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a University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17, 2000 Maribor,
Slovenia
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Abstract

Hamming graphs are Cartesian products of complete graphs and partial Hamming graphs are their
isometric subgraphs. The Hamming polynomial h(G) of a graph G is introduced as the Hamming subgraphs
counting polynomial. Kk -derivates ∂k G (k ≥ 2) of a partial Hamming graph are also introduced. It is proved
that for a partial Hamming graph G, ∂h(G)

∂xk
= h(∂k G). A couple of combinatorial identities involving the

coefficients of the Hamming polynomials of Hamming graphs are also proven.
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we introduce Hamming polynomials as counting polynomials (in several
variables) that count induced subgraphs of a given graph which are isomorphic to Hamming
graphs. More precisely, we define the Hamming polynomial

h(G) = h(G; x2, x3, . . . , xω)

of a graph G as∑
r2,r3,...,rω≥0

α(G; r2, r3, . . . , rω)xr2
2 xr3

3 · · · xrω
ω ,
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Fig. 1. A partial Hamming graph.

where α(G; r2, r3, . . . , rω) is the number of induced subgraphs of G isomorphic to the Hamming
graph K r2

2 � K r3
3 � · · · � K rω

ω , and ω = ω(G) is the clique number of G. Note that a variable x1
is not present in the Hamming polynomial, the reason being that K1 is the unit for the Cartesian
product. For instance, h(Kn; x2, x3, . . . , xn) = n + ∑n

r=2

( n
r

)
xr . For another example consider

the graph from Fig. 1. Its Hamming polynomial is equal to 11 + 19x2 + 5x2
2 + 6x3 + x2x3 + x4.

Special Hamming polynomials
∑

r2≥0 α(G; r2)xr2
2 have been introduced in [5] and named

cube polynomials. They have been further studied and applied in [2,6]. In particular, using the
cube polynomials, one can obtain a very general form of the so-called Euler-type formulas for
median graphs that were first presented in [14].

The natural environment for Hamming polynomials is formed by the isometric subgraphs of
Hamming graphs, called partial Hamming graphs. These graphs have many intriguing structural
properties and have been extensively studied, see [3,4,8,11,12,17,18].

We proceed as follows. In the rest of this section, we give definitions and concepts needed.
In the next section we introduce the Kk-derivate ∂k G of a partial Hamming graph G. For this
purpose, we in particular extend an idea of Chung, Graham, and Saks from [7]. Our main result
then asserts that the partial derivatives of the Hamming polynomials and the Kk-derivates of
partial Hamming graphs are connected as follows. For any partial Hamming graph G and for any
k, 2 ≤ k ≤ ω,

∂h(G; x2, . . . , xω)

∂xk
= h(∂k G; x2, . . . , xω).

In the last section we study the coefficients α(G; 0, . . . , 0, d) where G is a Hamming graph,
and obtain a couple of combinatorial identities. Along the way, we also observe that Hamming
polynomials are multiplicative on the Cartesian product of graphs.

The Cartesian product G � H of graphs G and H is the graph with the vertex set V (G)

× V (H ) where the vertex (a, x) is adjacent to the vertex (b, y) whenever ab ∈ E(G) and x = y,
or a = b and xy ∈ E(H ). The one-vertex graph K1 is the unit for this operation. The Cartesian
product is commutative and associative, hence the Cartesian product of several factors is well
defined. The product of k copies of K2 is called the k-cube while the graphs of the form

G = Kn1 � Kn2 � · · · � Knr ,

where r ≥ 1 and ni ≥ 1, i = 1, . . . , r , are known as Hamming graphs. It is clear what we mean
by K r

n for r ≥ 1. We also define K 0
n = K1.
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A subgraph H of a graph G is called isometric if dH (u, v) = dG(u, v) for all u, v ∈ V (H ),
where dG(u, v) denotes the usual shortest path distance. H is convex if, together with u, v

∈ V (H ), all shortest u, v-paths from G belong to H . Isometric subgraphs of k-cubes are known
as partial cubes, while partial Hamming graphs are isometric subgraphs of Hamming graphs.

2. Kk-derivates of partial Hamming graphs

In the study of partial Hamming graphs, the following relation was used. Edges ab, xy
∈ E(G) are in relation ∼ if d(x, a) = d(y, b) = d(x, b)−1 = d(y, b)−1. It was first introduced
by Djoković in the context of bipartite graphs [9] where it coincides with the Winkler’s relation
Θ [18]. Wilkeit [17] was the first to use the relation ∼ in the context of partial Hamming graphs.

The relation ∼ is reflexive and symmetric, but it is in general not transitive, cf. K2,3. However,
in partial Hamming graphs, ∼ is an equivalence relation on E(G) and ∼⊂ Θ .

In this section we first extend the relation ∼ to a family of relations ∼k and then use
them to define the Kk-derivates of partial Hamming graphs. Then we prove our main result
— Theorem 2.3.

Let G be a partial Hamming graph and let k be an integer, 2 ≤ k ≤ ω. Let Kk(G) be the set of
all complete subgraphs of G on k vertices. Then we introduce the relation ∼k defined on Kk(G)

in the following way. Complete subgraphs X, Y ∈ Kk(G) on vertices x1, . . . , xk and y1, . . . , yk ,
respectively, are in relation ∼k , if the notation of vertices can be chosen in such a way that there
exists an integer p such that

dG(xi , y j ) = p + 1 for i �= j, and dG(xi , yi ) = p. (1)

Note that ∼2 =∼. We also say that X and Y are parallel when they are in relation ∼k . Such a
parallelism relation was studied by Chung et al. [7], where the definition is restricted to quasi-
median graphs and to maximal complete subgraphs. (Recall that quasi-median graphs form a
proper subclass of partial Hamming graphs, cf. [1,11].)

Lemma 2.1. Let G be a partial Hamming graph and 2 ≤ k ≤ ω. Then ∼k is an equivalence
relation on Kk(G).

Proof. Clearly, ∼k is reflexive and symmetric, and different complete subgraphs X, Y ∈ Kk(G)

that share a vertex cannot be in relation ∼k . Let X , Y , and Z be pairwise disjoint complete
subgraphs from Kk(G) such that X ∼k Y and Y ∼k Z . Let xi , yi , and zi , 1 ≤ i ≤ k, be the
vertices of X , Y , and Z , respectively, where the notation is selected in the spirit of (1). Then for
any i �= j , the edge xi x j of X is in relation ∼ with the edge yi y j of Y and yi y j ∼ zi z j . Since
∼ is transitive, we derive xi x j ∼ zi z j and hence X ∼k Z . We conclude that ∼k is transitive as
well. �

Let E be an equivalence class of the relation ∼k , and let 〈E〉 be the subgraph of G induced by
the vertices from E . Note that 〈E〉 might not be connected. For instance, in C6 each equivalence
class with respect to ∼2 consists of two disjoint K2’s. We next show that 〈E〉 has a product
structure.

Lemma 2.2. Let G be a partial Hamming graph, 2 ≤ k ≤ ω, and E an equivalence class of ∼k .
Then there exists a graph UE such that 〈E〉 = Kk � UE .

Proof. Let 〈E〉 be induced by complete subgraphs X (1), X (2), . . . , X (t). We have already
observed that these complete subgraphs are pairwise disjoint. Let V (X (i)) = {x (i)

1 , x (i)
2 , . . . , x (i)

k }
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where the notation is selected such that d(x (1)
1 , x (i)

1 ) < d(x (1)
1 , x (i)

2 ) for i = 2, . . . , t . Since

x (1)
1 x (1)

2 ∼ x (i)
1 x (i)

2 , x (1)
1 x (1)

2 ∼ x ( j )
1 x ( j )

2 (i, j �= 1, i �= j), and because ∼ is transitive, we infer

that d(x (i)
r , x ( j )

r ) < d(x (i)
r , x ( j )

s ) for any i �= j and r �= s. Set now UE = 〈{x (1)
1 , x (2)

1 , . . . , x (t)
1 }〉.

Let i �= j . Then for r �= s we have x (i)
r x ( j )

s �∈ E(G), while x (i)
r x ( j )

r ∈ E(G) if and only if
x (i)

1 x ( j )
1 ∈ E(G). It follows that 〈E〉 = Kk � UE . �

Let G be a partial Hamming graph and E1, . . . , Er the equivalence classes of relation ∼k . By
Lemma 2.2, there exist graphs Ui , 1 ≤ i ≤ r , such that 〈Ei 〉 = Kk � Ui . Then we define the
Kk-derivate ∂k G of G (with respect to k) as the disjoint union of the graphs Ui :

∂k G =
r⋃

i=1

Ui .

This definition is a generalization of the concept ∂G introduced for median graphs G in [4], since
for a median graph G, ∂kG is defined only for k = 2 where ∂2G = ∂G.

We are now ready for our main theorem.

Theorem 2.3. Let G be a partial Hamming graph. Then for any k, 2 ≤ k ≤ ω,

∂h(G; x2, . . . , xω)

∂xk
= h(∂k G; x2, . . . , xω).

Proof. Let H be a subgraph of G isomorphic to K r2
2 � K r3

3 � · · · � K rω
ω , where rk ≥ 1 and

ri ≥ 0 for i �= k. Clearly, H contributes 1 to the coefficient α(G; r2, r3, . . . , rω). For any factor
graph of H isomorphic to Kk , let us denote it with K , we can write

H = K � (K r2
2 � · · · �K rk−1

k � · · · � K rω
ω ).

Let E be the equivalence class of K with respect to ∼k . Then K has a vertex in common with
any other factor of H , hence K r2

2 � · · · �K rk−1
k � · · · � K rω

ω ⊆ UE . Therefore K contributes 1
to the coefficient α(∂k G; r2, r3, . . . , rk −1, . . . , rω) and there are rk copies of Kk each belonging
to its own equivalence class.

Similarly, if we have a Hamming graph X that contributes to a coefficient
α(∂k G; r2, r3, . . . , rk − 1, . . . , rω), then Lemma 2.2 implies that there exists a UE such that
X ⊆ UE , where UE � Kk is an induced subgraph of G. Hence X � Kk contributes 1 to the
coefficient α(G; r2, r3, . . . , rω). We conclude that

∂h(G; x2, . . . , xω)

∂xk
=

∑
r2,...,rω≥0

rkα(G; r2, . . . , rk, . . . , rω)xr2
2 · · · xrk−1

k · · · xrω
ω

= h(∂k G; x2, . . . , xω). �

To illustrate Theorem 2.3 consider the partial Hamming graph G from Fig. 1. The equivalence
classes of the relation ∼2 are represented by the edge labels in Fig. 2.

The graph ∂2G is shown in Fig. 3. Thus, h(∂2G) = 19 + 10x2 + x3 which is indeed equal to
∂h(G)
∂x2

.

The equivalence classes of the relation ∼3 induce a K2 � K3 and four triangles, that is, four
copies of K1 � K3. Hence, the graph ∂3G is the disjoint union of an edge and four isolated
vertices, hence h(∂3G) = 6 + x2. Finally, ∂4G is just a vertex and therefore h(∂4G) = 1.
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Fig. 2. Equivalence classes of the relation ∼2 on E(G).

Fig. 3. The K2-derivate of G .

In order to be able to introduce Kk-derivates of a higher order in the sense of [4], all
components of every Ui should be partial Hamming graphs, because then also ∂k G would consist
of partial Hamming graphs as components. We formulate as an open problem whether or not this
concept can be formulated this way.

Problem 2.4. Let G be a partial Hamming graph, and E an equivalence class of the relation ∼k .
Is each connected component of 〈E〉 a partial Hamming graph?

Note that in the case of quasi-median graphs, this is true; more precisely 〈E〉 is a convex
subgraph in G, hence a quasi-median graph. One can derive this fact from [1, Theorem 1].

3. Coefficients of Hamming polynomials in Hamming graphs

In this section we take a closer look at the coefficients α(G; 0, . . . , 0, d), where G is a
Hamming graph. This enables us to obtain a couple of combinatorial identities. Related identities
have been previously proved for hypercubes and median graphs, cf. [15,16], as well as for quasi-
median graphs [4]. We first recall the following well-known fact.

Lemma 3.1. Let H = Kn be an (induced) subgraph of a Cartesian product graph G. Then H
projects isomorphically onto a factor of G.

With this lemma the following result follows easily.
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Proposition 3.2. For any graphs G and H , h(G � H ) = h(G)h(H ).

We next state the main result of this section. To prove it we apply a double counting
of Hamming subgraphs and the binomial inversion, extending similar ideas for hypercubes
from [10,13]. Recall that the binomial inversion asserts that

an =
n∑

k=0

(n

k

)
bk (∀n ≥ 0)

if and only if

bn =
n∑

k=0

(−1)n−k
(n

k

)
ak (∀n ≥ 0).

Theorem 3.3. Let G be the Hamming graph K n
r and let αd = α(G; 0, . . . , 0, d). Then

n∑
k=0

(−1)kαk = (r − 1)n and −
n∑

k=0

(−1)kkαk = n(r − 1)n−1.

Proof. Note first that the vertices of G = K n
r can be identified with the words of length n over

the alphabet {1, 2, . . . , r}, where two words are adjacent if and only if they differ in precisely
one position. Hence, by Lemma 3.1, αd can be considered as the number of words of length n
over the alphabet {1, 2, . . . , r, K } containing d times the character K . Each character represents
the part of a factor Kr from the product we take to form a K d

r . It may be either the whole clique
(character K ) or just a vertex. In the latter case, we can choose among r vertices represented by
1, . . . , r .

We now compute αd in two different ways.
First, we choose d positions out of n for characters K . The remaining n − d positions can be

filled with the integers in the range [1, r ]. Therefore,

αd =
(n

d

)
rn−d .

On the other hand, we can first position the symbol 1. There can be any number of them from 0
to n − d . Next, we place d copies of the character K in the remaining l positions, d ≤ l ≤ n.
Finally, we place symbols 2, . . . , r in the remaining l − d positions. So we get

αd =
n∑

l=d

(n

l

)(
l

d

)
(r − 1)l−d .

The above double counting thus yields the following identity

(n

d

)
rn−d =

n∑
l=d

(n

l

)(
l

d

)
(r − 1)l−d =

n∑
l=0

(n

l

) (
l

d

)
(r − 1)l−d .

Applying the binomial inversion we get

(n

d

)
(r − 1)n−d =

n∑
l=0

(−1)n−l
(n

l

)(
l

d

)
r l−d . (2)
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When d = 0, this implies that

(r − 1)n =
n∑

l=0

(−1)n−l
(n

l

)
r l =

n∑
k=0

(−1)k
(n

k

)
rn−k =

n∑
k=0

(−1)kαk

which proves the first identity of our theorem.
For the second identity consider Eq. (2) for d = 1:

n(r − 1)n−1 =
n∑

l=0

(−1)n−l
(n

l

)
lr l−1 =

n∑
k=0

(−1)k(n − k)
αk

r
.

Now, using the first identity, we obtain

−
n∑

k=0

(−1)kkαk = nr(r − 1)n−1 − n(r − 1)n = n(r − 1)n−1

which completes the proof. �
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