann problem result provides that the left hand side
converges with respect to e. Hence the right-hand one converges. Indeed, by a change
of variable we get

/ PV, vy = / PoT, (V1o Ty e T, 5 ()
de,

therefore, the right-hand side converges for all ¢ in H'(w\c) so also for any

1
{Vr@eT,,v,y in H 2(g). Which provides the proof of the lemma. O

Therewith, we have an optimal relaxation of the normal component of the
gradient tangential of the shape boundary derivative @ .

Proposition 8.6. Let T, be the flow mapping associated with the vector field E,. For
1
any & in H2(o) (i.e. for any ®4 in H'(w\o)), we have

1in’(1) [V (PlpeT,), v do = — / Vr®VrPLV(0),v)> dy

g

- [ v = [ gr)y do
bl o
+ D (Gl Vs e (35)

-1
and so N @, ..v; converges toward a function ¢ = (q*,q") in H?2 (o).

The proof is a direct consequence of Eq. (34) and Lemma 8.15.

Remark 8.8. As far as we know, because of the lack of regularity, we are not able to
confirm whether the function ¢ is a shape derivative of the state &.

9. Existence of an optimal domain
9.1. A necessary optimality condition

For >0, we consider the following penalization of the functional J:

o . 2
Jy(w\o) = J(w\o) +§ afpnelgp o [z2(0.1)
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where X7 is the set of parametrizations for the curve ¢ linked to the open
interval (0, 1).

2 = {a"eH*(0,1);6"(0) = 51,6"(1) = 55 (")’ #£0}
Assume that w\o, is an optimal admissible domains, i.e.

Jy(w\o,) = 1;161? Jy(w\a),

where
2 ={o=0"(0,1)}

2 is compact with the Hausdorff topology.

Proposition 9.1. An admissible domain w\oc. (with respect to fracture o,) within the set
2 is optimal if and only if, for any field V in v, (see [2])

d‘]@ ((D\O'*, V) =0

9.2. Existence of an optimal domain

Let o, converge towards o, with respect to the Hausdorff topology, i.e. w\g,
converges towards w\o, with respect to the Hausdorff complementary topology. We
will prove the Kuratowski continuity of the Sobolev space, (see [1,5]).

9.2.1. Kuratowski continuity of the Sobolev space

Theorem 9.1. Given ¢ a test function belonging to H!(w\c), then there exists ¢,
belongs to H!(w\c,), such that

Vi) @n = Lo @ in L* (o),

Lwion) Vi@n = Lo Ve in L* (o).

Proposition 9.2. Let 6, be a sequence in X which converges toward o in X. There exists
Ppax such for all 0 <h<hy,y, there exists N >0 such that

(1) for any n>N, o, lays in a tubular neighbourhood Uj, of thickness 2h.
(i) b, the oriented distance function to Q is defined in U, and belongs to C*(Uy), the
projection p is also well-defined in Uy, and belongs to C'(U},).
(i) by, the oriented distance function to Q,, is defined in U, and belongs to C*(Uy), the
projection p, is also well-defined in U, and belongs to C'(Uy).
(iv) b, converges towards b in C*(Uy), and p, converges towards p in C'(Uy).
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X

Vi, (x) * \

On

. n (op0)

Fig. 3. Building of g,.

It follows for any n> N that

Proposition 9.3. For any x in 6, the intersection between the normal to 6, at x and o is
reduced to a single point denoted g,(x). Moreover the mapping g, is a C'-
diffeomorphism from a, to ¢ and we have (Fig. 3)

V x€0,, gn(X) = x4 byogn(x).Vby(x)ea.

This formulation will allow us to build the test functions.

Proof of Theorem 9.1. Assume that the Jacobian of the diffeomorphism g, fulfills the
hypothesis: j(n) = 1. Therefore, it’s enough to choose ¢, = @og, and to adapt the
same technicalities as for the proof of Proposition 6.4. [

9.2.2. Continuity of the cost functional with respect to the domain

Proposition 9.4. The mapping w\o — J,(w\o) is lower semi-continuous.

In order to establish the proof, the following proposition will be needed.

Proposition 9.5. Let @, be the solution to the Neumann problem in (w\c,) and 1,
its characteristic. Then @, converges strongly to & solution to the Neumann problem.
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Proof of Proposition 9.5. Using the same arguments than in the proof of Proposition
6.4, we can bound in Lz(w) the sequences 145, P, and 1 4,)Vr®,. Then, basically,
the compactivor property and Theorem 9.1 provide the result. [

Proof of Proposition 9.4. Let ¢, be any minimizing sequence of J, in 2. On the one
hand, according to Proposition 9.5 the functional J(w\o,) converges to J(w\g). On
the other hand, let ¢¥ be the parametrization related to the curve o, realizing the
minimum, since ||o?||,2 <c one can extract a subsequence denoted also ¢/ which
converges weakly towards a such 4 in H?(0,1), then it converges strongly to 4 in
C'(0,1), therefore A(0) = 02(0) =5, and A(1) = ¢2(1) = s, so 4 is an immersion:
(X' #0). We have to prove that 4 is the minimum-parametrization for ¢. Indeed,
when n>N, o? = g, log? where ¢” is any parametrization for ¢, hence g, 'oo”
converges strongly towards A4 in C'(0,1), whereas g, ' converges towards Id,
it follows that g, 'a” converges strongly towards ¢”, whence by uniqueness / = o”,
therefore ¢” is a parametrization for the curve ¢. By the truth that the norm H? is
l.s.c., we come to

2 S 2
\IG"\IH2<11{1r%gf llon 772

Hence the curve ¢ minimizes the functional J,.
Thus the lower semi-continuity result is proved. [

10. Conclusion

We have investiguated the Laplace—Beltrami operator in a fractured manifold.
The boundary expression of the shape gradient of a cost functional governed by the
cracked manifold is provided. The shape boundary derivative is characterized in
smooth and non-smooth cases. The techniques used allow us to deal with the
situation in which the fracture needs not to be smooth and to extend the results to
lager classes of operators in the dimensional 7.

References

[1] J.P. Aubin, Mutational and Morphological Analysis: Tools for Shape Evolution and Morphologen-
esis, in: Systems and Control: Foundations and Applications, Birkhauser Boston, 1999 (in English).

[2] J.P. Aubin, Applied Functional Analysis: Pure and Applied Mathematic, in: A Wiley-Interscience
Series of Texts, Monographs and Tracts, Library of Congress Cataloging in Publication Data, 1979
(in English).

[3] T. Aubin, Nonlinear analysis on manifolds. Monge-Ampere equations, in: Grundlehren der
Mathematischen Wissenschaften, Bd. 252, Springer, New York, Heidelberg, Berlin, XII, 1982,
204pp. (in English).

[4] H. Brezis, Analyse fonctionnelle. Theorie et applications, in: Collection Mathematiques Appliquees
pour la Maitrise. Masson, Paris, XIV, 1983, 233pp. (in French).



384 J. Ferchichi, J.-P. Zolésio | J. Differential Equations 196 (2004) 340-384

[5] D. Bucur, Characterization for the Kuratowski limits of a sequence of Sobolev spaces, J. Differ.
Equations 151 (1) (1999) 1-19 Art. No. ID jdeq.1998.3497 [ISSN 0022-0396] http://www.academic-
press.com/jde.

[6] M. Cuer, J.P. Zolésio, Control of Singular problem via differentiation of a min-max, Syst. Control
Lett. 11 (2) (1988) 151-158.

[71 M.C. Delfour, J.P. Zolésio, A boundary differential equation for thin shells, J. Differential Equations
119 (1995) 426-449.

[8] M.C. Delfour, J.P. Zolésio, Shape analysis via oriented distance functions, J. Funct. Anal. 123 (1)
(1994) 129-201 (in English).

[9] M.C. Delfour, J.P. Zolésio, Distance functions, curvature and shell theory, in: A. Damlamian, J.
Spruck, A. Visintin (Eds.), Proceedings of the Motion by Mean Curvature and Related Topics,
Mathematical Sciences and Applications, Gakkotosho, Tokyo.

[10] M.C. Delfour, J.P. Zolésio, Shape sensitivity analysis via min-max differentiability, SIAM J. Control
Optim. 26 (1988) 834-862.

[11] M.C. Delfour, J.-P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus, and
Optimization, in: Advances in Design and Control, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, USA, 2001.

[12] F.R. Desaint, J.P. Zolesio, Manifold derivative in the Laplace—Beltrami equation, J. Funct. Anal. 151
(1) (1997) 234-269, Art. No.FU973130 [ISSN 0022-1236].

[13] E. Ekeland, R. Temam, Analyse convexe et problemes variationnels, in: Etudes mathematiques,
Vol. IX, Dunod, Gauthier-Villars, Paris, Bruxelles, Montreal, 1974, 340pp. (in French).

[14] J. Ferchichi, J.P. Zolésio, Shape derivative on a fractured manifold, in: Shape Optimazation and
Optimal Design, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 2000.

[15] G. Grisvard, Edge behavior of the solution of an elliptic problem, Math. Nachr. 132 (1987) 281-299.

[16] J. Sokolowski, J.P. Zolésio, Introduction to shape optimization: shape sensitivity analysis,
in: Springer Series in Computational Mathematics, Vol. 16, Springer, Berlin, 1992, 250pp. (ISBN
3-540-54177-2) (in English).

[17] J. Cagnol, J.P. Zolésio, Shape derivative in the wave equation with Dirichlet boundary conditions,
J. Differential Equations 158 (1999) 175-210.

Further reading

J.H. Argyris, J. St. Doltsinis, On the natural fomulation and analysis of large deformation coupled
thermomechanical problems, Comput. Methods Appl. Mech. Eng. 25 (1981) 195-253.

B. Boisgérault, J.P. Zolésio, Shape derivative of sharp functionals governed by Navier—Stokes flow, in:
Partial Differential Equations, Praha, 1998, Chapman Hall/CRC Research Notes in Mathematics,
Vol. 406, Chapman Hall/CRC, Boca Raton, FL, 2000, pp. 49-63 (in English).

D. Bucur, J.P. Zolésio, N-dimensional shape optimization under capacity constraint, J. Differential
Equations 123 (1995) 504-522.


&ast;http://www.academicpress.com/jde
&ast;http://www.academicpress.com/jde

	Shape sensitivity for the Laplace-Beltrami operator with singularities
	Introduction and motivation
	Preliminaries
	Velocity method
	Intrinsic geometry
	The oriented distance function
	The projection mapping
	Laplace-Beltrami operator

	The Neumann tangential problem

	Study over manifolds in several cases
	Case of a Lipschitzian manifold
	Shape analysis
	Moving domain

	Material derivative
	Existence of the material derivative of the state
	Proof of Theorem 4.1

	Shape gradient distributed expression

	Shape gradient boundary expression
	Hidden boundary regularity
	Extractor method

	The min-max theory
	Lagrangian and saddle-points
	Min-max differentiation

	Shape gradient boundary expression
	First expression
	Limit in the boundary expression


	Fractured manifold
	Regularized problem
	Shape analysis
	Material derivative
	Shape gradient

	Continuity of the Neumann problem
	A priori estimate
	Choice of the Envelope eepsiv
	Boundeness of the first eigenvalue
	Strong convergence

	Shape gradient convergence
	Jump through the crack

	Study of the shape boundary derivative
	Shape boundary derivative
	Smooth case
	Proof of Theorem 8.1
	Piecewise smooth case
	Existence of the shape boundary derivative
	Second boundary expression of the shape gradient
	Proof of the Theorem 8.2

	Fractured case

	Existence of an optimal domain
	A necessary optimality condition
	Existence of an optimal domain
	Kuratowski continuity of the Sobolev space
	Continuity of the cost functional with respect to the domain


	Conclusion
	References
	Further Reading


