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Abstract

Graph-based specification formalisms for access control (AC) policies combine the advantages of an intuitive
visual framework with a rigorous semantical foundation that allows the detailed comparison of different policy
models. A security policy framework specifies a set of (constructive) rules to build the system states and sets of
positive and negative (declarative) constraints to specify wanted and unwanted substates. Several models for AC
(e.g. role-based, lattice-based or an access control list) can be specified in this framework. The framework is used
for an accurate analysis of the interaction between policies and of the behavior of their integration with respect to the
problem of inconsistent policies. Using formal properties of graph transformations, it is possible to systematically
detect inconsistencies between constraints, between rules and between a rule and a constraint and lay the foundation
for their resolutions.
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1. Introduction

A considerable amount of work has been carried out recently on models and languages for access control
(AC). AC is concerned with determining the activities of legitimate users[19], and is usually enforced by
a reference monitor which mediates every attempted access by asubject(a program executing on behalf
of a user) toobjectsin the system. The three main AC policies commonly used in computer systems are
discretionary policies[19], lattice-based policies (also called mandatory policies)[17] and role-based
policies[18].

One of the main advantages of separating the logical structure from the implementation of a system is
the possibility to reason about its properties. In[10,12]we have proposed a formalism based on graphs and
graph transformations for the specification of AC policies. This conceptual framework, used in[10,12]to
specify role-based policies, a lattice-based access control (LBAC) policy and an access control list (ACL)
(example of a discretionary policy), allows the uniform comparison of these different models, often
specified in ad hoc languages and requiring ad hoc conversions to compare their relative strengths and
weaknesses.

Our graph-based specification formalism for AC policies combines the advantages of an intuitive
visual framework with the rigor and precision of a semantics founded on category theory. In addition,
tools developed for generic graph transformation engines can be adapted to, or can form the basis for,
applications that can assist in the development of a specific policy.

We use in this paper examples from the LBAC and the ACL models only to illustrate the different
concepts, with no pretence of giving complete or unique solutions by these examples.

The main goal of this paper is to present some basic properties of a formal model for AC policies based
on graphs and graph transformations and to address the problem of detecting and resolving conflicts in
a categorical setting. A system state is represented by a graph and graph transformation rules describe
how a system state evolves. The specification (“framework”) of an AC policy contains also declarative
information (“invariants”) on what a system graph must contain (positive) and what it cannot contain
(negative). A crucial property of a framework is that it specifies a coherent policy, that is, one without
internal contradictions. Formal results are presented to help in recognizing when the positive and the
negative constraints of a framework cannot be simultaneously satisfied, when two rules, possibly coming
from previously distinct subframeworks, do (partly) the same things but under different conditions, and
when the application of a rule produces a system graph that violates one of the constraints (after one or
the other has been added to a framework during the evolution of a policy). The solutions proposed on a
formal level can be made part of a methodology and incorporated into an access control policy evolution
assistant.

The paper is organized as follows: Section2 briefly reviews lattice-based access control; Section3
presents the basic formalism of graph transformations using lattice-based access control to illustrate
it; Section4 defines the formal framework to specify AC policies (its main properties are relegated
in the appendix); Section5 deals with the integration of policies and Section6 discusses the notion
of coherence of a security policy framework. Section7 discusses analysis and management of conflicts
between constraints and between rules, while Section8discusses conflicts between a rule and a constraint;
the last section mentions related and future work.
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Fig. 1. A security lattice (left-hand side) and the assignment of security levels to subjects and objects (right-hand side).

2. Lattice-based access control

Classic lattice-based access control (LBAC) enforces unidirectional information flow in a lattice of
security levels.1 The diagram on the left-hand side of Fig.1 shows a partial order security lattice, where
the security levels available are H (highest), L (lowest) and M1, M2 (middle).

The LBAC policy is expressed in terms of security levels attached tosubjectsandobjects. A subject is
a process in the system and each subject is associated to a single user, where one user may have several
subjects concurrently running in the system. An object is a container of information, e.g. a file or a
directory in an operating system. Usually the security levels on subjects and objects, once assigned, do
not change. If�(x) denotes the security level ofx (subject or object) then the specific LBAC rules for a
lattice allow a subjectSto read objectO if �(S)��(O) and to write objectO if �(S) = �(O).

The subjects in Fig.1 on the right-hand side areS1 andS2, with security levels�(S1) = H and
�(S2) = L. The objects areO1 andO2 with security levels�(O1) = M2 and�(O2) = L, respectively.
The LBAC rules ensure thatS1 can read both objectsO1 andO2 but cannot write eitherO1 or O2.
SubjectS2 can read and write objectO2, but neither read nor write objectO1. In the Bell-LaPadula
model[2], subjects are allowed to write “blindly” in objects that they cannot read. In such a model,S2
can write in both objectsO1 andO2, but is still able to read onlyO2.

3. Graph transformations

This section introduces the basic definitions and notation for graph transformations[16]. Parts of the
LBAC model are used throughout the section to illustrate the explanations by examples.

A graphG = (GV , GE, sG, tG, lG) consists of disjoint sets of nodesGV and edgesGE , two total
functionssG, tG : GE → GV mapping each edge to its source and target node, respectively, and a
functionlG : GV ∪GE → Labels assigning a label to each node and to each edge. Labels are elements
of a disjoint union of setsLabels = X ∪ C, whereX is a set ofvariablesandC is a set ofconstants.
A binary relation≺⊆ Labels × Labels is defined onLabelsas(�, �) ∈≺ if and only if � ∈ X. This
binary relation is not a partial order since several distinct variables may be needed[15]. The relation
� ≺ � indicates that (the variable)� can be substituted by� (which, in turn, can be either a variable or a
constant)

A path of unspecified length between nodesa andb is indicated by an edgea
∗→ b which can be seen

as an abbreviation for a set of paths, each representing a possible sequence of edges betweena andb.

1 In [17], security levels are called security labels. We use ‘security level’ here to avoid confusion with the notion of a label
for a node or for an edge in a graph.
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Fig. 2. The type graph for the LBAC model.

A total graph morphismf : G→ H between graphsG = (GV , GE, sG, tG, lG) andH = (HV , HE,

sH , tH , lH ) is a pair(fV , fE) of total mappingsfV : GV → HV andfE : GE → HE that respect the
graph structure, i.e.fV ◦sG = sH ◦fE andfV ◦tG = tH ◦fE , respect the label order, i.e.lG(v) ≺ lH (fV (v))

for eachv ∈ GV andlG(e) ≺ lH (fE(e)) for eache ∈ GE (a variable can be replaced by a constant or by
another variable), and respect the substitutions, i.e. iflG(v1) = lG(v2), thenlH (fV (v1)) = lH (fV (v2))

for all v1, v2 ∈ GV andlG(e1) = lG(e2), thenlH (fE(e1)) = lH (fE(e2)) for all e1, e2 ∈ GE (different
instances of the same variable are substituted with the same value). Apartial graphmorphismf : G ⇀ H

is a total graph morphism̄f : dom(f ) → H from a subgraphdom(f ) ⊆ G to H. Graphs and partial
graph morphisms form a categoryGraphP. The subcategory of graphs and total graph morphisms is
denoted byGraph.

The categoryGraphP is in general not co-complete, but has pushouts for morphismsfp : G ⇀ H

andfc : G ⇀ K where one of them, sayfp, is label preserving, i.e. lG(x) = lH (fp(x)) for eachx ∈ G

(node or edge)[15].
A type graph TGrepresents the type information in a graph transformation system[3] and it

specifies the node and edge types which may occur in the instance graphs modeling system
states.

For example, the type graph in Fig.2 shows the possible types for the LBAC graph model. It provides
the node typesU, O, P, val andSL. The nodeU is the type of the nodes representing users, the node
O the objects, the nodeval the actual information in objects and the nodeP the processes that run on
behalf of users. The nodeSLwith its loop represents a whole security lattice, that is, a partial order on
security levels as e.g.,High > Middle1 > Low, High > Middle2 > Low. The nodeSLcan be any
security level (e.g.High, Middle1, Middle2, Low) and there is an edge from security levelSL1 toSL2
if SL1 > SL2. The attachment of security levels to objects, users and processes is modeled by an edge
to a security level of the security lattice. The absence in the type graph of an arc between the nodesPand
O indicates that there cannot be, inany instance graph, a direct (access control) “connection” between
a process and an object. The presence in the type graph of an arc fromO to SL indicates that an object
maybe associated with security levels, but is not required to be (this requirement is expressed by the
constraints in Fig.6)

A pair 〈G, tG〉, whereG is a graph andtG : G → T G is a total graph morphism, is called agraph
typed over TG. If the type graph is fixed, we denote the pair simply asG. The total graph morphism
tG is called typing morphismand is indicated in the examples by the symbols used for nodes and
edges. From now on, in all our figures the typing morphism maps a node with labelTx to the type
nodeT.
A morphism between typed graphs〈G, tG〉 and 〈H, tH 〉 is given by a partial graph morphism
f : G←↩ dom(f )→ H that preserves types, that is, the diagram
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in Graph commutes. The morphism is total if the underlying graph morphism is total.
Graphs typed over a fixed type graphTGand morphisms between them form a categoryTG [3]. The

existence of pushouts is inherited from the categoryGraphP.
A graph typed over a type graphTGcan bere-typedoverT G′ if there is a total morphismf : T G→

T G′. The re-typing byf of a graph〈G, tG〉 typed overTG is the graph〈G, f ◦ tG〉 typed overT G′. Re-
typing fromT G′ toTG is a renaming of types and a forgetting of nodes and edges. Formally, the re-typing
w.r.t. a morphismf : T G → T G′ is specified by functorsFf : TG → TG ′ andVf : TG ′ → TG,
calledforward typingandbackward typing functor[3,6].
General Assumption. In the following, we fix a type graphTG, and all graphs and morphisms are

from the categoryTG if the type is not explicitly stated.
Notice that types are used to establish similarities among different entities (nodes and edges) while

labels are used to distinguish among similar entities.
A graph rulep : r, or justrule, is given by a rule namep, from a setRNames, and a label preserving

injective morphismr : L ⇀ R. The graphL, left-hand side, describes the elements a graph must contain
for the rulep to be applicable. The partial morphism is undefined on nodes/edges that are intended to
be deleted, defined on nodes/edges that are intended to be preserved. Nodes and edges ofR, right-hand
side, without a pre-image are newly created. Note that the actual deletions/additions are performed on
the graphs to which the rule is applied.

Example 1(LBAC graph rules). Fig. 3 shows the schemes for the rules of the LBAC policy. The labels
for the nodes (Ux, Px, SLx, SLy, . . .) of the rules are variables taken from the set of variables in Labels.

The rulenew object creates a new objectOx connected to a nodevalx (the initial value of the
object). The objectOx is given the security levelSLx. The variableSLx is generic: it is substituted by
the actual security level of the process when the rule is applied. The ruledelete object for the
deletion of objects is represented by reversing the partial morphism of the rulenew object . The rule
new process creates a processPxon behalf of a userUx. The new processPx is attached to a security
levelSLythat is no higher than the security levelSLxof the userUx in the security lattice graph. This

valx

Ux Ux

Ux Ux

delete object

new object

Px Px

SLx

SLx SLx

delete process
Pxnew process* *

SLy

SLx

Px SLy

Ox

Fig. 3. Graph rules for the LBAC policy.
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Fig. 4. Application of rulenew process .

requirement is specified by the path fromSLx to SLy indicated by an edge decorated by a “*”: this is
a shortcut in our diagrams to denote a set of rules, each with a path of different length (possibly zero)
connecting the nodes labeledSLxandSLyconsisting of edges of the security lattice graph. Processes (and
their connections to the user) are removed by the ruledelete process .

For the application of rules we use the single pushout (SPO) approach to graph transformations[4].

Formally, the application of a graph rulep : L
r

⇀ R to a graphG is given by a total graph morphism

m : L → G, calledmatchfor p in G. The direct derivationG
p,m⇒ H from G to the derived graphH is

given by the pushout ofr andm in TG (see the diagram below). Note that the pushout exists, since the
rule morphismr is label preserving[15].

Example 2(Application of a graph rule). In Fig. 4, the left-hand sideL of the rulenew process
occurs several times inG. In one possible match, the nodeUx in L is associated to the nodeU2 in G and
the nodesSLxandSLyto the specific security levelH. The application of the rule inserts the new process
node connected to the userU2 and the security levelH.

For the specification of AC policies by graph transformations,negative application conditionsfor rules

are needed[4]. A negative application condition (NAC) for a rulep : L r
⇀ R consists of a setA(p) of

total injective morphismsai : L→ N , where the partN \ai(L) represents a structure that must not occur
in a graphG for the rule to be applicable. In the figures, all negative application conditions are simple
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SLx SLxSLy

SLx SLy SLx SLy

SLz
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delete level

new level 2
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Fig. 5. LBAC rules for modifying the security lattice.

inclusions and we depictai : L → N by the graphN, where the subgraphL is drawn with solid lines

andN \ L with dashed lines. A rulep : L r
⇀ R with a NAC A(p) is applicable toG if there is a total

morphismm : L→ G (L occurs inG) and there is no total morphismni : N → G such thatm = ni ◦ai

(it is not possible to extendL toN) for anyai : L→ N in A(p). From now on, amatch for p with NAC
A(p) is a total morphismm : L→ G that cannot be extended to a total morphismni : N → G for any
ai : L→ N in A(p).

Example 3(Negative application condition). Fig. 5 shows the rules for modifying the security lattice.
New security levels can be inserted before an existing security levelSLx(rulenew level 1 ), after an
existing security levelSLx(new level 2 ) or between two security levelsSLxandSLy(new level
3). The ruledelete level removes a security level that does not connect two security levels, i.e.,
SLxhas no predecessorSLzandSLxhas no sucessorSLy (expressed by the first pair(L, N) of the
NAC). Therefore, it is not possible to delete a security level between two security levels, to ensures that
the security level hierarchy remains connected. More complex rules can specify the deletion between
security levels, but they are not introduced here. Since users, processes and objects need a security level,
security levels cannot be removed if any user, process or object possesses this security level. Therefore, the
NAC of the ruledelete level has also the following three pairs(L, N): one to prevent the deletion
of a security level that belongs to a process (the NAC with dashed nodePx), the second one concerns the
users (dashed nodeUx) and the third one the objects (dashed nodeOx). Only if (each condition in) the
NAC is satisfied, a security level can be removed.

4. Security policy framework

This section presents the framework for the specification of AC policies based on graph transforma-
tions[9]. The framework is calledsecurity policy frameworkand consists of four components: the first
component is a type graph that provides the type information of the AC policy, and the second component
is a set of graph rules (specifying the policy rules) that generate the graphs representing the states of
the system accepted by the AC policy. Since in some AC policies it is meaningful to restrict the set of
system graphs constructed by the graph rules (as not all of them represent valid states), a security policy
framework contains also two sets ofconstraints. Constraints can benegative constraintsto specify graphs
that shall not be contained in any system graph andpositive constraintsto specify graphs that must be
explicitly constructed as parts of a system graph. In any implementation of an AC policy, the constraints
are not needed since the only acceptable states are those explicitly built by the implemented rules. But
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positive constraints : 

negative constraints :
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Fig. 6. Positive and negative constraints for LBAC.

when developing an AC policy through successive refinement steps, or when trying to predict the behav-
ior of a policy, it is useful to have the additional information provided by the constraints. Positive and
negative constraints can be considered as a formal documentation of the initial requirements and of the
development process of rules.

Both positive and negative constraints are formally specified by morphisms[8]. It is the semantics of
the morphism that distinguishes between positive and negative constraints.

Definition 4 (Constraints). A constraint(positive or negative) is given by a total graph morphismc :
X→ Y .

Definition 5 (Constraint satisfaction). A total injective graph morphismk : X→ G satisfiesa positive
(negative) constraintc : X→ Y if there exists (does not exist) a total injective graph morphismq : Y →
G such thatX

c→Y
q→G = X

k→G. A graphG satisfiesa positive (negative) constraintc if each total
injective graph morphismk : X→ G satisfiesc.

A graphG vacuouslysatisfiesc : X→ Y if there is no total graph morphismk : X→ G; G properly
satisfiesc otherwise.

A negative constraintc : X → Y is equivalent with respect to satisfaction to the simpler negative
constraintcY : Y → Y . The former form is more intuitive for a policy designer than the latter one, in
the sense that it is easier to see exactly which parts are allowed (X) if the remaining parts (Y \X) do not
occur.

Example 6(Constraints for LBAC). Fig.6 shows positive and negative constraints for the LBAC model.
The positive constraintc1 and the negative constraintc2 require that objects always have a security
level (the positive constraint) and that there does not exist more than one security level for each object
(negative constraint). The constraintsc3 andc4 specify the same existence and uniqueness requirements
for subjects. In mandatory access control policies, there is usually no concept of an owner of an object.
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Since LBAC belongs to the class of mandatory access control policies, the negative constraintc5 forbids
an edge between a user and an object to indicate object ownership by users. Actually, this is already
expressed in the LBAC type graph. If we consider the evolution of access control policies, the constraint
c prevents changing the policy to a policy with a concept of ownership.

We are now ready to define a security policy framework, which is characterized by a type graph (of
all the graphs involved), by a set of rules (from the set of all rules built with instances of that type graph)
with associated names, and sets of constraints. Formally:

Definition 7 (Security policy framework). A security policy framework, or just framework, is a tuple
SP = (T G, (P, rP ), Pos, Neg), where

• TG is a type graph,
• the pair(P, rP ) consists of a set of rule namesPand a total mappingrP : P → |Rule(T G)|mapping

each rule name to a ruleL
r

⇀ R of TG-typed graphs,
• Posis a set of positive constraints, andNegis a set of negative constraints.

The security policy framework for the LBAC policy consists of the type graph in Fig.2 and the
negativec2, c4, c5 and positivec1, c3 constraints in Fig.6. The rule names{newprocess, deleteprocess,

newobject, deleteobject} are mapped to the rules in Example1.
A security policy framework morphismf : SP1 → SP2, or just framework morphism,

relates security policy frameworks by a total graph morphismfT G : T G1 → T G2 between the
type graphs and a mappingfP : P1 → P2 between the sets of rule names. The mappingfP must
preserve the structure of the rules in the sense that the rule corresponding to the namefP (x) re-
duces to the rule corresponding to the namex if the retyping induced byfT G is forgotten. More
precisely:

Definition 8 (Framework morphism). A framework morphismbetween security policy frameworksSPi

= (T Gi, (Pi, rPi
), P osi, Negi) for i = 1, 2 is a pairf = (fT G, fP ) : SP1→ SP2, wherefT G : T G1→

T G2 is a total graph morphism andfP : P1→ P2 is a total mapping, so thatVfT G
(rP2(fP (p))) = rP1(p)

for all p ∈ P1.

Note that the definition of a framework morphism does not constrain the sets of constraints.

Example 9(Framework morphism). Consider, as an example, the framework morphismf : SP1 →
SP2 with the total graph morphismfT G in Fig. 7 between the type graphsT G1 andT G2. The intended
meaning of this morphism is that the typesA andB of the security frameworkSP1 are renamed to
C andD, respectively, and that there is a new typeE in the security frameworkSP2. The rulep1 of
SP 1 can be mapped to the rulep2 of SP2, since the application of the forgetful functorVfT G

to p2
yields the rulep1. The rulep1 cannot be mapped to the rulep′2 since the forgetful functor yields a rule
different fromp1.
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Fig. 7. Framework morphism.

5. Access control policy integration by pushouts

Integration is concerned with the merging of AC policies. A merge is necessary on the syntactical
level, i.e. a merge of the security policy frameworks, and on the semantical level, i.e. the merge of
the system graphs representing the state at merge time. We consider here only the integration on the
syntactical level and omit the integration on the semantical level (semantical integration is considered in
more detail in[10]). The integration of two AC policies on the syntactical level is a pushout of the security
policy frameworks in the categorySP(see the appendix). Two security policy frameworksSP1 andSP2
are related by an auxiliary frameworkSP0 that identifies the common parts (types and rules) in both
frameworks; the actual integration is formally expressed by framework morphismsf1 : SP0 → SP1
andf2 : SP0 → SP2. The pushout off1 andf2 in SP integrates the frameworksSP1 andSP2 in a
new security policy frameworkSPcalled theintegrated framework. Informally, it is theunionof the two
policiesSP1 andSP2 where the common subpolicySP0 is not duplicated.

Throughout this section, the integration of the lattice-based access control (LBAC) framework with an
ACL framework (introduced next in Section5.1) is used as an example.

5.1. Access control list

The access control list (ACL) policy is an implementation of a discretionary AC policy. We consider an
ACL policy similar, but simpler, to that one used in the UNIX operating system. Our model distinguishes
only between the owner of an object and the rest of the world and, for simplicity, groups are not considered.
The owner of the object has read, write and execution rights and can change the access permissions of
the object with respect to the world.
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Fig. 8. The type graph for the ACL.
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Example 10(Graph rules for the ACL). The type graphT GACL in Fig. 8 provides the node typesU,O
andP. Just as in the LBAC model, a node of typeU represents a user, a node of typeO an object, and
a node of typeP a process. An edge between a user nodeU and an object nodeO specifies thatU is the
owner of the objectO. An edge of typeR,Wor X represents the read, write or execute permission of an
object to the world. The owner of the object has always all the permissions for his/her objects and does
not need the loops. Some of the ACL graph rules are shown in Fig.9. The rulenew process starts a
new process on behalf of a user. To kill a process, the ruleremove process deletes the process node
and its connection to the user. The rulecreate object adds a new nodeOx to the system, connecting
it to the process nodePx that has created the object and to the user nodeUx to which the process belongs.
The ruleconnect connects a process of a user to an object of the user. The rule has a NAC (indicated
by the dashed edge betweenPx andOx on the left-hand side of the rule) that forbids the application of
the rule to processes and objects of the user already connected. The rulegive read gives to the world
the read permission on an object, provided that it has not already been granted. Other rules such asgive
write andgive execution are similar and not shown.

Example 11(Constraints for ACL). The constraints for the ACL framework in Fig.10require that each
process belongs to a unique user (the positive constraintd1 and the negative constraintd2), that each
object belongs to a unique user (the positive constraintd3 and the negative constraintd4) and that there
is at most one permission loop with the same permission attached to the same object (negative constraint
d5). Note that the last diagram represents three negative constraints, one forR, one forWand one forX.



12 M. Koch et al. / Journal of Computer and System Sciences 71 (2005) 1–33

positive constraint:

negative constraints:

W (R,X) W (R,X)

W (R,X)
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d3

d4
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Fig. 10. Positive and negative constraints for the ACL.
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Fig. 11. Integrated type graph for the combined LBAC and ACL security model.

5.2. Integration of ACL and LBAC

The type graph in the middle of Fig.11 shows the types common to ACL and LBAC. TheU, O and
theP type nodes are to be considered the same in both models. The edge between theU and theP node
is a common part as well. The gluing (pushout) of the two type graphs is the type graph at the bottom
of Fig. 11.

All rules are kept in the integrated security policy framework, but their component graphs are now
typed over the integrated type graph. The constraints of the integrated policy framework in this example
are given by the union of the constraint sets of the LBAC model (now typed over the integrated type
graph) and the ACL model. Other combinations of the sets of constraints are possible (see the appendix
and the next section).
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6. Coherence

The graphs that can be constructed by the rules of a framework represent the system states possible
within the policy model. These graphs are calledsystem graphsin the sequel. We Have added the
constraints to the security policy framework to have a declarative description of wanted and unwanted
system graphs, but we have not related the constraints with the rules of a framework. Do the rules construct
all the wanted system graphs required by the positive constraints and do the rules prevent the construction
of unwanted system states expressed by the negative constraints? If the rules do so, the framework is
calledcoherent.

Definition 12 (Coherence). A security policy framework ispositive(resp.negative) coherentif all system
graphs satisfy the constraints inPos(resp.Neg).

A security policy framework iscoherentif it is both positive and negative coherent.

If we consider the integrated security framework in Section5, in which the set of rules and constraints
is constructed by the union of rules and constraints of the LBAC security framework and the ACL security
framework, we realize that the integrated framework is not coherent. An example of such an inconsistency
is given by the LBAC constraintsc1 andc3 in Fig.6, which require a security level for each object and
process, and by the ACL rules that create objects and processes without a security level, generating graphs
that do not satisfy the constraintsc1 andc3. Moreover, we have now both the negative LBAC constraint
c5 which forbids an owner for any object and the positive ACL constraintd3 which requires an owner
for each object. The constraints are in conflict in the sense that it is not possible to find a graph satisfying
both constraints at the same time.

Beside the conflicts that render a framework incoherent, because of the rules that produce graphs which
does not satisfy the constraints, we have conflicts even if the rules may produce only graphs that satisfy the
constraints. These conflicts occur between rules stemming from different component policy frameworks.
Consider as an example the LBAC rulenew object in Fig. 3 and the ACL rulecreate object in
Fig. 12. The rulecreate object creates an object with a security level, the rulenew object an
object without one. Which rule shall be applied in this type of conflict?

The examples show that an integration of previously coherent frameworks does not lead in general to a
coherent framework. Problems may occur between a rule and a constraint, between two or more constraints
or between two or more rules. We investigate first how the pushout preserves coherence. Since the pushout
cannot guarantee conflict-freeness, in the following sections we consider conflict management strategies
to resolve conflicting constraints, conflicting rules and conflicts between a rule and a constraint.

PxUx Ux Px

Ox

SLx

LBAC 

new object

Vx

Ox

ACL

PxPx SLx
create object

Fig. 12. Two rules for creating objects: the rulenew object of the LBAC model (left-hand side) and the rulecreate
object of the ACL (right-hand side).
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The question now is:
if the frameworksSP1 andSP2 are coherent, is the pushoutSPalso coherent? As shown before, this is
not generally the case. If we choose the intersection as the operation to construct the constraint sets of
the pushout framework (see TheoremA.4), coherence is preserved.

Proposition 13(Preservation of coherence). Given thecoherent frameworksSP1andSP2and the frame-
work morphismsf1 : SP0→ SP1 andf2 : SP0→ SP2, the pushout objectSP = (T Gint, (P int, rP int),

P os int, Negint)off1andf2 inSPwithPos int = Fg′T G
(Pos1)∩Ff ′T G

(Pos2)andNegint = Fg′T G
(Neg1)∩

Ff ′T G
(Neg2) is coherent.

Proof. Each constraint inNegint is also given inNeg1 andNeg2 (up to re-typing). The intersection
requires that the negative constraints inNegint refer to common types only. LetG be a graph generated
by the rules inSPand c ∈ Negint. Since the policiesSP1 andSP2 are coherent, their rules do not
create a graph that does not satisfyc (after re-typing). If the rules ofSP1 andSP2 are not identified by
f andg, they occur up to re-typing inSP, i.e., they create inSP the same graphs as inSP1 andSP2,
respectively, all satisfyingc. If a rule p1 from SP1 and a rulep2 from SP2 are identified byf andg,
their amalgamated rule is constructed inSP. The rulesp1 andp2 perform the same action on the com-
mon types, as they differ only on the non-common types. Since the constraintc, however, refers only
to the common types, the amalgamated rule inSPcannot create more on the common types than the
component rulesp1 andp2. Since they construct only coherent graphs, so does the amalgamated rule
in SP.

The argument for the satisfaction of constraints inPos int is similar. �

Coherence with respect to the union operation on constraints (in TheoremA.4) is generally not preserved
by the pushout construction, as the ACL-LBAC integration example shows. The positive ACL constraint
d3, which requires a user for each object, is satisfied by the ACL rules, but the integrated framework
contains also the LBAC rules and, in particular, the rulenew object , so that graphs that do not satisfy
d3 can be constructed.

The reason for the incoherence with respect to the constraints, in the case where the union operation
is used, can be reduced to the parts of the constraints referring to the common types. Coherence of
constraints referring to types occurring only inSP1 or only inSP2 is preserved.

Proposition 14. Given the coherent frameworksSP1 and SP2 and the framework morphismsf1 :
SP0 → SP1 and f2 : SP0 → SP2, the pushoutSP = (T Gint, (P int, rP int), P os int, Negint) of
f1 and f2 in SPwith Pos intFg′T G

(Pos1) ∪ Ff ′T G
(Pos2) andNegintFg′T G

(Neg1) ∪ Ff ′T G
(Neg2) is in-

coherent if and only if SP is incoherent with respect to the constraints containing types
in T G0.

Proof. The direction⇐ follows by definition. For the direction⇒, consider a graphG generated by
the rules ofSPthat does not satisfy a constraintc of SP. If c is a constraint that refers to non-common
types occurring only inSP1 (resp.SP2), only the rules ofSP1 (SP2) are concerned with these types. By
pushout construction, the rules ofSP1 (SP2) occur up to re-typing as rules or sub-rules inSP. There are
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no other actions on non-common types inSPthan those inSP1 (SP2). Therefore, the generated graph
structures with respect to the non-common types inSP1 andSPcoincide and each constraint referring
only to non-common types is satisfied.�

7. Conflict management

The previous section shows that the satisfaction of constraints is generally not preserved when policies
are combined. By restricting the construction of the set of constraints, coherence can be achieved in
some cases, but there are still many practical cases that lead to inconsistent frameworks. Therefore, this
section investigates static conflict detection and automatic conflict resolution strategies to transform an
incoherent framework into a coherent framework.

We deal first with conflicts between constraints, then consider conflicts between rules. The next section
deals with conflicts between rules and constraints.

7.1. Constraint–constraint conflict

In this section we discuss the problem of a security policy framework having constraints which require
contradictory properties of a system graph.

Definition 15 (Contradictory constraints, contradictory policy). Two constraints arecontradictory iff
there are no graphs that properly satisfy both constraints. A security policy frameworkSP = (T G,

(P, rP ), Pos, Neg) is contradictoryiff Neg ∪ Pos contains at least a pair of contradictory constraints.

An example is the integrated ACL-LBAC framework, where the ACL constraintd3 and the LBAC
constraintc5 cannot be satisfied by the same graph.

One way to determine whether a framework is contradictory is to analyze constraints in pairs.

Definition 16 (Conflict of constraints). Given two constraintsci : Xi → Yi for i = 1, 2, c1 is in conflict
with c2 iff there exist graph morphismsfX : X1→ X2 andfY : Y1→ Y2 such thatfY ◦ c1 = c2 ◦ fX.

The conflict isstrict if the diagram is a pushout. Two constraintsc1 andc2 are in conflict if eitherc1 is in
conflict with c2 or c2 is in conflict withc1.

Conflicts of constraints can be classified incritical andharmless, the latter referring to constraints that
contain redundant restrictions as the following result indicates. In the harmless case, ifc1 is in conflict
with c2, thenc1 is really a subconstraint ofc2.
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Fact 17(Harmless conflicts). (1) If c1, c2 ∈ Neg andc1 is in conflict withc2, then if G satisfiesc1, then
G satisfiesc2.

(2) If c1, c2 ∈ Pos andc1 is in strict conflict withc2, then if G satisfiesc1, then G satisfiesc2.

Proof. (1) If g : X2 → G theng ◦ fX : X1 → G. If G did not satisfyc2, then there would exist
h : Y2→ G such thath ◦ c2 = g. But theng ◦ fX = h ◦ c2 ◦ fX = h ◦ fY ◦ c1, contradicting the fact
thatG satisfiesc1.

(2) If g : X2 → G theng ◦ fX : X1 → G. SinceG satisfiesc1, there existsh : Y1 → G such that
h ◦ c1 = g ◦ fX. By the Universal Property of pushouts, there existsk : Y2→ G such thatk ◦ fY = h

andk ◦ c2 = g. The last equality is exactly what is needed to conclude thatG satisfiesc2. �

When the two constraints in conflict are one positive and one negative, then any graph satisfying one
cannot properly satisfy the other one.

Proposition 18(Critical conflicts). If c1 is in conflict withc2, then

(1) if c1 ∈ Neg andc2 ∈ Pos, then if G satisfiesc1, then G does not properly satisfyc2,
(2) if c1 ∈ Pos andc2 ∈ Neg, and the conflict is strict, then if G satisfiesc1, then G does not properly

satisfyc2,
(3) if c1 ∈ Neg andfX does not satisfyc1, then if G properly satisfiesc2 then G does not satisfyc1.

Proof. Let c1 be in conflict withc2 via fX andfY .

(1) If g : X2 → G andG satisfiesc2, then there existsh : Y2 → G such thath ◦ c2 = g. But then for
g ◦ fX : X1→ G there existsh ◦ fY : Y1→ G such thath ◦ fY ◦ c1 = h ◦ c2 ◦ fX = g ◦ fX, which
says thatG does not satisfyc1.

(2) If g : X2 → G andG satisfiesc1, then there existsh : Y1 → G such thath ◦ c1 = g ◦ fX. By the
Universal Property of pushouts, there existsk : Y2 → G such thatk ◦ fY = h andk ◦ c2 = g, and
thusG does not satisfyc2.

(3) Since by Definition16 fX does not satisfyc1 there is a total morphismy : Y1 → X2 so that
y ◦ c1 = fX. If g2 : X2→ G theng ◦ fX : X1→ G andg ◦ y : Y1→ G with g ◦ fX = g ◦ y ◦ c1.
Therefore,G does not satisfyc1. �

The ACL constraintd3 in Fig.10and the LBAC constraintc5 in Fig.6 are in a critical conflict.
Conflicts between constraints that render a framework contradictory can be resolved by removing

or weakening one of the constraints. Weakening a constraint means to require the satisfaction of the
constraint only conditionally. A condition for a constraint is a negative constraint that has to be satisfied
before the constraint is checked.

Definition 19 (Conditional constraint). A positive (negative)conditional constraint(x, c) consists of
a negative constraintx : X → N , calledconstraint condition, and a positive (negative) constraint
c : X → Y . A total graph morphismk : X → G satisfies a conditional constraint(x, c) if and only if
wheneverk satisfies the constraint conditionx, k also satisfiesc. A graphG satisfies(x, c) iff each total
graph morphismk : X→ G satisfies(x, c).
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A conditional constraint solves the conflict of a constraintc1 with a constraintc2 (via fX andfY ) by
introducing a constraint condition forc1 that requires the satisfaction ofc1 if and only if c2 is vacuously
satisfied (i.e., the premise ofc2 does not occur). The constraint conditionfX has this property forc1.

Fact 20. Letc1 : X1→ Y1beaconstraint in conflictwith theconstraintc2 : X2→ Y2 viafX : X1→ X2
andfY : Y1 → Y2, then G satisfiesfX (considered as negative constraint) if and only if G vacuously
satisfiesc2.

Proof. (⇒) If there exists a morphismg : X2→ G, theng ◦ fX : X1→ G and, therefore,Gwould not
satisfyfX. This is a contradiction to the assumption thatG satisfiesfX.

(⇐) The graphG can satisfyfX either vacuously or properly. If there is no morphismp : X1→ G,
thenG satisfiesfX vacuously. If there is a morphismp : X1 → G, then there cannot be a morphism
g : X2→ G with g ◦ fX = p sinceG vacuously satisfiesc2. HenceG satisfiesfX. �

Definition 21 (Conditional constraint conflict). A conditional constraint(x1 : X1→ N, c1 : X1→ Y1)

is in conflict with a conditional constraint(x2 : X2→ N, c2 : X2→ Y2) if c1 is in conflict withc2 (cf.
Definition16) andfX satisfiesx1.

Definition 22 (Weak constraint). Let c1 be a constraint in conflict with the constraintc2 via fX andfY .
Theweak constraintcc2

1 for c1 with respect toc2 is the conditional constraintcc2
1 = (fX, c1).

Fact 23. If c1 is a constraint in conflict with the constraintc2, then the weak constraintcc2
1 is not in

conflict with the constraintc2.

Proof.While there are still morphismsfX andfY , the morphismfX satisfiescc2
1 by construction of the

weak constraint, sincefX does not satisfy the constraint condition ofc
c2
1 . Therefore,cc2

1 andc2 are not
in conflict. �

The strategy adopted to solve conflicts (removing or weakening) depends on the particular application
and on the context of the conflict. If the conflict arises from a transition between two policy frameworks,
then a radical strategy giving priority to the new policy would consistently choose the constraint from
the surviving policy and remove the other one. In conflicts arising from integration, another strategy may
select constraints from either policy depending on the specific pair and weaken them. A general discussion
of strategies is outlined in[11]. It is worth stressing that determining a conflict between constraints can
be performed statically and automatically.

7.2. Rule-rule conflicts

Two rules are in ap-conflict(potential conflict) if they do (partly) the same things but under different
conditions. Aconflictoccurs if p-conflicting rules can be applied to the same system graph. The choice
for one rule in a conflict may prevent the applicability of the other rule. This kind of conflict is called
critical, otherwise it is only aharmless conflict.
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The example in Fig.12 shows the LBAC rulenew object and the ACL rulecreate object .
These rules are in p-conflict, since both rules create a new object nodeOx. The rulenew object creates
an object with a security level, the rulecreate object an object without one.

A static analysis of the rules can detect the critical and the harmless conflicts before run-time so that
the rules can be changed to avoid the conflicts. The static analysis of the rules make is based on graph
transformation concepts.

Definition 24 (Conflict pair). Two rulesp1 : L1
r1
⇀ R1 with application conditionA(p1) and p2 :

L2
r2
⇀ R2 with application conditionA(p2) are inp-conflict if there exists a common non-empty sub-

rule forp1 andp2. 2

Each pair(m1 : L1→ G, m2 : L2→ G) of matchesm1 andm2 for rulesp1 andp2, respectively, is a
conflict pairfor p1 andp2. The rulesp1 andp2 are inconflict, if they are inp-conflict and there exists a
conflict pair forp1 andp2. Otherwise, they are calledconflict-free.

Notice that in Definition24, mi , i = 1, 2, is a match forpi and therefore it satisfies the application
conditionA(pi). The definition of a conflict between rules considers matches for p-conflicting rules into
arbitrary graphs. In general there exist infinitely many matches for one rule, so that the decision cannot
be made whether two p-conflicting rules are in conflict by checking each of them. Therefore, the set of
matches must be reduced for a static analysis. To detect a conflicting rule pair, it is sufficient to consider
all the gluings of the left-hand sides of the rules.

Definition 25 (Set of conflict pairs). Given p-conflicting rules(p1 : L1
r1
⇀ R1, A(p1)) and(p2 : L2

r2
⇀

R2, A(p2)), thesetCP(p1, p2) of conflict pairsfor p1 andp2 consists of all conflict pairs(m1 : L1→
G, m2 : L2→ G), wherem1 andm2 are jointly surjective.3

The set of conflict pairs for two rules in a rule-conflict consists of a finite number of pairs since the left-
hand side of a rule is a finite graph. It is sufficient to investigate the conflict pairs into the setCP(p1, p2)

to decide the conflict-freeness of the two rules.

Theorem 26(Conflict-freeness). LetCP(p1, p2) be the set of static conflict pairs for the p-conflicting

rules(p1 : L1
r1
⇀ R1, A(p1)) and(p2 : L2

r2
⇀ R2, A(p2)). Then, the rulesp1 andp2 are conflict-free if

and only ifCP(p1, p2) is empty.

Proof.We show thatp1 andp2 are in conflict if and only if there is a conflict pair(m1, m2) ∈ CP(p1, p2).

(⇒) If p1 andp2 are in conflict, there is a conflict pair(m1 : L1→ G, m2 : L2→ G). Let the outer
diagram below be the pullback ofm1 andm2 and diagram (1) be the pushout ofin1 andin2.

2 A rule p0 : L0
r0
⇀ R0 is a subrule of rulep : L r

⇀ R if there are total morphismsfL : L0 → L andfR : R0 → R with
r ◦ fL = fR ◦ r0.

3 that is,m1(L1) ∪m2(L2) = G.
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The pair(m′1, m′2) is a conflict pair inCP(p1, p2) sincem′1 andm′2 are jointly surjective by (pushout)
construction. Furthermore, they satisfyA(p1) andA(p2), respectively, since otherwise, there would be
total morphismsn′i : Ni → G′ with n′i ◦ xi = m′i for (xi : Li → Ni) ∈ A(pi) and i = 1, 2. Since
diagram (1) is a pushout diagram, there would exist a uniqueu : G′ → G with u ◦m′i = mi (i = 1, 2).
Therefore, the morphismu ◦ n′i for i = 1, 2 would prevent the satisfaction of(xi : Li → Ni) for mi .
This is a contradiction.

The direction⇐ follows directly from Definition24. �
The set of conflict pairs for rules may be split intoharmless conflict pairsandcritical conflict pairs.

The distinction is based on whether the order of rule application is critical. For acritical conflict pair
(m1, m2) the order is important: after applyingp1 at matchm1, the rulep2 is no longer applicable or vice
versa. For aharmless conflict pair(m1, m2) the order does not matter: after applyingp1 at matchm1, the
rulep2 is still applicable and vice versa. Critical and harmless conflict pairs are defined and detected by
the graph transformation concept ofparallel independence[4].

Definition 27 (Parallel independence). Given rules(p1 : L1
r1
⇀ R1, A(p1)) and(p2 : L2

r2
⇀ R2, A(p2)),

the derivationsG
p1⇒H1 andG

p2⇒H2 areparallel independentif r∗2 ◦m1 is total and satisfiesA(p1) and
r∗1 ◦m2 is total and satisfiesA(p2). Otherwise, the derivations are calledparallel dependent.

Two derivations are parallel independent if the first rule does not delete anything needed by the second
rule and it does not create anything that the NAC of the second rule forbids. The same conditions must
be satisfied for the second rule with respect to the first rule. In the case of parallel independence, the
application of rulep1 at matchm1 and the subsequent application of rulep2 atr∗1 ◦m2 results in the same
graph (up to isomorphism) as the application of rulep2 at matchm2 and the subsequent application of
rulep1 at r∗2 ◦m1. For a proof of this result, see[4].

Definition 28 (Harmless/critical conflict pair). A conflict pair(m1, m2) for rulesp1 andp2 is aharmless

conflictif the derivationsG
p1,m1⇒ H1 andG

p2,m2⇒ H2 areparallel independent. Otherwise, the conflict pair
is acritical conflict.
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Fig. 13. The weak rule fornew object andcreate object .

We propose two possible strategies to solve critical conflicts between p-conflicting rules. In the first
strategy, one rule is given priority over the other one. One rule is chosen asmajor ruleand denoted byp1,
and one asminor ruleand denoted byp2. For a conflict pair(m1, m2), the rulep2 is changed by adding
a NAC that forbids its application at matchm2 if p1 can be applied atm1. The second strategy integrates
the two rules into one rule. In[11] we discuss alternative strategies.

Definition 29 (Weak rule). Given a conflict pair(m1, m2) for rules (p1 : L1
r1
⇀ R1, A(p1)) and (p2 :

L2
r2
⇀ R2, A(p2)), theweak rulefor p2 w.r.t. (m1, m2), denoted byWR(p1, p2, (m1, m2)), is the rulep2

with the NAC(L2, N), where the outer diagram below is a pullback and diagram (1) (the top half) is a
pushout diagram.

We call the NAC(L2, N) theweak conditionand denote it byWC(p1, p2, (m1, m2))

The addition of the negative application conditionWC(p1, p2, (m1, m2)) to the minor rule ensures
that the major and the minor rules cannot be applied both to the same system graph with matchesm1 and
m2, respectively.

Example 30(Weak rule). Let us show an example of theweak rule, the rule extended by the weak
conditionWC(p1, p2, (m1, m2)) in Definition 29. Fig. 13 shows the example of the p-conflicting ACL
rule create object and the LBAC rulenew object . The set of conflict pairs for these two rules
has two elements: the inclusions(in1 : L1 → L1 ⊕ L2, in2 : L2 → L1 ⊕ L2) of the left-hand sides
into the disjoint union of left-hand sides, and the inclusions(in′1 : L1 → G, in′2 : L2 → G) of the
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Fig. 14. Amalgamation of rule-conflicting rules.

left-hand sides into the graphG, which is the gluing of the left-hand sides over the nodePx. Fig. 13
shows the weak rules with respect to the second conflict pair. The weak rule forcreate object
w.r.t. new object has a NAC that forbids a security level for the process. Therefore, the weak rule for
create object is only applicable to processes belonging to the ACL model and without a counterpart
in the LBAC model. The weak rule fornew object with respect tocreate object has a NAC
that forbids a user connected to the process. Since each user is connected to a process, the rule is never
applicable.

Proposition 31(Major rule and extended minor rule are conflict-free). Given the set of conflict pairs
CP(p1, p2) for p-conflicting rulesp1 andp2, the rulep1 and theweak rulep′2 extended by aWC(p1, p2,

(m1, m2)) for each(m1, m2) ∈ CP(p1, p2) are conflict-free.

Proof. Let m2 : L2 → G be a match forp2 extended byWC(p1, p2, (m1, m2)) (see Definition29),
i.e. m2 satisfiesWC(p1, p2, (m1, m2)). If we assume thatm1 : L1 → G is a match forp1, then there
exists, by construction ofWC(p1, p2, (m1, m2)), a unique morphismu : N → G so thatu ◦ n =
m2 (the outer diagram commutes by the pullback property). This is a contradiction, sincem2 satisfies
WC(p1, p2, (m1, m2)). �

The second solution for solving conflicts between rules is theamalgamationof the conflicting rules
over their common subrule. The amalgamated rule for two rules over a common subrule has as left-
hand side the colimit of the subrule-morphisms for the left-hand sides, as right-hand side the colimit of
the subrule-morphisms for the right-hand sides and the rule morphism is given by the universal colimit
property[1]. The NACs of the rules are integrated over the common objects specified in the left-hand
sides.

Definition 32 (Amalgamated rule). Let (pi : Li

ri
⇀ Ri, A(pi)) for i = 1, 2 be p-conflicting rules and

p0 : L0
r0
⇀ R0 with fLi

: L0→ Li andfRi
: R0→ Ri their common subrule (cf. Fig.14).

Theamalgamated ruleof p1 andp2 with respect top0 is given by(p : L r
⇀ R, A(p)), where diagram

(1) is the pushout offL1 andfL2, diagram (2) is the pushout offR1 andfR2 andr is the induced universal
pushout morphism.
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Fig. 15. Amalgamation of rule-conflicting rulescreate object andnew object .

The setA(p) contains a NACn : L → N for each pair of NACsn1 : L1 → N1 ∈ A(p1) and
n2 : L2→ N2 ∈ A(p2), whereN is the pushout ofn1 ◦ fL1 andn2 ◦ fL2 andn is the induced universal
pushout morphism.

Example 33. Fig. 15shows the amalgamated rule for the rulescreate object andnew object .
Their common subrule is shaded in the rules and contains the process nodePx in the left-hand side and
the nodesPxandOx in the right-hand side. The amalgamated rule creates an object that belongs to a user
as well as a process and carries a security level.

The amalgamated rule answers the question “which rule shall be applied in a conflict” by “both”
instead of favouring one. As in the case of constraints, the actual conflict resolution strategy depends
on the application and the context of the conflict. Also rule conflicts can be determined statically and
automatically.

8. Rule-constraint conflict

In this section, in order to address conflicts between constraints and rules, we classify rules indeleting
andexpandingrules. Deleting rules delete graph elements, but do not add anything (i.e.,range(r) =
R ⊂ L); expanding rules may add graph elements, but do not delete anything (i.e.,dom(r) = L ⊆ R).

A conflictbetween a rule and a constraint occurs when the application of the rule produces a graph
which does not satisfy the constraint. The potential for conflict can be checked statically directly with
the rule and the constraint without knowledge of specific graphs and derivations. A deleting rule never
violates a negative constraint, since the rule does not add forbidden graph elements. But a deleting rule
may violate a positive constraint if the rule deletes conditionally required graph elements but preserves
the condition for their existence. An expanding rule may violate both negative and positive constraints:
it may add forbidden graph elements specified in a negative constraint or it may complete the condition
for a positive constraint without making sure that the required graph elements exist under this condition
as well.
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Definition 34 (Rule-constraint conflicts). Let p : L r
⇀ R be an expanding rule andc : X → Y a con-

straint, thenp andc are inconflict if there exists a non-empty graphS and injective total morphisms
s1 : S → R ands2 : S → X so thats1(S) ∩ (R \ r(L)) �= ∅.

Let p : L
r

⇀ R be a deleting rule andc : X → Y a positive constraint, thenp andc are inconflict
if there exists a non-empty graphSand injective total morphismss1 : S → L ands2 : S → Y so that
s1(S) ∩ (L \ dom(r)) �= ∅ ands2(S) ∩ (Y \X) �= ∅.

Conflicts between rulesp and constraintsc : X → Y can be resolved by adding NACs to the rulesp.
We present next the construction of these negative application conditions and then show how it is used
to resolve conflicts.

Definition 35 (Reduction). Given a rulep : L
r

⇀ R and a non-empty overlapS betweenR and the
conclusionYof the constraintc : X→ Y as in the following diagram:

Let C = R +S Y be the pushout object ofs1 : S → R andc ◦ s2 : S → Y in the categoryGraph,

and letC
r−1,h⇒ N be the derivation with the inverse rulep−1 : R r−1→L with matchh. DefineA(p, c) =

{(L, N)| C (r−1,h)⇒ N , C = R +S Y for some overlapS}. The rulep(c) consists of the partial morphism

L
r

⇀ R and the setA(p, c) of NACs and is called thereduction of p by c.

The construction considers arbitrary rules and constraints, i.e., it is not restricted to deleting or expand-
ing rules, respectively. This construction reduces to the one described in[8] if the constraintc : X→ Y

is the identity morphism.
The construction in Definition35may generate redundant application conditions. In fact, if we assume

thatG already satisfies the constraintc, some application conditions are automatically satisfied. This
corresponds to the case where the overlapS → R can be decomposed intoS → L→ R. The graphN
generated from such an overlap can be eliminated directly from Definition35by requiring only overlaps
S for which s1(S) ∩ (R \ r(L)) �= ∅. In this manner, the application conditionNAC1 of Fig.18 can be
removed.

Another form of redundancy stems from the fact that ifS1 with morphismss1
1 and s1

2 andS2 with
morphismss2

1 ands2
2 are overlaps and, say,S1 ⊆ S2, s1

1|S1 = s2
1, s1

2|S1 = s2
2 thenC2 = R+S2 Y ⊆ C1 =

R+S1 Y and thusN2 ⊆ N1. Hence, if a matchL→ G satisfies(L, N2), then it also satisfies(L, N1) and
the application condition(L, N1) can be removed fromA(p, c). Consider for example Fig.17, where the
overlapS1 is included into the overlapS3. Therefore,NAC3⊆ NAC1 (cf. Fig.18) and we can remove
NAC1.

In the next subsections, the different combinations of expanding/deleting rules and positive/negative
constraints are analyzed and the appropriate preservation results presented.
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8.1. Conflicts between constraints and deleting rules

There can be no conflict between a deleting rulep : L r
⇀ R and a negative constraintc : X→ Y , since

the deleting rule may remove parts ofY, in which casec is trivially satisfied, or parts ofX, in which case
c is vacuously satisfied.

Theorem 36(Deleting preserves satisfaction). Letp : L r
⇀ R be a deleting rule,Ga graph that satisfies

the negative constraintc : X→ Y andG
p⇒H , then H satisfies c

Proof. By definition, the following is a pushout diagram:

Sincep is deleting, there exist total morphismsf : R → L andg : H → G such thatm ◦ f = g ◦m∗.
Let k : X → H . If H did not satisfyc, then there would exist a morphismq : Y → H such that

X
c→Y

q→H = X
k→H . But thenX

c→Y
q→H

g→G = X
k→H

g→G, contradicting the assumption
thatG satisfiesc. �

For the conflict between deleting rules and positive constraints, it is possible to add NACs that prevent
the rule from destroying the conclusionY, by preventing the applicability in the presence ofX if part of
the conclusionY is intended to be deleted by the rule.

Theorem 37(Satisfaction by reduction). Letp : L r
⇀ R be a deleting rule and G a graph that satisfies

the positive constraintc : X → Y . Furthermore, let p(idY ) = (idL, A(idL, c)) be the reduction of

idL : L→ L by idY : Y → Y , and definep(c) = (r, A(idL, c)). If G
p(c)⇒ H is a derivation withp(c),

then H satisfies c.

Proof. Let G
p(c)⇒ H via the matching morphismm : L→ G andk : X→ H a morphism.
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negative constraint

SL

SL SL

SL

Fig. 16. Negative constraint for the LBAC model which requires at most one successor security lattice level.

Sincep is deleting andr is injective,k′ = r∗−1 ◦ k : X → H → G is well-defined and total. By the
assumption thatG satisfiesc : X → Y , there exists a total morphismq : Y → G such thatq ◦ c = k′.
Now (r∗ ◦ q) ◦ c = r∗ ◦ (q ◦ c) = r∗ ◦ (r∗−1 ◦ k) = k, so that the proof is complete if we can show
thatr∗ ◦ q : Y → H is total. Sinceq is total, it is sufficient to show thatr∗ is defined forq(y) for every
y ∈ Y . Suppose not. Then, for somey ∈ Y andl ∈ L \ dom(r), q(y) = m(l) defining hence an overlap
of L andYand thus contradicting the assumption thatmsatisfies the NACA(idL, c) of p(c). �

8.2. Conflicts between negative constraints and expanding rules

For the conflict between expanding rules and negative constraints, the NACs prevent the rule from
completing the conclusionYof the negative constraintc : X→ Y . The following result confirms that the
construction is the appropriate one.

Theorem 38(Reduction preserves satisfaction). Let p : L
r

⇀ R be an expanding rule and G a graph

that satisfies the negative constraintc : X → Y . If p(c) is the reduction of p by c andG
p(c)⇒ H is a

derivation withp(c), then H satisfies c.

Proof.Suppose, looking for a contradiction, that there exists a morphismf : Y → H . SinceH = R+LG,
there exist partial morphismsfR : Y → R andfG : Y → G such thatfR ∪ fG = f . SinceG satisfies
c, fR cannot be empty. Hence there exist an overlapSof R andYwhich generates one of the NACs in
A(p, c) in Definition35. This contradicts the applicability ofp(c) toG necessary to produceH. �

Example 39(Negative constraints and expanding rules conflict). We give an example for the LBAC
model to which we add the negative constraint in Fig.16, denoted byc(succ) in the sequel, which
forbids two (or more) successors for a security level. The (expanding) rulenew level 2 in Fig. 5 may
produce an inconsistent state by adding a successor level to a security level which already has a successor.

Fig. 17 shows non-empty overlapsS1, S2 andS3 of the right-hand side of the rulenew level 2
and the constraintc(succ). The remaining overlaps use the same subgraphsS1, S2 andS3, but different
morphismss1 ands2. For each overlapS, the pushout(C, R → C, X → C) of the morphismsS → R

andS → X→ Y is constructed (see Fig.17for the example overlaps). The application condition(L, N)

is constructed by applying the inverse rule4 of new level 2 to the graphsCi resulting in the graphs

4 The inverse rule of a rulep : L r
⇀ R with an application condition is the rulep−1 : R r−1

⇀ L without the application condition.
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Fig. 17. Non-empty overlaps between the right-hand sideRof new level 2 and the conclusionYof the negative constraint
c(succ).
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Fig. 18. NACs constructed from the overlaps.

Ni. The inverse rule ofnew level 2 deletes a security level. The generated application condition for
the gluingC is then the pair(L, N). Fig.18shows the pairs(L, N) for the three overlaps in Fig.17. We
depict only the graphN in which the graphL is drawn by solid lines, and the partN \L by dashed lines.

8.3. Conflicts between positive constraints and expanding rules

The following result shows that the construction in Definition35 is sufficient to guarantee the preser-
vation of satisfaction of constraints in the case of an expanding rule and a positive constraint too.

Theorem 40(Reduction preserves satisfaction). Let p : L
r

⇀ R be an expanding rule and G a graph
that satisfies the positive constraintc : X → Y . If p(idX) is the reduction of p byidX : X → X, and

G
p(idX)⇒ H is a derivation withp(idX), then H satisfies c.

Proof. The proof is this result is straightforward. By construction, the reduction ofp by idX prevents
the application ofp from constructing additional occurrences ofX in H. Therefore, eitherH vacuously
satisfiesc (no occurrences ofX in H) or occurrences ofX in H are inherited fromG. SinceG satisfiesc,
the occurrence ofX can be extended toYand, sincep is expanding, it remains inH. �

For the conflict between expanding rules and positive constraints, the NACs prevent the rule from
completing the conditionX.
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Fig. 19. The negative application condition is too strong.

Example 41(Positive constraints and expanding rules conflict). Fig. 19 on the left-hand side describes
an example for the reduction of the expanding rulecreate object and a positive constraint which
requires a value for each object. The reduction adds a NAC(L, L) which has been drawn explicitly. The
right-hand side of the figure shows the deleting ruledelete level and a positive constraint which
requires a security level for each object. The NAC for the ruledelete level is the NAC of the reduction
of the identity rule on the nodeSLxby the identity morphism on the conclusion of the constraint. This
NAC forbids the deletion of security levels that are connected to an object. This NAC is already described
in Fig. 5 and shows the correctness of our LBAC graph model with respect to the ruledelete level
and the constraint for the existence of a security level for each object.

The solution for conflicts between expanding rules and negative constraints as well as for conflicts
between deleting rules and positive constraints is a reasonable reduction of the number of system graphs
which the rules can produce. The solution for conflicts between expanding rules and positive constraints,
however, is not very satisfactory, since it reduces the number of system graphs that can be generated more
than necessary. For example, the reduction of the rulecreate object by the positive constraint in Fig.
19 preserves consistency, but it cannot be applied since the NAC is never satisfied. This example of the
required object value suggests for positive constraints and expanding rules a construction which extends
the right-hand side of a rule so that the rule creates the entire conclusionYof a constraintc : X→ Y and
not only parts of it, when the rule constructs part ofX. In the object value example, the right-hand side of
the rulecreate object must not only create the object nodeOx, butOx together with a value node.
The construction in Definition42describes the details of a possible solution.



28 M. Koch et al. / Journal of Computer and System Sciences 71 (2005) 1–33

Definition 42 (Completing rule). Let c : X → Y be a positive constraint andp : L r→R an expanding
rule. Thecompleting rulep∗(c) for p andc is given byvi ◦ hi ◦ r : L→ R′, where

• � = {R si
1← Si

si
2→X, I = 1, . . . n} is the set of all non-empty overlaps ofRandX so thatsi

1(Si)∩ (R \
r(L)) �= ∅,
• for eachR

si
1← Si

si
2→X ∈ �, (Ci, hi, yi) is the pushout of the injective morphismssi

1 andc ◦ si
2 in

Graph,
• (R′, vi : Ci → R′) is the colimit of the morphismshi : R→ Ci in Graph.

Notice that, by definition of colimit,vi ◦ hi = vj ◦ hj , for all i, j , and therefore the choice of the index
in definingp∗(c) = vi ◦ hi ◦ r : L→ R′ is immaterial.

Fig.20illustrates the construction of the completing rule for the rulecreate object and the positive
constraint in the left-hand side of Fig.19. The figure shows the only non-empty overlap ofRandXwhich
contains created elements. The construction extends the right-hand side of the rulecreate object so
that the value node for the new object is also created.

The completing rule, however, does not preserve consistency for each positive constraint. The coun-
terexample in Fig.21shows the completing rule for a rule which creates a nodeAand a positive constraint
cwhich requires all nodesA andB to be connected via aC node. The completing rulepc(c) is applied to
a consistent graphG on the right-hand side of Fig.21, but the resulting graphH is not consistent.
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Fig. 20. Construction of the completing rule.
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If we restrict positive constraints tosinglepositive constraints, the construction always produces a
consistency—preserving rule. A positive constraintc : X → Y is a single positive constraint ifX
contains at most one node.

Proposition 43. If c is a single positive constraint, the completing rulep∗(c) for a rule p is consistent
with respect to c.

Proof. LetG be a graph which is consistent with respect toc : X→ G, andG
p∗(c)⇒ H a derivation with

p∗(c) and co-matchm∗ : R′ → H . If there is no morphismg : X→ H , thenH vacuously satisfiesc.
If c is a single positive constraint and there is a graph morphismg : X→ H , theng(X) ⊆ H \m∗(R′)

or g(X) ⊆ m∗(R′). If g(X) ⊆ H \ m∗(R′) theng(X) contains only elements already occurring inG.
SinceG satisfiesc, there is a morphismq : Y → H with g = q ◦ c. If g(X) ⊆ m∗(R′) thenX is one
of the overlapsSi betweenX andR in the construction of Definition42. If S1 is the overlap, then, since
C1 is the pushout object, there is a morphismy1 : Y → C1 so thatm∗ ◦ v1 ◦ y1 is the needed extension
of g. �

Another possibility to resolve conflicts between positive constraints and expanding rulesp is to trans-
form the positive constraint into a rule and then require that this rule be applied (after the application ofp)
as long as there are occurrences ofX not “visited” inH. The new rule is just the total morphismX→ Y

with negative application condition(X, Y ) to avoid its application repeatedly on the same part ofH.

Definition 44 (Constraint-repair rule). For a positive constraintc : X → Y , theconstraint-repair rule
for c is given byrep(c) = c : X→ Y with NAC (X, Y ).

The proof of the following result is straightforward.

Proposition 45(Satisfaction after repair). Let p : L
r

⇀ R be an expanding rule and G a graph that
satisfies the positive constraintc : X → Y . If G ⇒ H is a derivation consisting of applying the
expanding rule p once and thenH ′ is obtained by applying to H the constraint-repair rulerep(c) as long
as possible, thenH ′ satisfies c.
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It is necessary to add “control” on the framework to ensure that this new rule is applied ‘as long as
possible’. Control can be introduced either by using rule expressions[7] or the notion of a transformation
unit [14] as an encapsulation mechanism used in a way similar to procedure calls.

9. Concluding remarks

In the formalism presented here to specify AC policies, states are represented by graphs and their
evolution by graph transformations. A policy is formalized by four components: a type graph, positive
and negative constraints (a declarative way of describing what is wanted and what is forbidden) and a set
of rules (an operational way of describing what can be constructed). The framework offers the conceptual
tools needed to discuss the effect of integrating two policies using a pushout in the category of policy
frameworks and framework morphisms.

An important problem addressed here is how to deal with inconsistencies caused by conflicts between
two constraints, between two rules or between a rule and a constraint. Often such problems arise when
trying to predict the behavior of an AC policy obtained by integrating two separate coherent policies[10].
The conflict between a rule of one policy and a simple constraint of the other policy has already been
addressed in part elsewhere[12,13], where it is also shown the adequacy of this framework to represent
different Access Control policies. Here we have tackled the problem of conflicts by making effective use
of the graph-based formalism. Conflicts are detected and resolved statically by using standard formal
tools typical of this graph-based formalism. In the process, we have introduced the notions of conditional
constraint and of weakening of a rule.

We have shown how conflicts can be detected in a security framework and proposed several strategies to
automatically resolve the conflicts. Since there are several possible resolution strategies, the administrator
has a choice. These resolution strategies aremeta policies, that deal with the choices in the application
of policies. We have introduced the notion of a metapolicy in[13] and proposed three examples:

• The meta policyradical chooses a major policySP1 and a minor policySP2 and solves the problem
of conflicting rules or constraints globally by selecting the rules or constraints ofSP1 and deleting the
rules and constraints ofSP2.
• The meta policyweakRadicalkeeps the conflicting rules or constraints ofSP2, but weakens them to

favour the application or the satisfaction, respectively, of the corresponding rules and constraints of
SP1.
• The meta policystatickeeps some rules and constraint fromSP1 and some fromSP2, weakening the

corresponding conflicting rules and constraints of the other policy. The choice of which one to weaken
is made on a pair-by-pair basis.

The choice of the appropriate meta policy may depend on the specific application domain of the particular
AC model.

Among the problems still under investigation are the transition from a system using one policy to a
system using another policy.

A tool, based on a generic graph transformation engine, is under development to assist in the system-
atic detection and resolution of conflicts and in the stepwise modification of an evolving policy while
maintaining its coherence.
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Appendix A. Category of security policy frameworks

We provide in this appendix the categorical formalization of our model by defining the category of
security policy frameworks and framework morphisms.

Definition A.1 (Category of security policy frameworks). The category of security policy frameworks,
denoted bySP, has as objects all security policy frameworks and as morphisms all framework morphisms.

Proof.For each frameworkSP, the pairidSP = (idT G, idP ) is the identity morphism and the composition
of framework morphismsf = (fT G, fP ) : SP1 → SP2 andg = (gT G, gP ) : SP2 → SP3 is defined
componentwise as the morphismg ◦ f = (gT G ◦ fT G, gP ◦ fP ) : SP1 → SP3. The composition is
associative since the composition for the component morphisms is associative.�

Since a framework morphism does not constrain the sets of constraints, frameworks with an isomorphic
type graph and isomorphic rules are isomorphic, independently of their constraint sets.

Proposition A.2 (Framework isomorphisms). The framework morphismf = (fT G, fP ) : SP → SP ′
with SP = (T G, (P, rP ), Pos, Neg) andSP ′ = (T G′, (P ′, r ′P ), Pos′, Neg′) is an isomorphism if and
only if fT G : T G→ T G′ andfP : P → P ′ are isomorphisms in the appropriate categories.

Proof.⇒: If f is an isomorphism, there is a framework morphismg : SP ′ → SP so thatf ◦ g = idSP ′
andg ◦ f = idSP . Then,fT G ◦ gT G = idSP ′T G

andgT G ◦ fT G = idSPT G
, i.e.,fT G is an isomorphism.

Furthermore,fP ◦ gP ′ = idSP ′P andgP ′ ◦ fP = idSPP ′ , i.e.fP is an isomorphism.
⇐: If the component morphismsfT G andfP are isomorphisms, then by definition of composition

so isf. �

Proposition A.3 (Initial security policy framework). The initial object inSP is given by the security
policy frameworkSPI = (∅, (∅, r),∅,∅).

Proof.GivenSP = (T G, (P, rP ), Pos, Neg), we definei = (iT G, iP ) : SPI → SP , whereiT G : ∅ →
T G is the unique morphism for the initial graph∅ andTGandiP : ∅ → P is the unique morphism for
the set∅ andP. The properties of the initial component objects in the respective categories ensure the
required property forSPI . �

Security policy frameworks can be glued together using the standard categorical constructions.

Theorem A.4 (Pushouts). The categorySPhas all pushouts.

Proof. Let Op : Set× Set→ Setbe an operation on sets. For given framework morphismsf : SP0→
SP1 andg : SP0→ SP1 the pushoutSP = (T G, (P, rP ), Pos, Neg) is constructed as follows:

(1) Construct the pushout offT G andgT G in the categoryGraph (diagram (1)).
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(2) Construct the pushout offP andgP in Set(diagram (2)).
(3) The mappingrP (x) is defined for allx ∈ P as follows:

(a) if there is ay ∈ P1 with g′P (P1)(y) = x andx /∈ f ′P (P2) thenrP (x) = Fg′T G
(rP1(y)),

(b) if there is ay ∈ P2 with f ′P (P2)(y) = x andx /∈ g′P (P1) thenrP (x) = Ff ′T G
(rP2(y)),

(c) if x ∈ g′P (P1) ∩ f ′P (P2), then there is a non-empty setX ⊂ P0 so that for eachx0 ∈ X,
g′P (fP (x0)) = f ′P (gP (x0)) = x by construction of pushouts inSet. We explain the construction
of rP (x) for the case of a singleton setX = {x0}. This construction can then be generalized to an
arbitrary setX. By definition of framework morphisms,rP0(x0) is a subrule ofrP1(fP (x0)) := y

andrP2(gP (x0)) := y′. The two squaresL0 → L1 → L ← L2 andR0 → R1 → R ← R2 in
the diagram below on the right are pushouts inGraph andrP (x) is given by the unique pushout
property.5

(4) The set of positive constraints is defined asPosOp(Fg′T G
(Pos1), Ff ′T G

(Pos2)), the set of negative
constraints asNeg = Op(Fg′T G

(Neg1), Ff ′T G
(Neg2))

The pushout morphisms are defined asg′ = (g′T G, g′P ) : SP1 → SP and f ′ = (f ′T G, f ′P ) :
SP2→ SP .

To check, thatSPis a framework, the well-definedness ofrP has to be shown. For cases 3(a) and 3(b)
the well-definedness follows from the fact thatg′P |P1\fP (P0) andf ′P |P2\gP (P0) are injective. For case 3(c),
the rulesrP0(x0) for eachx0 ∈ X are equal due to the definition of a framework morphism. This ensures
a well-defined construction ofrP (x). By construction, the morphismsf ′, g′ are framework morphisms
such thatg′ ◦ f = f ′ ◦ g. Let SP ′ = (T G′, (P ′ : rP ′), P os′, Neg′) be a security policy framework with
framework morphismsa : SP1→ SP ′ andb : SP2→ SP ′ so thata ◦ f = b ◦ g. By construction, there
is a unique total graph morphismuT G : T G → T G′ with uT G ◦ g′T G = aT G anduT G ◦ f ′T G = bT G.
Moreover, there is a unique mappinguP : P → P ′ with uP ◦g′P = aP anduP ◦f ′P = bP . The definition
u = (uT G, uP ) : SP → SP ′ yields a framework morphism by definition ofrP . The commutativity
property and the uniqueness of this morphism follow from the corresponding properties of the component
morphisms.

The pushout construction defines the constraint sets in the pushout framework as the result of an
operationOp on sets. This operationOp may be the union or the intersection, etc. PropositionA.2
shows that the choice of the operationOp does not influence the pushout property. The actual op-
eration, however, becomes important when we consider thecoherenceof a security framework in
Section6.

By combining the previous two results, we obtain the last result of this paper.�

5 This construction is known asamalgamation of rules[16].
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Theorem A.5 (Colimits). The categorySP is finitely complete.
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