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Abstract

We study tangential vector fields on the boundary of a bounded Lipschitz domainΩ

in R3. Our attention is focused on the definition of suitable Hilbert spaces corresponding
to fractional Sobolev regularities and also on the construction of tangential differential
operators on the non-smooth manifold. The theory is applied to the characterization of
tangential traces for the spaceH(curl,Ω). Hodge decompositions are provided for the
corresponding trace spaces, and an integration by parts formula is proved.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Let Ω be a bounded open Lipschitz domain with a connected boundaryΓ .
Standard Sobolev spacesHs(Ω) for any s ∈ R andHt(Γ ) for t ∈ [−1,1] are
defined on the domainΩ and on its boundaryΓ , respectively (see [17,20]).
Moreover, we set

Hs(Ω)= (
Hs(Ω)

)3
, Ht (Γ )= (

Ht(Γ )
)3
, L2(Γ )=H0(Γ ),

H(curl,Ω)= {
u ∈ L2(Ω) | curl u ∈ L2(Ω)

}
,

H(div,Ω)= {
u ∈ L2(Ω) | divu ∈L2(Ω)

}
.
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The characterization of tangential traces forH(curl,Ω) is an important tool
in the analysis of boundary value problems for Maxwell’s equations. For
smooth domainsΩ , it is well known [1,10,21] that this space coincides with
H−1/2(divΓ ,Γ ). It admits several different equivalent descriptions, its dual space
is known to beH−1/2(curlΓ ,Γ ), and Hodge decompositions have been proved.

For non-smooth domainsΩ , not all the different descriptions make sense, and
if they do, they are not always equivalent. For the analysis of the boundary value
problems, in particular in connection with boundary integral methods, one still
would like to have such intrinsic descriptions, including characterizations of the
dual space and Hodge decompositions (see [8]).

For the case of polyhedral domainsΩ , a theory has been developed in [5–7].
For the case of Lipschitz domains, a characterization ofH−1/2(divΓ ,Γ ) has been
given by Tartar in [23], and the surjectivity of the tangential trace mapping was
shown. In the present paper, we give other definitions ofH−1/2(divΓ ,Γ ) on
Lipschitz boundaries and, using Tartar’s result, we show their equivalence. We
also characterize the dual space and prove Hodge decompositions.

Let us mention the different ways of characterizing the tangential trace space
of H(curl,Ω) in the case of smooth domains and the difficulties which appear
on non-smooth ones. For any regular vector fieldu in Ω , we define the tangential
traceγτ (u)= u∧n|Γ and the projection on the tangential planeπτ (u)= n∧ (u∧
n)|Γ , wheren denotes the outward unit vector normal toΓ .

The Sobolev spaceTH 1/2(Γ ) of tangential vector fields of order 1/2 on the
surfaceΓ can be defined in at least five different ways:

(i) TH 1/2(Γ )= πτ (H1(Ω));
(ii) TH 1/2(Γ )= γτ (H1(Ω));
(iii) TH 1/2(Γ )= {v :Γ →R3 | v= (v1, v2, v3)

t ∈ (H 1/2(Γ ))3,v · n= 0}.

The condition of tangentialityv · n = 0 can be formulated in less obvious
equivalent ways:

(iv) TH 1/2(Γ )=
{

v ∈H1/2(Γ )
∣∣ ∫
Γ

v · ∇φ = 0 ∀φ ∈H 2(Ω)∩H 1
0 (Ω)

}
. (1)

In addition, one can introduce local coordinate systems(e1, e2,n) with two
linearly independent smooth tangential vector fieldse1, e2 and write

(v) TH 1/2(Γ )= {
v= α1e1+ α2e2 | α1, α2 ∈H 1/2(Γ )

}
.

Note that (v) defines a space of “tangent fields” onΓ , i.e., of sections of
the tangent bundleT Γ of Γ , characterized by a certain regularity, whereas (iii)
and (iv) define subspaces of 3D vector fields living onΓ , i.e., of sections of the
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tangent bundleTR3 of R3, restricted toΓ . For smooth domains, these two points
of view are obviously equivalent, but both of them will be useful for different
purposes: The “3D field” aspect corresponds more directly to the definition of
traces, whereas the “tangent field” aspect is needed for the definition of surface
differential operators and Hodge decompositions.

On an arbitrary Lipschitz boundary, the only level of Sobolev regularity where
these two aspects are obviously equivalent is the level ofL2 regularity. One
of the principal themes of the present paper is to study this equivalence for
Sobolev regularity indices±1/2. Some results concerning Sobolev index 3/2
have recently been obtained in [15] and [9].

Even for piecewise smooth domains, (i), (ii), (iii), and (v) will, in general, give
four different spaces (see [6]).

The tangential trace ofH(curl,Ω) can be defined by using the Green formula
for C1(Ω̄) functionsu,v,∫

Ω

(u · curl v− v · curl u) dΩ =
∫
Γ

γτ (u) · v dΓ, (2)

which extends by continuity tou ∈H(curl,Ω), v ∈H1(Ω). From the surjectivity
of the trace mappingγ : H1(Ω)→H1/2(Γ ) it follows that

γτ : H(curl,Ω)→H−1/2(Γ )

is well-defined and continuous, whereH−1/2(Γ ) is defined as the dual space of
H1/2(Γ ). Here,L2(Γ ) is taken as pivot space.

Thus γτ (u) ∈ TH−1/2(Γ ), whereTH−1/2(Γ ) for smooth domains can be
defined analogously to (i)–(v), and additionally, as the dual space ofTH 1/2(Γ ).

Some of these definitions ofTH−1/2(Γ ) neither make sense any more for
Lipschitz domains nor even for polyhedral domains. The normal unit vector is
discontinuous, onlyn ∈ L∞(Γ ) for Lipschitz domains, hence the scalar product
v ·n is not defined forv ∈H−1/2(Γ ), so that the conditionv ·n= 0 does not make
sense. Similarly, the construction of a tangential field by its components in local
coordinates, i.e., corresponding to (v),v= α1e1+ α2e2 does not make sense for
α1, α2 ∈H−1/2(Γ ).

The situation gets even more problematic when we look at the tangential
trace space ofH(curl,Ω), i.e., γτ (H(curl,Ω)) ⊆ H−1/2(Γ ). Since curl u ∈
H(div,Ω), the Green formula forw= curl u andφ ∈H 1(Ω),∫

Ω

w · ∇φ dΩ =
∫
Γ

n ·wφ dΓ,

allows to definen · curl u ∈H−1/2(Γ ). So far, this makes sense for any Lipschitz
domain. For smooth domains,n · curl u can be expressed in local coordinates and
one finds

n · curl u= divΓ
(
γτ (u)

)= 1√
g

(
∂2(
√
gα1)− ∂1(

√
gα2)

)
, (3)
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whereg = det{G}, G = {gik}ik=1,2, gik = ei · ek and ∂i stands for the partial
derivative with respect toei .

For non-smooth domains, (3) needs a careful reinterpretation if one wants to
retain the result thatn · curl u is indeed obtained by the action of a tangential
differential operator on the tangent fieldγτ (u).

On a smooth domain, one sees that

γτ : H(curl,Ω)→H−1/2(divΓ ,Γ ) (4)

is continuous where

H−1/2(divΓ ,Γ ) :=
{
v ∈ TH−1/2(Γ ) | divΓ v ∈H−1/2(Γ )

}
. (5)

The result of Paquet [21] shows that the mapping (4) is surjective for a smooth
domain, and the result of Tartar ([23], see Section 7) shows that it is surjective for
a Lipschitz domain, ifH−1/2(divΓ ,Γ ) is defined as

{
v ∈H−1/2(Γ )3 | ∃η ∈H−1/2(Γ ):

H−1/2(Γ )

〈
v, γ (∇φ)〉H1/2(Γ )

= H−1/2(Γ )〈η,φ〉H1/2(Γ ) ∀φ ∈H 2(Ω)
}
. (6)

Note that the tangentiality ofv is contained in (6) in the weak sense of (1). The
condition

η=−divΓ v

is implied in a very weak sense. This makes it difficult to study the dual space
of (6), to show Hodge decompositions, or even to understand the relation of this
space with the pivot space

L2
t (Γ ) :=

{
u ∈ L2(Γ ) | u · n= 0

}
. (7)

For example, withH(divΓ ,Γ )= {v ∈ L2
t (Γ ) | divΓ v ∈ L2(Γ )}, do the inclusions

H(divΓ ,Γ )⊆H−1/2(divΓ ,Γ ), πτ
(
H1(Ω)

)⊆H−1/2(divΓ ,Γ )

hold?
The two descriptions (5) and (6) are typical examples of the two points of view

mentioned above: (5) considers tangent fields and (6) 3D fields.
In a more general framework of differential forms on Lipschitz domains in

arbitrary dimensions, related questions are considered in [18]. This is part of a
project of studying boundary value problems for generalized Maxwell equations,
see [19].

We have seen that one difficulty arises from the vectorn which, being discon-
tinuous, is not a multiplier in the spacesH1/2(Γ ) andH−1/2(Γ ). As a replace-
ment forn, one can consider more regular normal vector fields, for example the
traces of

ker(γτ )∩H1(Ω)= {
u ∈H1(Ω) | γτ (u)= 0 onΓ

}
,
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which would correspond toH 1/2(Γ ) normal vector fields. One has to be careful,
however, when using this space, because it can be very small.

On a polyhedron, the vanishing of the tangential component of a vector field
on the whole boundary implies that at the edgesall components vanish. For the
class of Lipschitz domains, Filonov in [13] has an example of a domain which
is even of classC3/2, for which the vanishing of the tangential components of
H1(Ω) vector fields implies that all components vanish on the whole boundary:

ker(γτ ) ∩H1(Ω)≡H1
0(Ω).

In this case, there exists no non-trivialH 1/2(Γ ) normal vector field. We shall give
a short description of Filonov’s construction in Section 6.

The outline of the paper is as follows: In Section 2, some spaces of tangential
vector fields on Lipschitz domains are defined arising from natural definitions of
tangential traces ofH1 vector fields. In particular, three spaces,V ′γ ,V ′π , andV ′0 are

defined which play the role ofTH−1/2(Γ ) on smooth boundaries. In Section 3,
we define and analyze tangential differential operators acting in these spaces. In
Section 4, the ranges ofπτ andγτ are characterized in our functional context. In
Section 5, the validity of Hodge decompositions is proved. Sections 6 and 7 are
appendices: In Section 6, we report some details related to Filonov’s example of a
“regular pathological domain,” and in Section 7, we present Tartar’s proof of the
surjectivity of the tangential trace map onto the space defined in (6).

2. Tangential trace spaces for H1(Ω)

In the following, we setV = H1/2(Γ ) andV ′ = H−1/2(Γ ). Moreover, we
adopt the point of view that the subspaceL2

t (Γ ) of L2(Γ ) defined in (7) is
considered as a space of two dimensional tangent fields.

Definition 2.1. The “tangential components trace” mappingπτ :D(Ω̄)3 →
L2
t (Γ ) and the “tangential trace” mappingγτ :D(Ω̄)3 → L2

t (Γ ) are defined as
u �→ n∧ (u∧ n)|Γ andu �→ u∧ n|Γ , respectively.

Let γ : H1(Ω)→ V be the standard (vector) trace operator andγ−1 one of its
right inverses. We will also use the notationπτ (respectivelyγτ ) for the composite
operatorπτ ◦ γ−1 (respectivelyγτ ◦ γ−1) which acts only on traces.

By density ofD(Ω̄)3|Γ into L2(Γ ), these operators can be extended to linear
continuous operators inL2(Γ ). Moreover, it is easy to see that

ker(πτ )= ker(γτ ) in L2(Γ ). (8)

We define:

Definition 2.2. Let Vγ := γτ (V ) andVπ := πτ (V ).
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Vγ andVπ are Hilbert spaces endowed with the norms that assure the con-
tinuity of the operatorsγτ andπτ , respectively. We set

‖λ‖Vγ = inf
u∈V

{‖u‖V : γτ (u)= λ
}
, (9)

‖λ‖Vπ = inf
u∈V

{‖u‖V : πτ (u)= λ
}
. (10)

These spaces will be the bases of our construction. Note that the density ofV in
L2(Γ )means thatVγ andVπ are dense subspaces ofL2

t (Γ ). These spaces as well
as their dual spacesV ′γ andV ′π can therefore be considered as spaces of tangent
fields of regularity 1/2 and−1/2, respectively.

If the surfaceΓ was regular, then

Vγ = Vπ = TH 1/2(Γ ) and V ′γ = V ′π = TH−1/2(Γ ), (11)

whereTH 1/2(Γ ) andTH−1/2(Γ ) denote the standard Hilbertian Sobolev spaces
of tangential vector fields of order 1/2 and−1/2, respectively. Already in the case
of piecewise regular surfaces, the spacesVγ andVπ are different (see [6]). In the
following we show that actually the equalities in (11) can be replaced by suitable
isomorphisms.

Let iπ : L2
t (Γ )→ L2(Γ ) andiγ : L2

t (Γ )→ L2(Γ ) be the adjoint operators of
πτ andγτ , respectively. These operators are the identifications of tangent fields
with 3D vector fields mentioned above. It is important to realize that they are
different identifications. Thanks to the Lipschitz assumption, a local system of
orthonormal coordinates(τ1,τ2,n) can be defined at almost everyx ∈ Γ . Here,
τ1 andτ2 are two orthonormal vectors belonging to the tangent plane for almost
everyx ∈ Γ , while n is the outer normal toΩ . Of course, the vectorsτ1 andτ2
can also be considered as “tangent fields” (sections of the tangent bundle) and, for
the sake of clarity, we denote bỹτ1 andτ̃2 this basis of tangent fields.

This means that

πτ (u)= (u|Γ · τ1)τ̃1+ (u|Γ · τ2)τ̃2, (12)

γτ (u)= (u|Γ · τ2)τ̃1− (u|Γ · τ1)τ̃2. (13)

Accordingly, the operatoriπ simply associates to a vector inL2
t (Γ ), the vector in

L2(Γ ) with the same tangential component and zero normal component. On the
other hand, the operatoriγ rotates the tangential component:

u ∈ L2
t (Γ ), u= u1τ̃1+ u2τ̃2,

{
iπ (u)= u1τ1+ u2τ2,

iγ (u)=−u2τ1+ u1τ2.
(14)

These operators can be extended in the following way:

iπ :V ′π→
(
ker(πτ ) ∩ V

)0
, iγ :V ′γ →

(
ker(γτ ) ∩ V

)0
, (15)

where· 0 denotes the polar set (or “annihilator,” see [4,24]). Note that because of
(8), the two range spaces in (15) coincide. Moreover, the operators defined in (15)
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are isomorphisms: thanks to Definition 2.2, the rangesVπ andVγ of πτ andγτ
are closed.

By using (14), it is natural to define a rotation operator acting onL2
t (Γ ) fields

as follows:r : L2
t (Γ )→ L2

t (Γ ), r := i−1
π ◦ iγ . The operatorr corresponds to the

geometric operationn∧ · . Now, by using (15) and recalling the definition ofVπ
andVγ , we immediately have that the operatorr can be restricted and extended
in the following way:

r :Vπ→ Vγ and r :V ′π→ V ′γ . (16)

Finally, for any choice of spaces,r is invertible andr−1 = r� = −r; for any
u ∈ L2(Γ ), we have

γτ (u)=−r
(
πτ (u)

)
and πτ (u)= r

(
γτ (u)

)
. (17)

It is important to underline that by our simple functional analytic argument, in
(16) we have defined the rotation operator also between our two spaces of order
−1/2,V ′π andV ′γ . This is a generalization of the geometric operationn∧ · which
will be useful in the following.

We have seen that the spacesV ′π and V ′γ are two (in general different)
incarnations of the space of tangent fields of regularity−1/2. In (15), we have
the isomorphic inclusion ofV ′π andV ′γ into the same subspace of a dual space of
3D vector fields of regularity 1/2 which, by this duality, can be interpreted as a
space of 3D vector fields of regularity−1/2. This space admits two other natural
definitions, and in the following lemma we show that these definitions are, in fact,
equivalent.

Lemma 2.3. Let

V ′0 :=
(
ker(πτ )∩ V

)0= {
ξ ∈ V ′ | V ′ 〈ξ ,ϕ〉V = 0 ∀ϕ ∈ ker(πτ )∩ V

}
.

The following holds:

V ′0= iπ
(
L2
t (Γ )

)V ′ = iγ (L2
t (Γ )

)V ′
, (18)

where · V ′ denotes the closure of the space with respect to the topology induced
by V ′. Let γ be the standard trace operator acting on vectorsγ : H1(Ω)→ V .
Then there holds

V ′0=
{
ξ ∈ V ′ | V ′

〈
ξ , γ (∇φ)〉

V
= 0 ∀φ ∈H 2(Ω)∩H 1

0 (Ω)
}
. (19)

Proof. We start by showing (18). It is enough to prove the first equality since
iπ (L2

t (Γ )) = iγ (L2
t (Γ )). Let V ′1 := iπ(L2

t (Γ ))
V ′ . We first prove the inclusion

V ′1 ⊆ V ′0. SinceV ′0 is closed inV ′, it suffices to show thatiπ(L2
t (Γ )) ⊆ V ′0. Let

ξ ∈ iπ (L2
t (Γ )). For anyv ∈ ker(πτ ) ∩ V we haveV ′ 〈ξ ,v〉V =

∫
Γ
ξ · v= 0. Thus

ξ ∈ (ker(πτ ) ∩ V )0. In order to show the converse inclusion, we proceed by a
duality argument. Letv ∈ V be such thatV ′ 〈ξ ,v〉V = 0 for anyξ ∈ iπ(L2

t (Γ )).
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This means that for anyη ∈ L2
t (Γ ), we haveV ′π 〈η,πτ (v)〉Vπ = V ′ 〈iπ (η),v〉V = 0.

Thusv ∈ ker(πτ )∩ V .
Now, we pass to the proof of (19). We shall show the dual equality

ker(γτ )∩ V =
{
γ (∇φ) | φ ∈H 2(Ω)∩H 1

0 (Ω)
}
.

It is easy to see that forφ ∈H 2(Ω)∩H 1
0 (Ω) we haveγτ (∇φ)= 0. Using (2) we

obtain∫
Γ

γτ (∇φ) · ξ =
∫
Ω

∇φ · curl ξ =
∫
Γ

curl ξ · nφ = 0 ∀ξ ∈D(Ω̄)3, (20)

which impliesγτ (∇φ)= 0.
The converse inclusion is obtained by a vector potential argument on the

domainΩ , similar to arguments in [2,3,11]. Letu ∈H1(Ω) such thatγτ (u)= 0.
We denote byO ⊆ R3 a regular domain such that̄Ω ⊂ O. We denote bỹu the
extension ofu by 0 outside ofΩ̄ . The functionũ belongs toH(curl,O) and it is
not hard to see that

c̃url(u)= curl(ũ).

There exists then a functionξ ∈ H1(O) and a functionp ∈ H 1(O) such that
ũ= ξ +∇p. This implies in particularp ∈H 2(Ω). Now, sinceũ= 0 in O \ Ω̄ ,
we obtainξ = −∇p which showsp ∈ H 2(O \ Ω̄). The functionp can now be
extended fromO \ Ω̄ to Ω preserving itsH 2 regularity [20], and we denote
by pR this extension. We have then thatu = (ξ + ∇pR) + (∇p − ∇pR) in
Ω whereξ + ∇pR ∈ H 1

0 (Ω)
3 andp − pR ∈ H 1

0 (Ω), sincep|Γ = pR |Γ and
∇pR + ξ ∈ H 1(O) with ξ = −∇pR on O by construction. Finally, this means
thatγ (u)= γ (∇φ) with φ = p− pR ∈H 2(Ω)∩H 1

0 (Ω). ✷
Remark 2.4. From (19) and Filonov’s example, we see that there exist Lipschitz
(evenC3/2) domains for whichV ′0 ≡ V ′. In this case, (18) implies thatL2

t (Γ )

is dense inH−1/2(Γ ), and that in fact the latter space is isomorphic to the
“tangential” spacesVπ ′ andVγ ′ which thus, loosely speaking, do not show much
“tangentiality” any more.

3. Tangential differential operators

The spacesHs(Γ ) for any s ∈ [−1,1] have an intrinsic definition (by
localization) on the Lipschitz surfaceΓ due to their invariance with respect
to Lipschitz transformations. Moreover, the spacesHs(Γ ) andH−s(Γ ) are in
duality with L2(Γ ) as pivot space. We denote by〈·, ·〉s,Γ the corresponding
duality pairing.

Following Něcas [20], we introduce local coordinates. Let∆j be the closed
2D unit square∆ = {0 � xj1, xj2 � 1} associated to a system of coordinates
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(xj1, xj2, xj3). There existM open, regular and connected subsets ofΓ , say
{γj }j such that

⋃
j γj = Γ , andM Lipschitz functionsaj :∆j → R such that

γj = {(xj1, xj2, aj (xj1, xj2)) | (xj1, xj2) ∈∆j }. Finally, we denote byAj :R2→
R3 the mapping(xj1, xj2) �→ (xj1, xj2, aj (xj1, xj2)).

The spacesHs(Γ ), s = 0,1, are separable Hilbert spaces endowed with the
following norms:

‖u‖2
0,Γ =

M∑
j=1

‖u ◦Aj‖2
0,∆j , ‖u‖2

1,Γ =
M∑
j=1

‖u ◦Aj‖2
1,∆j .

Different maps give rise to equivalent norms. The parameterizationsAj in-
duce, in a natural way, two tangent vectors onγj , namelye1= (1,0, ∂1aj (1,0)),
e2 = (0,1, ∂2aj (0,1)), which are not orthogonal. We setgik = ei · ek for i, k =
1,2, andG = {gik} the corresponding positive definite Gram matrix. We set
G−1 = {gik} andg = det{G}. As in the case of the regular domains, the dual
base of tangential vectors readsei =∑2

k=1g
ikek .

Definition 3.1. We define∇Γ :H 1(Γ )→ L2
t (Γ ) and curlΓ :H 1(Γ )→ L2

t (Γ )

by (ϕ ∈H 1(Γ ), j = 1, . . . ,M)

(∇Γ ϕ)|γj = ∂1(ϕ ◦Aj)πτ (e1)+ ∂2(ϕ ◦Aj)πτ (e2),

(curlΓ ϕ)|γj =
1√
g

(
∂2(φ ◦Aj)πτ (e1)− ∂1(φ ◦Aj)πτ (e2)

)
=−r(∇Γ ϕ)|γj . (21)

The invariance ofH 1(Γ ) with respect to the choice of local parameterizations
ensures that the definition (21) is independent of the choice of{Aj }j (see [20]).

Remark 3.2. The vectorsei andei , i = 1,2, are defined as 3D vector fields living
on Γ . The vectorsπτ (ei ) andπτ (ei ), i = 1,2, are the corresponding “tangent
fields” onΓ , i.e., sections of the tangent bundleT Γ of Γ .

Proposition 3.3. The operators∇Γ :H 1(Γ )→ L2
t (Γ ) and curlΓ :H 1(Γ )→

L2
t (Γ ) are linear and continuous.

Their adjoint operators divΓ : L2
t (Γ ) → H−1(Γ ) and curlΓ : L2

t (Γ ) →
H−1(Γ ), respectively, are then defined by the following dualities:

〈divΓ λ, ϕ〉1,Γ =−
∫
Γ

λ · ∇Γ ϕ dΓ,

〈curlΓ λ, ϕ〉1,Γ =
∫
Γ

λ · curlΓ ϕ dΓ. (22)
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By using the dualities (22), it is easy to see that curlΓ (λ) = −divΓ (r(λ)) and
conversely, divΓ (λ)= curlΓ (r(λ)) for anyλ ∈ L2

t (Γ ).
We now study the ranges of suitable restrictions and extensions of the operators

∇Γ , curlΓ and their adjoints.

Proposition 3.4. LetH 3/2(Γ ) = γ (H 2(Ω)). The restrictions of∇Γ and curlΓ
verify

∇Γ ϕ = πτ (∇ϕ), curlΓ ϕ =−r(∇Γ ϕ)= γτ (∇ϕ) ∀ϕ ∈H 2(Ω). (23)

Moreover,∇Γ :H 3/2(Γ )→ Vπ and curlΓ :H 3/2(Γ )→ Vγ are linear and con-
tinuous.

Proof. The proof is straightforward. Using (20), we know that, for anyϕ ∈
H 2(Ω), the quantityπτ (∇ϕ) depends only on the traceγ (ϕ) onΓ .

The rest of the proof follows from (12) and Definition 2.2.✷
Definition 3.5. Let H−3/2(Γ ) be the dual space ofH 3/2(Γ ) with L2(Γ ) as
pivot space. We define divΓ :V ′π → H−3/2(Γ ) and curlΓ :V ′γ → H−3/2(Γ ) by
the dualities

〈divΓ λ, ϕ〉3/2,Γ =−V ′π 〈λ,∇Γ ϕ〉Vπ , λ ∈ V ′π , ϕ ∈H 2(Ω), (24)

〈curlΓ λ, ϕ〉3/2,Γ = V ′γ 〈λ, curlΓ ϕ〉Vγ , λ ∈ V ′γ , ϕ ∈H 2(Ω), (25)

where〈·, ·〉3/2,Γ denotes the duality pairing betweenH−3/2(Γ ) andH 3/2(Γ )

while V ′π 〈·, ·〉Vπ (V ′γ 〈·, ·〉Vγ respectively) denotes the duality pairing betweenV ′π
(V ′γ respectively) andVπ (Vγ respectively).

Again, by a duality argument and using the rotation operatorr defined in (16),
the following hold:∀λ ∈ V ′γ , ∀ψ ∈ V ′π

curlΓ (λ)=−divΓ
(
r(λ)

)
and divΓ (ψ)= curlΓ

(
r(ψ)

)
. (26)

Next, we want to define suitable extensions of the operators∇Γ andcurlΓ .
To this aim, we note that the following integration by parts formula can be easily
proved by a density argument (a complete derivation can be found in [6] in the
case of polyhedra):

∀u ∈H(curl,Ω), ∀v ∈H1(Ω):∫
Ω

{u · curl v− curl u · v}dΩ = V ′π
〈
γτ (u),πτ (v)

〉
Vπ

=−V ′γ
〈
πτ (u), γτ (v)

〉
Vγ
. (27)
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Since the operatorsπτ : H1(Ω)→ Vπ andγτ : H1(Ω)→ Vγ are surjective, by
(27), we obtain that the operators

γτ : H(curl,Ω)→ V ′π and πτ : H(curl,Ω)→ V ′γ

are continuous.
Moreover, from (27), we also deduce that for anyϕ ∈ H 1(Ω), the maps

ϕ �→ πτ (∇ϕ) andϕ �→ γτ (∇ϕ) are linear, continuous and depend only on the
trace ofϕ on the boundaryΓ . The following then holds:

Proposition 3.6. The operators∇Γ and curlΓ defined in(23) can be extended
to H 1/2(Γ ). Moreover,∇Γ :H 1/2(Γ )→ V ′γ and curlΓ :H 1/2(Γ )→ V ′π are
linear and continuous. Analogously, the adjoint operators introduced in the
Definition3.5 are also linear and continuous for the following choice of spaces:
divΓ :Vγ → H−1/2(Γ ) and curlΓ :Vπ → H−1/2(Γ ). The equalities(26) still
hold for anyλ ∈ Vπ andψ ∈ Vγ .

Corollary 3.7. In H 1/2(Γ ), there holdsker(∇Γ )= ker(curlΓ )=R.

Proof. We simply prove that ker(∇Γ ) = R since the other equality is then
straightforward. Letp ∈ H 1(Ω) be such that∇Γ p = 0. Using (27), we im-
mediately obtain

∫
Ω

curl u · ∇p = 0 ∀u ∈H1(Ω).

Integrating by parts, since div(curl u)= 0, we obtain

〈curl u · n,p〉1/2,Γ = 0 ∀u ∈H1(Ω). (28)

In order to deduce from (28) thatp must be constant, we need to prove that
the set{curl u · n | u ∈ H1(Ω)} coincides withH−1/2

� (Γ ) = {ξ ∈ H−1/2(Γ ) |
〈ξ,1〉1/2,Γ = 0}. Let ξ ∈H−1/2

� (Γ ). We first take a functionw ∈H(div,Ω) such
that w · n = ξ . Now there exists a functionv ∈ H1

0(Ω) such that divv = div w.
The existence of such functionsw andv is proved in [16]. From Lemma 3.5 in
[2] follows the existence of a functionu ∈H1(Ω) such thatw− v= curl u. We
have thenξ =w · n= curl u · n. ✷

Finally, let∆Γ :H 1(Γ )→H−1(Γ ) be the Laplace–Beltrami operator defined
by p �→ divΓ (∇Γ p). Of course,∆Γ is linear and continuous. By using (23)
and (26), it is immediate to see that divΓ (∇Γ p) ≡ −curlΓ (curlΓ p) for any
p ∈H 1(Γ ).
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4. Traces for H(curl,Ω)

We already know thatγτ : H(curl,Ω)→ V ′π andπτ : H(curl,Ω)→ V ′γ are
linear and continuous. In the following we describe the ranges of these operators.

Using (27), we proceed as in [23] and/or [6] to obtain∀u ∈H(curl,Ω)

divΓ
(
γτ (u)

)= curl u · n ∈H−1/2(Γ ),∥∥divΓ
(
γτ (u)

)∥∥−1/2,Γ � C‖u‖0,curl. (29)

By the same argument, but making use of the second duality in the right-hand side
of (27), we obtain∀u ∈H(curl,Ω)

curlΓ
(
πτ (u)

)= curl u · n ∈H−1/2(Γ ),∥∥curlΓ
(
πτ (u)

)∥∥−1/2,Γ � C‖u‖0,curl. (30)

Remark that (30) can be directly obtained by using (17) and (26).
We now state one of our main results:

Theorem 4.1. Let

H−1/2(divΓ ,Γ ) :=
{
λ ∈ V ′π | divΓ (λ) ∈H−1/2(Γ )

}
, (31)

H−1/2(curlΓ ,Γ ) :=
{
λ ∈ V ′γ | curlΓ (λ) ∈H−1/2(Γ )

}
. (32)

The operators γτ : H(curl,Ω) → H−1/2(divΓ ,Γ ) and πτ : H(curl,Ω) →
H−1/2(curlΓ ,Γ ) are linear, continuous, and surjective.

Proof. The continuity of the trace operatorπτ (respectivelyγτ ) is a direct
consequence of (27) and (29) ((30) respectively). The proof of the surjectivity,
on the other hand, is based on the proof given by Tartar in [23]. (For the sake of
completeness, we present this proof in Section 7.) Let

T := {
ξ ∈ V ′ | ∃η ∈H−1/2(Γ ): ∀φ ∈H 2(Ω),

V ′
〈
ξ , γ (∇φ)〉

V
= 〈η,φ〉1/2,Γ

}
. (33)

In [23], the tangential trace operator is defined asγτ : H(curl,Ω)→ T , u �→
n ∧ u, and it is proven to be surjective by a localization argument. Here, our
setting is different: the ranges of the operatorsπτ andγτ defined in the previous
sections are Hilbert spaces of tangent fields. We show that the mappingiπ defined
in (15) is indeed an isomorphism betweenT andH−1/2(divΓ ,Γ ), i.e.,

iπ
(
H−1/2(divΓ ,Γ )

)≡ T .
Let λ ∈ H−1/2(divΓ ,Γ ). In particular,λ belongs toV ′π . From (15), we see

thatξ := iπ (λ) ∈ (ker(πτ )∩V )0. This space was characterized in Lemma 2.3 and
from (19), we know that

V ′
〈
ξ , γ (∇φ)〉

V
= 0 ∀φ ∈H 2(Ω)∩H 1

0 (Ω).
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Further, sinceiπ defined in (15) is an isomorphism, we can actually exhibit the
quantity η ∈ H−1/2(Γ ) appearing in the definition (33). Indeed, for anyφ ∈
H 2(Ω),

V ′
〈
ξ , γ (∇φ)〉

V
= V ′π 〈λ,∇Γ φ〉Vπ =−

〈
divΓ (λ),φ

〉
1/2,Γ

=−〈
divΓ

(
i−1
π (ξ )

)
, φ

〉
1/2,Γ , (34)

which proves thatiπ (λ) ∈ T for anyλ ∈H−1/2(divΓ ,Γ ). On the other hand, let
ξ ∈ T . Then from the definition ofT , we have

V ′
〈
ξ , γ (∇φ)〉

V
= 0 ∀φ ∈H 2(Ω)∩H 1

0 (Ω).

Using again the characterization given in (19), we deduce thatξ ∈ (ker(πτ ) ∩
V )0≡ iπ (V ′π). Thus, there exists a uniqueλ ∈ V ′π such thatiπ (λ)= ξ . We deduce
from (34) thatλ ∈H−1/2(divΓ ,Γ ).

The proof of the surjectivity for the operatorπτ is now easy. Letψ ∈
H−1/2(curlΓ ,Γ ). Since the rotation operatorr defined in (16) is an isomorphism,
there exists aλ ∈ V ′π such thatψ = r(λ). Moreover, from (26) we see that

divΓ λ= curlΓ
(
r(λ)

)= curlΓψ ∈H−1/2(Γ ),

which implies λ ∈ H−1/2(divΓ ,Γ ). Since γτ has already been proven to be
surjective, letu ∈ H(curl,Ω) be such thatγτ (u) = λ. Using (17), we see that
πτ (u)= r(γτ (u))=ψ . ✷

5. Hodge decomposition of tangential vector fields

In this section we focus our attention on the construction of an Hodge
decomposition for the spaces of tracesH−1/2(divΓ ,Γ ) and H−1/2(curlΓ ,Γ )
similar to the ones introduced in [12] for regular surfaces and in [7] for polyhedra.
From now on we assume for simplicity thatΩ is connected and simply connected.
The extension of the following results to general non-connected domains is
straightforward, while the generalization to non-simply connected geometries
would require some additional work.

We first establish the validity of an integration by parts formula based on (27),
but which holds for any field inH(curl,Ω). A different interpretation of the
boundary term can be found in [22].

We recall the following decomposition ofH(curl,Ω), see, e.g., [2]:

∀u ∈H(curl,Ω), ∃� ∈H1(Ω), p ∈H 1(Ω) such that u=�+∇p.
Now, let u,v ∈H(curl,Ω) be decomposed asu=�+∇p andv= � +∇q

with �,� ∈H1(Ω), p,q ∈H 1(Ω). We then have
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∫
Ω

curl u · v− u · curl v=
∫
Ω

curl� ·� −� · curl�

+
∫
Ω

curl� · ∇q −
∫
Ω

curl� · ∇p.

Applying (27) three times, we obtain∫
Ω

{u · curl v− curl u · v} = γ

〈
γτ (u),πτ (v)

〉
π
, (35)

where the boundary term can be defined as

γ

〈
γτ (u),πτ (v)

〉
π

=
∫
Γ

γτ (�) · πτ (�)+ V ′γ
〈∇Γ q, γτ (�)〉Vγ + V ′π

〈
curlΓ p,πτ (�)

〉
Vπ

=
∫
Γ

γτ (�) · πτ (�)−
〈
divΓ γτ (�), q

〉
1/2,Γ +

〈
curlΓ πτ (�),p

〉
1/2,Γ .

(36)

Thanks to the surjectivity of the trace operators proved in Theorem 4.1, the
relation (36) defines a duality betweenH−1/2(divΓ ,Γ ) andH−1/2(curlΓ ,Γ )with
L2
t (Γ ) as pivot space. This definition as well as the integration by parts (35) are

somewhat unsatisfactory since the duality on the boundaryΓ is defined by means
of a decomposition in “regular” and “singular” parts onΩ and not by means of
an intrinsic characterization of the spacesH−1/2(divΓ ,Γ ) andH−1/2(curlΓ ,Γ ).

We will now prove some properties of the differential operators defined in
Section 3.

Theorem 5.1. The following equalities hold:

ker(curlΓ )∩ V ′γ =∇Γ
(
H 1/2(Γ )

)
,

ker(curlΓ )∩L2
t (Γ )=∇Γ H 1(Γ ). (37)

Proof. We concentrate on the first equality. We first prove that

∇Γ
(
H 1/2(Γ )

)⊆ ker(curlΓ )∩ V ′γ .
We have to show that curlΓ (∇Γ p)= 0 for anyp ∈H 1/2(Γ ). Indeed, using (27),
we get for anyφ ∈H 2(Ω)〈

curlΓ (∇Γ p),φ
〉
3/2,Γ = V ′γ 〈∇Γ p, curlΓ φ〉Vγ = V ′γ

〈∇Γ p,γτ (∇φ)〉Vγ ≡ 0.

We pass to prove that∇Γ (H 1/2(Γ )) ⊇ ker(curlΓ ) ∩ V ′γ . Let λ ∈ V ′γ be such

that curlΓ λ= 0. Then in particular,λ ∈H−1/2(curlΓ ,Γ ) which means that there
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exists au ∈H(curl,Ω) such thatπτ (u)= λ. Moreover,curl u ·n= curlΓ (λ)= 0.
It is then known, see, e.g., [2], thatu can be written asu = �+ ∇p, with � ∈
H0(curl,Ω) andp ∈ H 1(Ω). This implies thatλ = πτ (u) = πτ (∇p) = ∇Γ p.
Thus, using Proposition 3.6, we have shown that for anyλ ∈ V ′γ , curlΓ λ = 0

implies that there exists ap ∈H 1/2(Γ ) such thatλ=∇Γ p.
Now, in order to prove the second equality in (37), we only need to show

that∇Γ (H 1(Γ )) is closed inL2
t (Γ ). Let {ϕn}n∈N be a sequence in∇Γ (H 1(Γ ))

which converges inL2
t (Γ ) to a functionϕ ∈ L2

t (Γ ). There exists then a sequence
{pn}n∈N ⊂ H 1(Γ ) such thatϕn = ∇Γ pn for any n. From the first part of the
proof, we know thatpn converges to a functionp which is a priori only in
H 1/2(Γ ). Moreover, using the definition of the gradient and the local mapsAj ,
we see that, for anyj = 1, . . . ,M,

pn ◦Aj −
∫
∆j

pn ◦Aj → ξj , ξj ∈H 1(∆j ).

Now, sincepn→ p in H 1/2(Γ ), then
∫
∆j
pn ◦ Aj → mj ∈ R. By uniqueness

of the limit and invariance of the spaceH 1(Γ ) under Lipschitz change of co-
ordinates,p ◦Aj ∈H 1(∆j ) for anyj and this impliesp ∈H 1(Γ ). ✷
Remark 5.2. Using the closed graph theorem [4] and Corollary 3.7, we obtain a
priori estimates

‖p‖H1/2(Γ )/R � C‖∇Γ p‖V ′π , ‖p‖H1(Γ )/R � C‖∇Γ p‖L2
t (Γ )

.

Corollary 5.3. The following holds:

ker(divΓ )∩ V ′π = curlΓ
(
H 1/2(Γ )

)
,

ker(divΓ )∩L2
t (Γ )= curlΓ

(
H 1(Γ )

)
.

Proof. The result comes immediately from Theorem 5.1 by applying the rotation
operatorr = i−1

π ◦ iγ . ✷
For any 0� s � 1, set

H−s� (Γ )= {
u ∈H−s(Γ ) | 〈u,1〉s,Γ = 0

}
.

Corollary 5.4. The operatorsdivΓ : L2
t (Γ )→ H−1

� (Γ ) and curlΓ : L2
t (Γ )→

H−1
� (Γ ) and their restrictions divΓ :Vγ → H

−1/2
� (Γ ) and curlΓ :Vπ →

H
−1/2
� (Γ ) are surjective.

Set

H(Γ ) := {
p ∈H 1(Γ )/R |∆Γ p ∈H−1/2

� (Γ )
}
.
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We are now in the position to state the main result of this section:

Theorem 5.5. The following decompositions hold:

L2
t (Γ )=∇Γ

(
H 1(Γ )

) ⊥⊕ curlΓ
(
H 1(Γ )

)
, (38)

H−1/2(divΓ ,Γ )= Vγ + curlΓ
(
H 1/2(Γ )

)
, (39)

H−1/2(curlΓ ,Γ )= Vπ +∇Γ
(
H 1/2(Γ )

)
. (40)

Also, the following decompositions are direct:

H−1/2(divΓ ,Γ )=∇Γ
(
H(Γ )

)⊕ curlΓ
(
H 1/2(Γ )

)
, (41)

H−1/2(curlΓ ,Γ )= curlΓ
(
H(Γ )

)⊕∇Γ (
H 1/2(Γ )

)
. (42)

Proof. Let us prove (38) first. Givenu ∈ L2
t (Γ ), we solve the following problem:

Find p ∈H 1(Γ )/R

such that
∫
Γ

∇Γ p · ∇Γ φ =
∫
Γ

u · ∇Γ φ ∀φ ∈H 1(Γ )/R.

Thanks to Theorem 5.1 and Corollary 3.7, we see that this problem admits a
unique solutionp ∈ H 1(Γ )/R. Now, of course, divΓ (u− ∇Γ p) = 0 and, again
by using Theorem 5.1, Corollary 5.3, there exists a uniqueq ∈ H 1(Γ )/R such
thatu=∇Γ p+ curlΓ q .

We focus now our attention on (39). Letu ∈ H−1/2(divΓ ,Γ ). Thanks to the
surjectivity of the divΓ operator, there exists a functionψ ∈ Vγ such that

divΓ u= divΓ ψ . (43)

On the other hand, using Corollary 5.3, since divΓ (u − ψ) = 0, there exists a
uniqueβ ∈H 1/2(Γ )/R such that

u= ψ + curlΓ β, ψ ∈ Vγ , β ∈H 1/2(Γ )/R. (44)

The decomposition (39) is thus proved and (40) can be proved in the same way.
Note that these decompositions are neither orthogonal nor direct.

Now, we focus our attention on (41). We know that, forψ ∈ Vγ ⊆ L2
t (Γ ),

(38) gives usp,q ∈ H 1(Γ )/R such thatψ = ∇Γ p + curlΓ q . Applying the
tangential divergence to this equation, we find divΓ ψ = ∆Γ p ∈ H−1/2(Γ ),
hencep ∈H(Γ ). Replacing then the functionψ in (44) by this decomposition,
we obtain

u=∇Γ p+ curlΓ (q + β), p ∈H(Γ ) andq + β ∈H 1/2(Γ )/R. (45)

The fact that this decomposition is direct follows easily from Theorem 5.1 and
Corollary 5.3. Finally, (42) is an immediate consequence of (41) applying the
rotation operatorr defined in (16). ✷
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Now a duality can be defined betweenH−1/2(divΓ ,Γ ) andH−1/2(curlΓ ,Γ ).

Lemma 5.6. Let u ∈ H−1/2(divΓ ,Γ ) and v ∈ H−1/2(curlΓ ,Γ ) be decomposed
as u = ∇Γ αu + curlΓ βu, v = ∇Γ βv + curlΓ αv with βu,βv ∈ H 1/2(Γ ) and
αu,αv ∈H(Γ ). We have

γ 〈u,v〉π := −〈∆Γ αu,βv〉1/2,Γ + 〈∆Γ αv,βu〉1/2,Γ (46)

and the integration by parts formula(35) is consistent with this definition.

The pivot space in the duality (46) isL2
t (Γ ) and this can be shown by an

easy density argument. Let{βnu}n∈N ⊆ H 1(Γ ) and {βnv }n∈N ⊆ H 1(Γ ) be two
sequences such thatβnu → βu and βnv → βv in H 1/2(Γ ). Moreover, letun =
∇Γ αu + curlΓ βnu andvn =∇Γ βnv + curlΓ αv .

We have thenun,vn ∈ L2
t (Γ ) and

∫
Γ

un · vn =
∫
Γ

∇Γ αu · ∇Γ βnv +
∫
Γ

curlΓ βnu · curlΓ αv ∀n ∈N, (47)

since
∫
Γ ∇Γ αu · curlΓ αv =

∫
Γ ∇Γ βnv · curlΓ βnu ≡ 0. Using definition (22) in

both terms in the right-hand side of (47) and recalling that∆Γ =−curlΓ curlΓ =
divΓ ∇Γ , we have

∫
Γ

un · vn =−〈∆Γ αu,βnv 〉1,Γ + 〈∆Γ αv,βnu〉1,Γ

=−〈∆Γ αu,βnv 〉1/2,Γ + 〈∆Γ αv,βnu〉1/2,Γ
where the last equality comes from the fact thatαu,αv ∈H(Γ ). Now, lettingn
going to infinity, we obtain (46).

6. Filonov’s example

In this section we consider an example of a “pathological domain” which
was introduced and first studied in [13]. We report here the main steps of
the construction of this domain and we focus our attention on the impact of
its properties on both standard functional spaces and the ones introduced and
analyzed in the previous sections.

For q ∈ N, let us definef (x) =∑∞
k=1q

−k sin(q2kx) for x ∈ R. In [13] and
[14], Filonov shows the following:

• For anyq > 1: f ∈ C1/2, f (0)= f (2π)= 0, |f (x)|< 1,
∫ 2π

0 f (x) dx = 0.
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• Let q be sufficiently large. Then for anya, b ∈ H 1/2([0,2π]), the equation
a = f b implies a = b = 0 (see Theorem 4.1 in [14]). This “separation
property” is proved by means of Lemma 4.2 in [14] which states

∀x ∈ [0,2π]
2π∫
0

|f (x)− f (y)|2
|x − y|2 dy =+∞.

Using polar coordinates(r, ϕ) in R2, we setF(ϕ)= 1+ ∫ ϕ
0 f (t) dt and

ω := {
(r, ϕ) ∈R2 | r < F(ϕ)}.

In [14], it is proved thatω has aC3/2 boundary and that for any vectorv ∈H 1(ω)2

the vanishing of the normal component on the boundary implies also the vanishing
of its tangential component.

Let τ be the counterclockwise tangent vector to∂ω. We will use the following
equivalent form of Filonov’s result:

Lemma 6.1. For anyv ∈H 1(ω)2 such thatv|Γ · τ = 0 onΓ , we haveγ (v)= 0.

This result can be extended to higher dimensional domains. Here we are
interested in the three-dimensional case in particular. We use the domain as
constructed by Filonov, but we concentrate on properties different from the ones
considered in [14]. Let(r, ϕ, z) be cylindrical coordinates inR3. Then the domain
Ω is defined by

Ω :=
{
(r, ϕ, z) ∈R3:

r2

F 2(ϕ)
+ z2< 1

}
.

The following result generalizes Lemma 6.1.

Theorem 6.2. For the domainΩ , there holds{
u ∈H1(Ω) | γτ (u)= 0

}=H1
0(Ω).

Proof. The boundary∂Ω is the set{(r, ϕ, z) ∈ R3 | r2+ (z2− 1)F 2(ϕ)= 0}. It
is easy to see that an exterior normal vectorΩ is given byn= (n1, n2, n3) with

n1=− (z
2− 1)

r
F (ϕ)

(
F(ϕ)cosϕ + f (ϕ)sinϕ

)
,

n2= (z2− 1)

r
F (ϕ)

(
f (ϕ)cosϕ −F(ϕ)sinϕ

)
,

n3= zF 2(ϕ).
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We consider the two independent tangent vectorsτ1 andτ2 defined as follows:

τ1= (−n2, n1,0), τ2= (αn1, αn2,1) with α =− n3√
n2

1+ n2
2

.

These vectors are well defined for anyz, |z|< 1. Letu ∈H1(Ω). It is easy to see
that the conditionγτ (u)= 0 corresponds tou · τ1= u · τ2= 0.

We denote byui , i = 1,2,3, the Cartesian components ofu. Now for almost
everyz̄ ∈]−1,1[, we haveui(x, y, z̄) ∈ H 1(Ωz̄), Ωz̄ =Ω ∩ {z = z̄}, i = 1,2,3.
For fixed z̄, the conditionu · τ1 = 0 corresponds exactly to the condition in
Proposition 6.1 for the two-dimensional domainΩz̄. We conclude thatu1 =
u2 = 0 on ∂Ω . Finally, the conditionu · τ2 = 0 implies that alsou3 = 0 onΓ .
Henceu ∈H1

0(Ω). ✷
Corollary 6.3. The domainΩ ∈ R3 constructed above has the following prop-
erties:

(i) Ω has aC3/2 boundary;
(ii) H 2(Ω)∩H 1

0 (Ω)=H 2
0 (Ω);

(iii) The spacesV ′0 and V ′ = H−1/2(Γ ) considered in Lemma2.3 satisfy
V ′0= V ′;

(iv) Let L2
n(Γ ) be defined by

L2(Γ )= L2
t (Γ )

⊥⊕L2
n(Γ ).

For any u ∈ L2
n(Γ ), there exists a sequenceuk ∈ L2

t (Γ ), k ∈ N, such that
uk→ u in H−1/2(Γ ).

Proof. The regularity of the domainΩ is straightforward. Letu ∈ H 2(Ω) ∩
H 1

0 (Ω). We have∇u ∈ H1(Ω), and from (20) we know thatπτ (∇u) = 0.
Theorem 6.2 leads to∇u ∈H1

0(Ω) and thusu ∈H 2
0 (Ω).

Furthermore, the space ker(πτ ) ∩ V is reduced to zero, and therefore by
definitionV ′0 = V ′. Lemma 2.3 implies thatiπ (L2

t (Γ )) is dense inV ′. The last
statement is then straightforward.✷

7. Tartar’s surjectivity result

In the case of a Lipschitz boundary, we know of only one way to prove
that the tangential trace mapγτ maps the spaceH(curl,Ω) onto the space
H−1/2(divΓ ,Γ ), namely to use, as we did in the proof of Theorem 4.1, Tartar’s
explicit construction of a right inverse of the trace map given in [23]. For the sake
of completeness, we present Tartar’s construction in this section.
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Since we did not apply this surjectivity result prior to the proof of Theorem 4.1,
we may use what we learned before that point. In particular, we know that Tartar’s
spaceT as defined in (33) is isomorphic to our spaceH−1/2(divΓ ,Γ ), and that
tangential traces of vector fields inH(curl,Ω) belong toH−1/2(divΓ ,Γ ), hence
to T . In view of the discussion in Section 2, however, we will not consider this
isomorphism to be an identification, and we therefore have to distinguish between
the tangential trace mapγτ and the trace map as considered by Tartar.

We denote the latter byγT . It is defined likeγτ by the Green formula (2) as an
extension of the trace mappingu �→ γ (u∧ n) from H1(Ω) to H(curl,Ω), where
we useγ to denote the scalar trace mapping, applied here to the three Cartesian
components of a 3D vector field.

Thus we have foru ∈H(curl,Ω) andv ∈H1(Ω)∫
Ω

(u · curl v− v · curl u) dx= 〈γT u, γ v〉1/2,Γ , (48)

and this formula definesγT as a continuous operator

γT : H(curl,Ω)→H−1/2(Γ ).

Theorem 7.1 (Tartar).LetΩ be a domain with Lipschitz boundaryΓ as above.
ThenγT mapsH(curl,Ω) onto the spaceT defined by

T = {
ξ ∈H−1/2(Γ ) | ∃η ∈H−1/2(Γ ):

∀φ ∈H 2(Ω),
〈
ξ , γ (∇φ)〉1/2,Γ = 〈η,γ φ〉1/2,Γ }

. (49)

Proof. We only need to show the surjectivity ofγT . Thus, forξ ∈ H−1/2(Γ )

satisfying (49) with someη ∈ H−1/2(Γ ), we have to constructu ∈ H(curl,Ω)
such thatξ = γT u. This will be done in four steps.

The first step consists of localization. In order to apply a partition of unity
argument, one has to note that for any sufficiently smooth functionθ there holds
θξ ∈ T , becauseθξ satisfies (49) withη replaced byθη− ξ · ∇θ ∈H−1/2(Γ ).

This allows us to assume for the following that the support ofξ is sufficiently
small so that in a neighborhood of this support,Γ can be represented by a
Lipschitz graph. Without loss of generality, we can therefore assume that we are
in the following situation:

F :R2→R is uniformly Lipschitz;
Ω = {

x ∈R3 | x3>F(x1, x2)
}
, Γ = {

x ∈R3 | x3= F(x1, x2)
};

ξ ∈ (
H−1/2(Γ )

)3
and η ∈H−1/2(Γ ) have compact support and satisfy

3∑
i=1

〈ξi , γ ∂iφ〉1/2,Γ = 〈η,γ φ〉1/2,Γ for all φ ∈H 2(Ω). (50)
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Here 〈·, ·〉1/2,Γ denotes the duality betweenH−1/2(Γ ) andH 1/2(Γ ), and we
write ∂i for the partial derivative with respect toxi .

The second step consists of expressing the duality in (50) in the parameter
spaceR2. The operator

Π :f �→Πf, (Πf )
(
x1, x2,F (x1, x2)

)= f (x1, x2)

is an isomorphism fromL2(R2) toL2(Γ ) and fromH 1(R2) toH 1(Γ ), hence by
interpolation fromHs(R2) to Hs(Γ ) for all s ∈ [0,1]. The adjoint operatorΠ∗
is therefore an isomorphism

Π∗ :H−s(Γ )→H−s(R2) ∀s ∈ [0,1].
If we choose the test functionφ in (50) as a tensor product

φ(x1, x2, x3)= f (x1, x2)g(x3)

where f ∈ H 2(R2) and g ∈ H 2(R) have compact support andg ≡ 1 on a
neighborhood of{x3 | (x1, x2, x3) ∈ suppξ }, then on a neighborhood of suppξ
we haveγφ =Πf andγ ∂iφ =Π∂if (i = 1,2), γ ∂3φ = 0. We obtain from (50)

2∑
i=1

〈Π∗ξi , ∂if 〉1/2,R2 =
2∑
i=1

〈ξi ,Π∂if 〉1/2,Γ =
3∑
i=1

〈ξi , γ ∂iφ〉1/2,Γ

= 〈η,γ φ〉1/2,Γ = 〈η,Πf 〉1/2,Γ = 〈Π∗η,f 〉1/2,Γ .
This holds in particular for allf ∈ C∞0 (R2). Hence we have in the sense of

distributions onR2

−
2∑
i=1

∂iΠ
∗ξi =Π∗η.

This means that the distributionλ = (Π∗ξ1,Π∗ξ2) ∈ (H−1/2(R2))2 satisfies
divR2 λ=−Π∗η ∈H−1/2(R2) and therefore belongs toH−1/2(div,R2).

In the third step, the vector fieldu is constructed fromλ. To this end, one notes
thatλ can be represented as

λ= p+ curlR2 q (51)

wherep ∈ (H 1/2(R2))2 andq ∈H 1/2(R2) have compact support.
Indeed, by Fourier transform or by solving∆R2ϕ0= divR2 λ and takingp0=

∇R2ϕ0, we obtain a Hodge decompositionλ= p0+ curlR2 q0, wherep0 ∈H 1/2

andq0 ∈ H 1/2 in a neighborhood of suppλ. Multiplying by θ ∈ C∞0 (R2) with
θ ≡ 1 on suppλ, we get (51) withp = θp0 − q0 curlR2 θ andq = θq0. For the
threeH 1/2(Γ ) functionsb1 = Πp2, b2 = −Πp1, w = −Πq we now choose
liftings B1,B2,W ∈H 1(R3) such thatγBi = bi andγW =w onΓ . WithB3= 0
andB= (B1,B2,B3) we defineu= B+∇W . It is clear thatu ∈H(curl,Ω).

In the fourth step, we showγT u = ξ on Γ . We choose a test functionϕ of
the formϕ = (ϕ1,0,0) with ϕ1(x1, x2, x3) = f (x1, x2)g(x3), f ∈ H 2(R2) with
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compact support andg ∈ C∞0 (R), g ≡ 1 on a neighborhood of{x3= F(x1, x2) |
(x1, x2) ∈ suppf }. With the definition (48) we obtain

〈
(γT u)1, γ ϕ1

〉
1/2,Γ =

∫
Ω

(u · curlϕ − ϕ · curl u) dx

=
∫
Ω

(B · curlϕ − ϕ · curl B+∇W · curlϕ) dx

=
∫
Γ

(
n3γB2γ ϕ1+ γW(n2γ ∂3ϕ1− n3γ ∂2ϕ1)

)
dσ

=
∫
Γ

(γB2γ ϕ1− γWγ ∂2ϕ1)n3 dσ

=
∫
Γ

(−Πp1Πf +ΠqΠ∂2f )n3dσ.

Here the outward normal vectorn = (n1, n2, n3) and the surface measuredσ
satisfyn3=−(1+ |∇F |2)−1/2 anddσ =√

1+ |∇F |2dx1dx2. We obtain
〈
(γT u)1,Πf

〉
1/2,Γ =

∫

R2

(p1f − q∂2f ) dx1dx2.

This holds for allf ∈C∞0 (R2), hence

Π∗(γT u)1= p1+ ∂2q = (p+ curlR2 q)1= λ1=Π∗ξ1.
SinceΠ∗ is an isomorphism, we get(γT u)1 = ξ1. A similar computation gives
(γT u)2= ξ2.

The proof is finished by showing(γT u)3= ξ3 which follows from an argument
displaying the tangential nature of the elements of the spaceT . Letψ = γT u− ξ .
We have seen thatψ ∈ T andψ1=ψ2= 0. We show that this impliesψ3= 0.

As a test function in the relation (49) we choose

φ(x1, x2, x3)= f (x1, x2)g(x3)
(
x3−G(x1, x2)

)
,

wheref andg are as before andG ∈H 2(R2) has compact support. This gives

〈ψ3,Πf 〉 = 〈ψ3, γ ∂3φ〉 = 〈ψ, γ∇φ〉 = 〈η,γ φ〉 =
〈
η,Πf (F −G)〉.

By first varyingG, one obtainsηΠf = 0 for all f , henceη = 0, hence finally
ψ3= 0. ✷
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