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Abstract

In this paper, we show dynamics of Smoluchowski’s rate equation which has been widely applied
to studies of aggregation processes (i.e., the evolution of cluster-size distribution) in physics. We
introduce dissociation in the rate equation while dissociation is neglected in previous works. We
prove the positiveness of solutions of the equation, which is a basic guarantee for the effectiveness
of the model since the possibility that some solution may be negative is excluded. For the case of
cluster coalesce without dissociation, we show both the equilibrium uniqueness and the equilibrium
stability under the condition that the monomer deposition stops. For the case that clusters evolve
with dissociation and there is no monomer deposition, we show the equilibrium uniqueness and
prove the equilibrium stability if the maximum cluster size is not larger than three while we show the
equilibrium stability by numerical simulations if the maximum size is larger than three.
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1. Introduction

In the growth processes of thin films by deposition techniques, clusters of different sizes
evolve dynamically with the passage of time [1-3]. The classic model for characterizing
cluster growth processes is the rate-equation approach developed by Smoluchowski [4].
In the rate equation, the evolution of the cluster-size distribution is described by the num-
ber and size of clusters where geometry is neglected. While Smoluchowski’s rate-equation
approach has provided powerful tools for studying aggregation processes [1-3], it is recog-
nized to be nice in characterizing both agent-based coalition formation in electronic mar-
kets [5,6] and agent-based load balancing in grid computing [7—12]. While dissociation
is neglected in the equation in previous works [1-4], it is considered in this work. In this
paper, we focus on the rate equation describing the cluster evolution.

The mechanism in the evolution of cluster-size distribution is as follows [1,2]. On a two-
dimensional smooth surface, monomers are deposited randomly. Each monomer on the
smooth surface moves randomly. When a monomer meets another monomer, they may be
“frozen” and form a cluster of size two. When a monomer meets an existing cluster of size
(s > 1), it may join the cluster and form a cluster of size- 1. Inversely, a monomer in an
existing cluster may also leave the cluster and join other clusters. Therefore, monomers’
behavior can be focused on two elements: leaving and joining. Both the attachment rate
and the detachment rate will determine the global dynamic behavior of the system. Based
on the quantities of the number and size of clusters in the system, [1,2] described the
evolution of the cluster-size distribution by the rate equation. In [1,2], a detailed study of
the evolution, scaling and percolation of clusters were presented and compared with the
results obtained using the rate equation.

Since solutions of the rate equation denote the quantities of clusters with different sizes,
they should not be negative with the passage of time. In fact, suppose there is a coun-
terexample where some component of a solution is negative at some time, then the model
in [1,2] would be not effective since the number of clusters must not be negative. While
experiments in [1,2] showed the convergence of cluster-size distributions, the stability of
solutions of the rate equation is not studied. Hence, the primary problems we tackle in this
paper are:

(i) showing the positiveness of solutions of the rate equation and
(i) proving both the equilibrium uniqueness and the equilibrium stability.

In this paper, we show dynamics of the rate equation. We introduce dissociation in the
rate equation while dissociation is neglected in previous works. We prove the positiveness
of solutions of the equation, which is a basic guarantee for the effectiveness of the model
since the possibility that some solution may be negative is excluded. For the cluster coa-
lesce without dissociation, we show both the equilibrium uniqueness and the equilibrium
stability under the condition that the monomer deposition stops. In the case that clusters
evolve with dissociation and there is no monomer deposition, we show the equilibrium
uniqueness and prove the equilibrium stability if the maximum cluster size is not larger
than three while we show the equilibrium stability by numerical simulations if the maxi-
mum size is larger than three.
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2. Description of therate equation

We describe the rate equation characterizing the evolution of cluster-size distribution in
this section and explain the terms in the model one by one. We focus on two quantities in
the cluster evolution: the number and size of clusters.

Let N1(r) be the number of monomers at time_etn be the maximum size of clusters.

For 2< s <n, let Ny(r) be the number of clusters of sizat timer. Then the evolution of
cluster-size distribution described in Section 1 can be characterized by the following rate
equation:

n n—1
Ni=F +2DyNo— 2KiN{ + Y " DsNy — N1 ) KN,
s=3 s=2
Né =K; 1N1N;_1+ Dsy1Ngi1 — DyN; — KgN1 Ny, 2<s<n—1,
N,;=Kn—lNan—l_DnNnv (1)

whereF > 0, D; >0, K, > 0 andN; > 0 as 1< s < n. The termN| = d N, (¢) /dt denotes
the rate of change in the number of clusters of size > 1. Parametek; denotes the
rate at which monomers join clusters of sizeParameteD, denotes the rate at which
monomers leave clusters of size

The first equation in (1) describes the change rate of monomers. Pardme¢giotes
the rate of deposition of monomers. The ter#i2DoN>” shows that one cluster of size 2
becomes two monomers after a monomer’s leaving. The terﬁ1<‘1N12” shows that two
monomers become one cluster of size 2 after a monomer’s joinings Bo8, the term
“+D;N,” shows that one cluster of sizaebecomes one monomer and one cluster of size
s — 1 after a monomer’s leaving. Feor=> 2, the term = K N1 N,;” shows that one monomer
and one cluster of sizebecome one cluster of sizet- 1 after a monomer’s joining.

The second equation of (1) describes the change rate of clusters of aze > 2.

The term “‘K;_1N1N;_1" denotes that one monomer and one cluster of sizel produce

one cluster of size after a monomer’s joining. The term-D;1N11” denotes that one
cluster of sizes + 1 produces one monomer and one cluster of siafter a monomer’s
leaving. The term = K N1 N;” denotes that one monomer and one cluster of sip@duce

one cluster of size + 1 after a monomer’s joining. The term-"D; N;” denotes that one
cluster of sizes produces one monomer and one cluster of sizel after a monomer’s
leaving.

In the third equation of (1), the change rate of clusters of simedescribed. Since the
numbern is the maximum cluster size, single monomers will not join a cluster ofsize
and there is no cluster of size+ 1. Then the change rate of clusters of siZzecreases as
a single monomer joins a cluster of size- 1, and decreases as a single monomer leaves a
cluster of sizex.

Hence, system (1) is in agreement with the mechanism of the evolution of cluster-size
distribution described in Section 1. While dissociation is neglected in previous works [1-4],
it is considered in Eq. (1) in this work. Our idea of introducing dissociation is motivated
from [5,6]. In [5,6], Lerman and Shehory applied the rate equation in [4] in describing
buyers’ coalition formation in markets where they naturally considered buyers’ dissocia-
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tion. Introducing dissociation in modelling the submonolayer cluster growth will make the
model more complete than the previous one.

In this paper, parameters; are assumed to be constant as timvaries while they may
be different for different indexes For example, parametdf; is different fromKs in the
case ofK> = 0.2 andK3 = 0.3. That is, for different sizes of clusters, the attachment
ratesK; may be different, which means that the size of clusters is considered in Eq. (1).
In [2], parameterK; are functions of size: K are proportional td - S”, whereD is the
diffusion rate of single adatoms apds a constant, see [2, p. 8783].4f= 0, then Eq. (1)
describes point (zero size) islands.plt£ 0, then Eq. (1) describes nonzero size islands.
Since both paramete3 and p are constants as timevaries, parameterk are constant
as timer varies. Then parameters; are effective for both point islands and nonzero size
islands. Similar discussions can be given for paramdigrddence, the size of clusters is
considered in Eqg. (1) while the geometry of clusters is neglected.

Now we discuss a minor error in [2] while [1,4] corrected the error without a theoretical
proof. Ignoring dissociation (i.e., lettinB; = 0 in system (1)), [2] described the evolution
of cluster-size distribution as follows, see [2, p. 8783]:

n—1
Ni=F — KiN{ — N1 ) _KN;,
s=2
N;ZKs—lNle—l_KleNﬁ 2<s<n—1,
N,/, =K, 1N1N, 1, (2)

where the second term—"K;Ni” on the right-hand side of the first equation in (2) is

not accurate. In fact, suppose the deposition of monomers stops after a time period of
deposition, i.e., leF" = 0 as timer > t1, wherer; > 0. Then the amount of monomers on

the surface must remain constant. kdie the maximum size of clusters, we have

n n
D sNyt)=) sNy(t1) ast>1,

s=1 s=1
that is,

n
> sNi(1)=0 ast>n.
s=1
However, it follows from (2) tha) {_; sN/(t) = K1N12(t) >0 ast > . This'is a
contradiction. Hence, the second termKlle“ on the right-hand side of the first equation
in (2) should be replaced with-2K3 N7, which means that two monomers become one
cluster of size 2 after a monomer’s joining. After the replacement, it can be verified that
Y i_1sN(r) =0ast > t1.
Let

R ={N=(N1,Nz,...,N,): Ny >0, 1<s<n,

n
Z,=R.N [N: ZstzM],
s=1
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wheren > 0 andM = }"{_, sN,(0). Let intR’. be the inner points oR’, and denote
intY, =intR%,. N X,.

3. Positiveness of solutions

While system (1) has been widely used in describing dynamic scaling of cluster-size
distribution and has been verified to be effective by physical experiments [1-3], it should
be proven from a mathematical perspective. One of the problems we are concerned with is
the positiveness of solutions of (1). Since solutions of the model denote the quantities of
clusters with different sizes, they should not be negative with the passage of time.

In this section, we show that solutions of (1) initiated frd&fy (i.e., ast = #o) will
remain in inlR”, ast > 1o. We consider two cases:

() the initial vector N (1o) = (N1(f0), N2(t0), ..., N, (tp)) is on the bound oR”, i.e.,
N(tp) € OR";

(i) the initial vector N (19) = (N1(t0), N2(t0), ..., N, (o)) is in the interior region oR” ,
i.e.,N(t) €intR}.

In the case ofV (19) € OR”_, some components & (1p) are positive and others are zero.
First we study two types aV (1p) in Lemmas 2-3:

(@ N(o)=C(..,+,0,...,0,+,...);
(b) N(ro)=(...,+,0,...,0).

Then we show the positiveness of solutions for the cas€ @f) € dR’, in Lemma 4. In

the case ofV (¢p) € iIntR”_, we prove the positiveness of solutions in Lemma 5. Without
loss of generality, we assumg= 0 in this work since system (1) is autonomous.

Lemmal. Let N(r) beasolution of (1) with N(0) € R”.. Then thereis §; > 0 such that

N1(t) >0 ast e (0,61).

Proof. It follows from F > 0 that monomers are deposited to the smooth surface contin-
uously, then without loss of generality, we can assume Ah@0) > 0 and N,(0) > 0 as
s > 1. By the continuity ofN1(¢), there is§; > 0 such thatV,1(¢) > 0 ast € (0,81). O

Lemma 2. Let N(¢) be a solution of (1) with N(0) € 9R’}.. If thereare/ and i, 1 <1 < i,
such that N;(0) > 0, Ny (0) =0asl+ 1<k <iand N;;1(0) > 0, thenthereis§ > 0 such
that

Ny(t)>0 aste(0,8)and/+1<s <.
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Proof. It follows from [13] that N (¢) is analytic ass > 1. SinceN;(0) > 0, then there
is 8;, 0 < §; < 81, such thatV,(¢) > 0 asr € (0, &;). SinceN;(0) =0 andN;;1(0) > 0, it
follows from theith equation of (1) that

N{(0) = K;—1N1(0)N;_1(0) + D; 11N;+1(0) > 0O,

that is, there ig);, 0 < n; < &7, such thatv; (zr) > 0 ast € (0, n;).

Suppose there is, 0 < ¢ < n;, such thatV;_1(t) < 0 ast € (0, ¢). It follows from
the analyticity of N;_1(¢) that there iss; 1, 0 < §; 1 < ¢, such thatV/_,(r) <0 asr
(0, §;—1). It follows from the (i — 1)th equation of (1) that

N;_y=N1(K;_2N;—2 — K;_1N;_1) — Di_1N;_1+ D;N;,

l

thenN;_»(t) <0 ast € (0, §;_1).

Letz = N;_1+ N;_», thenz(0) = 0 andz(¢) < 0 ast € (0, ;_1). It follows from the
analyticity of z(r) that there isS; 2, 0 < §;_» < §;_1, such that/(r) < 0 ast € (0, §;_2).
Since

N/_=N1(K;—3Ni_3— K;_2N;i_2) — Di_2N;_2+ Di_1N;_1,
then
7' = N1(K;—3Ni—3 — K;_1N;i_1) — Di_2N;_2+ D;N; <0 ast € (0, §;—2),

thatis,N;_3(t) <0 ast € (0, §;_2).

We can use this method inductively, then theredjs 0 < §; < 8;+1, such that
Ni_1(t) <0 ast € (0,8;) and! < k <i — 2. Letk =, then there isf;, 0 < §; < 841,
such thatv; () < 0 ast € (0, &;). This contradicts thaw;(¢) > 0 ast € (0, n;).

Hence, there ig; _1, 0 < n;_1 < n;, such thatV; _1(¢) > 0 ast € (0, n;_1). We can use
this method inductively, then theresg, 0 < ni < nr+1, such thatVy (r) > 0 ast € (O, )
and! < k <i — 1. Then there ig;, 0 < n; < n;4+1, such thatv;(z) > 0 ast € (0, ;). Let
§=mn;,thenNy(#r) >0asre(0,8) andl +1<s<i. O

Lemma 2 covers all initial conditions as follows:
(..,+0,...,0,+,...,+,0,...,0,+,...,+,0,...,0,+,...).
For example, consider the case of two isolated (interval of) values of
(...,+0,...,0,+,....,+,0,...,0,+,...),
thatis, there are £/ <i < j <k <n such that
Ng(0)>0 asi<s<l, Ng0)=0 asl<s<i,
Ny(0) >0 asi<s<j, Ny;(0)=0 asj<s <k,

andN;(0) > 0 ask <s <n.
For the interval of values < s < i, it follows from Lemma 2 that there &; > 0 such
that

Ny(t) >0 asl <s <iandre(0,5;).
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For the interval of valueg < s <k, it follows from Lemma 2 that there i&;; > 0 such
that

Ny(t) >0 asj<s<kandre(0,8).
Let 8;x = min{4;;, 8¢}, theng;, > 0 and
Ns;(t) >0 asl<s<i, j<s<kands e (0,3;).

Since initial valuesv, (0) are positive elsewherd <s <!I,i <s < j, k <s <n), by the
continuity of Ny(¢), then there i$1, > 0 such that

N;(t) >0 asl<s<l,i<s<j, k<s<nandre(0,581,).
Let§ = min{8;k, 81,.}, thens > 0 and
Ny(t) >0 asl<s <nandre(0,0).

Lemma3. Let N () beasolution of (1) with N(0) € dR",.. Ifthereisi, 1 <i <n—1,such
that N;(0) > 0and Ng(0) =0asi + 1< s <n. Thenthereis§ > 0 such that

Ny(t)>0 astre(0,8)andi +1<s <n.

Proof. It follows from [13] thatN;(¢) is analytic as K s < n. SinceN; (0) > 0, then there
is 8;, 0 < 8; < 81, such thatv; (r) > 0 ast € (0, §;).

Suppose there is, 0 < ¢ < §;, such thatN;;1(r) < 0 ast € (0, ¢). It follows from
the analyticity of N;11(¢) that there is5; 11, 0 < ;41 < ¢, such thatNl.’H(t) <0asre
(0, 8;+1). It follows from the(i + 1)th equation of (1) that

N{ 1 =N1(K;N; — Kiy1N;11) — Diy1Niy1+ Di2N;12 <0,

1
thenN;;2(t) <0 ast € (0, 8;+1)-
Let z = N;+1+ Nit2, thenz(0) =0 andz(r) < 0 ast € (0, §;+1). It follows from the
analyticity of z(¢) that there is5; 12, 0 < 8;12 < 8; 11, such that/(r) < 0 ast € (0, §; 12).
Since

N{, > =N1(Kiy1N;11 — K;12N;12) — Diy2Niy2+ Di3N; 3,
then
7' = N1(K;N; — Ki12N;12) — Diy1N;y1+ Di13N;13<0 ast € (0,8;42),

thatis,N;;3(t) <0 ast € (0, §;12).

We can use this method inductively, then theredjs 0 < 8; < &1, such that
Nis1(t) <0 asr e (0,68;) andi + 3 < k <n — 1. Here,n is assumed to be the maxi-
mum size of clusters during the time peri¢@ §1). Let k = n — 1, then there is5,_1,

0 < 8,y—1 < 8y—2, such thatv;(r) <0 ast € (0,8,—1) andi +2 <1 < n.
Letw=)")_; 1 N;, thenw(0) =0 andw(r) < 0 ast € (0, 8,-1). Since
w' = K;N1N; — Di;1Nj11>0 ast € (0,5,-1),
this is a contradiction. Hence, thereris. 1, 0 < ;11 < §;, such thatV; 11(¢) > 0 ast €
(0, n;+1). We can use this method inductively, then ther@;isO < n; < nx—1, such that

Ni(t) >0asr € (0,n) andi +1 < k < n.
Lets =n,, thenN;(t) >0ast e (0,8) andi +1<s<n. O
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By Lemmas 1-3, all initial conditions o#iR’, are covered. The initial conditions can
be divided into two types, one is

(+,....,+,0,...,0,4+,...,+,0,...,0,+,...,4),
and the other is
+,...,+,0,...,0,4+,...,4+,0,...,0,4,...,4+,0,...,0).

While the former type is covered by Lemma 2, the latter type is covered by Lemmas 2-3.
For example, consider the case

(+,.-s+,0,...,0,+,...,+,0,...,0),
that is, there are £ i < j < k < n such that
N;(0)>0 asi<s<i, Ny(0) =0 asi<s<j,
Ny(0) >0 asj<s<k, Ng(0)=0 ask<s<n.
For the interval of values < s < j, it follows from Lemma 2 that there i&; > 0 such that
Ns(t) >0 asi <s < jandte(0,3)).

For the interval of valueg < s < n, it follows from Lemma 3 that there &, > 0 such
that

N;(t) >0 ask <s <nandr e (0, 8,).
Let ;, = min{s;;, 8, }, thens;, > 0 and
N;(t) >0 asi<s<j, k<s<nandre(0,5§,).

Since initial valuesV,(0) are positive elsewherel < s <i, j < s < k), similar to the
discussion behind Lemma 2, thersSis- 0 such that

Ny(t) >0 asl<s <nandre(0,50).

It follows from Lemmas 1-3 that

Lemma 4. Let N(¢) be a solution of (1) with N(0) € oR’,, then there is § > 0 such that
N(t) eintR ast € (0, §).

The following lemma considers the caseNf0) € intR..
Lemmab. Let N(r) beasolution of (1) with N(0) € intR’} , then N(z) € intR", ast > 0.

Proof. Suppose there arg > 0,m > 0,k > 0 andm + k < n such that
Ni(t) >0 aste[0,rp)andm<i<m+k+1,
N (t1) > 0, Nugrs1(t1) > 0,

and

Ng(t1) =0 asm+1<s<m+k,
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wheren is assumed to be the maximum size of clusters during the time péiogd).

Letz = Z’}Zﬁflﬂ Nj, thenz(t1) = 0 andz(t) > 0 asr € [0, 7). Hence,Z (1) < 0, which

contradicts that
Z'(t1) = KuN1Nw — DyiNms1 — Kk NuNmtk + Dingk+1Nmsk+1 > 0.
Suppose there arg, m > 0 andm < n such that
N;i(t) >0 aste0,1) andm <i <n,
and
Nu() >0 and N;(t1))=0 asm+1<s<n.

Letw = Z?:mﬂ N;, thenw(ty) = 0 andw(r) > 0 asr € [0, 11). Hencew'(r1) < 0, which
contradicts that

U)/(tl) = KuNiNy — Dypy1Npy1 > 0.

Therefore, we havev; (1) > 0ast >0and 1< s <n, i.e, N@¢t) €intX, asr>0. O

While Lemma 4 shows that solutions of (1) initiated fr@iR’ go into intR’; with the
passage of time, Lemma 5 shows that solutions of (1) will remain iR’inafter they go
into intR’_ at some time. Hence, we have

Theorem 1. Each solution N(¢) of (1) with N(0) € R, satisfies that N(7) € intR’, as
t > 0.

4. Stability without dissociation

In this section, we show the evolution of cluster-size distribution on a surface without
dissociation, i.e.D; = 0 ass > 1. In order to focus on the dynamic behavior of clusters,
we assume that after a time period of monomer deposition, the deposition of monomers
stops from timey, wherer; > 0, i.e.,F > 0 ast € (0,11) andF =0 ast > r1. We focus on
the dynamics of (1) as> 1. Then)_"_; sN, (1) = M > 0 and system (1) becomes:

n—1
Ni=—2KiN7—N1) KN;.
s=2
Né =K;_1N1N;_1— K¢N1Ng, 2<s<n—1,
N,/l =K,,_1N1N, 1. 3)

Since dissociation is ignored in (3), there would be no evolution of cluster-size distribution
if N1(t1) = 0. Hence, we assunmé;(¢1) > 0. Similar to the proof of Theorem 1, we have

Lemma 6. Each solution N () of (3)with N(t1) € X, satisfiesthat N(¢) eint X, ast > 1,
where X, =R N{N: > {_1sN, = M}.

Sinced_!_;sN, =0, we have
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Theorem 2. Let N(z) = (N1(¢), N2(2), ..., N,,(t)) be a solution of (3) with N(z1) € X,.
Then

n
Zst(t) =M ast>1.
s=1

Theorem 2 shows that the amount of monomers remains constant during the evolution
of cluster-size distribution as> #1, which is in agreement with experiments in [1,2] when
F=0.

It can be verified thav* = (0, ..., 0, M/n) is an equilibrium of (3), then we have

Theorem 3. Equilibrium N* of (3) is globally asymptotically stablein {N: N € X, and
N1 > 0}

Proof. By the replacement aft = N1(¢) dr, the firstn — 1 equations of (3) become:

n—1
Ni=—2KiN1—) KNy,
s=2
N!=Ks;_1N;_1— K;N;, 2<s<n-—1 (4)
System (4) is a linear model with coefficient matrix
—-2K1 —K» —Ky-1
_ K1 —K> 0 0
A=l o .0 .. o
0 . K, o —K,_1

It follows from Hurwitz’s criteria [14] that the real parts of eigenvalues of matriare
negative since

2K, >0,
2K; Ko\
det(_Kl Kg) =3K1K2 >0,

det(—A) =nK1K>...K,_1>0.

Hence, the original point of (4) is globally asymptotically stable, i.e., all solutions of (4)
converge to the original point. It follows from Theorem 2 that equilibritsh of (3) is
globally asymptotically stable if(V: N € X, andN; > 0}. O

5. Stability with dissociation
In this section, we show the evolution of cluster-size distribution on a surface with

dissociation, i.e.D; > 0 ass > 1. In order to focus on the dynamic behavior of clusters,
we assume that after a time period of monomer deposition, the deposition of monomers
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stops from time; wherer; > 0, i.e.,F > 0 ast € (0,71) andF = 0 ast > 1 in system (1).
We focus on the dynamics of (1) as> r1. Then) {_; sN,(t1) = M > 0 and system (1)
becomes:

n n—1
Nj=2DoNp —2K1NZ + ) DeNy — N1y KNy,
s=3 s=2
Ny/ =K; 1N1N;_1+ Dsy1Ng11 — DyNy — KyN1 Ny, 2<s<n—1,
N,i =K, 1N1N,_1 — Dy N,. (5)

Since) |_; sNy(11) = M > 0, then there ig; > 0 such thatV1(r) > 0 asr € (11,11 +
n1). In fact, if N1(r1) = 0, then it follows from the first equation of (5) that (r1) > 0.
Hence, similar to the proof of Theorem 1, we have

Lemma 7. Each solution N () of (5)with N(t1) € X, satisfiesthat N(¢) eint X, ast > 1,
where X, =R N{N: >0 15N, = M}.

Since} {_; sN; =0, we have

Theorem 4. Let N(t) = (N1(¢), N2(¢), ..., N,,(t)) be a solution of (5) with N(z1) € X,.
Then

n
Zst(t) =M ast>1.
s=1

Theorem 4 shows that the amount of monomers remains constant during the evolution
of cluster-size distribution with dissociation.

Theorem 5. There is a unique equilibrium N* of (5), where N* = (N}, N3, ..., N;),
N; satisfies

n

Zshszv;‘s — M =0,

s=1
e KiK>... Ky 1

h1=1,
DoDs3...Dg

as2<s <n,

and

N =hsN{® asl<s<n.

Proof. By the definition of equilibrium, the right-hand sides of equations in (5) should be
zero at the equilibrium. LetN* = (N7, N3, ..., N;;) be the equilibrium of (5). Then by
the right-hand side of theth equation of (5), we have

K, _
N =1t

n

* *
NiN,_;.

n
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It follows from the right-hand side of th@ — 1)th equation in (5) that

K, 2

*

=——N

n—1 Dn— 1

by replacing®V;* with ” 1N*N* 1- Inductively, it follows from the right-hand side of the
ith2<i<n—-2) equatlon in (5) that

Nr=="LINEN* | as2<s<n.
Dy
Hence
K
Nj =3 Vi
D>
K K1K
N = 22NN = 22N,
D3 DoD3
Inductively, we have
K1K K
NF= 2222 Dl v a5 2< s <o
’ DyDs3...D;

Then we haveVy = hyN;* as 1< s <n.
LetG(z) = Y."_; shyz* — M, thenG(0) = —M < 0, G(M) > 0 and

n
G (z)= Zszhszx_l >0 asz>0.
s=1

Hence, functionG(z) is monotonous and has a unique solutionGat) = 0 in (0, M).
Therefore, there is a unique equilibrium of (5) in K}t andN; isthe root ofG(z) =0. O

Theorem 6. For the cases of n = 2 and n = 3, the unique equilibrium of (5) is globally
asymptotically stablein X,,.

Proof. (i) In the case ofi = 2, system (5) becomes
Nj =2D;N, — 2K1N?2,
N4y =—DyN2 + K1N2, (6)
whereN; + 2N> = M. SinceNp = %(M — N1), then the first equation of (6) becomes
Nj = H(N1), (7

where H(N1) = DoM — DyN1 — 2[(1N1 and 0< N1 < M. Then H(N1) = —Dz —
4K1N1 <0 asN;y > 0. Let (N7, N3) be the unique equilibrium of (6). Thel (N) =
Nj = H(N1) <0 asN1 > Nf, andN; = H(N1) > 0 asN;1 < N;. Hence, the unlque
equilibrium of (7) is globally asymptotically stable §@, M1, i.e., the equilibrium of (6) is
globally asymptotically stable ix’,.

(ii) In the case of: = 3, system (5) becomes
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Ni =2DoNy — 2K1N12 + D3N3 — KoN1No — K3N1N3,

Nj = D3N3+ K1N? — DaN2 — KaN1No,

Né = K2N1N2 — D3N3,
whereN; + 2N 4+ 3N3 = M. SinceN3 = (M — N1 — 2N>)/3, then we have

Nji = f1(N1, N2),

N3 = fa(N1, N2), (8)
where 0< N1 + 2N, < M, N1 >0, N> > 0 and

f1(N1, N2) = 2D2N2 + D3(M — N1 — 2N2)/3 — 2K1N{ — K2N1No,

f2(N1, N2) = —DNo + D3(M — N1 — 2N2)/3+ K1N? — K2N1No.

Since
;—]J\;ll = —4K1N1— K2N2 — D3/3,
E?'—]CZZ =—K»N1 — Dy — 2D3/3,
then
5'—11\0111 + 5—}622 =—Dy— D3 — (4K1+ K2)N1— K2N2 < 0.

It follows from Dulac’s criteria [14] that there is no periodic orbit of (8).
Let Q(N7, N3, N3) be the unique equilibrium of (5) as= 3, theng (N7, N3) is an
equilibrium of (8). The Jacobian matrix of (8) at the equilibrium is:

o
A=<3Nl aNz).

af2 af2
N 3N,
Since
oft . 9f2
——— 4+ —| =—Dy—D3— (4K Ko)NF — KoN5 <0,
an. TN, 2 3 — (4K1+ K2) Ny 2N, <

q
detA|, = D2(D3+ 3K2N3) + K1N; (6K2Ng 4 4D3) > 0,

the eigenvalues oA have negative real parts, i.e., equilibriyof (8) is asymptotically
stable.

It follows from Poincare—Bendixon theorem [14] that all solutions of (8) converge to
ast — oo, i.e., the equilibriurmy of (8) is globally asymptotically stable, then the equilib-
rium Q of (5) is globally asymptotically stable il3. O

In the cases ot > 3, the present work does not prove the global stability of the equilib-
rium theoretically. The reasonis that it involves- 1 (n — 1 > 3) differential equations and
analyzing a system of — 1 (n — 1 > 3) differential equations is difficult and to the best of
our knowledge there is no general method for such analysis unlike the case wiies 2
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N,,N,,...,N

17720
30 T T T T T T
251 8
20 i
—_—
=
w 15F i
zZ
10 B
5+ i
o . . . )
-1 -0.5 ] 0.5 1 1.5 2 25
log(t)

Fig. 1. Letn =10, M =550,K; = 0.1 andD; = 0.01 as 1< s < 10. LetN(0) = (10, 10, ..., 10). Then up to
time+ = 200, the solutionV (¢) of (5) converges to the stationary valu@sl778 0.3083 0.5381, 0.9442 1.6538
2.8903 5.0637,8.8752 15.5516 27.2089, which are consistent with the equilibrium obtained by the expression
in Theorem 5:N* = (0.1752 0.307Q 0.5378 0.9422 1.6507, 2.892Q 5.0669 8.8771, 15.5527, 27.2484).

where the powerful Poincare—Bendixson theorem can be used. A series of numerical sim-
ulations that we have done show that in the casesf3, the unique equilibrium of (5)
is globally asymptatically stable without more complex behavior such as limit cycles and
chaos. Numerical simulations are given below to show the global stability of the equilib-
rium. In Fig. 1, we show that a specific solution of (5) converges to the equilibrium in
Theorem 5 while in Fig. 2, we show that the tenth components of five different solutions
converge to the tenth componexf, of the equilibrium in Theorem 5.

Let

n=10, M =550 K;=01 and D;,=001 asil<s<10

We compare the equilibrium obtained by the expression in Theorem 5 and the stationary
values obtained by numerical simulations as follows. To use the expression in Theorem 5,
letz = N7, then we have

10
G(@)=) i (10%z2) /10— 550
i=1
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25

5 1 1 1 1 1

log(t)

Fig. 2. Letn =10, M = 550, Ky = 0.1 and Dy = 0.01 as 1< s < 10. The initial values of five solutions
are as follows:N1(0) = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10), N2(0) = (60, 10, 10, 10, 10, 10, 10, 10, 10, 5),
N3(0) = (5, 10, 10, 10, 10, 10, 10, 10, 5, 15), N4(0) = (0, 10, 10, 10, 10, 10, 10, 10, 0, 20) and N°(0) = (6, 10,
10,10, 10,10, 10, 3,0, 25). The tenth components of the five different solutions of (5) converge 1027
27.2047,27.2052 27.2061, 27.2073, respectively, which are consistent with the value derived in Theorem 5:
Ni‘o =27.2484.

By software MatlLab, we obtain the root 6f(z) = 0: z = 0.1752. Then we obtain the
equilibrium
N*=(N7.N3.N3.N;. N5. Ng. N7. Ng. N§. Nio)
=(0.1752 0.307Q 0.5378 0.9422 1.6507,2.892Q 5.0669 8.8771,
155527, 27.2484).
In Fig. 1, letN(r1) = (10,10, 10,10, 10, 10, 10, 10, 10, 10), simulations show that up
to timer = 200, the solutionV (¢) of (5) converges to the stationary values
N*=(0.1778 0.3083 0.5381, 0.9442 1.6538 2.8903 5.0637,8.8752
155516 27.2089,
which are consistent with the equilibrium obtained by the expression in Theorem 5.

In Fig. 2, we show that the tenth components of five different solutions of (5) converge
to the same valu&/;,. The initial values of the five solutions are as follows:
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N1(0) = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10),
N2(0) = (60, 10, 10, 10, 10, 10, 10, 10, 10, 5),
N3(0) = (5, 10,10, 10, 10, 10, 10, 10, 5, 15),
N*(0) = (0, 10, 10, 10, 10, 10, 10, 10, 0, 20),
N5(0) = (6, 10, 10, 10, 10, 10, 10, 3, 0, 25).

Simulations show that up to tinte= 100, the tenth components of the above five different
solutions converge to 22041, 27.2047,27.2052 27.2061, 27.2073, respectively, which
are consistent with the value derived in TheorerwV$,; = 27.2484.

Consider the case of uniform attachment-uniform detachmentki.es, K, D; = D as
1<i<n. Let

t=Kt,B=D/K,
then system (5) becomes (we still denetby ¢):

n—1
Nl—ZBNz—I—ZBNk—ZNl leNk,
k=3 k=2
NA{=_BN3+BN5+1+N1NS—1_N1N57 2<s<n—1,
Ny/, = _BNn + Nan—l- (9)

Let N* = (NY, Nz, ..., N;) be the unique equilibrium of (9) and let= N;/B, then
we haveN; = Bz*,s=1,...,n,and
> st =MBh (10)
s=1
It follows from the implicit function theorem [15] that Eq. (10) defines a smooth func-
tion z = z(B) and we have

dz M 0
—_— = < U
dB ~  BEY_ %l
It follows from Ny = Bz® thatN; = N5 =---= N,/ ifandonlyifz =1. By (10),z =1

means thaB = 2M/(n + n?). SinceN* = Bz* anddz/dB < 0, we have
(1) If B=2M/(n +n?),thenz=1andN; =Nj =---= N} = B;

(2) If B <2M/(n+n?), thenz > LandN; < Nj <--- < N};

(3) If B>2M/(n+n?), thenz <1andN; > Nj > --- > N7

Hence, the distribution of clusters at the equilibrium is monotonous:

Theorem 7. The equilibrium (N, N3, ..., N;) of (9) satisfies:

(i) If B < n(nH),then Nf<Nj;<---<N3;
(i) IfB—n(Hl),thean_Nz_ -=NJ;
(iii)y If B > (+1),thenN*>N2 <> N
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It follows from Theorem 7 that the monotonicity of the equilibrium varieBasioves
through the critical value ®/(n + n?): as B is less than the value, the larger the size of
clusters, the larger the number of the clustersBds larger than the value, the larger the
size of clusters, the smaller the number of the clusters. The monotonicity of the equilibrium
shows a natural phenomenon in the cluster evolution: if the ratio of attachment rate to the
detachment rate is larger than a criteria value, then the larger the size of clusters, the larger
the number of the clusters on the surface; if the ratio of attachment rate to the detachment
rate is less than the criteria value, then the larger the size of clusters, the smaller the number
of the clusters on the surface.

Figure 3 shows the monotonicity of the equilibrium where componaiitsl <i < 5)
of equilibrium N* are plotted as functions a8 and B = 10, 1074, 1072, 1,10, 1@,

10% respectively. LetM = 20,n = 5. As B < 4/3, we haveN; > N > Ni > Ni > N};

as B =4/3, we haveN; = Ny = N3 = N; = N; =4/3; asB > 4/3, we haveN; >

N3 > N3 > N, > NZ. The monotonicity of the equilibrium changes as paramgteroves
through the critical value /8.
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Fig. 3. LetM = 20,n = 5. Components/*(1 < i < 5) of N* are plotted as functions @f andB = 105, 1074,
102, 1,10, 1%, 10%, respectively. AsB < 4/3, we haveN{ > N > N} > Nj > Nj; as B = 4/3, we have
Ng = Nj = Nj = N5 = Nj =4/3; asB > 4/3, we haveN; > N3 > N3 > N; > NZ. The monotonicity of the
equilibrium changes as paramefmoves through the critical valug'a.
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