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Abstract
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1. Introduction

In the growth processes of thin films by deposition techniques, clusters of differen
evolve dynamically with the passage of time [1–3]. The classic model for characte
cluster growth processes is the rate-equation approach developed by Smoluchow
In the rate equation, the evolution of the cluster-size distribution is described by the
ber and size of clusters where geometry is neglected. While Smoluchowski’s rate-eq
approach has provided powerful tools for studying aggregation processes [1–3], it is
nized to be nice in characterizing both agent-based coalition formation in electronic
kets [5,6] and agent-based load balancing in grid computing [7–12]. While dissoc
is neglected in the equation in previous works [1–4], it is considered in this work. In
paper, we focus on the rate equation describing the cluster evolution.

The mechanism in the evolution of cluster-size distribution is as follows [1,2]. On a
dimensional smooth surface, monomers are deposited randomly. Each monomer
smooth surface moves randomly. When a monomer meets another monomer, they
“frozen” and form a cluster of size two. When a monomer meets an existing cluster ofs

(s > 1), it may join the cluster and form a cluster of sizes + 1. Inversely, a monomer in a
existing cluster may also leave the cluster and join other clusters. Therefore, mono
behavior can be focused on two elements: leaving and joining. Both the attachme
and the detachment rate will determine the global dynamic behavior of the system.
on the quantities of the number and size of clusters in the system, [1,2] describ
evolution of the cluster-size distribution by the rate equation. In [1,2], a detailed stu
the evolution, scaling and percolation of clusters were presented and compared w
results obtained using the rate equation.

Since solutions of the rate equation denote the quantities of clusters with different
they should not be negative with the passage of time. In fact, suppose there is a
terexample where some component of a solution is negative at some time, then the
in [1,2] would be not effective since the number of clusters must not be negative. W
experiments in [1,2] showed the convergence of cluster-size distributions, the stab
solutions of the rate equation is not studied. Hence, the primary problems we tackle
paper are:

(i) showing the positiveness of solutions of the rate equation and
(ii) proving both the equilibrium uniqueness and the equilibrium stability.

In this paper, we show dynamics of the rate equation. We introduce dissociation
rate equation while dissociation is neglected in previous works. We prove the positiv
of solutions of the equation, which is a basic guarantee for the effectiveness of the
since the possibility that some solution may be negative is excluded. For the cluste
lesce without dissociation, we show both the equilibrium uniqueness and the equili
stability under the condition that the monomer deposition stops. In the case that c
evolve with dissociation and there is no monomer deposition, we show the equili
uniqueness and prove the equilibrium stability if the maximum cluster size is not l
than three while we show the equilibrium stability by numerical simulations if the m

mum size is larger than three.
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2. Description of the rate equation

We describe the rate equation characterizing the evolution of cluster-size distribu
this section and explain the terms in the model one by one. We focus on two quant
the cluster evolution: the number and size of clusters.

Let N1(t) be the number of monomers at timet . Let n be the maximum size of cluster
For 2� s � n, let Ns(t) be the number of clusters of sizes at timet . Then the evolution o
cluster-size distribution described in Section 1 can be characterized by the followin
equation:

N ′
1 = F + 2D2N2 − 2K1N

2
1 +

n∑
s=3

DsNs − N1

n−1∑
s=2

KsNs,

N ′
s = Ks−1N1Ns−1 + Ds+1Ns+1 − DsNs − KsN1Ns, 2� s � n − 1,

N ′
n = Kn−1N1Nn−1 − DnNn, (1)

whereF > 0,Ds � 0,Ks > 0 andNs � 0 as 1� s � n. The termN ′
s = dNs(t)/dt denotes

the rate of change in the number of clusters of sizes, s � 1. ParameterKs denotes the
rate at which monomers join clusters of sizes. ParameterDs denotes the rate at whic
monomers leave clusters of sizes.

The first equation in (1) describes the change rate of monomers. ParameterF denotes
the rate of deposition of monomers. The term “+2D2N2” shows that one cluster of size
becomes two monomers after a monomer’s leaving. The term “−2K1N

2
1 ” shows that two

monomers become one cluster of size 2 after a monomer’s joining. Fors � 3, the term
“+DsNs ” shows that one cluster of sizes becomes one monomer and one cluster of
s −1 after a monomer’s leaving. Fors � 2, the term “−KsN1Ns ” shows that one monome
and one cluster of sizes become one cluster of sizes + 1 after a monomer’s joining.

The second equation of (1) describes the change rate of clusters of sizes as s � 2.
The term “Ks−1N1Ns−1” denotes that one monomer and one cluster of sizes − 1 produce
one cluster of sizes after a monomer’s joining. The term “+Ds+1Ns+1” denotes that one
cluster of sizes + 1 produces one monomer and one cluster of sizes after a monomer’s
leaving. The term “−KsN1Ns ” denotes that one monomer and one cluster of sizes produce
one cluster of sizes + 1 after a monomer’s joining. The term “−DsNs ” denotes that one
cluster of sizes produces one monomer and one cluster of sizes − 1 after a monomer’s
leaving.

In the third equation of (1), the change rate of clusters of sizen is described. Since th
numbern is the maximum cluster size, single monomers will not join a cluster of sin

and there is no cluster of sizen + 1. Then the change rate of clusters of sizen increases a
a single monomer joins a cluster of sizen − 1, and decreases as a single monomer leav
cluster of sizen.

Hence, system (1) is in agreement with the mechanism of the evolution of cluste
distribution described in Section 1. While dissociation is neglected in previous works [
it is considered in Eq. (1) in this work. Our idea of introducing dissociation is motiv
from [5,6]. In [5,6], Lerman and Shehory applied the rate equation in [4] in descr

buyers’ coalition formation in markets where they naturally considered buyers’ dissocia-
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model more complete than the previous one.

In this paper, parametersKs are assumed to be constant as timet varies while they may
be different for different indexess. For example, parameterK2 is different fromK3 in the
case ofK2 = 0.2 andK3 = 0.3. That is, for different sizess of clusters, the attachme
ratesKs may be different, which means that the size of clusters is considered in Eq
In [2], parametersKs are functions of sizes: Ks are proportional toD ·Sp, whereD is the
diffusion rate of single adatoms andp is a constant, see [2, p. 8783]. Ifp = 0, then Eq. (1)
describes point (zero size) islands. Ifp �= 0, then Eq. (1) describes nonzero size islan
Since both parametersD andp are constants as timet varies, parametersKs are constan
as timet varies. Then parametersKs are effective for both point islands and nonzero s
islands. Similar discussions can be given for parametersDs . Hence, the size of clusters
considered in Eq. (1) while the geometry of clusters is neglected.

Now we discuss a minor error in [2] while [1,4] corrected the error without a theore
proof. Ignoring dissociation (i.e., lettingDs = 0 in system (1)), [2] described the evolutio
of cluster-size distribution as follows, see [2, p. 8783]:

N ′
1 = F − K1N

2
1 − N1

n−1∑
s=2

KsNs,

N ′
s = Ks−1N1Ns−1 − KsN1Ns, 2� s � n − 1,

N ′
n = Kn−1N1Nn−1, (2)

where the second term “−K1N
2
1 ” on the right-hand side of the first equation in (2)

not accurate. In fact, suppose the deposition of monomers stops after a time pe
deposition, i.e., letF = 0 as timet > t1, wheret1 > 0. Then the amount of monomers
the surface must remain constant. Letn be the maximum size of clusters, we have

n∑
s=1

sNs(t) =
n∑

s=1

sNs(t1) ast > t1,

that is,
n∑

s=1

sN ′
s(t) = 0 ast > t1.

However, it follows from (2) that
∑n

s=1 sN ′
s(t) = K1N

2
1(t) > 0 as t > t1. This is a

contradiction. Hence, the second term “−K1N
2
1 ” on the right-hand side of the first equatio

in (2) should be replaced with “−2K1N
2
1 ”, which means that two monomers become o

cluster of size 2 after a monomer’s joining. After the replacement, it can be verified∑n
s=1 sN ′

s(t) = 0 ast > t1.
Let

Rn+ = {
N = (N1,N2, . . . ,Nn): Ns � 0, 1� s � n

}
,

Σn = Rn ∩
{

N :
n∑

sNs = M

}
,
+

s=1
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wheren > 0 andM = ∑n
s=1 sNs(0). Let intRn+ be the inner points ofRn+ and denote

intΣn = int Rn+ ∩ Σn.

3. Positiveness of solutions

While system (1) has been widely used in describing dynamic scaling of cluste
distribution and has been verified to be effective by physical experiments [1–3], it s
be proven from a mathematical perspective. One of the problems we are concerned
the positiveness of solutions of (1). Since solutions of the model denote the quanti
clusters with different sizes, they should not be negative with the passage of time.

In this section, we show that solutions of (1) initiated fromRn+ (i.e., ast = t0) will
remain in intRn+ ast > t0. We consider two cases:

(i) the initial vectorN(t0) = (N1(t0),N2(t0), . . . ,Nn(t0)) is on the bound ofRn+, i.e.,
N(t0) ∈ ∂Rn+;

(ii) the initial vectorN(t0) = (N1(t0),N2(t0), . . . ,Nn(t0)) is in the interior region ofRn+,
i.e.,N(t0) ∈ int Rn+.

In the case ofN(t0) ∈ ∂Rn+, some components ofN(t0) are positive and others are ze
First we study two types ofN(t0) in Lemmas 2–3:

(a) N(t0) = (. . . ,+,0, . . . ,0,+, . . .);
(b) N(t0) = (. . . ,+,0, . . . ,0).

Then we show the positiveness of solutions for the case ofN(t0) ∈ ∂Rn+ in Lemma 4. In
the case ofN(t0) ∈ int Rn+, we prove the positiveness of solutions in Lemma 5. With
loss of generality, we assumet0 = 0 in this work since system (1) is autonomous.

Lemma 1. Let N(t) be a solution of (1) with N(0) ∈ Rn+. Then there is δ1 > 0 such that

N1(t) > 0 as t ∈ (0, δ1).

Proof. It follows from F > 0 that monomers are deposited to the smooth surface co
uously, then without loss of generality, we can assume thatN1(0) > 0 andNs(0) � 0 as
s > 1. By the continuity ofN1(t), there isδ1 > 0 such thatN1(t) > 0 ast ∈ (0, δ1). �
Lemma 2. Let N(t) be a solution of (1) with N(0) ∈ ∂Rn+. If there are l and i, 1 � l < i,
such that Nl(0) > 0, Nk(0) = 0 as l + 1� k � i and Ni+1(0) > 0, then there is δ > 0 such
that
Ns(t) > 0 as t ∈ (0, δ) and l + 1� s � i.
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Proof. It follows from [13] thatNs(t) is analytic ass � 1. SinceNl(0) > 0, then there
is δl , 0< δl < δ1, such thatNl(t) > 0 ast ∈ (0, δl). SinceNi(0) = 0 andNi+1(0) > 0, it
follows from theith equation of (1) that

N ′
i (0) = Ki−1N1(0)Ni−1(0) + Di+1Ni+1(0) > 0,

that is, there isηi , 0< ηi < δl , such thatNi(t) > 0 ast ∈ (0, ηi).
Suppose there isc, 0 < c < ηi , such thatNi−1(t) � 0 as t ∈ (0, c). It follows from

the analyticity ofNi−1(t) that there isδi−1, 0 < δi−1 < c, such thatN ′
i−1(t) � 0 ast ∈

(0, δi−1). It follows from the(i − 1)th equation of (1) that

N ′
i−1 = N1(Ki−2Ni−2 − Ki−1Ni−1) − Di−1Ni−1 + DiNi,

thenNi−2(t) < 0 ast ∈ (0, δi−1).
Let z = Ni−1 + Ni−2, thenz(0) = 0 andz(t) < 0 ast ∈ (0, δi−1). It follows from the

analyticity of z(t) that there isδi−2, 0< δi−2 < δi−1, such thatz′(t) < 0 ast ∈ (0, δi−2).
Since

N ′
i−2 = N1(Ki−3Ni−3 − Ki−2Ni−2) − Di−2Ni−2 + Di−1Ni−1,

then

z′ = N1(Ki−3Ni−3 − Ki−1Ni−1) − Di−2Ni−2 + DiNi < 0 ast ∈ (0, δi−2),

that is,Ni−3(t) < 0 ast ∈ (0, δi−2).
We can use this method inductively, then there isδk , 0 < δk < δk+1, such that

Nk−1(t) < 0 ast ∈ (0, δk) and l � k � i − 2. Let k = l, then there isδl , 0 < δl < δl+1,
such thatNl(t) < 0 ast ∈ (0, δl). This contradicts thatNl(t) > 0 ast ∈ (0, ηl).

Hence, there isηi−1, 0< ηi−1 < ηi , such thatNi−1(t) > 0 ast ∈ (0, ηi−1). We can use
this method inductively, then there isηk , 0< ηk < ηk+1, such thatNk(t) > 0 ast ∈ (0, ηk)

andl � k � i − 1. Then there isηl , 0< ηl < ηl+1, such thatNl(t) > 0 ast ∈ (0, ηl). Let
δ = ηl , thenNs(t) > 0 ast ∈ (0, δ) andl + 1 � s � i. �

Lemma 2 covers all initial conditions as follows:

(. . . ,+,0, . . . ,0,+, . . . ,+,0, . . . ,0,+, . . . ,+,0, . . . ,0,+, . . .).

For example, consider the case of two isolated (interval of) values ofs:

(. . . ,+,0, . . . ,0,+, . . . ,+,0, . . . ,0,+, . . .),

that is, there are 1� l < i � j < k � n such that

Ns(0) > 0 as 1� s � l, Ns(0) = 0 asl < s < i,

Ns(0) > 0 asi � s � j, Ns(0) = 0 asj < s < k,

andNs(0) > 0 ask � s � n.
For the interval of valuesl < s < i, it follows from Lemma 2 that there isδli > 0 such

that
Ns(t) > 0 asl < s < i andt ∈ (0, δli).
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For the interval of valuesj < s < k, it follows from Lemma 2 that there isδjk > 0 such
that

Ns(t) > 0 asj < s < k andt ∈ (0, δjk).

Let δlk = min{δli , δjk}, thenδlk > 0 and

Ns(t) > 0 asl < s < i, j < s < k andt ∈ (0, δlk).

Since initial valuesNs(0) are positive elsewhere(1 � s � l, i � s � j , k � s � n), by the
continuity ofNs(t), then there isδ1n > 0 such that

Ns(t) > 0 as 1� s � l, i � s � j, k � s � n andt ∈ (0, δ1n).

Let δ = min{δlk, δ1n}, thenδ > 0 and

Ns(t) > 0 as 1� s � n andt ∈ (0, δ).

Lemma 3. Let N(t) be a solution of (1) with N(0) ∈ ∂Rn+. If there is i, 1� i � n−1, such
that Ni(0) > 0 and Ns(0) = 0 as i + 1� s � n. Then there is δ > 0 such that

Ns(t) > 0 as t ∈ (0, δ) and i + 1� s � n.

Proof. It follows from [13] thatNs(t) is analytic as 1� s � n. SinceNi(0) > 0, then there
is δi , 0< δi < δ1, such thatNi(t) > 0 ast ∈ (0, δi).

Suppose there isc, 0 < c < δi , such thatNi+1(t) � 0 as t ∈ (0, c). It follows from
the analyticity ofNi+1(t) that there isδi+1, 0 < δi+1 < c, such thatN ′

i+1(t) � 0 ast ∈
(0, δi+1). It follows from the(i + 1)th equation of (1) that

N ′
i+1 = N1(KiNi − Ki+1Ni+1) − Di+1Ni+1 + Di+2Ni+2 � 0,

thenNi+2(t) < 0 ast ∈ (0, δi+1).
Let z = Ni+1 + Ni+2, thenz(0) = 0 andz(t) < 0 ast ∈ (0, δi+1). It follows from the

analyticity of z(t) that there isδi+2, 0< δi+2 < δi+1, such thatz′(t) < 0 ast ∈ (0, δi+2).
Since

N ′
i+2 = N1(Ki+1Ni+1 − Ki+2Ni+2) − Di+2Ni+2 + Di+3Ni+3,

then

z′ = N1(KiNi − Ki+2Ni+2) − Di+1Ni+1 + Di+3Ni+3 < 0 ast ∈ (0, δi+2),

that is,Ni+3(t) < 0 ast ∈ (0, δi+2).
We can use this method inductively, then there isδk , 0 < δk < δk−1, such that

Nk+1(t) < 0 as t ∈ (0, δk) and i + 3 � k � n − 1. Here,n is assumed to be the max
mum size of clusters during the time period(0, δ1). Let k = n − 1, then there isδn−1,
0< δn−1 < δn−2, such thatNl(t) < 0 ast ∈ (0, δn−1) andi + 2� l � n.

Let w = ∑n
l=i+1 Nl , thenw(0) = 0 andw(t) < 0 ast ∈ (0, δn−1). Since

w′ = KiN1Ni − Di+1Ni+1 > 0 ast ∈ (0, δn−1),

this is a contradiction. Hence, there isηi+1, 0 < ηi+1 < δi , such thatNi+1(t) > 0 ast ∈
(0, ηi+1). We can use this method inductively, then there isηk , 0 < ηk < ηk−1, such that
Nk(t) > 0 ast ∈ (0, ηk) andi + 1< k � n.
Let δ = ηn, thenNs(t) > 0 ast ∈ (0, δ) andi + 1� s � n. �
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s 2–3.
By Lemmas 1–3, all initial conditions on∂Rn+ are covered. The initial conditions ca
be divided into two types, one is

(+, . . . ,+,0, . . . ,0,+, . . . ,+,0, . . . ,0,+, . . . ,+),

and the other is

(+, . . . ,+,0, . . . ,0,+, . . . ,+,0, . . . ,0,+, . . . ,+,0, . . . ,0).

While the former type is covered by Lemma 2, the latter type is covered by Lemma
For example, consider the case

(+, . . . ,+,0, . . . ,0,+, . . . ,+,0, . . . ,0),

that is, there are 1� i < j � k < n such that

Ns(0) > 0 as 1� s � i, Ns(0) = 0 asi < s < j,

Ns(0) > 0 asj � s � k, Ns(0) = 0 ask < s � n.

For the interval of valuesi < s < j , it follows from Lemma 2 that there isδij > 0 such that

Ns(t) > 0 asi < s < j andt ∈ (0, δij ).

For the interval of valuesk < s � n, it follows from Lemma 3 that there isδkn > 0 such
that

Ns(t) > 0 ask < s � n andt ∈ (0, δkn).

Let δin = min{δij , δkn}, thenδin > 0 and

Ns(t) > 0 asi < s < j, k < s � n andt ∈ (0, δin).

Since initial valuesNs(0) are positive elsewhere(1 � s � i, j � s � k), similar to the
discussion behind Lemma 2, there isδ > 0 such that

Ns(t) > 0 as 1� s � n andt ∈ (0, δ).

It follows from Lemmas 1–3 that

Lemma 4. Let N(t) be a solution of (1) with N(0) ∈ ∂Rn+, then there is δ > 0 such that
N(t) ∈ int Rn+ as t ∈ (0, δ).

The following lemma considers the case ofN(0) ∈ int Rn+.

Lemma 5. Let N(t) be a solution of (1) with N(0) ∈ int Rn+, then N(t) ∈ int Rn+ as t > 0.

Proof. Suppose there aret1 > 0, m > 0, k > 0 andm + k < n such that

Ni(t) > 0 ast ∈ [0, t1) andm � i � m + k + 1,

Nm(t1) > 0, Nm+k+1(t1) > 0,

and
Ns(t1) = 0 asm + 1� s � m + k,
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Let z = ∑m+k

j=m+1 Nj , thenz(t1) = 0 andz(t) > 0 ast ∈ [0, t1). Hence,z′(t1) � 0, which
contradicts that

z′(t1) = KmN1Nm − Dm+1Nm+1 − Km+kN1Nm+k + Dm+k+1Nm+k+1 > 0.

Suppose there aret1,m > 0 andm < n such that

Ni(t) > 0 ast ∈ [0, t1) andm � i � n,

and

Nm(t1) > 0 and Ns(t1) = 0 asm + 1� s � n.

Let w = ∑n
j=m+1 Nj , thenw(t1) = 0 andw(t) > 0 ast ∈ [0, t1). Hence,w′(t1) � 0, which

contradicts that

w′(t1) = KmN1Nm − Dm+1Nm+1 > 0.

Therefore, we haveNs(t) > 0 ast > 0 and 1� s � n, i.e.,N(t) ∈ intΣn ast > 0. �
While Lemma 4 shows that solutions of (1) initiated from∂Rn+ go into intRn+ with the

passage of time, Lemma 5 shows that solutions of (1) will remain in intRn+ after they go
into intRn+ at some time. Hence, we have

Theorem 1. Each solution N(t) of (1) with N(0) ∈ Rn+ satisfies that N(t) ∈ int Rn+ as
t > 0.

4. Stability without dissociation

In this section, we show the evolution of cluster-size distribution on a surface wi
dissociation, i.e.,Ds = 0 ass > 1. In order to focus on the dynamic behavior of cluste
we assume that after a time period of monomer deposition, the deposition of mon
stops from timet1, wheret1 > 0, i.e.,F > 0 ast ∈ (0, t1) andF = 0 ast � t1. We focus on
the dynamics of (1) ast � t1. Then

∑n
s=1 sNs(t1) = M > 0 and system (1) becomes:

N ′
1 = −2K1N

2
1 − N1

n−1∑
s=2

KsNs,

N ′
s = Ks−1N1Ns−1 − KsN1Ns, 2� s � n − 1,

N ′
n = Kn−1N1Nn−1. (3)

Since dissociation is ignored in (3), there would be no evolution of cluster-size distrib
if N1(t1) = 0. Hence, we assumeN1(t1) > 0. Similar to the proof of Theorem 1, we hav

Lemma 6. Each solution N(t) of (3) with N(t1) ∈ Σn satisfies that N(t) ∈ intΣn as t > t1,
where Σn = Rn+ ∩ {N :

∑n
s=1 sNs = M}.

∑

Since n

s=1 sN ′
s = 0, we have



388 Y. Wang, H. Wu / J. Math. Anal. Appl. 310 (2005) 379–396

olution
en

f (4)

with
rs,
Theorem 2. Let N(t) = (N1(t),N2(t), . . . ,Nn(t)) be a solution of (3) with N(t1) ∈ Σn.
Then

n∑
s=1

sNs(t) = M as t > t1.

Theorem 2 shows that the amount of monomers remains constant during the ev
of cluster-size distribution ast > t1, which is in agreement with experiments in [1,2] wh
F = 0.

It can be verified thatN∗ = (0, . . . ,0,M/n) is an equilibrium of (3), then we have

Theorem 3. Equilibrium N∗ of (3) is globally asymptotically stable in {N : N ∈ Σn and
N1 > 0}.

Proof. By the replacement ofdτ = N1(t) dt , the firstn − 1 equations of (3) become:

N ′
1 = −2K1N1 −

n−1∑
s=2

KsNs,

N ′
s = Ks−1Ns−1 − KsNs, 2 � s � n − 1. (4)

System (4) is a linear model with coefficient matrix

A =



−2K1 −K2 . . . −Kn−1
K1 −K2 0 0
0 . . . . . . 0
0 . . . Kn−2 −Kn−1


 .

It follows from Hurwitz’s criteria [14] that the real parts of eigenvalues of matrixA are
negative since

2K1 > 0,

det

(
2K1 K2
−K1 K2

)
= 3K1K2 > 0,

...

det(−A) = nK1K2 . . .Kn−1 > 0.

Hence, the original point of (4) is globally asymptotically stable, i.e., all solutions o
converge to the original point. It follows from Theorem 2 that equilibriumN∗ of (3) is
globally asymptotically stable in{N : N ∈ Σn andN1 > 0}. �

5. Stability with dissociation

In this section, we show the evolution of cluster-size distribution on a surface
dissociation, i.e.,Ds > 0 ass > 1. In order to focus on the dynamic behavior of cluste

we assume that after a time period of monomer deposition, the deposition of monomers
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stops from timet1 wheret1 > 0, i.e.,F > 0 ast ∈ (0, t1) andF = 0 ast � t1 in system (1).
We focus on the dynamics of (1) ast � t1. Then

∑n
s=1 sNs(t1) = M > 0 and system (1

becomes:

N ′
1 = 2D2N2 − 2K1N

2
1 +

n∑
s=3

DsNs − N1

n−1∑
s=2

KsNs,

N ′
s = Ks−1N1Ns−1 + Ds+1Ns+1 − DsNs − KsN1Ns, 2� s � n − 1,

N ′
n = Kn−1N1Nn−1 − DnNn. (5)

Since
∑n

s=1 sNs(t1) = M > 0, then there isη1 > 0 such thatN1(t) > 0 ast ∈ (t1, t1 +
η1). In fact, if N1(t1) = 0, then it follows from the first equation of (5) thatN ′

1(t1) > 0.
Hence, similar to the proof of Theorem 1, we have

Lemma 7. Each solution N(t) of (5) with N(t1) ∈ Σn satisfies that N(t) ∈ intΣn as t > t1,
where Σn = Rn+ ∩ {N :

∑n
s=1 sNs = M}.

Since
∑n

s=1 sN ′
s = 0, we have

Theorem 4. Let N(t) = (N1(t),N2(t), . . . ,Nn(t)) be a solution of (5) with N(t1) ∈ Σn.
Then

n∑
s=1

sNs(t) = M as t > t1.

Theorem 4 shows that the amount of monomers remains constant during the ev
of cluster-size distribution with dissociation.

Theorem 5. There is a unique equilibrium N∗ of (5), where N∗ = (N∗
1 ,N∗

2 , . . . ,N∗
n ),

N∗
1 satisfies

n∑
s=1

shsN
∗s
1 − M = 0,

h1 = 1, hs = K1K2 . . .Ks−1

D2D3 . . .Ds

as 2� s � n,

and

N∗
s = hsN

∗s
1 as 1� s � n.

Proof. By the definition of equilibrium, the right-hand sides of equations in (5) shoul
zero at the equilibrium. LetN∗ = (N∗

1 ,N∗
2 , . . . ,N∗

n ) be the equilibrium of (5). Then b
the right-hand side of thenth equation of (5), we have

∗ Kn−1 ∗ ∗
Nn =
Dn

N1Nn−1.
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It follows from the right-hand side of the(n − 1)th equation in (5) that

N∗
n−1 = Kn−2

Dn−1
N∗

1N∗
n−2

by replacingN∗
n with Kn−1

Dn
N∗

1N∗
n−1. Inductively, it follows from the right-hand side of th

ith (2� i � n − 2) equation in (5) that

N∗
s = Ks−1

Ds

N∗
1N∗

s−1 as 2� s � n.

Hence,

N∗
2 = K1

D2
N∗2

1 ,

N∗
3 = K2

D3
N∗

1N∗
2 = K1K2

D2D3
N∗3

1 .

Inductively, we have

N∗
s = K1K2 . . .Ks−1

D2D3 . . .Ds

N∗s
1 as 2� s � n.

Then we haveN∗
s = hsN

∗s
1 as 1� s � n.

Let G(z) = ∑n
s=1 shsz

s − M , thenG(0) = −M < 0, G(M) > 0 and

G′(z) =
n∑

s=1

s2hsz
s−1 > 0 asz > 0.

Hence, functionG(z) is monotonous and has a unique solution ofG(z) = 0 in (0,M).
Therefore, there is a unique equilibrium of (5) in intΣn andN∗

1 is the root ofG(z) = 0. �
Theorem 6. For the cases of n = 2 and n = 3, the unique equilibrium of (5) is globally
asymptotically stable in Σn.

Proof. (i) In the case ofn = 2, system (5) becomes

N ′
1 = 2D2N2 − 2K1N

2
1 ,

N ′
2 = −D2N2 + K1N

2
1 , (6)

whereN1 + 2N2 = M . SinceN2 = 1
2(M − N1), then the first equation of (6) becomes

N ′
1 = H(N1), (7)

whereH(N1) = D2M − D2N1 − 2K1N
2
1 and 0� N1 � M . Then H(N1)

′ = −D2 −
4K1N1 < 0 asN1 > 0. Let (N∗

1 ,N∗
2 ) be the unique equilibrium of (6). ThenH(N∗

1 ) = 0,
N ′

1 = H(N1) < 0 asN1 > N∗
1 , andN ′

1 = H(N1) > 0 asN1 < N∗
1 . Hence, the unique

equilibrium of (7) is globally asymptotically stable on[0,M], i.e., the equilibrium of (6) is
globally asymptotically stable inΣ2.
(ii) In the case ofn = 3, system (5) becomes
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N ′
1 = 2D2N2 − 2K1N

2
1 + D3N3 − K2N1N2 − K3N1N3,

N ′
2 = D3N3 + K1N

2
1 − D2N2 − K2N1N2,

N ′
3 = K2N1N2 − D3N3,

whereN1 + 2N2 + 3N3 = M . SinceN3 = (M − N1 − 2N2)/3, then we have

N ′
1 = f1(N1,N2),

N ′
2 = f2(N1,N2), (8)

where 0� N1 + 2N2 � M , N1 � 0, N2 � 0 and

f1(N1,N2) = 2D2N2 + D3(M − N1 − 2N2)/3− 2K1N
2
1 − K2N1N2,

f2(N1,N2) = −D2N2 + D3(M − N1 − 2N2)/3+ K1N
2
1 − K2N1N2.

Since

∂f1

∂N1
= −4K1N1 − K2N2 − D3/3,

∂f2

∂N2
= −K2N1 − D2 − 2D3/3,

then

∂f1

∂N1
+ ∂f2

∂N2
= −D2 − D3 − (4K1 + K2)N1 − K2N2 < 0.

It follows from Dulac’s criteria [14] that there is no periodic orbit of (8).
Let Q(N∗

1 ,N∗
2 ,N∗

3 ) be the unique equilibrium of (5) asn = 3, thenq(N∗
1 ,N∗

2 ) is an
equilibrium of (8). The Jacobian matrix of (8) at the equilibrium is:

A =
( ∂f1

∂N1

∂f1
∂N2

∂f2
∂N1

∂f2
∂N2

)
.

Since

∂f1

∂N1
+ ∂f2

∂N2

∣∣∣∣
q

= −D2 − D3 − (4K1 + K2)N
∗
1 − K2N

∗
2 < 0,

detA|q = D2
(
D3 + 3K2N

∗
2

) + K1N
∗
1

(
6K2N

∗
1 + 4D3

)
> 0,

the eigenvalues ofA have negative real parts, i.e., equilibriumq of (8) is asymptotically
stable.

It follows from Poincare–Bendixon theorem [14] that all solutions of (8) convergeq
ast → ∞, i.e., the equilibriumq of (8) is globally asymptotically stable, then the equil
rium Q of (5) is globally asymptotically stable inΣ3. �

In the cases ofn > 3, the present work does not prove the global stability of the equ
rium theoretically. The reason is that it involvesn−1 (n−1 � 3) differential equations an
analyzing a system ofn − 1 (n − 1� 3) differential equations is difficult and to the best

our knowledge there is no general method for such analysis unlike the case whenn−1= 2
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Fig. 1. Letn = 10, M = 550,Ks = 0.1 andDs = 0.01 as 1� s � 10. LetN(0) = (10,10, . . . ,10). Then up to
time t = 200, the solutionN(t) of (5) converges to the stationary values(0.1778,0.3083,0.5381,0.9442,1.6538,
2.8903,5.0637,8.8752,15.5516,27.2089), which are consistent with the equilibrium obtained by the expres
in Theorem 5:N∗ = (0.1752,0.3070,0.5378,0.9422,1.6507,2.8920,5.0669,8.8771,15.5527,27.2484).

where the powerful Poincare–Bendixson theorem can be used. A series of numeric
ulations that we have done show that in the cases ofn > 3, the unique equilibrium of (5
is globally asymptotically stable without more complex behavior such as limit cycles
chaos. Numerical simulations are given below to show the global stability of the eq
rium. In Fig. 1, we show that a specific solution of (5) converges to the equilibriu
Theorem 5 while in Fig. 2, we show that the tenth components of five different solu
converge to the tenth componentN∗

10 of the equilibrium in Theorem 5.
Let

n = 10, M = 550, Ks = 0.1 and Ds = 0.01 as 1� s � 10.

We compare the equilibrium obtained by the expression in Theorem 5 and the stat
values obtained by numerical simulations as follows. To use the expression in Theo
let z = N∗

1 , then we have

G(z) =
10∑

i ∗ (10∗ z)i/10− 550.

i=1
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Fig. 2. Let n = 10, M = 550, Ks = 0.1 andDs = 0.01 as 1� s � 10. The initial values of five solution
are as follows:N1(0) = (10,10,10,10,10,10,10,10,10,10), N2(0) = (60,10,10,10,10,10,10,10,10,5),
N3(0) = (5,10,10,10,10,10,10,10,5,15), N4(0) = (0,10,10,10,10,10,10,10,0,20) andN5(0) = (6,10,
10,10,10,10,10,3,0,25). The tenth components of the five different solutions of (5) converge to 27.2041,
27.2047,27.2052,27.2061,27.2073, respectively, which are consistent with the value derived in Theore
N∗

10 = 27.2484.

By software MatLab, we obtain the root ofG(z) = 0: z = 0.1752. Then we obtain th
equilibrium

N∗ = (
N∗

1 ,N∗
2 ,N∗

3 ,N∗
4 ,N∗

5 ,N∗
6 ,N∗

7 ,N∗
8 ,N∗

9 ,N∗
10

)
= (0.1752,0.3070,0.5378,0.9422,1.6507,2.8920,5.0669,8.8771,

15.5527,27.2484).

In Fig. 1, letN(t1) = (10,10,10,10,10,10,10,10,10,10), simulations show that u
to time t = 200, the solutionN(t) of (5) converges to the stationary values

N∗ = (0.1778,0.3083,0.5381,0.9442,1.6538,2.8903,5.0637,8.8752,

15.5516,27.2089),

which are consistent with the equilibrium obtained by the expression in Theorem 5.
In Fig. 2, we show that the tenth components of five different solutions of (5) conv
to the same valueN∗
10. The initial values of the five solutions are as follows:
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N1(0) = (10,10,10,10,10,10,10,10,10,10),

N2(0) = (60,10,10,10,10,10,10,10,10,5),

N3(0) = (5,10,10,10,10,10,10,10,5,15),

N4(0) = (0,10,10,10,10,10,10,10,0,20),

N5(0) = (6,10,10,10,10,10,10,3,0,25).

Simulations show that up to timet = 100, the tenth components of the above five differ
solutions converge to 27.2041,27.2047,27.2052,27.2061,27.2073, respectively, which
are consistent with the value derived in Theorem 5:N∗

10 = 27.2484.
Consider the case of uniform attachment-uniform detachment, i.e.,Ki = K , Di = D as

1� i � n. Let

τ = Kt,B = D/K,

then system (5) becomes (we still denoteτ by t):

N ′
1 = 2BN2 +

n∑
k=3

BNk − 2N2
1 − N1

n−1∑
k=2

Nk,

N ′
s = −BNs + BNs+1 + N1Ns−1 − N1Ns, 2� s � n − 1,

N ′
n = −BNn + N1Nn−1. (9)

Let N∗ = (N∗
1 ,N∗

2 , . . . ,N∗
n ) be the unique equilibrium of (9) and letz = N∗

1/B, then
we haveN∗

s = Bzs , s = 1, . . . , n, and
n∑

s=1

szs = MB−1. (10)

It follows from the implicit function theorem [15] that Eq. (10) defines a smooth fu
tion z = z(B) and we have

dz

dB
= − M

B2
∑n

s=1 s2zs−1
< 0.

It follows from N∗
s = Bzs thatN∗

1 = N∗
2 = · · · = N∗

n if and only if z = 1. By (10),z = 1
means thatB = 2M/(n + n2). SinceN∗

s = Bzs anddz/dB < 0, we have

(1) If B = 2M/(n + n2), thenz = 1 andN∗
1 = N∗

2 = · · · = N∗
n = B;

(2) If B < 2M/(n + n2), thenz > 1 andN∗
1 < N∗

2 < · · · < N∗
n ;

(3) If B > 2M/(n + n2), thenz < 1 andN∗
1 > N∗

2 > · · · > N∗
n .

Hence, the distribution of clusters at the equilibrium is monotonous:

Theorem 7. The equilibrium (N∗
1 ,N∗

2 , . . . ,N∗
n ) of (9) satisfies:

(i) If B < 2M
n(n+1)

, then N∗
1 < N∗

2 < · · · < N∗
n ;

(ii) If B = 2M
n(n+1)

, then N∗
1 = N∗

2 = · · · = N∗
n ;
(iii) If B > 2M
n(n+1)

, then N∗
1 > N∗

2 > · · · > N∗
n .
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It follows from Theorem 7 that the monotonicity of the equilibrium varies asB moves
through the critical value 2M/(n + n2): asB is less than the value, the larger the size
clusters, the larger the number of the clusters; asB is larger than the value, the larger t
size of clusters, the smaller the number of the clusters. The monotonicity of the equili
shows a natural phenomenon in the cluster evolution: if the ratio of attachment rate
detachment rate is larger than a criteria value, then the larger the size of clusters, th
the number of the clusters on the surface; if the ratio of attachment rate to the detac
rate is less than the criteria value, then the larger the size of clusters, the smaller the
of the clusters on the surface.

Figure 3 shows the monotonicity of the equilibrium where componentsN∗
i (1 � i � 5)

of equilibrium N∗ are plotted as functions ofB andB = 10−6, 10−4, 10−2, 1,10, 102,
103, respectively. LetM = 20,n = 5. AsB < 4/3, we haveN∗

5 > N∗
4 > N∗

3 > N∗
2 > N∗

1 ;
as B = 4/3, we haveN∗

5 = N∗
4 = N∗

3 = N∗
2 = N∗

1 = 4/3; asB > 4/3, we haveN∗
1 >

N∗
2 > N∗

3 > N∗
4 > N∗

5 . The monotonicity of the equilibrium changes as parameterB moves
through the critical value 4/3.

Fig. 3. LetM = 20, n = 5. ComponentsN∗
i
(1� i � 5) of N∗ are plotted as functions ofB andB = 10−6, 10−4,

10−2, 1,10, 102, 103, respectively. AsB < 4/3, we haveN∗
5 > N∗

4 > N∗
3 > N∗

2 > N∗
1 ; asB = 4/3, we have

N∗
5 = N∗

4 = N∗
3 = N∗

2 = N∗
1 = 4/3; asB > 4/3, we haveN∗

1 > N∗
2 > N∗

3 > N∗
4 > N∗

5 . The monotonicity of the

equilibrium changes as parameterB moves through the critical value 4/3.
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