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In this paper, we are concernedwith a special timetabling problem. It was posed to us by the

administrationof ouruniversity and stems fromtheadoptionof theBritish-American system

of university education in Germany. This change led to the concrete task of constructing a

timetable that enables the undergraduate education of secondary school teachers within

threeyears in the “normal case”andwithin fouryears in thecaseof exceptional combinations

of subjects. We develop two relation-algebraic models of the timetabling problem and in

each case algorithms for computing solutions. The latter easily can be implemented in the

Kiel RelView tool showing that RelView can be used for timetabling.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The studyof relationshas its roots in the secondhalf of the19th centurywith thepioneeringworksofBoole anddeMorgan.

Later on, Peirce and Schröder investigated the algebra of relations. The modern axiomatic development of relation algebra

starts with the fundamental work of Tarski (cf. [16]) and his co-workers. In the last two decades this formalization has

widely been used by many mathematicians and computer scientists as a very convenient base for formally dealing with

fundamental concepts like graphs, orders, lattices, games and combinatorics in mathematics and data bases, Petri nets,

preference and scaling, algorithmics, data types and semantics of programming languages in computer science. A lot of

examples and references to relevant literature can be found in [5–8,15] and the proceedings of the international conferences

“Relational Methods in Computer Science”.

The construction of timetables for educational institutions and other purposes (see, e.g., [12] or [9], Section 5.6, for an

overview or the proceedings of the international conferences “Practice and Theory of Automated Timetables” for many

details) is also an area where relation algebra successfully has been applied. In [13,14] a relation-algebraic specification

of an abstract timetabling problem is presented that covers a lot of concrete cases. It uses two input relations, viz. A that

specifies whether a meeting can take place in a time slot and P that specifies whether a participant takes part in a meeting.

Then a solution of the timetabling problem is a relation S between the meetings and the time slots that is univalent and

total (i.e., a mapping in the relation-algebraic sense of [15], Section 4.2) and fulfils S ⊆ A and (PPT ∩ I )S ⊆ S . The first

inclusion says that if S assigns a meeting m to time slot t, then m can take place in t, and the second inclusion ensures that

if different meetingsm andm′ are in conflict, thenm andm′ are assigned to different time slots. In [10,11] this specification

is reformulated in such a way that instead of A and S their corresponding vectors on the direct product of the meetings and

the time slots are used. Interpreting a relation column-wisely as a list of vectors, this allows to combine relation algebra and

randomized search heuristics and results in programs of the Kiel RelView tool (see [1,3]) for computing solutions.

In this paper, we combine again relation algebra and the computer system RelView to model another abstract timetab-

ling problem and to compute solutions. The problem was posed to us by the administration of the University of Kiel and
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stems from Germany’s agreement to the so-called Bologna accord. A consequence of this fact is the current change from the

classical German university education system to the British-American undergraduate–graduate system with Bachelor and

Master degrees. In particular with regard to the undergraduate education of secondary school teachers this change causes

some difficulties. A very serious one is to enable a three years duration of study without to abolish Germany’s tradition

of (at least) two different subjects. Exactly this demand is the background of the administration’s timetabling problem.

Given its informal description, its input data and some additional desirable properties of possible solutions, we have been

asked to construct a timetable that enables a three years duration of undergraduate-study in the case of the most selected

combinations of subjects and a four years duration of study in the case of exceptional combinations of subjects.

The original approach of our university administration bases on the three categories “very frequently”, “less common” and

“hardly ever selected” of combinations of subjects and a rotation of time slots realized by a division of the subjects into groups

and blocks. In Section 3, first, we will present the informal description we have obtained. Guided by [10,13,14], we then will

show how it can be transformed into a formal relation-algebraic model of a new kind of an abstract timetabling problem.

Using the latter as starting point, finally, we will formally develop an algorithm for testing solvability of the timetabling

problem and for obtaining solutions if such exist. In essence, the algorithm is given by a relation-algebraic expression that

immediately canbe translated into theprogramming languageof theRelView tool. So,RelView canbe applied to timetabling.

With regard to its mathematical substance, the relation-algebraic model resulting from the administration’s original

approach turned out to be very attractive. Especially it allows – as we will demonstrate in Section 4 – to define the notion

of isomorphic solutions and to compute, besides all solutions as done by the algorithm of Section 3, all solutions up to

isomorphism only. This is very advantageous when solutions have to be evaluated and compared. However, in concrete

applications the model proved to be cumbersome. Furthermore, our RelView experiments showed that a trisection of the

combinations is unnecessary in practice since, to obtain at least one solution of the timetabling problem, in all realistic cases

the categories had to bemodified in such a way that “less common” became almost empty. As a consequence, we developed

a more simple alternative to the administration’s model that works with two categories only and, guided by the original

approach, an algorithm for computing solutions in case of the newmodel, too. All this is presented in Sections 5. In Section 6,

we sketch a second method for obtaining solutions in case of the alternative model that bases on a concept of graph theory,

viz. maximum stable sets.

A disadvantage of the new model and its algorithms is that for solvable timetabling problems the number of computed

solutions may become very large, but in essence only a few of them are non-isomorphic, i.e., really of interest. This makes it

difficult to compare solutions and to select a specific solution that fulfills additional properties. However, as we will show in

Section 7, the great advantage of the new model is that it allows a considerable reduction of the problem size. This enables

RelView to compute all solutions of the concrete timetabling problem posed to us by the administration of our university

within a few seconds only.

2. Relation-algebraic preliminaries

In this section, we provide the relation-algebraicmaterial used in the remainder of the paper. Formore details concerning

relation algebra, see [6,15] for example.

We denote the set (or type) of all relations with domain X and range Y by [X↔Y] instead of 2X×Y and write R : X↔Y

instead of R ∈ [X↔Y]. If the sets X and Y are finite, we may consider R as a Boolean matrix. This specific interpretation is

well suited for many purposes and also one of the possibilities to depict relations in RelView; cf. [1,3]. Therefore, we use

in this paper often matrix notation and terminology. Especially, we speak about rows, columns and entries of relations, and

write Rx,y instead of 〈x, y〉 ∈ R or x R y.

We assume the reader to be familiar with the basic operations on relations, viz. RT (transposition, conversion), R (com-

plement), R ∪ S (join), R ∩ S (meet), RS (composition, multiplication), R ⊆ S (inclusion), and the special relations O (empty

relation), L (universal relation) and I (identity relation). Each type [X↔Y] forms with the operations , ∪, ∩, the ordering

⊆ and the constants O and L a complete Boolean lattice. Further well-known rules are, for instance, RTT = R, RT = R
T

and that R ⊆ S implies RT ⊆ ST. The theoretical framework for these rules and many others to hold is that of an (ax-

iomatic, typed) relation algebra. For each type respectively pair / triple of types we have those of the set-theoretic relations

as constants and operations of this algebraic structure. The axioms of a relation algebra are the axioms of a complete Boolean

lattice for complement,meet, join, ordering, empty relation anduniversal relation, the associativity and neutrality of identity

relations for composition, the equivalence of QR ⊆ S, QT S ⊆ R and S RT ⊆ Q (Schröder rule) and that R 
= O implies

LRL = L (Tarski rule). From the latter axiom we obtain that either LRL = L or LRL = O and that relational inclusion can

be described via

R ⊆ S ⇐⇒ L(R ∩ S )L = L. (1)

Typing the universal relations of the left-hand side of L(R ∩ S )L = L in (1) in such a way that the universal relation of the

equation’s right-hand side has a singleton set 1 as domain and range and using the only two relations of [1↔1] asmodel for

the Booleans, it is possible to translate every Boolean combinationϕ of relation-algebraic inclusions into a relation-algebraic
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expression e such that ϕ holds if and only if e = L. This follows from the fact that on [1↔1] the relational operations , ∪
and ∩ directly correspond to the logical connectives ¬, ∨ and ∧.

There are some relation-algebraic possibilities tomodel sets. Our firstmodeling uses (column) vectors, which are relations

vwith v = vL. Since for a vector the range is irrelevant, we considermostly vectors v : X↔1with the singleton set 1 = {⊥}
as range and omit in such cases the subscript ⊥, i.e., write vx instead of vx,⊥ and say then that the x-entry of v is 1. Such a

vector can be considered as a Boolean matrix with exactly one column, i.e., as a Boolean column vector, and represents the

subset {x ∈ X | vx} of X . Sets of vectors are closed under forming complements, joins, meets and left-compositions Rv. As a

consequence, for vectors property (1) simplifies to

v ⊆ w ⇐⇒ L(v ∩ w ) = L. (2)

A non-empty vector v is a point if vvT ⊆ I, i.e., it is injective. This means that it represents a singleton subset of its domain

or an element from it if we identify a singleton set {x} with the element x. In the matrix model, hence, a point v : X↔1 is a

Boolean column vector in which exactly one entry is 1.

Given y ∈ Y , with R(y) we denote the y-column of the relation R : X↔Y . That is, R(y) has type [X↔1] and for all x ∈ X

are R
(y)
x and Rx,y equivalent. To compare the columns of two relations R and Swith the same domain X and possible different

ranges Y and Y ′, we use the symmetric quotient

syq(R, S) = RT S ∩ R
T
S (3)

of them. The type of syq(R, S) is [Y ↔Y ′], and transforming (3) into a component-wise notation we have for all y ∈ Y and

y′ ∈ Y ′ that syq(R, S)y,y′ if and only if R(y) = S(y
′).

As a second way to deal with sets, we will apply the relation-level equivalents of the set-theoretic symbol ∈, that is,

membership-relations M : X↔2X . These specific relations are defined by demanding for all elements x ∈ X and sets Y ∈ 2X

that Mx,Y if and only if x ∈ Y . A simple Boolean matrix implementation of membership-relations requires an exponential

number of bits. However, in [2,3] an implementation of M : X↔2X using binary decision diagrams (BDDs) is presented,

where the number of BDD-vertices is linear in the size of the base set X . This implementation is part of RelView.

Finally, wewill use injectivemappings formodeling sets. Given an injective function ι : Y → X in the usualmathematical

sense,wemay consider Y as a subset ofX by identifying itwith its image under ι. If Y is actually a subset ofX and ι is given as a

relation of type [Y ↔X] such that ιy,x if and only if y = x for all y ∈ Y and x ∈ X , then the vector ιTL : X↔1 represents Y as

a subset of X in the sense above. Clearly, the transition in the other direction is also possible, i.e., the generation of a relation

inj(v) : Y ↔X from the vector representation v : X↔1 of the subset Y ofX such that for all y ∈ Y and x ∈ Xwehave inj(v)y,x
if and only if y = x. We obtain inj(v) by removing from I : X↔X all rows which correspond to a 0-entry in v. The relation

inj(v) is an injective mapping in the relation-algebraic sense. A combination of such relations with membership-relations

allows a column-wise representation of sets of subsets. More specifically, if the vector v : 2X ↔1 represents a subset S of 2X

in the sense above, i.e., S equals the set {S ∈ 2X | vS}, then for all x ∈ X and Y ∈ S we get the equivalence of (M inj(v)T)x,Y
and x ∈ Y . This means, that the elements of S are represented precisely by the columns of the relation M inj(v)T : X↔S .

Given a direct product X × Y of sets X and Y , there are the natural projections which decompose a pair u = 〈u1, u2〉
into its first component u1 and its second component u2. (Throughout this paper, pairs u are assumed to be of the form

u = 〈u1, u2〉, i.e., the first component of u is denoted by u1 and the second component by u2.) For a relation-algebraic

approach, it is very useful to consider instead of these two functions the two corresponding projection relationsπ : X×Y ↔X

and ρ : X×Y ↔Y such that, given any u ∈ X×Y , it holds πu,x if and only if u1 = x and ρu,y if and only if u2 = y. Projection

relations algebraically allow to specify the parallel composition R ‖ S : X×X′ ↔Y×Y ′ of relations R : X↔Y and S : X′ ↔Y ′
in such a way that (R ‖ S)u,v is equivalent to Ru1,v1 and Su2,v2 for all u ∈ X×X′ and v ∈ Y×Y ′. We get this property via the

definition

R ‖ S = πRσT ∩ ρSτT, (4)

where π : X×X′ ↔X and ρ : X×X′ ↔X′ are the two projection relations of X×X′ and σ : Y×Y ′ ↔Y and τ : Y×Y ′ ↔Y ′
are those of Y ×Y ′.

We end this section with two functions (in the usual mathematical sense) which establish a Boolean lattice isomor-

phism between the two Boolean lattices [X↔Y] and [X×Y ↔1]. The direction from [X↔Y] to [X×Y ↔1] is given by the

isomorphism vec, where

vec(R) = (πR ∩ ρ)L (5)

defines the vector vec(R) corresponding to the relation R, and that from [X×Y ↔1] to [X↔Y] by the inverse isomorphism

rel, where

rel(v) = πT(ρ ∩ vLT) (6)
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defines the relation rel(v) corresponding to the vector v. In the two equations (5) and (6) π : X×Y ↔X andρ : X×Y ↔Y are

the projection relations of the underlying direct product and L is a universal vector of type [Y ↔1]. Using a component-wise

notation, these definitions say that for all x ∈ X and y ∈ Y we have Rx,y if and only if vec(R)〈x,y〉 and v〈x,y〉 if and only if

rel(v)x,y. Decisive for our latter applications is

vec(QSR) = (Q ‖ RT)vec(S). (7)

Property (7) is proved in [10,11] using the definition (4) and the relation-algebraic axiomatization of the projection rela-

tions of direct products given, for example, in [15]. Two immediate consequences of (7) are the special cases vec(QS) =
(Q ‖ I)vec(S) and vec(SR) = (I ‖ RT)vec(S).

3. Timetabling using the administration’s original approach

The background of the timetabling problem of this paper is as follows: presently at our university (the CAU Kiel) there

exist 34 different subjects for the undergraduate education of secondary school teachers (and, to be correct, some others

professions which corresponds to the former education in these subjects ending with a Magister degree). According to the

examination regulations, each student has to select two subjects. Experience with the classical system has shown that all

possible combinations roughly can be divided into three categories, viz. the very frequently ones, the less common ones and

those which are hardly ever selected. The goal is to construct a timetable that enables a three years duration of study for

combinations of the first category and a four years duration of study for combinations of the second category. Concretely this

means that there are no conflicts between the courses of the two subjects if they belong to the first category during the entire

duration of study and for the second category conflicts at the most appear in one of three years, which enforces a fourth

year of study. As a further goal, the number of conflicts should be very small. To this purpose, the university administration

divided the 34 subjects into 9 groups, denoted by A, B, . . . ,H, I, and then the groups in turn into three blocks 1, 2 and 3 as

shown in the following three tables via the block- and the group-columns:

year

group 1 2 3

A t1 t1 t1

B t2 t2 t2

C t3 t3 t3

block 1

year

group 1 2 3

D t1 t2 t3

E t2 t3 t1

F t3 t1 t2

block 2

year

group 1 2 3

G t1 t3 t2

H t2 t1 t3

I t3 t2 t1

block 3

The meaning of the three year-columns of the tables is as follows. First, each week is divided into three disjoint time slots of

equal size, denoted by t1, t2 and t3, and this partitioning remains constant over a long period. For each academic year then

each course of the undergraduate-education of secondary school teachers is assigned to a time slot in such a way that all

courses of a subject take place in the same time slot. The table on the left indicates that for the first block this assignment

remains constant over three academic years. For instance, every year all courses of a subject from group A take place in time

slot t1. For the other blocks, by contrast, the assignment of courses to time slots cyclically changes, as shown in the remaining

two tables. To give also here an example, all courses of a subject from group D take place in time slot tn in year n, 1 ≤ n ≤ 3.

An immediate consequence of the administration’s approach is that the duration of study is three years if and only if

the two subjects of the combination belong to different groups of the same block. Four years suffice to take part in the

combination’s courses if the subjects belong to groups of different blocks. Now, from our administration we obtained the

classification of the combinations and our task was to compute a function from the set of subjects to the set of groups with

the following properties:

(a) If two subjects are mapped to the same group, then they form a combination of the third category.

(b) If two subjects form a combination of the first category, then their groups belong to the same block.

Both (a) and (b) namely imply that all combinations of the most important first category belong to different groups of the

same block. In case that the desired function does not exist, we have been asked to compute at least a partial function for

which (a) and (b) hold. Thus, the administration expected to obtain enough information that allows to experiment with the

partitioning of the combinations such that, finally, one is found that allows a solution of the timetabling problem but still is

reasonable with respect to the frequency of the combination’s choices.

To formalize the just presented informal description to a general abstract timetabling problen, we assume S to denote a

finite set of subjects, G to denote a finite set of groups and B to denote a finite set of blocks. (In the above described concrete

case we have |S| = 34, |G| = 9 and |B| = 3.) For modeling the partitioning of groups into blocks, we furthermore assume

a relation Q : G↔B such that for all g ∈ G and b ∈ B we have Qg,b if and only if group g belongs to block b. Then the
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reflexive and symmetric relation B = QQT : G↔G fulfils

Bg,g′ ⇐⇒ g and g′ belong to the same block (8)

for all groups g, g′ ∈ G. And, finally, we assume a specification of the partition of the set of all possible combinations of

subjects into the three categories “very frequently”, “less common”and “hardly ever selected”by two relations, viz. J : S↔S

such that

Js,s′ ⇐⇒ s 
= s′ and s, s′ is a combination of the first category (9)

for all subjects s, s′ ∈ S, and N : S↔S such that

Ns,s′ ⇐⇒ s = s′ or s, s′ is a combination of the third category (10)

for all subjects s, s′ ∈ S. Then J ∪ N relates two subjects if and only if they are different and form a combination of the

second category. Note that also J and N are symmetric, J is irreflexive, and N is reflexive. The reflexivity of N is motivated by

the informal requirement that the duration of study is three years if and only if the two subjects of the combination belong

to different groups of the same block. The relations of (8) to (10) constitute the input of the university timetabling problem.

Based on them, now we relation-algebraically specify its output.

Definition 3.1. Given the three input relations B : G↔G, J : S↔S and N : S↔S, a relation S : S↔G is a solution of

the university timetabling problem if N S ⊆ S , JS ⊆ S B , STS ⊆ I and L ⊆ SL.

The four inclusions of Definition 3.1 are a relation-algebraic formalization of the above informal requirements. In the case

of N S ⊆ S this is shown by the following calculation. It starts with the logical formalization of property (a) and transforms

it step-by-step into the first inclusion of Definition 3.1, thereby replacing logical constructions by their relation-algebraic

counterparts.

∀ s, s′, g : Ss,g ∧ Ss′,g → Ns,s′ ⇐⇒ ¬∃ s, s′, g : Ss,g ∧ Ss′,g ∧ N s,s′

⇐⇒ ¬∃ s, g : Ss,g ∧ (N S)s,g

⇐⇒ ∀ s, g : (N S)s,g → S s,g

⇐⇒ N S ⊆ S .

In the same way the second inclusion JS ⊆ S B of Definition 3.1 is obtained from the logical formalization of property (b).

The remaining two inclusions of Definition 3.1 relation-algebraically specify S to be a univalent (third inclusion) and total

(fourth inclusion) relation, i.e., to be a mapping (in the relation-algebraic sense) from the set of subjects to the set of groups.

Based on an idea presented in [10], the above non-algorithmic relation-algebraic specification of a solution S of the

university timetabling problem now will be reformulated in such a way that instead of S its corresponding vector vec(S) is
used. This change of representation, finally, will lead to an algorithmic specification. The following theorem is the key of the

approach. In its inclusion L ⊆ πTv, by π : S×G↔S we denote the first projection relation of S×G.

Theorem 3.1. Assume the three input relations B : G↔G, J : S↔S and N : S↔S, a relation S : S↔G and a vector

v : S×G↔1 such that v = vec(S). Then S is a solution of the university timetabling problem if and only if (N ‖ I)v ⊆ v ,

(J ‖ I)v ⊆ (I ‖ B )v , (I ‖ I )v ⊆ v and L ⊆ πTv.

Proof. We show that for all n, 1 ≤ n ≤ 4, the nth inclusion of Definition 3.1 is equivalent to the nth inclusion of the theorem.

The following calculation proves the equivalence for the case n = 1:

N S ⊆ S ⇐⇒ vec(N S) ⊆ vec( S ) vec isomorphism

⇐⇒ (N ‖ I)vec(S) ⊆ vec( S ) due to (7)

⇐⇒ (N ‖ I)vec(S) ⊆ vec(S) vec isomorphism

⇐⇒ (N ‖ I)v ⊆ v v = vec(S)
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The equivalence of the second inclusions is shown as follows:

JS ⊆ S B ⇐⇒ vec(JS) ⊆ vec( S B ) vec isomorphism

⇐⇒ vec(JS) ⊆ vec(S B ) vec isomorphism

⇐⇒ (J ‖ I)vec(S) ⊆ (I ‖ B
T
)vec(S) due to (7)

⇐⇒ (J ‖ I)vec(S) ⊆ (I ‖ B )vec(S) B is symmetric

⇐⇒ (J ‖ I)v ⊆ (I ‖ B )v v = vec(S)

The subsequent calculation establishes the equivalence of the two inclusions concerning univalence of S:

STS ⊆ I ⇐⇒ S I ⊆ S [15, Prop. 4.2.1]

⇐⇒ vec(S I ) ⊆ vec( S ) vec isomorphism

⇐⇒ (I ‖ I T
)vec(S) ⊆ vec( S ) due to (7)

⇐⇒ (I ‖ I T
)vec(S) ⊆ vec(S) vec isomorphism

⇐⇒ (I ‖ I )v ⊆ v I is symmetric, v = vec(S)

It remains to verify the last inclusions to be equivalent. Here we have:

L ⊆ SL ⇐⇒ vec(L) ⊆ vec(SL) vec isomorphism

⇐⇒ L ⊆ (I ‖ LT)vec(S) vec isomorphism(7)

⇐⇒ L ⊆ (ππT ∩ ρLTρT)vec(S) due to (4)

⇐⇒ L ⊆ (ππT ∩ L)vec(S) ρ is total

⇐⇒ L ⊆ ππTv v = vec(S)

⇐⇒ L ⊆ πTv

The direction “⇒” of the last step follows from the surjectivity and univalence of π since this implies L = πTL ⊆
πTππTv ⊆ IπTv = πTv, and the direction “⇐” is a consequence of the totality of π , since L ⊆ πL ⊆ ππTv. �

Now, we are in a position to present a relation-algebraic expression that depends on a vector v = vec(S) and evaluates

to the universal relation of type [1↔1] if and only if v corresponds to a solution S of the university timetabling problem. In

the equation of the following theorem, this expression constitutes the left-hand side.

Theorem 3.2. Assume again the relations B, J, N, S, v and π as in Theorem 3.1. Then S is a solution of the university timetabling

problem if and only if

L(((N ‖ I)v ∩ v) ∪ ((J ‖ I)v ∩ (I ‖ B )v) ∪ ((I ‖ I )v ∩ v) ∪ LπTv ) = L.

Proof. Property (2) of Section 2 implies the following equivalences:

(N ‖ I)v ⊆ v ⇐⇒ L((N ‖ I)v ∩ v) = L,

(J ‖ I)v ⊆ (I ‖ B )v ⇐⇒ L((J ‖ I)v ∩ (I ‖ B )v) = L,

(I ‖ I )v ⊆ v ⇐⇒ L((I ‖ I )v ∩ v) = L,

L ⊆ πTv ⇐⇒ LπTv = L.

Combining this with Theorem 3.1, we get that S is a solution of the university timetabling problem if and only if

L((N ‖ I)v ∩ v) ∩ L((J ‖ I)v ∩ (I ‖ B )v) ∩ L((I ‖ I )v ∩ v) ∩ LπTv = L.

Next, we apply a de Morgan law and transform this equation into

L((N ‖ I)v ∩ v) ∪ L((J ‖ I)v ∩ (I ‖ B )v) ∪ L((I ‖ I )v ∩ v) ∪ LπTv = L.
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Finally, we replace the universal relation L : 1↔G of LπTv by a composition LL, where the first L has type [1↔S×G]
and the second L has type [S×G↔G]. This adaption of types allows to apply a distributivity law, which yields the desired

result. �

Considering now v as a variable, the left-hand side of the equation of Theorem 3.2 leads to the following function Φ on

relations, where the first universal relation L has type [1↔S×G], the second L has type [S×G↔G] and X is the name of

the variable.

Φ(X) = L(((N ‖ I)X ∩ X) ∪ ((J ‖ I)X ∩ (I ‖ B )X) ∪ ((I ‖ I )X ∩ X) ∪ LπTX ).

When applied to a vector v : S×G↔1, this function returns L : 1↔1 if and only if v corresponds to a solution of the

university timetabling problem, and O : 1↔1 otherwise. A specific feature of Φ is that it is defined using the variable

X , constant relations, complements, joins, meets and left-compositions only. Hence, it is a vector predicate in the sense of

[10,11]. With the aid of the membership-relation M : S×G↔[S↔G] we, therefore, obtain a vector

t = Φ(M)T (11)

of type [[S↔G]↔1] such that for all relations X : S↔G we have tX if and only if the X-column of M, considered as

a vector M(X) : S×G↔1, corresponds to a solution of the university timetabling problem. From (11) a column-wise

representation of all vectors which yield by their corresponding relations all solutions of our university timetabling problem

may be obtained using the technique described in Section 2. But the vector t also allows to compute one (or even all) single

solution(s) in the sense of Definition 3.1. The procedure is rather simple: first, a point p ⊆ t is selected (for instance, in

RelView via the pre-defined operation point). Because of the above property, then the vector Mp : S×G↔1 corresponds

to a solution of our timetabling problem. Now, the solution itself is obtained as relation of type [S↔G] by applying the

function rel, i.e., by rel(Mp).
Each of the relational functions we have presented so far easily can be translated into the programming language of

RelView. Using the tool, we have solved the original problem posed to us by the university administration. However, the

input and output relations are too big to be presented here. Therefore, in the following we consider a smaller example to

demonstrate our approach.

Example 3.1. We consider a set S of only 10 subjects, namely mathematics (Ma), german (Ge), english (En), history (Hi),

physics (Ph), chemistry (Che), biology (Bio), geography (Geo), arts (Ar) and physical education (Pe), which have to be dis-

tributed to the six groups A, B, C,D, E and F . The groups are divided into the blocks 1 and 2 via a relation Q and this

immediately leads to the relation B = QQT : G↔G that specifies whether two groups belong to the same block. As

(Boolean) RelView-matrices Q and B look as follows, where a black squaremeans entry 1 and awhite squaremeans entry 0:

D = B =

Wefurther consider thefirst two tables at thebeginningof this section, that assignone time slot to every groupA, B, . . . , F
for each of the three years. The three relations J,N and B, where J and N are shown in the following pictures as RelView-

matrices, constitute the input of our exemplary timetabling problem. From the two RelView-matrices we see. for instance,

that the subjects mathematics and physics constitute an often selected combination and the subjects history and chemistry

are hardly ever combined.

J = N =

Wehave used theRelView tool to generate in a first step themembership-relationM : S × G↔[S↔G] of size 60×260

for this example and, afterwards, to determine the vector t = Φ(M)T of length 260 by translating the definition of Φ into

its programming language. The result showed that t has exactly 144 1-entries, which means that there are exactly 144

solutions for the given timetabling problem, represented by 144 columns of the membership-relation M. Selecting a point

p contained in t and defining v as composition Mp, a vector of length 60 and its corresponding relation S = rel(v) : S↔S
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of size 10× 6 have been computed such that the latter is a solution of our timetabling problem. Here is the RelView-picture

of the solution S:

S =

Using the composition M inj(t)T we even have been able to compute the list of all solutions, represented as a relation

with 60 rows and 144 columns. This relation is too large to be depicted here.

4. Computing solutions up to isomorphism

If the university timetabling problem of Section 3 is solvable, there often exist a large number of solutions. To be able

to evaluate and compare the solutions, it is useful to examine them for isomorphism and consider only one solution of a

large set of very similar ones. In this section, we will show how this can be achieved. First, we will present a reasonable

definition of isomorphism between solutions, based on the sets of combinable and restricted combinable pairs of subjects.

For a given solution S, we call two subjects combinable if they can be studied without overlappings, which means that S

assigns the subjects to different groups of the same block. Two subjects that are assigned to groups of different blocks are

called restricted combinable. The following theorem gives relation-algebraic expressions that specify the combinable and

restricted combinable pairs of subjects, respectively.

Theorem 4.1. Assume the input B : G↔G and the solution S : S↔G of the university timetabling problem and define the two

relations co(S) and reco(S) of type [S↔S] by co(S) = S(B ∩ I )ST and reco(S) = S B ST. Then it holds for all s, s′ ∈ S that

co(S)s,s′ if and only if s and s′ are combinable and reco(S)s,s′ if and only if s and s′ are restricted combinable.

Proof. Given arbitrary elements s, s′ ∈ S, it holds that

s and s′ are combinable ⇐⇒ ∃ g, g′ : Ss,g ∧ Ss′,g′ ∧ g 
= g′ ∧ Bg,g′

⇐⇒ ∃ g, g′ : Ss,g ∧ Ss′,g′ ∧ ( I ∩ B)g,g′

⇐⇒ (S(B ∩ I )ST)s,s′

and in a similar way the second claim is verified. �

Based on the above relational functions co and reco, we are now in the position formally to define our notion of isomor-

phism.

Definition 4.1. Two solutions S and S′ of the university timetabling problem are called isomorphic if co(S) = co(S′) and
reco(S) = reco(S′). In this case we write S ∼= S′.

Recall that a relationP forwhichdomain and range coincide is apermutation relation if andonly ifP aswell as its transpose

PT are mappings in the relation-algebraic sense, i.e., PPT = PTP = I. As we will see later, we can use block-preserving

permutation relations to create isomorphic solutions from a given solution of the university timetabling problem. This

specific kind of permutation relations is introduced as follows.

Definition 4.2. Given the relation B as in Theorem 4.1, we call a permutation relation P : G↔G block-preserving if

B ⊆ PBPT.

In words, the inclusion B ⊆ PBPT means that if two groups belong to the same block, then this holds for their images

under the permutation relation, too. The following theorem clarifies the relationship between isomorphism of solutions and

block-preserving permutation relations. Its first part is an immediate consequence of the definitions, the more complicated

proof of the second part is presented in Appendix A of the paper.

Theorem 4.2. (a) If the relation S is a solution of the university timetabling problem and P is a block-preserving permutation

relation, then SP is also a solution of this problem.

(b) For two solutions S and S′ of the university timetabling problem we have S ∼= S′ if and only if there exists a block-preserving

permutation relation P such that S′ = SP.
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To determine the set of all solutions which are isomorphic to a given solution, we rather follow the technique of Section

3 for computing solutions of the university timetabling problem. Hence, we start with the following theorem that states a

relation-algebraic expressionwhich depends on a vector v = vec(P) and evaluates to the universal relation L of type [1↔1]
if and only if v is the corresponding vector of a block-preserving permutation relation P. In the theorem, by π : G×G↔G

and ρ : G×G↔G we denote the projection relations of G×G.

Theorem 4.3. Let the relation B be as in Theorem 4.1. Furthermore, assume P : G↔G and a vector v : G×G↔1 such that

v = vec(P). Then P is a block-preserving permutation relation if and only if

L(LπTv ∪ L ρTv ∪ (v ∩ ((I ‖ I ) ∪ ( I ‖ I) ∪ (B ‖ B ))v)) = L.

Proof. Like in the proof of Theorem 3.1, we can show the following two equivalences by combining the assumption v =
vec(P)with the two properties (2) and (7) of Section 2:

P injective ⇐⇒ L(( I ‖ I)v ∩ v) = L,

P surjective ⇐⇒ L ρTv = L.

Using additionally the relation-algebraic equations for specifying univalence and totality of relations that have been given in

the proof of Theorem 3.2 for the relation P as well as its corresponding vector v = vec(P), we obtain that P is a permutation

relation if and only if

L((I ‖ I )v ∩ v) ∩ LπTv ∩ L(( I ‖ I)v ∩ v) ∩ L ρTv = L.

Supposing this equation to hold, P is a mapping and we are able to transform the condition B ⊆ PBPT as follows:

B ⊆ PBPT ⇐⇒ BP ⊆ PB P mapping

⇐⇒ BTP ⊆ PB B symmetric

⇐⇒ B PB ⊆ P Schröder rule

⇐⇒ BP B ⊆ P [15, Prop. 4.2.4]

⇐⇒ vec(BP B ) ⊆ vec( P ) vec isomorphism

⇐⇒ (B ‖ B
T
)vec(P) ⊆ vec(P) vec isomorphism (7)

⇐⇒ (B ‖ B
T
)v ⊆ v v = vec(P)

⇐⇒ L(v ∩ (B ‖ B )v) = L due to (2)

If we intersect the left-hand side of the last equation of this derivation with the left-hand side of the above equation, we get

that P is a block-preserving permutation relation if and only if

L((I ‖ I )v ∩ v) ∩ LπTv ∩ L(( I ‖ I)v ∩ v) ∩ L ρTv ∩ L(v ∩ (B ‖ B )v) = L.

The last steps of the proof are rather the same as in the case of Theorem3.2.We use a deMorgan low, introduce two universal

relations for type adaption and apply commutativity of join and a distributivity law. �

Like in Section 3, from Theorem 4.3 we immediately obtain the following function Ψ on relations that is defined using

the variable X , constant relations, complements, joins, meets and left-compositions only:

Ψ (X) = L(LπTX ∪ L ρTX ∪ (X ∩ ((I ‖ I ) ∪ ( I ‖ I) ∪ (B ‖ B ))X)) .

As a consequence, the application of the vector predicate Ψ to the membership-relation M : G×G↔[G↔G] and a

transposition of the result yield a vector

b = Ψ (M)T (12)

of type [[G↔G]↔1] that specifies exactly those columns of M which are corresponding vectors of block-preserving

permutation relations. According to the technique we have presented in Section 2, hence, a column-wise representation of



R. Berghammer, B. Kehden / Journal of Logic and Algebraic Programming 79 (2010) 722–739 731

the set P of all block-preserving permutation relations (as a subset of the type [G↔G] of the relations on the set G) is given

by the relation

E = M inj(b)T (13)

of type [G×G↔P]. To be more precise, the function P �→ vec(P) constitutes a one-to-one correspondence between P

and the set of all columns of E (where each column is considered as a vector of type [G×G↔1]). In the remainder of the

section, we show how the relation E of (13) can be used to compute the set of all solutions isomorphic to a given solution

S. The decisive property is presented in the next theorem. It states a relation-algebraic expression for the column-wise

representation of all solutions isomorphic to S, where, however, in contrast to the notion introduced in Section 2, multiple

occurrences of columns are allowed. In the proof, we use the notation R(y) for the y-column of R as introduced in Section 2.

Theorem 4.4. Assume S : S↔G to be a solution of the university timetabling problem, E as the relation introduced in (13)

and IS : S×G↔P to be defined as IS = (S ‖ I)E. Then every block-preserving permutation relation X ∈ P leads to a solution

rel(I
(X)
S ) of the university timetabling problem such that rel(I

(X)
S ) ∼= S, and for every further solution S′ with S′ ∼= S there exists a

block-preserving permutation relation Y ∈ P such that vec(S′) = I
(Y)
S .

Proof. To prove the first statement, we assume X ∈ P. Then, the one-to-one correspondence between the set P and the set

of all columns of E shows the existence of a block-preserving permutation relation P : G↔G fulfilling E(X) = vec(P). This
leads to the equation

I
(X)
S = ((S ‖ I)E)(X) = (S ‖ I)E(X) = (S ‖ I)vec(P) = vec(S P)

because of an obvious property of column selection in the case of a composition of relations and property (7) of Section 2.

The derived equation in turn shows

rel(I
(X)
S ) = rel(vec(SP)) = SP

and, finally, Theorem 4.2(a) leads to the desired result rel(I
(X)
S ) ∼= S,

For a proof of the second claim, we start with a further solution S′ such that S′ ∼= S. Then Theorem 4.2(b) yields a

block-preserving permutation relation P : G↔G with S′ = SP. Next, we apply again property (7) and get

vec(S′) = vec(SP) = (S ‖ I)vec(P).

Since the relation E : G×G↔P column-wisely represents the set P of all block-preserving permutation relations, there

exists again Y ∈ P such that for the Y-column E(Y) we obtain vec(P) = E(Y). Combining this with the above result and the

definition of IS yields

vec(S′) = (S ‖ I)vec(P) = (S ‖ I)E(Y) = ((S ‖ I)E)(Y) = I
(Y)
S

and we are done. �

Now, we use Theorem 4.4 and describe a procedure for the computation of the set of all solutions of the university

timetabling problem up to isomorphism. It easily can be implemented in RelView. In a first step, we determine the vector

t : [S↔G]↔1 of (11) that specifies those columns of the membership-relation M : S×G↔[S↔G] which correspond

to solutions of the timetabling problem and the relation E : G×G↔P of (13) that column-wisely enumerates the block-

preserving permutation relations. Selecting a point p contained in t, we then compute a single solution S as described in

Section 3 and the column-wise representation IS of all solutions isomorphic to S. With

t′ = t ∩ syq(M, IS)L (14)

we obtain a vector of type [[S↔G]↔1] that specifies all columns of M which correspond to solutions isomorphic to S.

This follows from the equivalence

(t ∩ syq(M, IS)L)X ⇐⇒ tX ∧ ∃ Y : syq(M, IS)X,Y
⇐⇒ tX ∧ ∃ Y : M(X) = I

(Y)
S see Section 2

⇐⇒ rel(M(X)) ∼= S Theorem 4.4
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for all relations X : S↔G, where Y ranges over the set P of all block-preserving permutation relations. By modifying t

to (t ∩ t′ ) ∪ p with t′ from (14), we can remove all solutions isomorphic to S from the solution vector t, except S itself.

Successive applications of this technique leads to a vector of type [[S↔G]↔1] that, finally, specifies by its 1-entries exactly
one element of each set of isomorphic solutions.

Experience has shown that in most cases the number of solutions can be reduced considerable if we restrict us to non-

isomorphic ones. In particular, there exist exactly 1296 block-preserving permutation relations for the original timetabling

problem of our university administration with 9 groups and 3 blocks, so that for each of its solutions there are up to 1296

isomorphic solutions. Regarding Example 3.1, where we deal with 2 blocks and 6 groups only, there are exactly 72 block-

preserving permutation relations, and the 144 solutions of the timetabling problem of the example can be reduced to only

two solutions which are not isomorphic.

5. A more simple approach for timetabling

Applying the RelView-implementation of the algorithm of Section 3 to the input data delivered by the university admin-

istration, we obtained the solution vector t of (11) to be empty. Since this meant that there exists no solution, in accordance

with the university administration we changed the three categories of possible combinations slightly and applied the Rel-

View-program to the new relations J and N. Again we got t = O. Repeating this process several times, we finally found a

non-empty t. But thuswehad changed the categories in such away that a further perpetuation of the original trisection of the

combinations into “very frequently”, “less common” and “hardly ever selected” seemed inappropriate since “less common”

was almost empty. So, we decided to drop the category “less common” and to work with the remaining two categories only.

Because of the cumbersome procedure and the fact that two categories seem to suffice, we also checked whether the

group/block division technique still is reasonable and developed, for the purpose of testing and in collaboration with our

university administration, an alternative and more simple model for timetabling. In the new model, the development of

which orientates on the approach of [13,14] sketched in the introduction, there are four disjoint time slots of equal size,

denoted as t1, t2, t3 and t4, such that noneof the subjects requiresmore than twoof them.All so-called small subjects entirely

can take place in each of these “base time slots”. To treat the remaining large subjects, too, we introduced two further time

slots t5 and t6, where t5 consists of the hours of t1 and t2 and t6 consists of the hours of t3 and t4. Hence, the large subjects can

take place in these additional time slots. Of course, this model led to time conflicts between certain time slots. A timetable

that enables a three years duration of study for the very frequently combinations, now is given by a function from the set of

subjects to the set of time slots such that the following two properties hold:

(a) For all subjects s and time slots t, if s is mapped to t then t is available for s.

(b) There are no time conflicts between the courses of two different subjects if the latter constitute a combination of the

first category.

To formalize and generalize also this informal description to an abstract university timetabling problem,we again assume

S to denote a finite set of subjects, but now, instead of G and B as used in the original approach, T to denote a finite set of

time slots. For modeling the partitioning of the pairs of subjects into the two categories, we assume a relation F : S↔S to

be at hand such that

Fs,s′ ⇐⇒ s, s′ is a combination of the first category (15)

for all subjects s, s′ ∈ S. ThenF is symmetric and irreflexive,where the latterproperty follows fromthe fact that combinations

have to consist of two different subjects. It should be remarked that the relation F suffices for completely describing the

two categories, since the symmetric and irreflexive relation F ∩ I exactly specifies the pairs of different subjects which

are hardly ever selected. Besides F , we assume an availability relation A : S↔T that specifies availability, i.e., is defined

component-wise by

As,t ⇐⇒ s can take place in t (16)

for all subjects s ∈ S and time slots t ∈ T. And, finally, we assume a onflict relation C : T↔T such that

Ct,t′ ⇐⇒ t and t′ are in time conflict (17)

for all time slots t, t′ ∈ T, where time slots are in time conflict if and only if they contain common hours, Note, that because

of this interpretation C is a reflexive and symmetric relation. Considering the relations of (15) to (17) as input of the revised

university timetabling problem, a solution relation-algebraically can be defined as follows.

Definition 5.1. Given the three input relations F : S↔S, A : S↔T and C : T↔T, a relation S : S↔T is a solution of the

revised university timetabling problem if S ⊆ A, FSC ⊆ S , STS ⊆ I and L ⊆ SL.
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That S ⊆ A formalizes the above property (a) is trivial. In case of FSC ⊆ S and property (b) this is shown as in the case of

the original model of Section 3. Finally, STS ⊆ I and L ⊆ SL specify again S to be amapping. If only the first three inclusions

of Definition 5.1 hold, the univalent relation S is called a partial solution of the revised university timetabling problem.

Following exactly the pattern of Section 3, in the remainder of this section we develop a relation-algebraic algorithm for

solving the revised university timetabling problem. Here is the analogon of Theorem 3.1. In its last inclusion π : S×T↔S

denotes the first projection relation of S×T.

Theorem 5.1. Assume the three input relations F : S↔S, A : S↔T snd C : T↔T, a relation S : S↔T and a vector

v : S×T↔1 such that v = vec(S). Then S is a solution of the revised university timetabling problem if and only if v ⊆ vec(A),

(F ‖ C)v ⊆ v , (I ‖ I )v ⊆ v and L ⊆ πTv.

Proof. The claim follows from the fact that thenth inclusion of Definition 5.1 is equivalent to the nth inclusion of the theorem

(1 ≤ n ≤ 4). The first case is trivial, the second one shown by

FSC ⊆ S ⇐⇒ vec(FSC) ⊆ vec( S ) vec isomorphism

⇐⇒ vec(FSC) ⊆ vec(S ) vec isomorphism

⇐⇒ (F ‖ CT)vec(S) ⊆ vec(S) due to (7)

⇐⇒ (F ‖ CT)v ⊆ v v = vec(S)

⇐⇒ (F ‖ C)v ⊆ v C is symmetric

and for the remaining cases see the proof of Theorem 3.1. �

Due to this theorem, we are again in a position to present a relation-algebraic expression that depends on a vector

v = vec(S) and evaluates to the universal relation L of type [1↔1] if and only if v represents a solution S of the revised

university timetabling problem. The corresponding next theorem is the analogon of Theorem 3.2.

Theorem 5.2. Let again the relations F, A, C, S, v and π be as in Theorem 5.1. Then S is a solution of the revised university

timetabling problem if and only if

L((v ∩ vec(A) ) ∪ ((F ‖ C)v ∩ v) ∪ ((I ‖ I )v ∩ v) ∪ LπTv ) = L.

Proof. Property (2) of Section 2 implies the equivalences

v ⊆ vec(A) ⇐⇒ L(v ∩ vec(A) ) = L,

(F ‖ C)v ⊆ v ⇐⇒ L((F ‖ C)v ∩ v) = L

and from the proof of Theorem 3.2 we know already

(I ‖ I )v ⊆ v ⇐⇒ L((I ‖ I )v ∩ v) = L,

L ⊆ πTv ⇐⇒ LπTv = L.

Combining these four equivalences with Theorem 5.1, we get that the relation S is a solution of the revised university

timetabling problem if and only if it holds

L(v ∩ vec(A) ) ∩ L((F ‖ C)v ∩ v) ∩ L((I ‖ I )v ∩ v) ∩ LπTv = L.

The remaining steps are as in the proof of Theorem 3.2. �

Analogous to the approach of Section 3. the left-hand side of the equation of Theorem 5.2 leads to a vector predicate on

relations, viz.

Φ(X) = L((X ∩ vec(A) L) ∪ ((F ‖ C)X ∩ X) ∪ ((I ‖ I )X ∩ X) ∪ LπTX ) ,

which, in turn, with the specific argument M : S×T↔[S↔T], yields a vector

t = Φ(M)T (18)
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of type [[S↔T]↔1] such that for all relations X : S↔T the entry tX is 1 if and only if the X-column M(X) : S×T↔1 of

the membership-relation M corresponds to a solution of the revised university timetabling problem. Also the further steps

to obtain from t one (or even all) single solution(s) are as in Section 3.

6. An alternative method for computing solutions

In this section, we use the equivalences shown in the proof of themain result of Section 5 and sketch yet another relation-

algebraic procedure for solving the revised university timetabling problemof the last section. As a preparatory step,we prove

the following fact about vectors.

Lemma 6.1. For all vectors v and w we have v ⊆ w if and only if vvT ⊆ wwT.

Proof. The direction “⇒” is trivial. The same holds for direction “⇐” if v = O. To prove “⇐” in case of v 
= O, we start with

Lv = LvL = L, which follows from the vector property and the Tarski rule in combination with v 
= O. Hence, we have

vTL = L (surjectivity of v). Now, the result follows from v = vL = vvTL ⊆ wwTL ⊆ wL = w using the vector properties

of v and w, the surjectivity of v and the assumption vvT ⊆ wwT. �

Given an undirected graph, a set V of vertices is called stable if no two vertices from it are adjacent. Supposing G as the

graph’s symmetric adjacency relation, this means that for all x ∈ V and y ∈ V it follows G x,y. If the set V is represented by a

vector v, then a little calculation shows that V is stable if and only if Gv ⊆ v . As already mentioned in the introduction, our

alternative method of solution bases on stable sets. The following theorem relation-algebraically describes the construction

of the graph’s adjacency relation from the input of the revised university timetabling problem.

Theorem 6.1. Let again the relations F, A, C, S and v be as in Theorem 5.1. Then S is a partial solution of the revised university

timetabling problem if and only if (( vec(A)vec(A)T ) ∪ (F ‖ C) ∪ (I ‖ I ))v ⊆ v .

Proof. We start with the first demand on S and transform it as follows:

S ⊆ A ⇐⇒ v ⊆ vec(A) proof of Theorem 5.1

⇐⇒ vvT ⊆ vec(A)vec(A)T Lemma 6.1

⇐⇒ vec(A)vec(A)T v ⊆ v Schröder rule

Due to the proof of Theorem 5.1, we have the equivalence

FSC ⊆ S ⇐⇒ (F ‖ C)v ⊆ v

for the second demand on S and the equivalence

STS ⊆ I ⇐⇒ (I ‖ I )v ⊆ v

for its third demand. By simple laws of lattice theory, the conjunction of the three just calculated inclusions between vectors

is equivalent to the inclusion

vec(A)vec(A)T v ∪ (F ‖ C)v ∪ (I ‖ I )v ⊆ v

and an application of ∪-distributivity, finally, shows the claim. �

If we use the abbreviation a = vec(A) and define by

G = aaT ∪ (F ‖ C) ∪ (I ‖ I ) (19)

a relation of type [S×T↔S×T], then the above remark and Theorem 6.1 say that the vector v : S×T↔1 corresponds to

a partial solution of the revised university timetabling problem if and only if v represents a stable vertex set of the graph

g with the vertex set S×T and the adjacency relation G of (19). Since the inclusion Gv ⊆ v is equivalent to the equation

L(Gv ∩ v) = L and the definition

Ψ (X) = L(GX ∩ X)
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obviously yields again a vector predicate, the vector

m = gre(C, Ψ (M)T) (20)

of type [[S↔T]↔1] represents the set Sg of all maximum stable vertex sets of g. In definition (20), we use amembership-

relation M : S×T↔[S↔T], a size-comparison relation 1 C : [S↔T]↔[S↔T] such that CX,Y if and only if |X| ≤ |Y |
for all sets X, Y ∈ 2X , and a function gre(Q , R) = R∩ Q

T
R that column-wisely computes greatest elements w.r.t. the quasi

order Q (for the latter, see, e.g., [4] for details).

Using a similar procedure as in the case of the vector t of (18), the above vector m allows to decide whether the revised

university timetabling problem is solvable. If p ⊆ m is a point, then Mp : S×T↔1 corresponds to a partial solution of the

problem. As a consequence, if the number of 1-entries of Mp equals the cardinality of S, then this vector even corresponds

to a (total) solution. Otherwise there are no (total) solutions but only strictly partial ones.

The relation G of (19) is symmetric and its second part F ‖ C and third part I ‖ I are irreflexive. But irreflexivity of G does

not hold in general. A little reflection shows that the 1-entries in the diagonal of its first part aaT exactly correspond to

the pairs 〈s, t〉 for which A s,t holds, i.e., for which t is not available for s. This fact allows to reduce the size of the problem.

Instead G the (often considerable) smaller relation G′ = inj( d ) G inj( d )
T

may be used as adjacency relation, where the

vector d = ( aaT ∩ I)L = a = vec( A ) represents the set 〈s, t〉 of pairs with A s,t . The correctness of the reduction follows

from the fact that each vector v′ with G′v′ ⊂ v′ exactly corresponds to a vector v with Gv ⊂ v via the two functions

v′ �→ inj(a)Tv and v �→ inj(a)v′.

7. Implementation and results

Relation algebra has a fixed and surprisingly small set of constants and operations which – in the case of finite carrier

sets – can be implemented very efficiently. At the University of Kiel we have developed a visual computer system for the

visualization and manipulation of relations and for relation-algebraic prototyping and programming, called RelView. The

tool is written in the programming language C, uses reduced ordered BDDs for implementing relations and makes full use

of the X-windows graphical user interface. Details and applications can be found, for instance, in [1–4].

Themain purpose of the computer system RelView is the evaluation of relation-algebraic expressions. These expressions

are constructed from the relations of the tool’s workspace using pre-defined operations and tests, user-defined relational

functions, anduser-defined relational programs.A relational program ismuch like a functionprocedure inPascal orModula2,

except that it only uses relations as data type. It startswith a head line containing the programname and the list of the formal

parameters, which stand for relations. Then the declaration of the local relational domains, functions and variables follows.

Domain declarations can be used to introduce projection relations. The third part of a program is the body, a while-program

over relations. As a program computes a value, finally, its last part consists of a return-clause, which is a relation-algebraic

expressionwhose value after the execution of the body is the result. For example, theRelView-version of the vector predicate

Φ used in Section 5 for solving the revised university timetabling problem looks as follows:

Phi(A,F,C,X)

DECL Prod = PROD(F,C);

pi, Q1, Q2, Q3, Q4

BEG pi = p-1(Prod);

Q1 = X & -(vec(A) * L1n(X));

Q2 = par(F,C) * X & X;

Q3 = par(I(F),-I(C)) * X & X;

Q4 = L(pi) * -(piˆ * X)

RETURN -(Ln1(pi)ˆ * (Q1 | Q2 | Q3 | Q4))

END.

In this relational program, the first declaration introduces Prod as a name for the direct product S×T. Using Prod, the
first projection relation is then computed and stored as pi by the first assignment of the body. The remaining part of the

1 As in the case of membership-relations, a simple Boolean matrix implementation of size-comparison relations is unusable in practice, but the same does

not hold if BDDs are used. In [2] a BDD-implementation of C : 2X ↔2X is presented, where the number of vertices is quadratic in the size of X . It also is part of

RelView.
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program consists of a direct translation of the expression defining Φ into RelView-notation, where ˆ, -, |, & and * denote

transposition, complement, union, meet and composition, the pre-defined operations Ln1, L1n and L compute for a relation

R : X↔Y the universal relations of type [X↔1], [1↔Y] and [X↔Y], respectively, the pre-defined operation I yields for

R : X↔X the identity relation I : X↔X and the user-defined relational programs vec and par implement the functions

vec and ‖ , respectively.

We have applied the RelView-program Phi to the university administration’s original problem with 34 subjects and the

six time slots t1 to t6 as described in Section 5. Since this led (using matrix terminology) to a membership-relation of size

204 × 2204 in the specification (18) of the solution vector t, the RelView tool has not been able to yield a result within an

adequate time – despite the efficient BDD-implementation of relations it uses. In this situation, two facts helped us to reduce

the problem size considerable and to obtain, finally, results within a few seconds only.

First, we noticed that there was only one large subject (chemistry, abbreviated as c) that required two time slots. Hence,

the model with the six time slots was not appropriate in this case. Instead, chemistry was subdivided into two subjects c1
and c2, so that each of them had to be mapped to one of the four base time slots t1, t2, t3 or t4. This led to a modified input

F ′, A′, C′ for the revised university timetable problem.2

(a) The type of the relation F ′ became [S′ ↔S′], where the set S′ is defined as (S \ {c})∪ {c1, c2}. For all s, s′ ∈ S \ {c}
wedefined F ′

s,s′ if and only if Fs,s′ and, in view of the “new” subjects, F ′
ci,s′ if and only if Fc,s′ , respectively F ′

s′,ci if and only

if Fs′,c . To guarantee, that c1 and c2 are assigned to different base time slots, we finally defined c1, c2 as a combination

of the first category, which meant F ′
c1,c2

and F ′
c2,c1

.

(b) The relation A′ could be defined as universal relation

A′ = L (21)

of type [S′ ↔T′], where T′ = {t1, . . . , t4}, because now every subject could take place in every base time slot.

(c) Since the splitting of the subject chemistry abolished all conflicts between base time slots, finally, C′ could be the

identity relation of type [T′ ↔T′], i.e., we define

C′ = I. (22)

Bymodifying the input relations in this way, the RelView-program Phi could be used to compute all solutions in reasonable

time, since the size of the membership-relation has reduced to 140 × 2140.

Besides the splitting of chemistry, we could use another property of the given problem to reduce the problem size even

more. The four Romanian languages Spanish, Portuguese, Italian and French (abbreviated as s, p, i, f ) formed an important

clique in the graph with adjacency relation F . By demand of the curricula, each of these subjects must be combinable with

the other three. Hence, the four languages of the set R = {s, p, i, f } had to be assigned to four different base time slots.

Predefining a base time slot for each of these subjects via an injective mapping R : R↔T′ that assigns to each Romanian

language exactly one base time slot, we could reduce the set of subjects to S′′ = S′ \ R by omitting the four Romanian

languages. To consider the dependencies between the Romanian languages and other subjects, the input had to bemodified

again.

(a’) The modification F ′′ of F ′ became the restriction of the relation F ′ to the set S′′, i.e., with v : S′ ↔1 as the vector

representation of R as subset of S′, we got F ′′ : S′′ ↔S′′ by

F ′′ = inj( v ) F ′ inj( v )T. (23)

(b’) In the refined model, obviously a subject s ∈ S′′ could take place in a base time slot t ∈ T′ if and only if there is no

r ∈ R such that F ′
s,r and Rr,t . Based on this observation, a little reflection brought the new version

A′′ = inj( v ) F ′ inj(v)T R (24)

of type [S′′ ↔T′] of the availability relation, where v is the vector introduced in (a’).

(c’) The removal of the four Romanian languages from S′ caused no conflicts between base time slots. As a consequence,

the conflict relation furthermore could be the identity relation of type [T′ ↔T′], i.e.,
C′′ = I. (25)

At this place it should be mentioned that, as in the cases (b) to (c’) via (21) to (25), also the relation F ′ of (a) relation-
algebraically may be specified by an expression. However, since F ′ is defined via a case distinction, this requires the use of

disjoint unions and their injection relations, which is beyond the scope of this paper.

Since the size of the set S′′ is 31, now the size of themembership-relation used in (18) is 124× 2124, which is a moderate

size to solve this problem and compute all solutions within a few seconds. But this is in the strict sense the end of the story.

2 Obviously, the modification also can be applied in case of more than one large subject.
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To narrate the entire story, at the beginning – as in the case of the original approach – the two categories of combinations

of subjects provided by the university administration led to an empty solution vector t. With the help of an additional Rel-

View-program (for its development, see [2]), we then determined all maximum cliques of the graphwith adjacency relation

F ′′ since large cliques (especially cliques of more than four subjects) caused the impossibility to find solutions. Step-by-step

1-entrys of F ′′ had been changed to 0 to destroy as much as possible maximum cliques, until we obtained an input that led

to a non-empty solution vector. The knowledge of the largest cliques was important for this process to modify the relation

defining the categories in a goal-oriented way. We started the process with 133 combinations in the first category and

reduced them to 119 until being successful. The latest version of the relation F ′′ led to 32 solutions of the revised university

timetabling problem. The one that was chosen by the administration of our university is shown in the following picture. This

34× 4 Boolean RelView-matrix has been obtained from the computed 31× 4matrix by going back to c instead of c1 and c2
(i.e., by replacing the c1- and c2-row by their union), then adding the implicit assignments of the four Romanian languages

as four rows at the bottom, and, finally, by transposing the resulting 4 × 34 matrix to save space.

The chosen solution enables to study 418 of the 34·33
2

= 561 possible combinations of subjects without any overlapping.

It has been discussed in commissions of the two faculties concerned with the undergraduate education of secondary school

teachers.Whereas the Faculty of Philosophyhasdecided to introduce thenewmodel and the computed timetable, the Faculty

of Mathematics and Natural Sciences refused this and developed its own timetable by modifying the hitherto timetable. An

ultimate decision about the introduction in both faculties and the final form of the timetable still is missing.

8. Concluding remarks

In this paper, we have combined relation algebra and the RelView tool to specify and solve timetabling problems which

should enable the undergraduate education of secondary school teachers at the University of Kiel within three years in the

normal case. Only for combinations of subjectswhich are hardly ever selected a longer duration of study should be necessary.

During the entire project the concise and very formal language of relation algebra and the plentifulness of relation-algebraic

laws has been very helpful. Also RelView proved to be an ideal tool for the tasks to be solved. Systematic experiments helped

us to get insight into the specific character of the problem and to develop the relation-algebraic formalizations. Particularly

with regard to these activities the concise form of RelView-programs and the tool’s visualization facilities have been of avail.

Decisive for solving the posed problems has been the notion of a vector predicate since, when applied to a “proper”

relation R instead of a vector, such a function allows to test a certain property for all columns of R in parallel and to filter out

exactly those one is interested in. Implicitely, vector predicates have been used since many years. But, to our knowledge,

except [10,11] all former applications dealt with the test and column-wise computation of certain subsets of a base set (like

the carrier set of a partial order in the case of maximal elements) or its power set (like that of the vertex set of a graph in

the case of stable sets or cliques) only. The novelty of [10,11] and this paper is the combination of vector predicates with the

functions vec and rel and property (7) to test and column-wise compute subsets of sets of relations.

Meanwhile,wehave applied themethod to other problems, too, e.g., in the context of Petri nets or evolutionary algorithms

(see [11]). In doing so, also the limits of the method became apparent, for example, the non-applicability of property (7)

in the case of a set of relations which have to be transitive. Presently, we work on the overcoming of these restrictions.

Besides the “direct” development of relation-algebraic expressions that specify such sets S without using the property, we

also concentrate on the development of specifications for good approximations of S using (7). From the latter, we hope that

S can be obtained by inspecting only a moderate number of relations.
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Appendix A

In this appendix, we prove Theorem 4.2(b). Since this part of the theorem consists of an equivalence, we reformulate it

as two separate theorems and prove these one after another. Here is the first one. Note, that because of Theorem 4.2(a) a

right composition SP of a solution S with a block-preserving permutation relation P yields again a solution.

Theorem 1. If the relation S is a solution of the university timetabling problem and P is a block-preserving permutation relation,

then S and SP are isomorphic solutions.
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Proof. Since P is a block-preserving permutation relation if and only if it is a relational isomorphism wrt, the input relation

B of the university timetabling problem in the sense of [15], we have B = PBPT. This yields

co(SP) = SP(B ∩ I )(SP)T

= SP(B ∩ I )PTST

= S(PBPT ∩ P I PT)ST P univalent

= S(PBPT ∩ PIPT )ST P mapping

= S(PBPT ∩ I )ST since PPT = I

= S(B ∩ I )ST see above

= co(S).

Using B = PBPT again, we get furthermore that

reco(SP) = SP B (SP)T

= SP B PTST

= S PBPT ST P mapping

= S B ST see above

= reco(S).

Both calculations show that S and SP are isomorphic solutions. �

The input relation B of the university timetabling problem is reflexive. A consequence is (B ∩ I ) ∪ B = I ∪ B = I,
which in turn yields for all solutions S of the university timetabling problem

SS� = S (B ∩ I ) ∪ B ST

= S((B ∩ I ) ∪ B )ST S univalent

= S(B ∩ I )ST ∪ S B ST

= co(S) ∪ reco(S).

After these preparations, we are able to show the remaining direction of Theorem 4.2(b) by element-wise reasoning. Doing

so, we assume that the containment of the groups in the blocks is given by a mapping (in the usual mathematical sense)

bc : G → B such that bc(g) ∈ B is the unique block the group g ∈ B belongs to.

Theorem 2. If the relations S and S′ are isomorphic solutions of the university timetabling problem, then there exists a block-

preserving permutation relation P such that S′ = SP.

Proof. The existence of the relation P is shown by a series of single steps. First, we consider the subset GS of G that is

represented by the vector S�L, i.e. the set

GS = {g ∈ G | (S�L)g} = {g ∈ G | ∃s ∈ S : Ss,g}

and also the subset GS′ of G that is represented by the vector S′TL. Then, we have that for all g ∈ GS there exists g′ ∈ GS′
such that for all s ∈ S the relationships Ss,g and S′

s,g′ are equivalent.

Proof. Assume g ∈ GS . Then there exists s̃ ∈ S such that Ss̃,g . For S
′ is a mapping, there exists exactly one g′ ∈ G with

S′̃
s,g′ . Suppose now an arbitrary s ∈ S. To verify the equivalence of Ss,g and S′

s,g′ , we assume Ss,g . Then this yields (SS�)s̃,s.
Since S and S′ are isomorphic, we obtain from the preparatory calculation that

SS� = co(S) ∪ reco(S) = co(S′) ∪ reco(S′) = S′S′�

and it follows (S′S′�)s̃,s. Finally, the univalence of S′ yields S′
s,g′ . The other implication of the equivalence can be shown

analogously.
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Due to the fact that for each g ∈ GS there exists exactly one g′ ∈ GS′ with the property stated above, we can define a

bijective mapping (again in the usual mathematical sense) as follows:

ψ : GS → GS′ , ψ(g) = g′

Themappingψ preserves block containment, i.e., for all g, g′ ∈ GS we have that from bc(g) = bc(g′) it follows bc(ψ(g)) =
bc(ψ(g′)).

Proof. For g = g′ the statement obviously holds. Now, let g and g′ be different groups and contained in the same block.

Then it holds (B ∩ I)g,g′ . For the pair g, g′ ∈ GS there exists a pair s, s′ ∈ S with Ss,g and Ss′,g′ and it follows co(S)s,s′ from
(B ∩ I)g,g′ . Because S and S′ are isomorphic, we have also co(S′)s,s′ and from S′

s,ψ(g) and S′
s′,ψ(g′) we get the desired result.

As an immediate consequence of the just proven property, we can define another mapping α : bc(GS) → bc(GS′)
by α(bc(g)) = bc(ψ(g)). The mapping α is bijektive and, therefore, we obtain a bijective mapping β : B ↔ B with

β|bc(GS) = α. Let now b ∈ B be any block. Then it holds

|GS ∩ bc−1(b)| = |GS′ ∩ bc−1(β(b))|.
Proof. Assume g ∈ GS ∩ bc−1(b). Then, we obtain ψ(g) ∈ GS′ , and from the property bc(g) = b it follows bc(ψ(g)) =
α(bc(g)) = α(b) = β(b) and, therefore, ψ(g) ∈ bc−1(β(b)). We can conclude that ψ(g) ∈ GS′ ∩ bc−1(β(b)) and,
therefore, getψ(GS ∩ bc−1(b)) ⊆ GS′ ∩ bc−1(β(b)). Combining this with the bijectivity ofψ , we arrive at

|GS ∩ bc−1(b)| = |ψ(GS ∩ bc−1(b))| ≤ |GS′ ∩ bc−1(β(b))|.
By exchanging S and S′ and using the inverse mappings of ψ and α, we obtain the reverse estimation, too, that completes

the proof.

Another immediately consequence is for all b ∈ B the equality

|(G \ GS) ∩ bc−1(b)| = |(G \ GS′) ∩ bc−1(β(b))|.
So, for each b ∈ B there exists a bijective mapping

ψ(b) : (G \ GS) ∩ bc−1(b) → (G \ GS′) ∩ bc−1(β(b))

and this allows to define the permutation relation P : G ↔ G we are looking for as follows: For all g, g′ ∈ GS we define

Pg,g′ if and only if ψ(g) = g′ and for all b ∈ B and g, g′ ∈ (G \ GS) ∩ bc−1(b) we define Pg,g′ if and only if ψ(b)(g) = g′.
The permutation relation P is block-preserving by construction. It remains to verify S′ = SP.

Proof. Assume s ∈ S and g′ ∈ G such that (SP)f ,g′ . Then there exists g ∈ G with Ss,g and Pg,g′ . From g ∈ GS it follows

ψ(g) = g′ and, therefore, S′
s,g′ due to the definition of ψ . Hence, we have SP ⊆ S′. Now, from S′ and SP being mappings it

even follows SP = S′ (cf. [15]), and we are done. �
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