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Abstract

The concept of Riordan array is used on reciprocal functions, and some identities involving
binomial numbers, Stirling numbers and many other special numbers are obtained.
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1. Introduction

In 1991 [4,5,7] Shapiro introduced the concept of the Riordan group, which corre-
sponds to a set of infinite lower-triangular matrices. Riordan groups are particularly
important in studying combinatorial identities and combinatorial sums. For example, in
1994 [8], Sprugnoli studied Riordan arrays related to binomial coefficients, coloured
walks and Stirling numbers. His work verified that many combinatorial sums can be
solved by transforming the generating functions. In 1995 [9], Sprugnoli paid attention
to the identities of Abel and Gould, respectively. In this paper, we continue the works
of Shapiro and Sprugnoli to discuss some new applications of Riordan arrays. We also
obtain many new identities related to special numbers, such as Stirling numbers of
both kinds, and Bernoulli numbers.
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2. Riordan arrays and Lagrange inversion formulas

Notation

R set of real numbers
R[] a ring of formal power series in some indeterminate ¢
N N={0,1,2,...}
fr =[F11(0) f()ER[L], fi =[t*1f(t) denotes the coefficients of ¢* in the
expansion of f(¢) in ¢
f(t)  the compositional inverse function of 1(¢), i.e., f(f(1))= f(f(1))=t
@ =%{i} f(¢) is the ordinary generating function of the sequence {f}.
fO =611} f(t) is the exponential generating function of the sequence {f }.
ord(f(¢)) is the smallest integer £ for which f; #0, and is called the
order of f(t)

In this paper, we restrict ourselves to the concept of Riordan array as in [7]. This
may be described as follows:

Let g(1), f(1) R[], g(t)= Y, gt*, f(1)= >, fet" with fo=0 (here we assume
f1#0), and f(¢) as its compositional inverse. The sequence of functions {dj(?)}ren
is iteratively defined by

do(t) = g(2),
di(t)=g()(f(1)",

which also defines an infinite lower-triangular matrix {d, s |n,k €N, 0<k <n}, where
dpnr =[t"1di(¢). The infinite lower-triangular matrix {d, ;} is called a Riordan array
in ¢. And we denote D =(g(¢), f(¢))={dnr}

In [9], Sprugnoli proved an important formula [Theorem 3.1, p. 218], which can be
used to obtain many identities. Similarly, we give Theorems 1 and 2.

Theorem 1. Let D= (g(1), f(¢)) be a Riordan array and f(t)= >k fkt". Then we
have

D duify =" lg(0) =gur, n>0. (1)
k=0

Proof. Y% dui fr = Yop2olt"lgO SOV Y1/ (v) = ["lg)F (f (1)) = [~ '1g(2)
=9n—1- 0

Example 1. Let D= (1/(1 —t),t/(1 —t)). Then d, s =(}) and F()=t/(1+1). So we
have

n

Z(Z)(—l)k—lzl, n>0.

k=1
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Example 2. Let D; =(1,—In(1 —¢)). Then we have
. k' [n
A= - =5[]

where [Z] denotes the (unsigned) Stirling numbers of the first kind, f(¢)= — In(1 —
1), f(t)=1—e¢"*, and

U k>0
=l —eh=q 7 T
0, k=0.

Therefore, Theorem 1 gives

n

Z[Z}(—l)k—'zman,l, n>0,

k=1

where 0 is the Kronecker delta.
Let D, =((—In(1 —¢))",—In(1 — ¢)) and n>0. Then

(m+k)! [ n }

4, =1")(=In(1 = )"(~In(1 = )f = === T

and by (1), we have
" m+k n -1 |n—1
(") e =]
k=0
If {Z} denotes the Stirling numbers of the second kind, then
' [k
t P __ & k
e —-1r=>" o {p}z .
kzp

If we consider the Riordan arrays D3 =(1,e’ — 1) and Dy = ((e’ — 1)?,e’ — 1), then,
by (1), we have the following identities:

STk -1y {Z} =nld,1, n>0
k=1

and

~ D'k p)t fon n—1
LI

Furthermore, all of the above identities can be proved by a direct application of
the Riordan array concept, for example, if n>0, the first identity may be obtained
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as follows:

Theorem 1. The hypotheses are the same as those in Theorem 1. Then, by using the

Lagrange inversion formula (see [1]), we have

—k
Z%QWWC?)WHWan
k

Example 3. Let

" t
DZ(UO““H&”J’

then
k= (m I(Z ikl)k > (see [8,p. 272]).
0=
:;U$fp)en“1
and

U”Wﬂﬂ—v”ﬂﬂﬂ-—<"_l>-

(1 —ryn+! m

(2)
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So we have
— (—1)F! n+ ak k(a+1)\  [(n—1
; i \mt@riow ) k=1 )= ) 20 D
Theorem 2. Let D=(g(¢), f(¢)) be a Riordan array, h(t) be the generating function
of the sequence {hi}ren and h(f(t))= >, (h(f))t*. Then we have

D dus(h(f)) = [£"1g(0)A(). (3)
k

Proof. 3- d,, i (h(/ ) = [1"1g(OR(f (f (1)) =["lg()A(r). O

Example 4. Now we consider the Riordan array D=(1,e’ — 1) and A(¢) = exp(e’ —

1). Then, by (3), we have Y (k!/n!){}} 1/k!=[t"]exp(e’ — 1) or > {}} =%,
where %, are the Bell numbers, whose exponential generating function is exp(e’ —

1= 35, (1/n)B,1".

Example 5. Let B denote the Bernoulli numbers of high order, whose exponential
generating function is

P k 9] o
_ ) L
(e’l) =) 5 n!’

n=0

Let

11 \*
D=(1,In(1 +1)), h(t)= (t 1n1+t) .

Then

4 kik nky (€ — 1 7’175 (n) 1
d”’k*[t](ln(l+t))7n[t ]( t > 7nB”_k(n—k)!’

fy=e' =1, (h(f(1))=(—t/(e" — 1)), and (h(f)) =((—=1)?/k!)B"’. Therefore, we
have

k m EDP oo 1 1y
_ % B =" = In——
zk: n(n — iyt Dok B = (g )

or

> k(n+ p) (Z)Bg”jkBgP) = (—1)"*7 plnn! [”;p] :
k

By the Lagrange inversion formulas of all kinds in [1], we can easily obtain many
formulas. These formulas can be used in different cases.
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Theorem 3. Let D=(y(t), f(t)) be a Riordan array. Then we have

> Lt (L2) =g @)
k=1

Proof. See [1]. O

Theorem 4. Let D=(g(t), f(¢)) be a Riordan array and h(t)= 3., hit®. Then we
have

noho-i-zd ’”h()(f“) — [1"1g(Oh(1). )

Proof. See [1]. O

When only knowing the coefficients of powers of f(¢) with positive integral expo-
nents, we have the following theorem.

Theorem 5. Let D=(g(t), f(t)) be a Riordan array, q be a positive integer and
1 <g<n. Then we have

- (_l)j fl_k_j (k q> k q+j](f(t))j

= [ lg ). (6)
Proof. See [1]. O

Example 6. Let

b Lo ¢
- ((1—t)p+1 “1—t’(1—t)q>

because

1 1
g{(Hm+n_Hm)<mntn>} :(1 _t)m+1 In 1 _t:

then

+n+(g— 1)k
dn,k = (Hp+n+(q—l)k - Hp+qk) < P n _(3( ) ) 5
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where H,=Y_;_, 1/k. By (6), we have

- 2% — 1 +n+(qg— 1k
Z l( k ) (Hp+n+(q—1)k *Hp+qk) <p n _(3{ ) >

kz‘:’k ( l)(qur]ic_lll)

Jj=1

= (Hp+nl_Hp)<p+n_l>-

p

Theorem 6. Let three functions F(x),G(x) and H(y) of a real variable be given,
where F(x) and G(x) are of class C* in x=a, and H(y) is of class C* in y=b=
F(a), and let P(x)=H(F(x)). If we put

1 d'G 1 d*F 1 d"H
glzﬂw . Ji= T dok > n_jd,,
Vdxt | _ Vdx*| _, nldy"|,_,
_ 1 d"P
Pm= 0 dxm iy

fo=F(a), f1#0, go#0, ho=H(b)= py=P(a)=H(F(a)), and define the following
formal power series:

9= g, fO=D fit", k)= k", p)=Y put"

>0 k>1 n=0 m=0

Then (g(t), f(t)) is a proper Riordan array and we have

D duihi=["lg(O)p() = g;pu - (7)

k=0 =0

Proof. By the definition of the proper Riordan array and fi #0, we know that (g(¢),
f(#)) is a proper Riordan array, and we have Y d, xhy = ["]g(t)h(f(¢)). On the other
hand, from Theorem B in [1, p. 138], we obtain formally p(¢)=~h(f(¢)). So we have

Zdnkhk— gD S =["lgOp() =Y gpa-ye O
j=0

Example 7. Let H(t)=t"", G(t)=1/(1 —t), and

t —1 2

_1+2'+ 4. (t#0), F0)=1.

F(t)=
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Then f(1)=1/2! + /3! + ---, g(t)=G(¢), and (g(1), £(1))={d,s} is a proper
Riordan array, where

213 (n+ 1)

—wpi—i+ﬁ+ +—£—k
B PR TREY (n+1)!

k 1
—Z > (kl,kz, Lk >H((z+1)')k

=0 kythytethy =k
ky+2ky - tnky = j

And hy = (—1)¥(m);, where (m); is the rising factorial of m of order k. So from (7),
we have

n i k n 1 B n ﬁ
;%( D <m>k(k1,k2,---,kn>il}((i+1)!)ki_jz_; R

where () denotes set of partitions of j(j€N), represented by 1¥12% ... % with k; +
2k + -+ jkj=j, keEN, (i=12,...,)).

3. The exponential Riordan array
For the exponential generating function of a sequence, we have

Definition. Let ()= &{g,}, f(t)=&{f,} €R[t], ord(g(¢))=0, ord(f(¢))=1. For an
infinite lower triangular array D= {d,; |n,keN,0<k<n}, if for fixed k, &{d,x}
=g()((f(2)) k") (k=0), then we write D= (g(¢), f(¢)) and say that {g(¢), f(¢)) is an
exponential Riordan array.

Let (g(¢), f(¢)) and (d(¢),h(t)) be two exponential Riordan arrays. Let (d(¢),h(¢))
(g(t), f(2)y ={(d()g(h()), f(h(t))). Then the set of all exponential Riordan arrays form
an infinite group and (1,¢) is its unit element. Just as in [8,9,12], we can obtain many
identities related to the exponential Riordan arrays. Besides, the exponential Riordan
arrays are directly related to the classical Umbral Calculus. The interested readers can
see the relative papers and the works of Rota, Roman and Knuth [3,6].

Let f(1)= Y07, /i /KL, g()= 30%, Gut /K1 ER[A, f(9(1)=g(/(1)), and f(0)
=¢(0)=0. We define number pair {4,(n,k),A>(n,k)} as follows:

k n n
d(t)(f(t)) ZA1(n,k)%, d(t)(g(t)) ZAz(n,k);—

n=k n=k

If f(9(t)=g(f(¢))=t and d(¢t)=1, then {4i(n,k),A>(n,k)} is the generalized
Stirling number pair in [2].
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Theorem 7. For number pair {4,(n,k),A>(n,k)} and n>0, we have

D Ank)ge= Y A(nk)fy=nr. (8)

k=1 k=1

If, in particular, {4\(n,k),Ay(n,k)} is the Stirling number pair, we have

Go= > Ank)dx(k.))f 9)
I1<j<k<n
fi= > (k)i (k)i (10)

1<j<k<n

Proof. We have

d(r)g(f(r))—Zd(t) VO 53 0 Y i &
k=1 k=1 n=k

n

:Z (Z Ai(n, k)gk> ’tj
n=1 k=1

On the other hand,

d(0) £g(1)) = Z a0 WY Z i i

n=k

= (Z Az(n,k)f,:> %
n=1 \k=1 :
Then we obtain (8) by identifying the coefficients of #"/n! in d(¢) f(g(¢)) and
d(t) g(f (1))
Ifd(r)=1and f(g(1))=g(f (1)) =1, then {d1(n,k)}+{A2(n,k)} = (1, f(1))*(1,9(1))
= (1,¢), thus 4,(n,k)A2(n,k)=1 (infinite unit matrix). And we obtain the inverse re-
lation:

an = ZAl(nak)bka

by=Y_ Ay(n.k)ax.

Let a, = Y ;_, Ai(n,k)g; in (8). By the above inverse relation, we have g, = > ;_,
As(n,k)ag. Then, by (8), we obtain

n k
3= )Y k=Y Ank)ak))f
k=1 =1

1<j<k<n
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The proof of (10) is similar to that of (9). [J

Example 8. Let {4,(n,k),A>(n,k)} be the generalized Stirling number pair. If {4;(n,
)}y ={(g1(t), /1(1)), {A2(n,k)} ={g2(2), f>(¢)), then we denote simply {4,(n,k),A»(n,
)} as {{g1(0), /1(2)), (92(2), f2(1))}.

For the generalized Stirling number pair

[ (A} - () (ol

where L, ; is the Lah number, which has the expression

2 1! -1
Lix=(=1) k,(,’;_l)

by Theorem 7, we can obtain the following identities:

n n
S ()R = ) (nfk> =0,1, n>0,
k=1

k=1
1 k '
_ j—1 4 J
nt= > (-1Y k!(nk) (kj> n>0,
1<j<k<n
(—1)'n! = Z (=1 1L, 4Ly j,  n>0.
1<j<k<n

Let f(¢)eR[t] and g(z)= f(f(¢)). Then f(g(t))=g(f(¢)). So we have the follow-
ing example.
Example 9. Let f(t)=e¢’ — 1 and g(t):f(f(t)):eet*1 - 1= Zm>1 B %, where

A, is the Bell number. Then f;czl (k=1), g, =% (k=1).
If d(¢)=1, then we have

koo ’
d(r) (fg!)) “a =2 {Z} "

n=k

and

k
t k 1 m "
d(t) (g(k!)) =0 (Z B m') = Z Bn,k(=%17---a<%n—k+l)a

m=1 n=k

where B, x(x1,...,X,—k+1) is the partial Bell polynomial.
Therefore, we obtain number pair

n

{Al(n?k)sAZ(n’k)} = {{k} an,k(glw . ~,%nk+l)}

={(L,e' = 1)), (1,5~ = 1)}
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From (8), we have the following identity:

Z{ } ZBM(%, B i)).
k=1

If d(t)=¢' — 1, then we have

k n
d()(f(t)) T(et_l)m:(kﬂ) > {kil};!

n=k+1
and
k
d( )(g(t)) j(et _ 1)(66171 _ l)k
_Z Z Bnk(gla--- n— k+1)i
n=1 'n>k
—';C [Z ( ) Biw(%,.. «%i—kﬂ)] %

Therefore, we have

0, n=k,
Al(nak):
(k+1) k+1 n=k+1

and

n

Ax(n, k)= Z <’:> Bii(B1,....Bi—ky1).

i—k
From (8), we have

n—1 n

Z(k_‘_l){kj_l}’%k: (?)Bi,k(gla”‘ﬂ%i—kﬁ-l)‘
k=1 k

k=1 i=

Example 10. In [11], Xu Lizhi (L.C. Hsu) and Yu Hongquan have defined the gener-
alized Stirling number pair {S(n,k, o, ), S(n, k, ,0)} as follows:

1/ +ay -1\ iz
7l (ﬁ) =Y Sk %)

n=k

1 (14 oy — 1Y iz

n=k
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1e.

{S(n,k, o, B), S(n,k, o)} = {<1,(1_~_M;ﬁ/0<_1>’<1’(1_|_132a/ﬁ_1>}'

Let /(1) =1/p((1+a)P*—1) and g(¢) = 1/o((14-Bt)F—1). Then f, = (f—2)--- (B~
(k—Da), gp=(@—p)---(a— (k—1)p), and we have, by (8) and (9), respectively,
that

n

> Sk f)o— ) (o= (k= 1)) =b,1, n>0, (11)

k=1

(ac—ﬁ)(oc—(n—l)ﬁ): Z S(n,k,ﬁ,oc)S(k,j,ﬂ,ac)

I1<j<k<n

x(B—a)---(f—(—Da), n>0, (12)

while the other two identities involving S(n,k, §,o) may be obtained in a like way
since o and f§ are symmetric.

In particular, taking o = 1 and letting  — 0, we easily find that S(n,k,1,0) = (—1)"**
[¢] and S(n,k,0,1)= {7} just stand for the ordinary Stirling numbers of the first and
second kinds, respectively.

If taking =1 and f=0, then S(n,k,1,0)=(—1)""*S;(n,k|0) and S(n,k,0,1)=
S(n,k|0), where Si(n,k|0) and S(n,k|0) are called the degenerate Stirling numbers of
the first and second kind by Carlitz [10] and defined by

1 (1—(1-0'\ "
=l <(0t)> = ZS'(n’kW)Z’

n=k
1 A tn
oy =1 = Z; S(nk0) .

where Ou=1. Moreover we have, by (11) and (12), respectively, the following iden-
tities,

D (1S (n,k|0)(1 = 0) -+ (1 = (k — 1)0)

k=1

= > S(nkl0)O—1)---(0 =k + 1)) =551, n>0,

k=1

(1=0)-(I=(n=10)= > Snkl0)S(kj0)

1< <k<n

x(O0=1)---(0—j+1), n>0,
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O—1)-O—n+1)= > Sinkl0)S(kj|0)

1<j<k<n

x(1=0)---(1—( —1)0), n>0.
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