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Abstract

We consider a family of contour dynamics equations depending on a parameter o with 0 < o < 1. The
vortex patch problem of the 2-D Euler equation is obtained taking &« — 0, and the case @ = 1 corresponds
to a sharp front of the QG equation. We prove local-in-time existence for the family of equations in Sobolev
spaces.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The 2-D QG equation provides particular solutions of the evolution of the temperature from
a general quasi-geostrophic system for atmospheric and oceanic flows. This equation is derived
considering small Rossby and Ekman numbers and constant potential vorticity (see [12] for more
details). It reads

0,(x, 1) +ux,1)-VO(x,1)=0, xeR>?
0(x,0) =0p(x), (D
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where 6 is the temperature of the fluid. The incompressible velocity u is expressed by means of
the stream function as follows

u="V=ry = (=, 9y ),
and the relation between the stream function and the temperature is given by
0=—(—A)"?y.

This system has been considered in frontogenesis, where the dynamics of hot and cold fluids is
studied together with the formation and the evolution of fronts (see [3,4,7,11]).

From a mathematical point of view, this equation has been presented as a two-dimensional
model of the 3-D Euler equation due to their strong analogies (see [3]), being the formation of
singularities for a regular initial data an open problem (see [3,5,6]). Nevertheless the QG equation
has global in time weak solutions due to an extra cancellation (see [13]). A few sparse results are
known about weak solutions of the 2-D and 3-D Euler equation in its primitive-variable form.

An outstanding kind of weak solutions for the QG equation are those in which the temperature
takes two different values in complementary domains, modelling the evolution of a sharp front
as follows

O(x1,x2,1) = {Z; i{gz(t\)l(?(t) v

In this work we study a problem similar to the 2-D vortex patch problem, where the vorticity
of the 2-D Euler equation is given by a characteristic function of a domain, and the regularity of
the free boundary of the domain is considered. For this equation the vorticity satisfies

w(x, 1) +ulx, 1) - Vw(x, 1) =0, xeR2,
w(x, 0) = wo(x), 3)

in a weak sense, and the velocity is given by the Biot—Savart law or analogously
u= Vllﬂ and w = Av.

Chemin [2] proved global-in-time regularity for the free boundary using paradifferential calculus.
A simpler proof can be found in [1] due to Bertozzi and Constantin.

We point out that in the QG equation, the velocity is determined from the temperature by
singular integral operators (see [15]) as follows

u=(—Ry6, R16), “)

where R| and R are the Riesz transforms, making the system more singular than (3).

Rodrigo [14] proposed the problem of the evolution of a sharp front for the QG equation. He
derived the velocity on the free boundary in the normal direction, and proved local-existence and
uniqueness for a periodic C* front, i.e.

01, {f(x1,1) > x2},

O(x1,x2,1) = { 6, {f(x1,t) <x2),
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with f(x1, t) periodic, using the Nash—Moser iteration.
In this paper we study a family of contour dynamics equation given by weak solutions of the
following system

O, +u-vo=0, xecR?
u=vhty, 0=—(N""%y, 0<a<l, (5)

where the active scalar 6 (x, t) satisfies (2). We notice that the case o = 0 is the 2-D vortex patch
problem, and & = 1 corresponds to the sharp front for the QG equation.

This system was introduced by Cérdoba, Fontelos, Mancho and Rodrigo in [8], where they
present a proof of local existence for a periodic C* front, and show evidence of singularities in
finite time. The singular scenario is due to the point-wise collapse of two patches.

Here we give a proof of local existence of the system (5) where the solution satisfies (2), with
the boundary d£2(t) given by the curve

02(1) = [x(y.1) = (x1(y. ), 22y, 1)): y € [~m, 7},

and x (y, t) belongs to a Sobolev space. In the cases 0 < « < 1 we show uniqueness.

It is well known (see [9] and [14]) that in these kind of contour dynamics equations, the
velocity in the tangential direction only moves the particles on the boundary. Therefore we do
not alter the shape of the contour if we change the tangential component of the velocity; i.e., we
are changing the parametrization. In the most singular case, @ = 1 or the QG equation, we need
to change the velocity in the tangential direction in order to get existence in the Sobolev spaces.
We take a tangential velocity in such a way that [3, x(y, )| satisfies

0, x(v, 0" = AQ),

and does not depend on y. We would like to cite the work of Hou, Lowengrub and Shelley [9] in
which this idea was used to study a contour dynamics problem.

We notice that in order to get a nonsingular normal velocity of the curve for 0 < a < 1 (see
[8] and [14]), we need a one-to-one curve, and parameterized in such a way that

!E)yx(y, t)|2 > 0.
Rigorously, we need that

[x(y,t) —x(y —n,1)]
0]

> Oa V)’s 77 € [_7[’ T[]s (6)

therefore we give initial data satisfying this property, and we prove that this condition is satisfied
locally in time. It is evident from the numerical simulations in [8], that one needs to take into
account the evolution of this quantity.
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2. The contour equation

In this section we deduce the family of contour equations in term of the free boundary x(y, ).
We consider the equations given by the system (1), with the velocity satisfying

u(x, )=V (x, 1), (7
for the stream function it follows
0=—(—0)'""y, (8)
and the active scalar fulfills
_J o1, 20,
e(xlv-xZ’t)_{ez’ RZ\Q(I) (9)

The boundary of £2(¢) is given by the curve
302 ={x(y,0) = (xi(y. ), x2(y, 1)): y € [-m, 7] =T},
where x(y, t) is one-to-one. Due to the identity (9), we see that
V0 = (01 — )9, x (v, )8 (x —x(y.1)),
where § is the Dirac distribution. Using (7) and (8), we have
u=—(—A)?*"1ytg.

The integral operators, —(—A)*/2~! are Riesz potentials (see [15]), so that using the last two
identities we obtain that

Ou [_dyxty=n.1)
21 ] lx—x(y =m0l
T

ulx,t) =— dn, (10)

for x # x(y,t), and O, = (6] — 92)1"(01/2)/2]""1“(2 — «/2). We notice that for ¢ = 1, if
x — x(y, t), then the integral in (10) is divergent. As we have showed before, we are interested
in the normal velocity of the systems. Using the identity (10), and taking the limit as follows

u(x, 1) x(y.1), x—x(y.1), (11)
we obtain

@o{ 8 X(V_n,f)'aj‘x(%t)
ulxtr0.0) xtrn==37 Iic()/, n—x(y —yn,t)l"‘ an .
T

This identity is well defined for 0 < o < 1 and a one-to-one curve x (y, t). Due to the fact that tan-
gential velocity does not change the shape of the boundary, we fix the contour «-patch equations
as follows
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e 0 ,1)—0 —n,t
x,(y,t):—af >, 1) Xy — 1 )dn, O<a<l,
27T T |x(% t)_-x(y_nat)|a

x(y,0) = xo(y). (13)
Seeing Eq. (10), we show that the velocity in QG presents a logarithmic divergence in the tan-
gential direction on the boundary. Nevertheless it belongs to L?(R?) for 1 < p < oo, and to

the bounded mean oscillation space (see [15] for the definition of the BMO space). In QG the
velocity is given by (4), and writing the temperature in the following way

0(x,t)= (61 — ) xou (x) + 02,

we see that
u(x, 1) = (01 — 62)(—R2(x21), Rilxem))-

Using that xo) € L? (R?) for 1 < p < oo, we conclude the argument. In particular the energy of
the system is conserved due to the fact that ||ul|;2(¢) = |01 — 62| |£2(¢)|'/2, and the area of §2(¢)
is constant in time.

3. Weak solutions for the «-system

In this section we show that if 6(x, ) is defined by (9) and the curve x(y, r) is convected by
the normal velocity (12), then 6(x, t) is a weak solution of the system (5) and conversely. We
give the definition of weak solutions below.

Definition 3.1. The active scalar 6 is a weak solution of the «-system if for any function ¢ €
CX(R? x (0, T)), we have

T
//Q(x, t)(B,(p(x, t)+u(x,t) - Vo(x, t)) dxdt =0, (14)

0 R2
where the incompressible velocity u is given by (7), and the stream function satisfies (8).

Proposition 3.2. If 0(x, t) is defined by (9), and the curve x(y,t) satisfies (6) and (12), then
0(x, 1) is a weak solution of the a-system. Furthermore, if 0(x,t) is a weak solution of the «-
system given by (9), and x(y, t) satisfies (6), then x(y, t) verifies (12).

Proof. Let O(x, t) be a weak solution of the «-system defined by (9). If we consider the surface
{(x1(y, 1), x2(y,t),t): y € T, t €0, T]}, integrating by parts it follows:

T
I://@(x,t)f),(p(x,t)dxdt

0 R2
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T T
=91/ / 3,(p(x,t)dxdt+02/ / orp(x,t)dxdt

0 Q@) 0 R2\2(1)
=—(61 —Gz)ffw(x(y, 0, 1)x (v, t)-8)fx(y, fdydt.

On the other hand, we obtain

T T T
=//9u~Vg0dxdt:91//u~V(pdxdt+92/ / u-Veodxdt.
0 R2 0 2 0 R2\Q
Taking
IPHOES {x € £2: dist(x, .Q(t)) 28},
and

25) = {x e R?\ 2: dist(x, R*\ 2(1)) > ¢},
we have that J¢ — J if ¢ — 0, where J¢ is given by

T

T
J€=91/ / u-Vgodxdt—i—QQ/ u-Vodxdt.

0 26 0 250

Integrating by parts in J¢, using that the velocity is divergence free, and taking the limit as in
(11), we obtain

T
J = (6 —92)//(p (x(. 0. t)u(x(y.0).1) - Oy x(y. ) dy dt
0T

_ 2 dyx(y —n,1) - 9yx(y,1)
- 92)_// o) ( sty ) 47

We have that I + J = 0 using (14), and it follows

T

1 O [ Hyx(y —n.0) - x(y.1) ) 3
O/T/f(%t)<xz(%t)~BVX(V,t)+ J P Srov—T” dn |dydt =0,

for f(y,t) periodic in y. We see that (12) is satisfied. Following the same arguments it is easy
to check that if x (y, t) satisfies (12), then 6 is a weak solution given by (9).



F. Gancedo / Advances in Mathematics 217 (2008) 2569-2598 2575

4. Local well-posedness for 0 <o <1

In this section we prove the existence and uniqueness for the contour equation in the cases
0 < a < 1. We denote the Sobolev spaces by H¥(T), with norms

2
07 = Ilxl72 + 95 72
and the spaces Ck(T) with

Ixller =max|a) ] .

‘We need that the curve satisfies

|x(% t) —x()’ B n’t)|
n]

>07 V%’le [_T[’T[L (15)

and we define

Inl
F 1) = Vy.nel-m ], 16
() (y,n.1) XD —x( — 0.0 ysnel-m ] (16)

with

F ,0,8)) = ———.
(xX)(y,0,1) X 0)]

The following theorem is the main result of the section.

Theorem 4.1. Let xo(y) € HX(T) for k > 3 with F(xo)(y,n) < oo. Then there exists a time
T >0 so that there is a unique solution to (13) for 0 <a <1 in C'([0, T1; H*(T)), with

x(y,0) =xo(y).

Proof. We can choose ®, = 2m without loss of generality, obtaining the following equation

dyx(y,t) —dyx(y —n,t)
— dn, O 1,
%y, 1) f XG0 —x(y —mope O TTES
2(7.0) = x0(7). (17)

We present the proof for k = 3, being analogous for k > 3. We use energy estimates (see [10] for
more details). We ignore the time dependence to simplify the notation. Considering the quantity

3 3y
/x(y)'xl(y)dy // ) - ) = X(Z)dndy
J Ix(y) —x(m)]

Byx()/) dyx(n)
dnd
f/ M o)~z 1Y
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=lf/ () = X0 - @y x () = Byx)
2) ) () — 2

1 —a
=m//3y|x(y)—x(y—ﬁ)|2 dydn
T T

=0, (18)
we obtain

d

— 1) =0. 19

o Ixllz2 @) (19)
We decompose as follows

/83x<y> x(Y)dy =h+ L+ 1+ L,
T

where

Fx(y) —atx(y —n)
I = a3 i Y dnd
! T/T/ P ) —x —me 1Y

12=3//83X(V)‘(83}6()/)—83)5(]/ —m)dy (|x(r) —x(y —m| %) dndy,
T T

I3=3//8$x()/)~(agx(y)—a}%x(y —’7))35(|x(7’)—x(y — | ) dndy.
T T

]4://33X(V)-(8Vx(y)—Byx(y_n))agﬂx(y)_x(y_n)|fa)dndy.
T T

Operating as in (18), the term /; becomes

1 ; ; ayx(y) = 9x(y —n)
h=g [ [ =i —m) S
T T

:1//ay|83x(y>—a$x<y—n>|2 indy
4 lx(y) —x(y —m)I®

T T

Ix(y) —x(y —n)|e+?

AR

/f 105 x(y) = 5x(y = PP (x(y) —x(y —m) - Byx(y) — dyx(y — 1) dndy.
T T
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One finds that

L@ // 05x(y) — 85 x(y — 23y x(y) — dyx(y — )
4

dndy,
() —x(y — et e

and due to the inequality |3, x(y) — 3, x(y — M~ < x |2, it follows that

o _ 1 2
11<ZIIXI|c2//In| UF@) (.| |83 x () = Bx(y — )| dndy
T T

1 « _
< EHF(x)HlLJ& ||x||02/|77| “/(}aﬁx(y)|2+ 83x(y — n)[*) dy dn

T

< F@|E Ixl e ||a3x||L2/|n| *dn

<Col F@) | & 1wl 03 x 7 0
As before, we can obtain I, = —614, so that
1 < Co | F)| Ikl 2 |03 x - @b

In order to estimate the term I3, we consider I3 = J; + J> + J3, where

_ 3 (92 a2 _ A(y,n)
n==3a [ [3x @3x0) = 03xty =) oLy,

B -9 —n)?
h=-3 / / Px() - (2x(0) — 82x(y — ). ljcfx)_ _ (;x_(:”a’fz' dndy,

_ 3oy (a2egy A2 (B(y,m)*
J3=3a(2+a) / f Ox ) () = 05l =) o dndy.,
T T
with
Aly,m = (x) —x(y =) - (05x(y) — 4 x (¥ — 1),
and
B(y,n) = (x(y) —x(y —m) - (8, x(¥) — dyx(y —1)).
The identity
)~ Bxr = =n [ 5y + 6~ Dn)ds, 22)

0
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yields

dydnds

; <3/1//| |(|a§x(y>|+|aﬁx(y—n)|)|aﬁx<y>||83x<y+<s—1>n>|
) ! x() —x(y — Ml

1

<3| F@)| 2 Ixlez / / |n|‘°‘/(|a§x<y>|2 +[83x(y + s — D) [*) dy dnds
0 T

1+

< Ca| FGO| 5 xlle2 |83 -

Using (22), we have for J,

— )23 93 -1
__3a///|F(x)(y n)|2+a|8,,x(y) Byx()/ = yx(y) - 9,x(y + (s )n)dydnds

[n|«
OTT

1
< 3!|F<x>||ito“||x||02//|n|1—“f(|aix<y>\2+ 03y + (s — o)) dy dnds
0 T

<Co| F 322

I g 5 o
The term J3 is estimated by

1

13y x () — dyx(y — M3 x (I3 x(y + (s — D)
J3<9///Inly VY r 12)/ dy dnds
[x(¥) —x(y —n)|*
0O T T
2
< Ca| L1018 05 x 72
Finally, we obtain
1 2 2
I < Co(|FO | Slxll ez + | F | 5 15 012:) 93] 2. (23)
We decompose the term Iy = J4 + Js + Jo + J7 + Jg as follows
C(y,n)
J4=—affa3x(y>~ B, x(y) — dyx(y — ) dndy,
v (@ 4 )|x<y>—x(y—n)|a+2
T T
D(y,n)
Js=—3a//83xo/)~ dyx(y) —dyx(y —m) dndy,
v (6 Y )|X(V) —x(y —n)et?
T T
A(y, n)B(y,
(y.m)B(y,n) dndy.

Ts =5a(o¢+2)T/T/33X(V) (O x () — dyx(y —m) lx(y) —x(y —mets
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B(y,n)|d -9 —n)?
J=5a(@+2) f / Bx(y) - (Byx(y) — By — ) 2L ﬁ)('y?x_(?(y _VWJ;TZH D 4y,
3
Bo

with

Cly.m = (x() —x(y =) - (x(¥) — Bx(y — ).
D(y,m) = (dyx(y) = dyx(y —m) - (9,x(y) = 5 x(y — ).

The most singular term is Jy4, in such a way that

Js < ||F<x>||2io“||x||cz/|n|*“/|83x(y>||aix(y>—aix(y —n)|dy dn
T

14«

< Ca| FO 5 x93 2.

For Js, we have

Js <3||F<x)||ito“||x||czf|n|—°‘f|83x<y)||a§x(y>—aﬁx(y—n)|dydn

2+4a |

<ol P21 2] o |33

In a similar way, we obtain

Jo <15 F oo [ 725 12112 /|n|—“f|83x(y>||85x<y>—a§x<y—n)\dydn

2+a

< Call FOO < Il |05 237 2.

and

2 <1S|F Qo |l /|n|—“f|aix(y>y\ayx<y>—ayx(y—n>}dydn
T

34«

< Col F 2 1% 10y xl 22 |87 %] -

For the term Jg, we get

Jg <30||F(x>||ito“||x||czf|n|‘“f|aix<y)||ayx<y>—ayx(y —n)|dy dn

34«

< Cal FO x| 02 2952
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so that

24

Ca(|F@ |, Mxll e + | F | & %0120 + [ FOo |32

IXI2o) x5 (24)
The inequalities (20), (21), (23) and (24) yield

d o
]2 < Ca[FOO [ Ol I (0 x5 0)-

Due to the identity | x|| X117, 4 119, x1I7 , and (19), we have

H3_|

d 3+«
Tl (0 < Co | F )| @O Ol1x [ 3 (1)

Finally, using Sobolev inequalities, we obtain

d o
Tl (0 < Co | P Olxls o). (25)

Notice that if we use energy methods at this point of the proof (see [10] to get the comprehensive
argument), we need to regularize Eq. (17) as follows:

8y(¢£ *x5(y, 1) — e xx°(y — 1, 1)) d
[xé(y, 1) —xt(y —n, D)%

x; (v, 1) :¢a*/
T

x°(y. 0) =x0(y), (26)

where ¢, is a regular approximation to the identity. If the inequality (15) is satisfied initially, due
to the properties of the regular approximations to the identity, we get a Picard system as follows

xE(y 1) =G (x*(y, 1)),
x5(y,0) =xo(y),

where G* is Lipschitz. Therefore, for any ¢ > 0, we obtain a time of existence ¢, where (15) is
fulfilled. In order to have a time of existence for the system (26), independent of ¢, we need to
find energy estimates with bounds independent of ¢. Next, by letting ¢ — 0, we get solutions of
the original equation. In this particular case, we have

34«

1L < Cal FEOE @ | o0,
and if we let ¢ — 0, it is possible that || F (x?) ||z« — o0. In fact, we have an energy estimate that
depends on ¢, and so the argument fails. We cannot suppose that if the initial data fulfils (15),
then there exists a time ¢ > 0 independent of ¢ in which (15) is satisfied, because just at this
moment of the proof we do not have a well-posed system when ¢ — 0, as the Lipschitz constant
of G? goes to infinity when ¢ — 0.

In order to solve this problem, we consider the evolution of the quantity || F (x)|| . Taking
p > 2, it follows that
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d p o d nl g
rolto=5 [ [(comrto=my) @
T T

__p//mp(x(y, D —x(y =0, 0) - (5 (s 1) — xe(y —
lx(y, 1) —x(y —n,1)|P+2

,t
n ))dydn

T

T
In] )”“ I (y, 1) — x;(y — 1, 1)
< dy dn.
”T/T/<|x(y,r>—x(y—n,r>| ] van

‘We have

dWx(y)—dyx(y —=§) . [dx(y —n) —dyx(y —n—§)
lx(y) —x(y — &) ] x(y —m) —x(y —n—8)I*

xt(y)—xt(y—n)=/ d§
T

:/<8yx(y)—8yx(y—é)_ dyx(y) —dyx(y —§) )d$
J () —x(y =6I*  |x(y —m) —x(y —n—=§)|

/ Oyx(y) —0yx(y =) +0yx(y —n—§) — dyx(y — &)

+ ds
J [x(y —m) —x(y —n—8)|*

=I5+ I.

In order to estimate the term /5, we consider the function f(a) =a®. For a, b > 0, we have

la* —b¥| =« <a(min{a, b)) la—b.  (@27)

1
/(sa + (1 - s)b)ai1 (a —b)ds
0

One finds that
I </ 19y x () = dyx(y = Ollx() = x(y —OI = x(v = —x(v =1 = OI*| |
5x %‘

1 () =2y =Dy = —x(y = =
<||F<x>|!iio||x||cz/|5|‘—“ X(V)—;W—é) B X(V—n)—;(y—n—é) e
T

Using (27), we get

15<oe||F<x)H22"‘||x||cz/|$|1—°‘ x(y)_;‘(y_g)‘— x(”_”)_;‘(’”_”_f)Hdg
T

<a|F@| K Ixllc / EI7(Jx(r) —x(y = |+ |x(y — &) —x(y —n—§)|) dE
T
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1+ 2 -
20| F@)|| = IxlZ21n] / E17% dé&
T

< Co|FO | 25 112011,

For I, we obtain

I%XW)—%xW—wN+KwMV—n—é%—%xw—fﬂd

Is <
[x(y —m) —x(y —n —&)|*

T
< Ca FO) 5w ixli .

3

The last two estimates show that

d
L pw)|

P (0 < pCallx 2o 0| Fo) | 122 1) / (Fe) ., 0)" dy dn
']1'2

<pCallx 2| FO 22 0| F |1, @),

and therefore

d o
ZIF@] L0 < Calls 0] F@) [ O F @), 00,

Integrating in time it follows that

t+h
[F) ¢ +m < |[F@| @ exp( Co [ 11226 FO |72 ) ds |
L L c L
t
and taking p — oo we obtain

24«

t+h
| FO | oo (4 1) < | F )| oo (1) exp (Ca / Il 2 () | F 322 (5) ds) .
t
In order to estimate the derivative of the quantity || F (x)| L (¢), we use the last inequality, so that

d . _
LI F @] ) = im (|F@] e+~ [F ] )™

t+h
<|F@) | ® }}g%<exp<ca / ||x||éz(s>||F(x>||it§’(s>ds> —1>h1
t

< Callx 22| F) |35 (1).
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Applying Sobolev inequalities we conclude that

d o
TIF@ ) < Calle 0| Fo) [ 0). (28)

This estimate does not give a global in time bound for || F (x)|| Lo (¢) in terms of norms of x(y, t),
but adding the estimate (28) to (25), we have

d o
Tl O+ [F | 1 0) < Ca| F@ 2 0l ),

and finally

d @
Tl ) + [FO ] o) < Ca(lellgs 0 + [ F) | o) (29)
Integrating, we get

lIxoll 73 + || F (x0) Il Lo
; 9
(1 = 1Co(lIx0ll 3 + 1 F (x0) || L) 0T e) &+a

Il 3 () + | FGO | oo (1) <

where C,, depends on «. Using the regularized problem (26), the same estimate is obtained with
x® in place of x. Therefore we have found a time of existence independent of &, and letting
e — 0, the existence result follows.

Let x and y be two solutions of Eq. (17) with x(y, 0) = y(y, 0), and z = x — y. One has that

/Z(y) ) dy ://Z(y) . <8yx(y) — 3, x(y —;7) _ Oyx(y) = dyx(y _;7)>dndy
J I lx(y) —x(y —n)l ly(y) —y(y —mnl

+//z(y)~(3yz()/)—3yz(7/—n)) dndy
T T

ly(y) —yly —ml«
=1+ Ig.

The term /7 is estimated using (27) by

I

N

/ 218y x(y) = dyx(y —mllIx(y) —x(y —mI* = Iy(¥) —y(y —m)|*| dndy

[x(y) —x(y =) |*|ly(y) —y(y —I|*
T T

< ||F<x>||§m||F<y>!|‘zm||x||cz//|n|1‘°‘|z<y>|
T T

o

x(y)—x(y —n)
n

o

B ’y(y) o=

n

x(y)—x(y —n) ‘

<JF@ | o [FO)] e lixlce / / 2] :
T T
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N y(y)—y(y—n)Hdndy

< F@| ||F(y)”Loo||x||c2//Inl_“|Z(V)||z(J/)—Z(V—77)|d77d)/
T

T
< Co|[ FO || o | FO | o Ixll 2112113

Integration by parts in Ig yields

Is— %// (z(y) —zty =) - By z(y) — 0yz(y — ) dndy

ly(y) —yly —ml«
T T

dndy

_ 1/ 3 (z(y) —z(y — 1%
4 ly(y)—yly —nl*
T T

_ %// lz(y) —z(y = PO &) =y —m) - @, y(¥) — 3, y(y — 1)) dndy

ly(y) — y(y —np)|et?
T T

<Ca| FO) |1yl 1212,

Finally we obtain
L2120 < Clax, o).y FO)) 1212 0)
dr" TS T Yo I 2D,
and using Gronwall inequality we conclude that z=0. O
5. Existence for « = 1; the QG sharp front

In this section we prove the existence for the QG sharp front in Sobolev spaces. We give the
norm of the Holder space C* > (T) by

k k
10,x(y) — 0y x(y —n)l
1/2

[lx 1l

= [|X max
gty =lxllc+

y.neT 0]

In the case of « = 1, we have the following equation

’

X t):92—91/BVX(y,t)—ayX(y—n,t)d
i 2 (. 0) —x(y — 7. 1)]

x(y,0) =xo(y). (30

We can take 6, — 61 = 2 without loss of generality. This equation loses two derivatives, there-
fore the technique applied in the last section does not work. Recall that we are trying to solve
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the QG equation in a weak sense, so we can modify the system (30) in the tangential direction
without changing the shape of the front, as long as the curve satisfies

a]/x(y -, t) . B#‘x()/, t)
lx(y,t) —x(y —n,1)|

xi(y.1) Oy 1) = — /
T

We showed in Section 3 that the temperature 6 (x, t) given by (9) is a weak solution of the QG
equation. We propose to modify Eq. (30) as follows

3 x(y. 1) — 3, x(y —1.
xz()/,t)=/ X, = by xly nt)dﬁ-i-)»(%f)ayx(%l),

x(y. 1) —x(y —n,1)|

x(y,0) =xo(y). €2y

We have introduced the parameter A(y, ¢) in order to get an extra cancellation in such a way that
dyx(y.1)-05x(y,1) =0. (32)

Given an initial datum satisfying (15), we can reparameterize to obtain [d, x(y, 0)]>=1, and
therefore (32) is fulfilled at = 0. We cannot have |3, x(y, 1) |2 = 1 for all time, but

8, x(r, 0> = AQ). (33)

We have

A'(t) =20, x(y,1) - 0, x:(y, 1)

=20, x(y.1)- 9, (f O Xy, 1) = Oy xly = . 1) dn> +20,A(y, DA,
T

[x(y, 1) —x(y —n,1)]|

so that

Ao 1 ' dyx(y,t1) — dyx(y —n,1)
WRrD= 8 T A 8V(/ D) —x( =m0 d”)' G4

Because A(y, t) has to be periodic, we obtain

A0 —71 . dyx(y,t) — dyx(y —n,1)
2A0) ‘2nA<r>Tfa”(y’” 8V<T/ e Sy )69

Using (35) in (34), and integrating in y, one gets the following formula for A(y, )
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My, )=

y+m 3VX(VJ)2 '8y</8yx(y,t)—3yxw—n,t) dn>dy
27 T |ayx()/,t)| |x(7/’t)_x(y—77’t)|

dyx(n,1) (f d,x(n,t) —d,x(n—&,1) >
— — .0 dé ) dn, 36
J 13y x(n, 12 " [x(n,t) —x(n —§&,1)| §)an (36)

taking A(—m, t) = A(m, t) = 0. If we consider solutions of Eq. (31) with A(y, t) given by (36), it
is easy to check that

2
)

d
Toyx 0" = 2,09y [ayx (v, O + 00|y x(r.1)

where

() = ! M 8)/([ dyx(y,t) — dyx(y —n,1) dn)d

ET 0, x(y, D)2 x(y, 1) —x(y —n,1)]

Solving this linear partial differential equation, if (32) is satisfied initially, one finds that the
unique solution is given by

t
2 2 l ' Oy x(y,s) —0yx(y —n,s)
3y x(v. D] = |dyx(y,0)] +n_b/T/3yx(y,s) ay<T/ 05 —%(y —73] dn)dyds.

Therefore we obtain (33).
The main result of this section is the following theorem.

Theorem 5.1. Let xo(y) € H¥(T) for k > 3 with F(xg)(y,n) < oo. Then there exists a time
T > 0 so that there is a solution to (31) in C1([0, T1; H*(T)) with x(y, 0) = xo(y) and A(y, t)
given by (36).

Proof. We let k = 3, the proof for k > 3 being analogous. We have showed that (33) is satisfied
if x(y, t) is a solution to (31). We can rewrite A(y, t) as follows

_rv+m ' 0yx(y,t) —dyx(y —n,1)
M= 3000 [ s ay(/ XG0 —x (7 — 0. 0) d")"
T T

Y
1 dyx(n,t) —dyx(n—§,1)
— T

|x(777t) _-x(n - “;:9 t)'
We obtain

0 —0 -
/x(y>.xf<y>dy=//x<y>- y2(y) = yx(y = m) dndy+/)»()/)x(}/)'3yx(y)d1/
J g lx(y) —x(y —n)l J

=1+ .
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One finds that I; = 0, since

D) =) // dyr) x|
/ / W o) == W == Y
() = x(0)) - (B, x(y) — B, x() / /
= - dndy = — 0 — — dy d
// ) = 2D ndy a7y y|x() —x(y — )| dy dn

For the term I, one obtains that I < ||A| L |lx|l2]10y x|l 2, and

/ 3yx()/) - 3yX(J/ -n)
lx(y) —x(y —n)

102x(y) — 02x(y — n)|
dnd
A(r)/' o )‘/ ) —xG —m Y

2 10, x(y) = dyx(y — )| 3
+m/|8yx(y)|/ dndy = Ji + J».
T T

dn’dy

[Allzee <

Ix(y) —x(y —n)I?

Dueto 1/A(¢) < ||F()c)||%oo (1), we have

5 < 2||F(x>||ioo/ff|aix(y + (s = Dn)|[8yx ()| dy dnds <2|| F@)|} llxI2s,
and

1
Jz<2||F<x)||‘{oo||x||cl///|85x(y+(s—1>n)|2dydnds<2||F<x)||jm||x||zg.

l herefore we Obtall‘l that

We decompose as follows

3 53 _ [ 3 a3 [ X)) —dyx(y —m)
T/8,,x(7/) 8yxz(y)dV—Tfayx(J/) 83,(T/ ) —x(r — ] dn)dy

+ / B3x(y) - 9 (13, x (1) dy
T
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We take I3 = J3 + J4 + Js + Jg where

Fx(y) —dtx(y —n)
J3 = a3 i Y dndy,
3 T/T/ P S —x =1

J4:3//83x(")'(83"(”)_33)‘()’ —m)dy (Jx() —x(v —m| ) dndy.
T T

Js=3//33x(y)~(aﬁx(y)—aﬁx(y—n))a§(|x(y)_x(y_n)}—l)dnd%
T T

Jﬁz'//‘a;x(y)~(ayx(y)—ayx(y_n))a}%(‘x(y)_x(y_n)|—1)dndy'
T T

The term J3 can be written as

Iyx(y) —dyx(y —n)

1
Ji=— a3 —3x(y —n))- dnd
; 2//( yX ) =y =) = Y
T T
21//ay|asx(y>—83x(y—n)|2dndy
4T J |x(y) —x(y —n)|

dndy.

_1 // 185x(y) = x(y =P (y) = x(y = m) - (B x(y) — dyx(y — )
4 x(y) —x(y —n)?

Defining
B(y,n) = (x(y) —x(y —=m) - (dyx(¥) — dyx(y — 1)),
by (32), we see that

2By, mn™ =3, x(y) - 8,x(y) p

1 3
J3=Z//|F(x)<y,n>| 103x(y) — B3x(y — )| - ndy.
T T

Using
B(y,mn~2 —0,x(y) - 92x(y) _
’ Y <20x)%, ;o712

n c*2
we see that

5 < ||F<x)||im||x||zl% f |n|—1/2f(|83x<y>|2+ |83x(y —m)|) dy dn
T T
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<CIF@ Il ) 83+
<C|F@|}lixlls. (39)
We obtain that J4 = —6J3, which gives
T <CIF@ | llxlts. (40)

In order to estimate the term Js5, we consider Js = K| + K, + K3, where

Cly,m)
lx() —x(y =P

K, =—3//8$x(y)~(8)%x(y)—3)%X()/—n)) ndy,
T T

__ 3o 8 () = dyx(y — )l
K= 3//8yx(y) (3, x(y) — 8, x(y —m) ) —mp ey
T T
_ 3oy (a2egn a2 (B(y,m)*
K3—9//ayx<y) (0,x(y) — 9 x(y ”))|x(y>—x(y—n)|5 ndy.
T T
and
Cly.m=(x()—x(y =) - (05x(y) = 3x(y — ).
The inequality
|95 (r) = 85y —m)[Inl 2 < Dy - (41)

yields

1

K <3||F(x)||§wnxucz,%ffmr”zj|83x(y>||83x(y+<s—1>n)|dydnds
0T T

<C|F@|;wlxls.
As before, we have for K, that
Ky <CF) |}tz |03x] 72 < ClF | lixls.
The term K3 is estimated by
K3 <C|FO[]llx 2|32 35 < CF@| e llxll s
Finally, we obtain

Js SC|F@ |3 ollxlds. 42)
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Decomposing the term Jo = K4 + K5 + K¢ + K7 + K3 as

D b
_//33)6(1’) (8, x(y) = dyx(y —m) (v.n) dndy,
T T

Ix(y) —x(y —n)P?

E(y,n)
Ix(y) —x(y =)

Ks==3 [ [ 8200 (0,507~ 8,500 =) dndy,

B(y,mC(y,n)
Ix(y) —x(y — )P

K¢ = 15//a;x(y) (0, x(y) = dyx(y — )

B(y,m|d,x(y) — dyx(y —n)|?
Ix(y) —x(y — )P

K7=15ff83x(y>-(ayx<y)—ayx(y—n)) dndy,
T T

(B(y.m)*
Ix(y) —x(y — )

Kg= —30/ / Bx(y) - (Byx(y) — d,x(y — 1) dndy,

where
D(y.m = (x(y) —x(y =) - (0,x(y) — & x(y — ),
E(y.n) = (3yx(y) — dyx(y —m) - (37 x(¥) — S x(y — ).
we obtain
Ks <3| F|} etz 8332 <3 FO | allxld s,
Ko <15 F0) |3 allx 2o | 03x]| 72 < 15[ FO |5 llx 145,
K7 < 15| FQ)|) ) wllx o] 83x] 2 02x] 2 < 15| F@) |5 s llx I3,z
and

Ky <30 F )1 Ix132 [ 95x] 287 x] 2 < 30| F ) [ Ixla

For the most singular term, we have

B) (33 —3x(y —n) — D(y,
K4_//agx(y) 5, x(r) — b, x(y_n))n yx(y) - (0yx(y) — dyx(y 737)) (v, m dndy
lx(y) —x(y —n)]
3 (33 —3x(y —
//83)6()/) yx() = dya(y — ) O R T g,
|x(¥) —x(y —n)l

=L+ Ly,
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so that

Li < |[F@[} %12 f f|a$x<y)||85x(y) —83x(y —m)|dy dn < C|F@)[} llx I

Decomposing the L, term, we see that

B . - M@y x () = dyx(y —m) - Hx(y =)
Lz—//ayxo/) (@yx(¥) = dyx(y —m) ) —mF dndy

—//aix(w-(ayx(y)—ayxw—n))n
T T

) Bx(y) — dyx(y —n) - 3x(y —n)
x(y) —x(y —m)?

dndy
=M + M.

We estimate the M term as

M < ||F(x>||ioo||x||éz/f\aix<y>||83x<y —m|dy dn < |[F) |3 lixlits
T T

Taking the derivative in (32), we see that 9, x(y) - B;x(y) = —|8J%x(y)|2, and we rewrite

192x(P) 2 — 1925 (y — )P
Ix(y) —x(y =)

Mz=//83x(y)~(8yx(y)—8VX(V—n))n dndy.
T T

The inequality
5l = |33 =Pl < 20xlcatnl [ 030 + s = D) s, 3)
0
yields
Mz<2||F(x)||ioc||x||§2///|a*x(y)||a3 (v + (s — D) |dy dnds < C| F) ||} l1xll%5.
0T

Recalling that K4 =L1+ Ly =L+ M|+ My < C| F(x) || o ||X || we see that

H

Jo SC|F) | Jaollxl,s. (44)
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Due to (39), (40), (42) and (44), we obtain
4
BLC|F@®| lxl3,s (45)

We write 14 = J7 + Js + Jo + J19, Where

Jr= f A)Rx(y) - 0yx(y)dy, =3 f 0, 1) 83x ()| dy.
T T
Jo=3 / AR x(y) - 0ox(y)dy,  Jio= f RAY)Bx(y) - yx(y)dy.
T T

Integrating by parts in the term J7 we have

1 1
n==3 [Bamlaixlay <318, ks 155
T

Using (37), we see that

R . dyx(y, 1) = dyx(y —n,1)
8),)»()/,2‘)— mAQ) /8]/)6()/91‘) ay(/ [x(y,t) —x(y —n, 1) )d
T T

—Layx(y,t)ﬂy(/‘ 3yx(%f)—8yx(]/_77,f) d?’])
T

A(1) lx(y,1) = x(y —n, 1)
= K9 + K1o0. (46)
The term Ky is estimated in the same way as J; and J>, so that
Ko <[ FOO) |} oo 13,5

We have for K that

_ Il <|83x(y,t> —ayx(y —n, 1)l Ly x () =3y x(y =, r)|2>
SOA® S\ D = x(y =m0l lx(y. 1) —x(y —n,1)[?

< 2||F<x>||‘;o||x||3cz,% f In|~"2dy
T

<C|F) | ol

and therefore
B <CF@|}wlxl,s. @7

Due to the identity Jg = —6.J7, one finds that
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Js < C|FQ)| ) lxl,s- (48)

Using

Oyx(y, 1) — 0yx(y —n,1) )

A(r) Y lx(y, 1) —x(y —n,0)|

1 d,x(y,t) —d,x(y —n,t)
A()B),x(y 7) - 32</ Y 4 dn>,
T

1
Py, 1) = ——82x(y, -9, (/
T

lx(y. 1) —x(y —n,1)]

one sees that

_ 1 3 2
Jo=— 9,x(y) -9 x(y)a x(y) -0y
T

0yx(y) —dyx(y —n)
A0/ d”) a

[x(¥) —x(y —n)l

yx(y) —dyx(y —n) n) J

1

93 02 P az</
Ry, y¥() - Gy x()dyx(y) - ] )= xG =
=L3+L4.

Therefore

L3 <

lFe /| 2x(r) (lazxw,r)—a%x(y—n,rn+|ayx<y,t>—ayx(y—n,;nz)dndy
A1) lx(y, 1) —x(y —n,1)| lx(y, 1) —x(y —n,1)|

1
||F<x>HLm||x||C2f//|a3x(y)| (193x(y + (¢t = Dn)| + [02x(v + (¢ — D)) dy dnds
0T

<C|F@| el
Moreover

Px(y) —dx(y —n)
3 2 Y
ba= A(r)//a X)X Ax ) = G = 1Y

(32x(y) — 32x(y —n)B(y.n)
a3 92 9 4 4 dnd
A(z)// X)X ) S =P ndy

i / / Bx(r) - 820, x () - (Byx(y) — Byx(y — )

x02(|x () —x(y —m| ") dndy
= M3+ My + Ms.
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The terms M4 and M5 are estimated as before, so that
5 6
My+ Ms < C|F@) | llxlI%s
The most singular term is M3, but we find that

_ 1 3 2 3. Oyx(y) —dyx(y —n)
Ma-A(t)//amw ity = Ly dy
T T

(¥) - 0yx(y) =B x(y —m) - 9y x(y — 1)
3 a2 J/x y 14
A(r)// y¥) - 8x () () —x(y — )]

= N1+ N».
We obtain
N < [FO | wllxlZa]|83x] 72 < [FO | ol s,

and using (32)

1 102x () — 182x(y — n)I?
szm//G;x(y)~8}%x(y) r L dndy.
T T

lx(y) —x(y —n)l
Due to (43), we conclude that
<2||F( 3 2| F
O[3 llxlZe|83x] 72 <2 FOO | lix s
We have Jo = L3+ Lys= L3+ M3+ Ms+ Ms = L3+ Ny + Na+ M4 + Ms, so that

Jo < | F|5 e I1x11G,5-

The identity (32) yields

) 2
Jlo=—/83k(y)|35x0/)| dy zzfagx(y)aﬁx(y)-aﬁx(y)dy =3%
T T

and therefore

Jio < | F|5 < 1x11%,5

Due to the inequalities (47)—(49) and (50), we get

I < CF@) [ lx16s.

dndy

(49)

(50)



F. Gancedo / Advances in Mathematics 217 (2008) 2569-2598 2595
Using (45) and the last estimate, we have

d
Tlax |20 < CIFO [ 0l l5s ).

This inequality and (38) bound the evolution of the Sobolev norms of the curve as follows

d
Tl ) < CLF [ O] ). 51)

We continue the argument considering the evolution of the quantity || F(x)| o (¢). Taking
p > 2, we see that

d In| P x(y, 1) — iy — 1,0
T o
a1 F@lo<p X0 —x(y —1.0)] il van
T T
We have
_ oy — 3VX(J/)—3VX()/—$)_ 3yx(J/)—3yx()/—$) )d
xy) =5y —n) /( ) —x -8By —m—xtr —n—81) "
/8)/)‘7(7/)_8)/)5(7/_77)"‘3)/)5(7/_77_5)_8)/)5()/_%_)
+ dg
J lx(y —n) —x(y —n —§)|
+ (A() = Ay = )3y x(y) + Ay —m)(dyx(¥) — dyx(y — n))
=Is+1g+ 17+ Ig.
Now,
I < Iayx()/)—ayX(V—é)lllx(y)—X()/—E)l—IX(V—??)—X(J/—H—é)IId
5x E
] x(y) —x(y =O)Ix(y —n) —x(y —n—&)]

<IF@Pallxlien / E17 2 () = x(r = 1) — (x(v — &) — x(y — 0 — &) dé
T

Eds

1

9 —Dn)—0 — 1y —

IRy AL DR SALEDIE. T
0T

<27 |[F) |7 llx 2ol

For I we see that

1
32 —1 —82 _1 _
16<||F(x)||m|,,|//| Jx(y + (s = D) |§Tx<y+(s ) sndsds
0T
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1
< ||F(x>||Loo||x||C2,%|n|/f|sr1/2d5ds
0T

<SCIF@] peolixll oy 111
For I7, we have

2| x|l c2
A(t)

~

8yx(y)—8yx(y—n)) ‘
'”'mf‘x‘ayx(y)‘ay(qrf o —x—m )"

02x(y) — 02x(y — )
lx(y) —x(y —n)l

<2||F(X)Hioo||x||2cz|’7|m}flx(/
T

flayx(y)—ayx(y—n)lzd )
Ix(y) —x(y —m)|?

<A F@ | 1allxldsinl.
Estimating |A ||z~ as before, we easily get
Iy < |IAllelixllc2Inl < 4||F(X)||iOQIIXII‘;,3|n|~
The last four estimates show that
d
ZIE@] L0 < O F@ [ O] F 0] 0,

so that, by integrating in time and taking p — oo, we obtain

t+h
[F o) oot + 1) < ||F<x>||Loo<r>exp<c / ||x||‘;,3<s)HF<x>||§w<s>ds).
t

As in the previous section,

d
TF@] ) < Clel} O] F@) o)

so that, due to (51) and the above estimate, we see that

d
Z(xl O + [FO 1 0) < CIxls )+ [ F 2 0)
Integrating,

Ixoll 73 + I F (x0) Il o

Il 3 (1) + | F () || ;oo (1) < -
(1 = tC(llxoll g3 + I F (x0) | )%)®
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where C is a constant.

We have used the equality (32) to obtain the a priori estimates. In order to get the solution
of (31), we have to choose an appropriate regularized problem preserving (32). We propose the
system

dn+ 253 (y, 0, x5 (y, 1),

1) = */ay<¢g*x&5(y,r)—¢8>«<x8’5(y—n,r»
AR Xy 0) =X = D]+ 5

x*3(y, 00 = x0(y), (52)
with

A0y, 1)

_ytm [ x¥yn (4. *[ By (e % X0 (y, 1) — e x x50 (y — 1, 1)) i) d
21 ) 18, x58(y, )2 X8 (y, 1) —x&3(y —n, 1) +8
T

oxtmn <¢ */ By (pe % x50 (1, 1) — pe % x50 ( = §,1))
n\ Pe

- ) == P d&¢ ) dn.
EERCE 3, 1) — x50 —£.0)] + 6 E) !
-1

We can obtain energy estimates for the system (52) depending on ¢ and §, but without using (32),
and therefore we obtain existence of (52). As long as the solution exists, we have that
8y x™* (1) - 852" (v, 1) =0.

Using this property of the solution, we obtain energy estimates that depend only on §, and taking
& — 0 we get a solution of the following equation

dyx°(y, 1) — 3, x3(y —n, 1))
J [x(y, 1) —x3(y —n, )| +8

XXy, 0= dn+ 22 (v, 08, x° (v, 1),

(v, 0) =x0(y), (53)

with

Ay, 1)

_y+m [ X < dyx(y, 1) — xSy — 1) )d
2r ) 130 T\ ) =Py — .0l + 8
T T

ERUR) ( 3, x°(n,1) = 3, x°(n — €, 1)
"

vz e d& | dn.
J e R T\ Wa 0 =0 -Eni+s 5) !

Again we have that the solutions of this system satisfy

dyx’(y.1) - 0,x°(y. 1) =0,
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and taking advantage of this, we find energy estimates independent of §. Letting é tend to 0, we
conclude the existence result. O
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