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Abstract

We study tangential vector fields on the boundary of a bounded Lipschitz dagthain
in R3. Our attention is focused on the definition of suitable Hilbert spaces corresponding
to fractional Sobolev regularities and also on the construction of tangential differential
operators on the non-smooth manifold. The theory is applied to the characterization of
tangential traces for the spaéfcurl, £2). Hodge decompositions are provided for the
corresponding trace spaces, and an integration by parts formula is proved.
0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Let 2 be a bounded open Lipschitz domain with a connected bountdary
Standard Sobolev spacés’(£2) for anys € R and H'(I") for t € [—1, 1] are
defined on the domaig2 and on its boundary™, respectively (see [17,20]).
Moreover, we set

H (@2) = (H@)°,  H(@)=(H'I)), LA =HD),
H(curl, £2) = {ue L3(£2) | curlu e L?(2)},
H(div, 2) = {ue L?(2) | divu € L3(2)}.
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The characterization of tangential traces fé¢curl, £2) is an important tool

in the analysis of boundary value problems for Maxwell’s equations. For
smooth domaing?, it is well known [1,10,21] that this space coincides with
H-Y2(divr, I'). It admits several different equivalent descriptions, its dual space
is known to beH~Y2(curl;-, I'"), and Hodge decompositions have been proved.

For non-smooth domain®, not all the different descriptions make sense, and
if they do, they are not always equivalent. For the analysis of the boundary value
problems, in particular in connection with boundary integral methods, one still
would like to have such intrinsic descriptions, including characterizations of the
dual space and Hodge decompositions (see [8]).

For the case of polyhedral domaisis a theory has been developed in [5-7].
For the case of Lipschitz domains, a characterizatidd o/ 2(div;, I") has been
given by Tartar in [23], and the surjectivity of the tangential trace mapping was
shown. In the present paper, we give other definitiongdof/2(div;-, I') on
Lipschitz boundaries and, using Tartar’s result, we show their equivalence. We
also characterize the dual space and prove Hodge decompositions.

Let us mention the different ways of characterizing the tangential trace space
of H(curl, £2) in the case of smooth domains and the difficulties which appear
on non-smooth ones. For any regular vector field 2, we define the tangential
tracey; (U) = u An|r and the projection on the tangential plangu) =nA (uA
n)|r, wheren denotes the outward unit vector normallto

The Sobolev spac®& HY/2(I") of tangential vector fields of order/2 on the
surfacel” can be defined in at least five different ways:

() THY2(I) =, (HY(2));
(i) THY2(I') =y, (HY(2));
(i) THY2(ry={v:I' - R3|v=(v1, v2, v3) € (HY3(I"))3,v-n=0}.

The condition of tangentialityy - n = 0 can be formulated in less obvious
equivalent ways:

(v) THY*(I) = {v eHY2(I) | /v V¢ =0Vp € H¥(2)N Hol(g)}. (1)
r
In addition, one can introduce local coordinate systamsey, n) with two
linearly independent smooth tangential vector fiedgdse, and write
(V) THY2(I') = {v =011 + a2 | a1, a2 € HY2(I)}.
Note that (v) defines a space of “tangent fields” Bni.e., of sections of

the tangent bundI& I" of I", characterized by a certain regularity, whereas (iii)
and (iv) define subspaces of 3D vector fields livingoni.e., of sections of the
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tangent bundlg@ R3 of R3, restricted tal". For smooth domains, these two points
of view are obviously equivalent, but both of them will be useful for different
purposes: The “3D field” aspect corresponds more directly to the definition of
traces, whereas the “tangent field” aspect is needed for the definition of surface
differential operators and Hodge decompositions.

On an arbitrary Lipschitz boundary, the only level of Sobolev regularity where
these two aspects are obviously equivalent is the level%fegularity. One
of the principal themes of the present paper is to study this equivalence for
Sobolev regularity indices=1/2. Some results concerning Sobolev indei 3
have recently been obtained in [15] and [9].

Even for piecewise smooth domains, (i), (ii), (iii), and (v) will, in general, give
four different spaces (see [6]).

The tangential trace df (curl, £2) can be defined by using the Green formula
for C1(£2) functionsu, v,

/(u~cur|v—v~cur|u)d$2=/yt(u).vd1“, (2)
2 r

which extends by continuity to € H(curl, £2), v e H1(£2). From the surjectivity
of the trace mapping : H1(£2) — HY2(I") it follows that

ve ‘H(curl, ) — H™Y2(I)

is well-defined and continuous, wheles /2(I") is defined as the dual space of
HY/2(r"). Here,L2(I") is taken as pivot space.

Thus y,(u) e TH-Y2(I"), whereT H=Y2(I") for smooth domains can be
defined analogously to (i)—(v), and additionally, as the dual spa&egb2(I").

Some of these definitions af H—1/2(I") neither make sense any more for
Lipschitz domains nor even for polyhedral domains. The normal unit vector is
discontinuous, onlyr € L°°(I") for Lipschitz domains, hence the scalar product
v-nis not defined fow € H=1/2(I"), so that the condition- n = 0 does not make
sense. Similarly, the construction of a tangential field by its components in local
coordinates, i.e., corresponding to (V)= a1€1 + a2€ does not make sense for
a1, a2 € HY2(I).

The situation gets even more problematic when we look at the tangential
trace space of(curl, 2), i.e., y.(H(curl, 2)) € H-Y2(I"). Sincecurlu ¢
H (div, £2), the Green formula fow = curlu and¢ € H1(£2),

/W-qudﬂ:/n-Wq)dF,
2 r

allows to definen - curlu € H=Y2(I"). So far, this makes sense for any Lipschitz
domain. For smooth domains; curl u can be expressed in local coordinates and
one finds

1
n-curlu=divr(y: (W) = ﬁ(Bz(\/Eal) —01(J/802)), )
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whereg = de{G}, G = {gir}ik=1.2, g&ix = & - & and9; stands for the partial
derivative with respect te;.

For non-smooth domains, (3) needs a careful reinterpretation if one wants to
retain the result thah - curlu is indeed obtained by the action of a tangential
differential operator on the tangent figkd(u).

On a smooth domain, one sees that

ve :H(curl, 2) > HY2(divp, IN) (4)
is continuous where
H™Y2(divp, ') = {ve TH™Y2(I") | divpve H~Y3(I)}. (5)

The result of Paquet [21] shows that the mapping (4) is surjective for a smooth
domain, and the result of Tartar ([23], see Section 7) shows that it is surjective for
a Lipschitz domain, iH~Y2(div, I') is defined as

[ve HY2(I)3 | 3ne HY2(I):

H*1/2(F)<V’ )’(V¢)>H1/2(1~) = u-12(ry(N, @) 12y Vo € HZ(Q)}' (6)

Note that the tangentiality of is contained in (6) in the weak sense of (1). The
condition

n=—divrv

is implied in a very weak sense. This makes it difficult to study the dual space
of (6), to show Hodge decompositions, or even to understand the relation of this
space with the pivot space

LA :={uel?(I") |u-n=0}. (7)
For example, wittH (divy, I') = {v e L?(I") | div;- v € L?(I")}, do the inclusions
H(divy, I') € H Y2divy, IN), e (HY($2)) CHY2(divr, IN)

hold?

The two descriptions (5) and (6) are typical examples of the two points of view
mentioned above: (5) considers tangent fields and (6) 3D fields.

In a more general framework of differential forms on Lipschitz domains in
arbitrary dimensions, related questions are considered in [18]. This is part of a
project of studying boundary value problems for generalized Maxwell equations,
see [19].

We have seen that one difficulty arises from the ventahich, being discon-
tinuous, is not a multiplier in the spackg’?(I") andH~Y2(I"). As a replace-
ment forn, one can consider more regular normal vector fields, for example the
traces of

ker(y:) "HY(£2) = {ue HY(2) | y:(wy =0onT},
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which would correspond té/ /2(I") normal vector fields. One has to be careful,
however, when using this space, because it can be very small.

On a polyhedron, the vanishing of the tangential component of a vector field
on the whole boundary implies that at the edgbssomponents vanish. For the
class of Lipschitz domains, Filonov in [13] has an example of a domain which
is even of classC®/?, for which the vanishing of the tangential components of
H1(£2) vector fields implies that all components vanish on the whole boundary:

ker(y;) NH1(2) = H§(£2).

In this case, there exists no non-trividl/2(1") normal vector field. We shall give
a short description of Filonov’s construction in Section 6.

The outline of the paper is as follows: In Section 2, some spaces of tangential
vector fields on Lipschitz domains are defined arising from natural definitions of
tangential traces dfi! vector fields. In particular, three spac¥sg, V,, andV, are

defined which play the role of H~2(I") on smooth boundaries. In Section 3,

we define and analyze tangential differential operators acting in these spaces. In
Section 4, the ranges af, andy; are characterized in our functional context. In
Section 5, the validity of Hodge decompositions is proved. Sections 6 and 7 are
appendices: In Section 6, we report some details related to Filonov’s example of a
“regular pathological domain,” and in Section 7, we present Tartar’s proof of the
surjectivity of the tangential trace map onto the space defined in (6).

2. Tangential trace spacesfor H1(£2)

In the following, we setV = HY2(I") and v/ = H~Y2(I"). Moreover, we
adopt the point of view that the subspalcé(l") of L2(I") defined in (7) is
considered as a space of two dimensional tangent fields.

Definition 2.1. The “tangential components trace” mapping: D(2)* —
L,Z(F) and the “tangential trace” mapping : D(£2)% — L,Z(F) are defined as
U nA UAN)| - andu— uAn|r, respectively.

Lety :H1(£2) — V be the standard (vector) trace operator and one of its
rightinverses. We will also use the notatiop (respectivelyy;) for the composite
operatorr; o y ~1 (respectivelyy; o ¥ ~1) which acts only on traces.

By density of D(£2)3|- into L2(I"), these operators can be extended to linear
continuous operators in?(I"). Moreover, it is easy to see that

ker(m,) = ker(y;) in L2(I). (8)
We define:

Definition 2.2. Let V,, := y (V) andVy := (V).
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v, and V, are Hilbert spaces endowed with the norms that assure the con-
tinuity of the operatorg; andn,, respectively. We set

Ixlv, = inf {ullv: ye(u) =1}, 9)
ueVv
A1l v, =J2{/{IIU|I\/: e (U) =1} (10)

These spaces will be the bases of our construction. Note that the dengitinof
L2(I") means thav, andV, are dense subspacesl.&f(]"). These spaces as well
as their dual spacel, and V. can therefore be considered as spaces of tangent
fields of regularity ¥2 and—1/2, respectively.

If the surfacel” was regular, then

V,=Vp=THYXI') and V)=V, =TH YD), (11)

whereT HY/2(I")y andT H~Y/2(I") denote the standard Hilbertian Sobolev spaces
of tangential vector fields of ordey2 and—1/2, respectively. Already in the case
of piecewise regular surfaces, the spaggsandV,, are different (see [6]). In the
following we show that actually the equalities in (11) can be replaced by suitable
isomorphisms.

Leti,:L2(I") — L2(I") andi, :L?(I") — L2(I") be the adjoint operators of
m: andy;, respectively. These operators are the identifications of tangent fields
with 3D vector fields mentioned above. It is important to realize that they are
different identifications. Thanks to the Lipschitz assumption, a local system of
orthonormal coordinate& 1, T2, n) can be defined at almost everye I". Here,
71 andz2 are two orthonormal vectors belonging to the tangent plane for almost
everyx € I', while n is the outer normal ta2. Of course, the vectors; andzy
can also be considered as “tangent fields” (sections of the tangent bundle) and, for
the sake of clarity, we denote By andz this basis of tangent fields.

This means that

(W)=l -Tt)T1+ Ulr - T2)T2, (12)
ye(U) =|r-12)T1— (Ulr - T1)T2. (13)

Accordingly, the operatat, simply associates to a vectorli:f(]"), the vector in
L2(I") with the same tangential component and zero normal component. On the
other hand, the operatiy rotates the tangential component:

2 = - iz (U) =u1t1+u272,
ueLin, U=u1Ts+uzte, {iy(u):—uz‘rl-i-ul‘tz. (14)
These operators can be extended in the following way:
in: Vi (ke V)’ i1V — (ke NV)°, (15)

where- 0 denotes the polar set (or “annihilator,” see [4,24]). Note that because of
(8), the two range spaces in (15) coincide. Moreover, the operators defined in (15)
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are isomorphisms: thanks to Definition 2.2, the ranggsand V,, of =, andy,
are closed.

By using (14), it is natural to define a rotation operator acting H6") fields
as follows:r:L2(I") — L2(I"), r :== iy 1 0 i\,. The operator corresponds to the
geometric operation A -. Now, by using (15) and recalling the definition B
andV,,, we immediately have that the operatocan be restricted and extended
in the following way:

r:Ve—V, and r:V,— V. (16)

Finally, for any choice of spaces, is invertible andr—1 = r* = —r; for any
uelL?(I), we have

yeW) = —r(7- () and 7 (u) =r(y: (). 17)

It is important to underline that by our simple functional analytic argument, in
(16) we have defined the rotation operator also between our two spaces of order
—1/2,V. and V}ﬁ. This is a generalization of the geometric operation- which
will be useful in the following.

We have seen that the spacE&$ and V]j are two (in general different)
incarnations of the space of tangent fields of regularity2. In (15), we have
the isomorphic inclusion oV, and V]j into the same subspace of a dual space of
3D vector fields of regularity A2 which, by this duality, can be interpreted as a
space of 3D vector fields of regularityl/2. This space admits two other natural
definitions, and in the following lemma we show that these definitions are, in fact,
equivalent.

Lemma 2.3. Let
Vg = (ker() N v)°= {€V v @)y =0Vpckerm) NV}

The following holds

V/ V/
Vo=in(L2r) =i, (2D (18)

where V" denotes the closure of the space with respect to the topology induced
by V'. Lety be the standard trace operator acting on vectgrsH1(£2) — V.
Then there holds

Vi={EeV' | v(E. v(Vo)), =0V¢ € HA(2) N Hy(£2)}. (19)

Proof. We start by showing (18). It is enough to prove the first equality since
ix(LA(I")) = iy (L2(I)). Let V{:=i,(L2(I"))"'. We first prove the inclusion
V] € Vp. SinceV is closed inV’, it suffices to show that, (L2(I")) Vg Let

Ee in(L,Z(F)). For anyv € ker(r;) NV we havey (&, v)y = /‘Fg -v=0. Thus

£ € (ker(r;) N V)2, In order to show the converse inclusion, we proceed by a
duality argument. Lev € V be such that/ (&, v)y = 0 for any& € iﬂ(L,Z(F)).
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This means that for any € Lf(F), we havevé m, t: (V) v, = v {iz(m),V)y =0.
Thusv e ker(zr;) N V.
Now, we pass to the proof of (19). We shall show the dual equality

ker(y:) NV ={y (V) | ¢ € H*(22) N HF(£2)}.

Itis easy to see that fagF € H%(£22) N H (£2) we havey, (V¢) = 0. Using (2) we
obtain

/yt(w).g:/w.curlg:/curlg.n¢=0 vE e D)%,  (20)
r 2 r
which impliesy; (V¢) =
The converse inclusion is obtained by a vector potential argument on the
domains2, similar to arguments in [2,3,11]. Lete H1(£2) such thaty, (u) = 0
We denote by? C R3 a regular domain such th& c ©. We denote byii the
extension ol by 0 outside of2. The functioni belongs taH (curl, O) and it is
not hard to see that

cﬁﬁ(/u) =curl(0).

There exists then a functiof e H1(©®) and a functionp € H1(O) such that
U =&+ Vp. This implies in particulap € HZ(.Q) Now, sincell =0in O\ £,
we obtainé = —V p which showsp € H2(O \ £2). The functionp can now be
extended from® \ 2 to £2 preserving itsH? regularity [20], and we denote
by pr this extension. We have then that= (¢ + Vpg) + (Vp — Vpgr) in
2 where§ + Vpg € H}(2)% and p — pg € H3(2), since p|r = pglr and
Vpr + & € HYO) with £ = =V pr on O by construction. Finally, this means
thaty (u) =y (V¢) with ¢ = p — pr € H32(2) N H}(2). O

Remark 2.4. From (19) and Filonov’s example, we see that there exist Lipschitz
(evenC?/2) domains for whichVj = V'. In this case, (18) implies that?(I")

is dense inH=Y2(I"), and that in fact the latter space is isomorphic to the
“tangential” space¥;” andV,,’ which thus, loosely speaking, do not show much
“tangentiality” any more.

3. Tangential differential operators

The spacesH®(I") for any s € [—1,1] have an intrinsic definition (by
localization) on the Lipschitz surfac€ due to their invariance with respect
to Lipschitz transformations. Moreover, the spaée¥ /") and H5(I") are in
duality with L2(I") as pivot space. We denote Wy, -);  the corresponding
duality pairing.

Following Necas [20], we introduce local coordinates. Lt be the closed
2D unit squareA = {0 < x;1,x;2 < 1} associated to a system of coordinates
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(xj1,xj2,x;3). There existM open, regular and connected subsets ofsay
{r;}j such that J; ¥; = I', and M Lipschitz functionsa;: A; — R such that
V= {(le,sz,aj(le,sz)) | (xj1,x,2) € A;}. Finally, we denote byl : R? —
R3 the mappingx;i, x;2) = (x;1, X2, 4; (le,sz))

The spaced*(I"), s =0, 1, are separable Hilbert spaces endowed with the
following norms:

M M
lull§ =D luoAjllg s, Nulfp=D lluoAjli .,
j=1 j=1
Different maps give rise to equivalent norms. The parameterizatignis-
duce, in a natural way, two tangent vectorsjgnnamelye; = (1, 0, 914, (1, 0)),
= (0,1, 824,(0, 1)), which are not orthogonal. We sgi = &; - g for i, k =
1,2, and G = {gix} the corresponding positive definite Gram matrix. We set
G~ 1= {g’*} and g = de{G}. As in the case of the regular domains, the dual
base of tangential vectors reagls= Y"2_, g'*ey.

Definition 3.1. We defineV: HY(I") — L2(I") andcurlp: HYX(I") — L2(I")
by (p e HX(I), j=1,.... M)

(Vro)ly, = d1(p o Aj)me (") + d2(¢ 0 Aj)m- (€7),
1
— (2(¢p 0 Aj)7c (€1) — 31( 0 A)T- (€2))

NG
=—r(Vroly,. (21)

curlr o)y, =

The invariance o 1(I") with respect to the choice of local parameterizations
ensures that the definition (21) is independent of the choi¢d gf; (see [20]).

Remark 3.2. The vectorsy; ande/, i = 1, 2, are defined as 3D vector fields living
on I'. The vectorsr, (¢) andr,(g), i = 1,2, are the corresponding “tangent
fields” on T, i.e., sections of the tangent bundi¢™ of I".

Proposition 3.3. The operatorsV: HY(I") — L(I") and curlyq: HY(I") —
L2(I") are linear and continuous.

Their adjoint operators div:L?(I") — H~Y(I') and curf:L%(I") —
H~1(I"), respectively, are then defined by the following dualities:

(divr A, g)pr = — / A-Vrgdrl,
I

{curlp x,go)l,rzf)wcurlp pdrl. (22)
r
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By using the dualities (22), it is easy to see that g@xh) = — divi-(r(1)) and
conversely, diy-(A) = curlq(r()) for anyx e L2(I).

We now study the ranges of suitable restrictions and extensions of the operators
Vr,curlp and their adjoints.

Proposition 3.4. Let H¥2(I") = y (H?(£2)). The restrictions o/ and curl,
verify

Vrp=m:(Vg), curlro=—r(Vro)=y:(Vp) VpeH* ). (23)
Moreover,V: H¥?(I") — V, andcurl: H¥?(I") — V,, are linear and con-

tinuous.

Proof. The proof is straightforward. Using (20), we know that, for amy
H?(£2), the quantityr, (V¢) depends only on the traggp) onI".
The rest of the proof follows from (12) and Definition 2.2

Definition 3.5. Let H=%/2(I") be the dual space aff%2(I") with L2(I") as
pivot space. We define div: V., — H~%2(I") and cur}-: v, — H~32(I") by
the dualities

(divr X, @)z2.r = —v, (M. Vre)y,, AeVy, ¢ HA(S2), (24)

(curlr A, @)aj2.r = v, (A, curlrg)y,, AeV,, g€ HAR), (25)

where (-, -)3/2  denotes the duality pairing betweeh=3/2(I") and H¥2(I")
while v (-, -)v, (v;(w -)v, respectively) denotes the duality pairing betwéén
(V}ﬁ respectively) and’, (V,, respectively).

Again, by a duality argument and using the rotation operattefined in (16),
the following hold:vA € V), V¢ € V.,

curlr(A) = —divr(r1)) and div-(¥) =curlq(r(¥)). (26)

Next, we want to define suitable extensions of the operatgrandcurl .
To this aim, we note that the following integration by parts formula can be easily
proved by a density argument (a complete derivation can be found in [6] in the
case of polyhedra):

YueH(url, 2), VYveH(2):

/{u ceurlv —curlu-vid2 =y (y: (u), n,(v))%r
2

= _V)j(”'r (), )’r(V)>Vy~ (27)
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Since the operators, :H(2) — V, andy; :H(£2) — V, are surjective, by
(27), we obtain that the operators

ye:H(eurl, 2) — vV, and 7 :H(ourl, 2) - V)

are continuous.

Moreover, from (27), we also deduce that for apye H1(£2), the maps
o — m:(Ve) andg — y; (V) are linear, continuous and depend only on the
trace ofp on the boundary™. The following then holds:

Proposition 3.6. The operatorsv and curl defined in(23) can be extended

to HY2(I"). Moreover, Vr: HY%(I') — Vv, and curl: HY%(I') — V; are
linear and continuous. Analogously, the adjoint operators introduced in the
Definition 3.5 are also linear and continuous for the following choice of spaces
divr:V, — H~Y2(r") and curlr: V; — H~Y2(I"). The equalitieg(26) still

hold for anyx € V; andy € V,,.

Corollary 3.7. In HY/2(I"), there holdkern(V) = ker(curl ) = R.

Proof. We simply prove that kéWr) = R since the other equality is then
straightforward. Letp € H(£2) be such thatvrp = 0. Using (27), we im-
mediately obtain

/curl u-vp=0 vueH ().
2

Integrating by parts, since digurlu) = 0, we obtain
(curlu-n, p)12r =0 YueHY(2). (28)

In order to deduce from (28) that must be constant, we need to prove that
the set{curlu - n | u € HY(£2)} coincides withH, Y2 = {¢ € H-Y2(I') |
(,1)12,r =0}. Leté e H:l/z(r). We first take a functiow € H(div, £2) such
thatw - n = &£. Now there exists a function € Hé(fz) such that diw = divw.
The existence of such functiomsandv is proved in [16]. From Lemma 3.5 in
[2] follows the existence of a functiom e H(£2) such thaw — v = curlu. We

have thert =w-.-n=curlu-n. 0O

Finally, letAr: H1(I') - H~1(I") be the Laplace—Beltrami operator defined
by p — divr(Vrp). Of course,Ar is linear and continuous. By using (23)
and (26), it is immediate to see that diwp) = — curlp(curl p) for any
pe HYI).
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4. Tracesfor H(curl, £2)

We already know thay, :H(curl, 2) — V. andn, :H(curl, 2) — V)ﬁ are
linear and continuous. In the following we describe the ranges of these operators.
Using (27), we proceed as in [23] and/or [6] to obt&ine H(curl, £2)
divr (ye(w) =curlu-ne HY2(I),
HdiV]" (y‘((u)) H—]./Z,F < CHUHO,CUI’L (29)
By the same argument, but making use of the second duality in the right-hand side
of (27), we obtairvu € H(curl, £2)
curly (- (W) = curlu-ne HY2(I),
leurlr (e ()] _y 5 - < Cllullo.cun- (30)

Remark that (30) can be directly obtained by using (17) and (26).
We now state one of our main results:

Theorem 4.1. Let
H™Y2(divr, I') = {r e V. | divpeA) € HY2(I)), (31)
H=Y2(curlr, 1) :=={r e V) |curlr(A) € HY2(I)). (32)

The operators y; :H(curl, 2) — H-Y2(divr, I') and #;:H(curl, 2) —
H=Y2(curlr, I') are linear, continuous, and surjective.

Proof. The continuity of the trace operatar, (respectivelyy;) is a direct
consequence of (27) and (29) ((30) respectively). The proof of the surjectivity,
on the other hand, is based on the proof given by Tartar in [23]. (For the sake of
completeness, we present this proof in Section 7.) Let

T:={6eV |Ine HY2(I): vV € HA(R2),
v(& v (V) = (0. d)1j2r ). (33)

In [23], the tangential trace operator is definedyasH (curl, 2) - T, u —

n A u, and it is proven to be surjective by a localization argument. Here, our
setting is different: the ranges of the operateysandy, defined in the previous
sections are Hilbert spaces of tangent fields. We show that the mappiegned

in (15) is indeed an isomorphism betweErandH ~Y/2(divy, IN), i.e.,

ix(HY2(divr, M) =T.
Let A € H=Y2(divr, I'). In particular,A belongs toV.. From (15), we see

that& := i, (1) € (ker(zr;) N V)°. This space was characterized in Lemma 2.3 and
from (19), we know that

v(E. v (Ve)), =0 Yo e HA(2)N Hy($2).
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Further, since, defined in (15) is an isomorphism, we can actually exhibit the
quantity n € H~Y2(I") appearing in the definition (33). Indeed, for apye
H?($2),

Vi€ v (VO)y = v, & Vré)v, =={divr ), )y 5
= —(divr(i; 1)), ¢>1/2,1" 5y

which proves that, (L) € T for anyA € H=Y2(divj-, I"). On the other hand, let
& € T. Then from the definition of", we have

v{E. 7y (V$)), =0 Vo e H?(2) N Hy(52).

Using again the characterization given in (19), we deduce ghatker(z;) N
V)= iz (V}). Thus, there exists a uniqaes V. such thai, (1) = &. We deduce
from (34) thatx e H=Y2(divy, I).

The proof of the surjectivity for the operater, is now easy. Lety €
H=Y2(curlr, I'). Since the rotation operatedefined in (16) is an isomorphism,
there exists a € V. such thaty = r(). Moreover, from (26) we see that

divr A =curlr(r() = curlry € HY2(I),

which impliesA € H=Y2(divr, I'). Sincey, has already been proven to be
surjective, letu € H(curl, £2) be such that/;(u) = A. Using (17), we see that
(W) =r(y:(W)=v¢. O

5. Hodge decomposition of tangential vector fields

In this section we focus our attention on the construction of an Hodge
decomposition for the spaces of tradds/2(divy, I') and H=Y2(curly, I
similar to the ones introduced in [12] for regular surfaces and in [7] for polyhedra.
From now on we assume for simplicity th@tis connected and simply connected.
The extension of the following results to general non-connected domains is
straightforward, while the generalization to non-simply connected geometries
would require some additional work.

We first establish the validity of an integration by parts formula based on (27),
but which holds for any field irH(curl, £2). A different interpretation of the
boundary term can be found in [22].

We recall the following decomposition éf(curl, 2), see, e.g., [2]:

vu e Hurl, 2), 3® e HY(2), pe HY(2) suchthat u=® + Vp.

Now, letu, v € H(curl, £2) be decomposed as=® + Vp andv=W¥ + Vg
with @, W € HL(2), p, ¢ € H1(£2). We then have
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/curlu-v—u-curlv:/curl<1>-\It—<I>-curI\Il
2 2
+/curI<I>.Vq—/curI\Il.Vp.
2 2
Applying (27) three times, we obtain

/{u-curlv—curlu-v}:y(yr(u),nr(v))n, (35)
2
where the boundary term can be defined as

y()’r (), ¢ (V)>n

- f ye(®) - 7 (¥) + 1, (Vrg, e (B),, + vy{ourlr p, 7 (¥)),,
r

:/Vt(é)‘ﬂt(‘l’)_wivf‘ J/r(‘1>),61>1/2,p+(CUV|1"7Tt(‘I’), p>1/2,p'

r (36)

Thanks to the surjectivity of the trace operators proved in Theorem 4.1, the
relation (36) defines a duality betwedrn/2(div;, I") andH /2 (curlr, I') with
L,Z(F) as pivot space. This definition as well as the integration by parts (35) are
somewhat unsatisfactory since the duality on the bounfia@s/defined by means
of a decomposition in “regular” and “singular” parts éhand not by means of
an intrinsic characterization of the spa¢¢s2(divr, I") andH~Y2(curly, I).

We will now prove some properties of the differential operators defined in
Section 3.

Theorem 5.1. The following equalities hold
ker(curlr) NV, = Vi (HY(I)),
ker(curlr) NL2(I) = VrHY(I). (37)

Proof. We concentrate on the first equality. We first prove that
Vr(HY?(I)) c kercurlp) N V).

We have to show that cyr{ V- p) = 0 for anyp € HY/2(I"). Indeed, using (27),
we get for any € H2(2)

(curlr (Vrp). @)y, 1 = vy (Ve p.curlr $)v, = v, (Ve p. v (V9),, =0.

We pass to prove that(HY?(I")) 2 ker(curlr) N V. LetA € V,, be such
that curl- A = 0. Then in particulan. € H~2(curl, I') which means that there
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exists au € H(curl, £2) such thatr; (u) = A. Moreovercurlu-n = curl-(A) =

It is then known, see, e.g., [2], thatcan be written asl = ® + V p, with ® €
Ho(curl, £2) and p € HY(£2). This implies that. = 7, (u) = 7:(Vp) = Vp.
Thus, using Proposition 3.6, we have shown that for &ryV/, curlrA =0
implies that there exists ac HY/2(I") such thak = V[ p.

Now, in order to prove the second equality in (37), we only need to show
thatVr(H(I")) is closed inL?(I"). Let {, },en be a sequence W (H1(IM))
which converges irlltz(F) to a functiong € L,Z(F). There exists then a sequence
{pulnen € HY(IM) such thatg, = Vr p, for any n. From the first part of the
proof, we know thatp, converges to a functiop which is a priori only in
HY2(I"). Moreover, using the definition of the gradient and the local maps
we see that, forany =1, ..., M,

pnoAj—/pnOAjﬁéj, éjGHl(Aj).
Aj

Now, sincep, — p in HY2(I"), then[A pn o Aj — mj € R. By uniqueness

of the limit and invariance of the spadel(F) under Lipschitz change of co-
ordinatespo A; € H! (4;) forany j and this impliep € HY D). O

Remark 5.2. Using the closed graph theorem [4] and Corollary 3.7, we obtain a
priori estimates

Il gy2ryr < CIVEPlv,, IPl gy r < CIVEPllL2(r)-

Corollary 5.3. The following holds
ker(divr) NV, =curlp(HY2(I)),
ker(divr) NL2(M) = curl - (HY(IM)).
Proof. The result comes immediately from Theorem 5.1 by applying the rotation
operator =iztoi,. O
Forany 0< s < 1, set
H (I ={ueH™*(I') | (u, 1), =0}.
Corollary 5.4. The operatorsdivy:L2(I") — H_(I") and curlr:L2(I") —

1(F) and their restrictionsdivr:V, — H, 1/2(1") and curlp:V, —
1/ 2(I’) are surjective.

Set
H(I):={pe HI)/R| Arp € H, /(D).
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We are now in the position to state the main result of this section:

Theorem 5.5. The following decompositions hold

L2 = Vr(HYD)) é curlp (HX(I)), (38)

H™Y2(divr, I') =V, +curlp (HY2(I)), (39)

H=Y2(curlp, I') = Vi + Vi (HY2(I)). (40)
Also, the following decompositions are direct

H™Y2(divr, I') = Vi (H(D)) @ curl - (HY2(I)), (41)

H=Y2(curlp, ) = curl p (H(I)) @ Vi (HY2(IN)). (42)

Proof. Letus prove (38) first. Given L?(F), we solve the following problem:
Find pe HYI")/R

such that /vpp.vnp:/u.vmp Vé € HY(I')/R.
r r

Thanks to Theorem 5.1 and Corollary 3.7, we see that this problem admits a
unique solutionp € H1(I")/R. Now, of course, diy(u — V;p) = 0 and, again
by using Theorem 5.1, Corollary 5.3, there exists a unigeeH(I")/R such
thatu=Vrp+curlrgq.

We focus now our attention on (39). Lete H=Y2(divy, I'). Thanks to the
surjectivity of the diy- operator, there exists a functigne V, such that

divru=divr ¥. (43)

On the other hand, using Corollary 5.3, since;dir — ¥) = 0, there exists a
uniques € HY/2(I")/R such that

u=y+ourlrB, VeV, BeHY>(I)/R. (44)

The decomposition (39) is thus proved and (40) can be proved in the same way.
Note that these decompositions are neither orthogonal nor direct.

Now, we focus our attention on (41). We know that, fore V,, C L?(F),
(38) gives usp,q € HY(I')/R such thaty = Vyp + curlyq. Applying the
tangential divergence to this equation, we finddiw = Arp € H=Y2(I"),
hencep € H(I"). Replacing then the functiogr in (44) by this decomposition,
we obtain

u=Vrp+curlp(g+p), peH(I)andg+Be HY>(I)/R.  (45)

The fact that this decomposition is direct follows easily from Theorem 5.1 and
Corollary 5.3. Finally, (42) is an immediate consequence of (41) applying the
rotation operator defined in (16). O
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Now a duality can be defined betweln/2(div, I") andH~Y2(curly, I').

Lemma 5.6. Letu € H=Y2(div, I') andv € H=Y2(curl, I') be decomposed
asu = Vra, +curlp B, v=Vrp, + curlra, with g,, B, € HY2(I") and
oy, ay € H(IM). We have

(U V) i=—(Aray, Bu)1j2.r + (Aray, Bu)ij2.r (46)

and the integration by parts formu(85) is consistent with this definition.

The pivot space in the duality (46) ls,z(F) and this can be shown by an
easy density argument. LéB!"},eny € HY(I") and (8},en € HY(I') be two
sequences such thaf — g, and " — B, in HY2(I"). Moreover, letu" =
Vra, +curlp 8 andv” = Vgl +curlr a,.

We have thew”, v* € L2(I") and

/u” -v”:/Vpau-Vpﬂ,’}+/curlpﬂ;}-curlpav Vn eN, 47
r r r

since [~ Vray, -curlra, = [ VBl - curlp B! = 0. Using definition (22) in
both terms in the right-hand side of (47) and recalling that= — curl curlp =
divr Vi, we have

/u" V' = —(Aray, B + (Aray, )L r
r
=—(Aroay, B2 + (Aray, By)1/2r

where the last equality comes from the fact thata, € H(I"). Now, lettingn
going to infinity, we obtain (46).

6. Filonov'sexample

In this section we consider an example of a “pathological domain” which
was introduced and first studied in [13]. We report here the main steps of
the construction of this domain and we focus our attention on the impact of
its properties on both standard functional spaces and the ones introduced and
analyzed in the previous sections.

For g € N, let us definef (x) = 3_p2; ¢ ¥ sin(g%x) for x € R. In [13] and
[14], Filonov shows the following:

e Foranyg > 1: f e CY2 f(0)= f(2n) =0, |f(x)| <1, /02” f(x)dx =0.
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e Let ¢ be sufficiently large. Then for any, b € H/2([0, 27]), the equation
a = fb impliesa = b = 0 (see Theorem 4.1 in [14]). This “separation
property” is proved by means of Lemma 4.2 in [14] which states

2 B 2
Vx €[0, 2] /Mdy:+oo
/ |x — ¥l

Using polar coordinateg, ¢) in RZ, we setF(¢) = 1+ f(;" f()dt and
w:i= {(r, ) e R? | r < F(go)}.

In [14], itis proved thato has aC%/? boundary and that for any vectoe H'(w)?
the vanishing of the normal component on the boundary implies also the vanishing
of its tangential component.

Let T be the counterclockwise tangent vectofte. We will use the following
equivalent form of Filonov’s result:

Lemma 6.1. For anyv € H(w)? such thatv| - T =0on I", we havey (v) =0.

This result can be extended to higher dimensional domains. Here we are
interested in the three-dimensional case in particular. We use the domain as
constructed by Filonov, but we concentrate on properties different from the ones
considered in [14]. Letr, ¢, z) be cylindrical coordinates iR2. Then the domain
£2 is defined by

.Q::{(r,go,z)eRgi +z2<l}.

F2(p)
The following result generalizes Lemma 6.1.

Theorem 6.2. For the domains2, there holds
{ueHY(2) | yr(u) = 0} =H}(2).

Proof. The boundary 2 is the set{(r, ¢, z) € R® | r2 4 (z2 — 1) F2(¢) = 0}. It
is easy to see that an exterior normal vegois given byn = (n1, n, n3) with

_(12—1)

ni= F(p)(F(¢)cosp + f(p)sing),

np =

2_1
« " )F(w)(f(fp) cosp — F () sing),

ng=zF?(¢).
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We consider the two independent tangent vectarandz 2 defined as follows:

n3

[2 2
nl—i—n2

These vectors are well defined for anylz| < 1. Letu € H1(£2). Itis easy to see
that the conditiory; (u) = 0 correspondsta-t1=u-72=0.

We denote bys;, i =1, 2, 3, the Cartesian components wf Now for almost
everyz €]—1, 1[, we haveu; (x, y,2) € HYX(§2:), 2: =2 N{z=17},i =1,2,3.
For fixed z, the conditionu - 1 = 0 corresponds exactly to the condition in
Proposition 6.1 for the two-dimensional domair. We conclude thaii; =
up = 0 ona£2. Finally, the conditioru - T2 = 0 implies that alsaez =0 onT".
Henceue Hi(2). O

T1=(—n2,n1,0), T2 = (any,anp, 1) witha = —

Corollary 6.3. The domain2 € R® constructed above has the following prop-
erties

(i) £2 has ac®?2 boundary
(i) H?(22)NH(2) = H3(82);
(i) The spacesVy and V' = H~Y2(I") considered in Lemma.3 satisfy
Vo=V’
(iv) LetL2(I") be defined by

€
L2(r) =LA @ L2().

For anyu € L2(I"), there exists a sequencg € L2(I"), k € N, such that
ur — uin H= Y2,

Proof. The regularity of the domain? is straightforward. Let: € H2(£2) N
Hi(£2). We haveVu € H(£2), and from (20) we know thatr, (Vu) = 0.
Theorem 6.2 leads t9u € H}(£2) and thus: € HZ(£2).

Furthermore, the space ker) NV is reduced to zero, and therefore by
definition Vg = V’. Lemma 2.3 implies that,(L,z(F)) is dense inV’. The last
statement is then straightforwardo

7. Tartar’ssurjectivity result

In the case of a Lipschitz boundary, we know of only one way to prove
that the tangential trace mag maps the spacél(curl, £2) onto the space
H=Y2(div, I'), namely to use, as we did in the proof of Theorem 4.1, Tartar’s
explicit construction of a right inverse of the trace map given in [23]. For the sake
of completeness, we present Tartar’s construction in this section.
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Since we did not apply this surjectivity result prior to the proof of Theorem 4.1,
we may use what we learned before that point. In particular, we know that Tartar’s
spaceT as defined in (33) is isomorphic to our spad¢el/2(divr, I'), and that
tangential traces of vector fields i(curl, £2) belong toH~Y2(div, I'"), hence
to T. In view of the discussion in Section 2, however, we will not consider this
isomorphism to be an identification, and we therefore have to distinguish between
the tangential trace map and the trace map as considered by Tartar.

We denote the latter byr. It is defined likey, by the Green formula (2) as an
extension of the trace mapping— y (u A n) from H(£2) to H(curl, £2), where
we usey to denote the scalar trace mapping, applied here to the three Cartesian
components of a 3D vector field.

Thus we have fou € H(curl, £2) andv € H1(£2)

/(U'CU”V—V'CU”U)dXZ()/TU,]/V>]_/2’1", (48)
2

and this formula definegr as a continuous operator
yr H(eurl, 2) —> H~Y2(I).

Theorem 7.1 (Tartar).Let £2 be a domain with Lipschitz boundary as above.
Thenyr mapsH (curl, £2) onto the spac& defined by

T={§eH V2 |3ne HY(I):
Vo € HA(2), (.7 (V) 5 = (0, vPj2.r ). (49)

Proof. We only need to show the surjectivity ¢f-. Thus, foré e H=1/2(I")
satisfying (49) with some) € H~1/2(I"), we have to construat € H(curl, £2)
such that = yru. This will be done in four steps.

The first step consists of localization. In order to apply a partition of unity
argument, one has to note that for any sufficiently smooth funétitihrere holds
0& € T, becaus@é satisfies (49) withy replaced byn — & - Vo € H=Y2(I").

This allows us to assume for the following that the suppo#& of sufficiently
small so that in a neighborhood of this suppart,can be represented by a
Lipschitz graph. Without loss of generality, we can therefore assume that we are
in the following situation:

F:R?> >R is uniformly Lipschitz
.Q:{XER3|X3>F(X1,)C2)}, F:{XER3|X3:F(X1,XZ)};
& e (HY2()® and n e H-Y(I") have compact support and satisfy

3

D & vaidhar = (nydlzr forallg e HA(S). (50)
i=1
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Here (-, -)1/2. denotes the duality betweeH ~1/2(I") and HY?(I"), and we
write 9; for the partial derivative with respect iQ.

The second step consists of expressing the duality in (50) in the parameter
spaceR?. The operator

O:f—10f,  1f)(x1,x2, F(x1,x2)) = f(x1, x2)

is an isomorphism froni.2(R?) to L2(I") and fromH(R?) to H1(I"), hence by
interpolation fromH* (R?) to H*(I") for all s € [0, 1]. The adjoint operatofT*
is therefore an isomorphism

" H*(') — H*(R? Vsel0,1].
If we choose the test functigiin (50) as a tensor product

¢ (x1,x2,x3) = f(x1, x2)g(x3)
where f € H?(R?) and g € H?(R) have compact support angl= 1 on a
neighborhood ofix3 | (x1, x2, x3) € suppé}, then on a neighborhood of sugp
we havey¢ = I1f andyd;¢ = I10; f (i =1, 2), yd3¢ = 0. We obtain from (50)

2 2 3
D T &0 flrjpme =Y (& 10 fliar =Y (& vdi¢)rjar
i=1 i=1 i=1
= yP)ye.r = If)12.r = IT"n, f)i2.r.
This holds in particular for allf € Cgo(Rz). Hence we have in the sense of

distributions oriR?

2
—Zaiﬂ*& = H*n.
i=1

This means that the distributidn= (IT*£1, IT*&>) € (HY/2(R?))? satisfies
divgz A = —IT*n € H~Y?(R?) and therefore belongs té~/2(div, R?).

In the third step, the vector fieldis constructed from. To this end, one notes
thatA can be represented as

A=p+curlpzgq (51)

wherep € (HY2(R?))2 andg € HY/2(R?) have compact support.

Indeed, by Fourier transform or by solvintg2¢o = divgz A and takingpg =
Vw200, We obtain a Hodge decompositian= po 4 curly2 go, wherepg € H/2
andqo € HY/2 in a neighborhood of supp Multiplying by 6 € C3°(R?) with
6 =1 on supp., we get (51) withp = 8po — gocurlp26 andg = 6qo. For the
three HY2(I") functionsby = ITps, by = —IIp1, w = —I1g we now choose
liftings B1, Bo, W € H1(R®) such thaty B; = b; andy W = w on I". With B3 =0
andB = (Bj, B2, B3) we defineu =B + VW. Itis clear thau € H(curl, £2).

In the fourth step, we showru =& on I". We choose a test functiop of
the forme = (g1, 0, 0) with @1(x1, x2, x3) = f(x1, x2)g(x3), f € H?(R?) with
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compact support angle C3°(R), g = 1 on a neighborhood dfcz = F(x1, x2) |
(x1, x2) € suppf}. With the definition (48) we obtain

{(rrua, )/901)1/” = /(u -curlg — ¢ - curlu) dx
2

:/(B-Cur|¢—¢-CUF|B+VW-CUI‘|(p)dX
2

= /(n3y321/<p1 + y W (n2y 0391 — n3y d2¢1)) do

r

= /()’Bzyfﬂl —yWydop)nzdo
r

= /(—Hp]_ﬂf + I1qI192 f)nzdo.
r

Here the outward normal vector= (n1, n2, n3) and the surface measude
satisfyns = —(1+ |VF|?)~Y2 anddo = /1+ |VF|2dx1dx,. We obtain

Rz
This holds for allf € Cg°(R?), hence
IT*(yru)1 = p1+d2qg = (P +curlgaq)1 = A1 = I1"&1.
SincelT* is an isomorphism, we géi/ru); = £1. A similar computation gives
(yru)2 = &2.

The proofis finished by showingru)3 = &3 which follows from an argument
displaying the tangential nature of the elements of the spatety = yru—&.
We have seen that € T andy1 = 2 = 0. We show that this impliegz = 0.

As a test function in the relation (49) we choose

¢ (x1,x2,x3) = f(x1, x2)8(x3)(x3 — G(x1,x2)),
where f andg are as before an@ € H2(R?) has compact support. This gives

(W3, I1f) = (Y3, yd39) = (¥, ¥ V) = (n, yp) = (n, [1f (F — G)).
By first varying G, one obtains;I71f = 0 for all f, hencen = 0, hence finally
Y3=0. O
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