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Abstract

Graph-based specification formalisms for access control (AC) policies combine the advantages of an intuitive
visual framework with a rigorous semantical foundation that allows the detailed comparison of different policy
models. A security policy framework specifies a set of (constructive) rules to build the system states and sets of
positive and negative (declarative) constraints to specify wanted and unwanted substates. Several models for AC
(e.g. role-based, lattice-based or an access control list) can be specified in this framework. The framework is used
for an accurate analysis of the interaction between policies and of the behavior of their integration with respect to the
problem of inconsistent policies. Using formal properties of graph transformations, it is possible to systematically
detect inconsistencies between constraints, between rules and between a rule and a constraint and lay the foundatio
for their resolutions.
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1. Introduction

A considerable amount of work has been carried out recently on models and languages for access control
(AC). AC is concerned with determining the activities of legitimate ugE9§ and is usually enforced by
a reference monitor which mediates every attempted accessubject(a program executing on behalf
of a user) toobjectsin the system. The three main AC policies commonly used in computer systems are
discretionary policie$19], lattice-based policies (also called mandatory polic[#g] and role-based
policies[18].

One of the main advantages of separating the logical structure from the implementation of a system is
the possibility to reason about its propertied1d,12]we have proposed a formalism based on graphs and
graph transformations for the specification of AC policies. This conceptual framework, y€cilig]to
specify role-based policies, a lattice-based access control (LBAC) policy and an access control list (ACL)
(example of a discretionary policy), allows the uniform comparison of these different models, often
specified in ad hoc languages and requiring ad hoc conversions to compare their relative strengths and
weaknesses.

Our graph-based specification formalism for AC policies combines the advantages of an intuitive
visual framework with the rigor and precision of a semantics founded on category theory. In addition,
tools developed for generic graph transformation engines can be adapted to, or can form the basis for,
applications that can assist in the development of a specific policy.

We use in this paper examples from the LBAC and the ACL models only to illustrate the different
concepts, with no pretence of giving complete or unique solutions by these examples.

The main goal of this paper is to present some basic properties of a formal model for AC policies based
on graphs and graph transformations and to address the problem of detecting and resolving conflicts in
a categorical setting. A system state is represented by a graph and graph transformation rules describe
how a system state evolves. The specification (“framework”) of an AC policy contains also declarative
information (“invariants”) on what a system graph must contain (positive) and what it cannot contain
(negative). A crucial property of a framework is that it specifies a coherent policy, that is, one without
internal contradictions. Formal results are presented to help in recognizing when the positive and the
negative constraints of a framework cannot be simultaneously satisfied, when two rules, possibly coming
from previously distinct subframeworks, do (partly) the same things but under different conditions, and
when the application of a rule produces a system graph that violates one of the constraints (after one or
the other has been added to a framework during the evolution of a policy). The solutions proposed on a
formal level can be made part of a methodology and incorporated into an access control policy evolution
assistant.

The paper is organized as follows: Sect@briefly reviews lattice-based access control; Sec8on
presents the basic formalism of graph transformations using lattice-based access control to illustrate
it; Section4 defines the formal framework to specify AC policies (its main properties are relegated
in the appendix); Sectiob deals with the integration of policies and Sect®mliscusses the notion
of coherence of a security policy framework. Sectiotiscusses analysis and management of conflicts
between constraints and between rules, while Se8tiiscusses conflicts between a rule and a constraint;
the last section mentions related and future work.
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Fig. 1. A security lattice (left-hand side) and the assignment of security levels to subjects and objects (right-hand side).
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2. Lattice-based access control

Classic lattice-based access control (LBAC) enforces unidirectional information flow in a lattice of
security levels! The diagram on the left-hand side of Figshows a partial order security lattice, where
the security levels available are H (highest), L (lowest) and M1, M2 (middle).

The LBAC policy is expressed in terms of security levels attachedlbjectsandobjects A subject is
a process in the system and each subject is associated to a single user, where one user may have sevel
subjects concurrently running in the system. An object is a container of information, e.g. a file or a
directory in an operating system. Usually the security levels on subjects and objects, once assigned, do
not change. If.(x) denotes the security level &f(subject or object) then the specific LBAC rules for a
lattice allow a subjecBto read objecO if A(S) > 4(0) and to write objecO if A(S) = A(0).

The subjects in Figl on the right-hand side ar&l and S2, with security levelsi(S1) = H and
A(S2) = L. The objects ar® 1 and02 with security levelsl(01) = M2 andA(02) = L, respectively.
The LBAC rules ensure thaffl can read both object®1 and 02 but cannot write eithe©1 or 02.
SubjectS2 can read and write objec?2, but neither read nor write objectl. In the Bell-LaPadula
model[2], subjects are allowed to write “blindly” in objects that they cannot read. In such a nfitlel,
can write in both object® 1 andO2, but is still able to read onlg 2.

3. Graph transformations

This section introduces the basic definitions and notation for graph transformgt&nParts of the
LBAC model are used throughout the section to illustrate the explanations by examples.

A graphG = (Gv, G, sg, tg, lg) consists of disjoint sets of nod€s, and edges; g, two total
functionssg, t¢ : Gg — Gy mapping each edge to its source and target node, respectively, and a
functionl; : Gy U Gg — Labels assigning a label to each node and to each edge. Labels are elements
of a disjoint union of setd.abels = X U C, whereX is a set ofvariablesandC is a set ofconstants
A binary relation<C Labels x Labels is defined orLabelsas («, f) €< if and only if « € X. This
binary relation is not a partial order since several distinct variables may be ngégedhe relation
o < pindicates that (the variable)can be substituted by (which, in turn, can be either a variable or a
constant)

A path of unspecified length between nodeandb is indicated by an edge—> b which can be seen
as an abbreviation for a set of paths, each representing a possible sequence of edgesalzatidlzen

1In[17], security levels are called security labels. We use ‘security level’ here to avoid confusion with the notion of a label
for a node or for an edge in a graph.
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Fig. 2. The type graph for the LBAC model.

A total graph morphisny : G — H between graph& = (Gvy, Gg, sg, tg,lg) andH = (Hy, Hg,
sg.ty,lg)is a pair(fy, fg) of total mappingsfy : Gy — Hy and fg : Gg — Hp that respect the
graph structure,i.€fyosg = sgo fr andfyotg = tyo fE,respectthe label order, ilg.(v) < Ig(fv(v))
foreachv € Gy andig(e) < Ig(fE(e)) foreache € G (avariable can be replaced by a constant or by
another variable), and respect the substitutions, ilg.(if1) = I (v2), thenly (fy (v1)) = g (fy (v2))
for all v1, v2 € Gy andig(e1) = lg(e2), thenly (fe(e1)) = I (fr(e2)) for all eq, e2 € G (different
instances of the same variable are substituted with the same valpetid graph morphisny : G —~ H
is a total graph morphisnf : dom(f) — H from a subgrapldom(f) < G to H. Graphs and partial
graph morphisms form a catego@raph®. The subcategory of graphs and total graph morphisms is
denoted byGraph.

The categonGraph® is in general not co-complete, but has pushouts for morphigmsG — H
andf. : G — K where one of them, say),, is label preservingi.e.lg(x) = [y (f,(x)) foreachx € G
(node or edge]15].

A type graph TGrepresents the type information in a graph transformation sy$8nand it
specifies the node and edge types which may occur in the instance graphs modeling system
states.

For example, the type graph in F@shows the possible types for the LBAC graph model. It provides
the node typeé/, O, P, val andSL The nodel is the type of the nodes representing users, the node
O the objects, the nodeal the actual information in objects and the nd@léhe processes that run on
behalf of users. The nodgL with its loop represents a whole security lattice, that is, a partial order on
security levels as e.gHigh > Middlel > Low, High > Middle2 > Low. The nodeSLcan be any
security level (e.gHigh, Middlel, Middle2, Low) and there is an edge from security le§él; to SL2
if SL1 > SLo. The attachment of security levels to objects, users and processes is modeled by an edge
to a security level of the security lattice. The absence in the type graph of an arc between tHe aradles
O indicates that there cannot be,dnyinstance graph, a direct (access control) “connection” between
a process and an object. The presence in the type graph of an arOftoiBL indicates that an object
may be associated with security levels, but is not required to be (this requirement is expressed by the
constraints in Fig6)

A pair (G, tg), whereG is a graph and; : G — TG is a total graph morphism, is calledgaaph
typed over TGIf the type graph is fixed, we denote the pair simply&sThe total graph morphism
t¢ is calledtyping morphismand is indicated in the examples by the symbols used for nodes and
edges. From now on, in all our figures the typing morphism maps a node withTaliel the type
nodeT.

A morphismbetween typed graph$G, ;) and (H,ty) is given by a partial graph morphism
f:G < dom(f) — H that preserves types, that is, the diagram
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G<——> dom(f) ——H

RN

TG

in Graph commutes. The morphism is total if the underlying graph morphism is total.

Graphs typed over a fixed type grap® and morphisms between them form a catedo®/[3]. The
existence of pushouts is inherited from the categargph”.

A graph typed over a type grafiG can bere-typedoverT G’ if there is a total morphisnf : TG —

T G'. The re-typing byf of a graph(G, t;) typed ovelTGis the graph G, f o t) typed overT G'. Re-
typing from7 G’ to TGis a renaming of types and a forgetting of nodes and edges. Formally, the re-typing
w.r.t. a morphismf : TG — TG’ is specified by functorg’y : TG — TG  andV; : TG’ — TG,
calledforward typingandbackward typing functof3,6].

General Assumption In the following, we fix a type grapfG, and all graphs and morphisms are
from the category G if the type is not explicitly stated.

Notice that types are used to establish similarities among different entities (nodes and edges) while
labels are used to distinguish among similar entities.

A graphrulep : r, or justrule, is given by a rule namp, from a selRNamesand a label preserving
injective morphism : L — R. The grapHh_, left-hand sidedescribes the elements a graph must contain
for the rulep to be applicable. The partial morphism is undefined on néeiges that are intended to
be deleted, defined on nodeslges that are intended to be preserved. Nodes and edBesgift-hand
side without a pre-image are newly created. Note that the actual del¢tiddgions are performed on
the graphs to which the rule is applied.

Example 1(LBAC graph ruley Fig. 3 shows the schemes for the rules of the LBAC policy. The labels
forthe nodeslx, Px, SLx, SLy, ...) of the rules are variables taken from the set of variables in Labels.
The rulenew object creates a new obje€@x connected to a nodealx (the initial value of the
object). The objecOx is given the security levebLx The variableSLxis generic: it is substituted by
the actual security level of the process when the rule is applied. Theleld¢e object for the
deletion of objects is represented by reversing the partial morphism of theewleobject . The rule
new process creates a procegxon behalf of a usddx. The new procesBxis attached to a security
level SLythat is no higher than the security lev@lxof the usefUx in the security lattice graph. This

@ @ delete process
% Nnew process * @ —_— @
@ & T O

new object

= (e
- ®

delete object

Fig. 3. Graph rules for the LBAC policy.
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] D )| "
* new process *

c !
Murity lattice

Fig. 4. Application of rulenew process .

requirement is specified by the path frédhxto SLyindicated by an edge decorated by a “*”: this is

a shortcut in our diagrams to denote a set of rules, each with a path of different length (possibly zero)
connecting the nodes label8tlxandSLyconsisting of edges of the security lattice graph. Processes (and
their connections to the user) are removed by thedalete process

For the application of rules we use the single pushout (SPO) approach to graph transforfdtions
Formally, the application of a graph rule: L L Rtoa graphG is given by a total graph morphism

m : L — G, calledmatchfor p in G. The direct derivatiorG 24" H from G to the derived grapH is
given by the pushout afandmin TG (see the diagram below). Note that the pushout exists, since the
rule morphisnr is label preservingl5].

L R
G i

Example 2 (Application of a graph rulg In Fig. 4, the left-hand sidd. of the rulenew process
occurs several times IB. In one possible match, the nod& in L is associated to the nod® in G and

the nodessLxandSLyto the specific security levél. The application of the rule inserts the new process
node connected to the usgéR and the security leved.

For the specification of AC policies by graph transformatioesgiative application conditiorfer rules

are needef4]. A negative application condition (NAC) for aruje: L L R consists of a sef (p) of
total injective morphisms; : L — N, where the parV \ a; (L) represents a structure that must not occur
in a graphG for the rule to be applicable. In the figures, all negative application conditions are simple
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Fig. 5. LBAC rules for modifying the security lattice.

inclusions and we depiet; : L — N by the graphN, where the subgraph is drawn with solid lines

andN \ L with dashed lines. Arule : L L R with a NAC A(p) is applicable tdG if there is a total
morphismm : L — G (L occurs inG) and there is no total morphism : N — G such thain = n; oa;
(it is not possible to extend to N) for anya; : L — N in A(p). From now on, anatch for p with NAC
A(p) is a total morphisnm : L — G that cannot be extended to a total morphism N — G for any
ai : L - Nin A(p).

Example 3(Negative application conditign Fig. 5 shows the rules for modifying the security lattice.

New security levels can be inserted before an existing security$vwdrulenew level 1 ), after an

existing security leveSLx(new level 2 ) or between two security leve®l xandSLy(new level

3). The ruledelete level removes a security level that does not connect two security levels, i.e.,
SLxhas no predecess@.zand SLx has no sucess@Ly (expressed by the first pail., N) of the

NAC). Therefore, it is not possible to delete a security level between two security levels, to ensures that
the security level hierarchy remains connected. More complex rules can specify the deletion between
security levels, but they are not introduced here. Since users, processes and objects need a security leve
security levels cannot be removed if any user, process or object possesses this security level. Therefore, the
NAC of the ruledelete level has also the following three pai¢&, N): one to prevent the deletion

of a security level that belongs to a process (the NAC with dashedPw)dthe second one concerns the
users (dashed nodégx) and the third one the objects (dashed n@dg Only if (each condition in) the

NAC is satisfied, a security level can be removed.

4. Security policy framework

This section presents the framework for the specification of AC policies based on graph transforma-
tions[9]. The framework is calledecurity policy frameworfkand consists of four components: the first
componentis a type graph that provides the type information of the AC policy, and the second component
is a set of graph rules (specifying the policy rules) that generate the graphs representing the states of
the system accepted by the AC policy. Since in some AC policies it is meaningful to restrict the set of
system graphs constructed by the graph rules (as not all of them represent valid states), a security policy
framework contains also two setsafnstraints Constraints can beegative constraint® specify graphs
that shall not be contained in any system graph posltive constraint$o specify graphs that must be
explicitly constructed as parts of a system graph. In any implementation of an AC policy, the constraints
are not needed since the only acceptable states are those explicitly built by the implemented rules. But
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positive constraints :

CENCECINICECET

negative constraints :

ol oo

®-=- @@

Fig. 6. Positive and negative constraints for LBAC.

when developing an AC policy through successive refinement steps, or when trying to predict the behav-
ior of a policy, it is useful to have the additional information provided by the constraints. Positive and
negative constraints can be considered as a formal documentation of the initial requirements and of the
development process of rules.

Both positive and negative constraints are formally specified by morpig&mi$ is the semantics of
the morphism that distinguishes between positive and negative constraints.

Definition 4 (Constrainty. A constraint(positive or negative) is given by a total graph morphism
X =Y.

Definition 5 (Constraint satisfaction A total injective graph morphisrh : X — G satisfiesa positive
(negative) constraint: X — Y if there exists (does not exist) a total injective graph morphjsny’ —

G suchthatY S v % G = x LY G. A graphG satisfiesa positive (negative) constraintif each total
injective graph morphisrk : X — G satisfies.

A graphG vacuoushsatisfiesc : X — Y if there is no total graph morphisin: X — G; G properly
satisfiex otherwise.

A negative constraint : X — Y is equivalent with respect to satisfaction to the simpler negative
constraintcy : Y — Y. The former form is more intuitive for a policy designer than the latter one, in
the sense that it is easier to see exactly which parts are allofyéitje remaining partsy \ X) do not
occur.

Example 6 (Constraints for LBAQ. Fig.6 shows positive and negative constraints for the LBAC model.
The positive constraintl and the negative constrain® require that objects always have a security
level (the positive constraint) and that there does not exist more than one security level for each object
(negative constraint). The constrain®andc4 specify the same existence and uniqueness requirements
for subjects. In mandatory access control policies, there is usually no concept of an owner of an object.
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Since LBAC belongs to the class of mandatory access control policies, the negative corsti@ibids

an edge between a user and an object to indicate object ownership by users. Actually, this is already
expressed in the LBAC type graph. If we consider the evolution of access control policies, the constraint
¢ prevents changing the policy to a policy with a concept of ownership.

We are now ready to define a security policy framework, which is characterized by a type graph (of
all the graphs involved), by a set of rules (from the set of all rules built with instances of that type graph)
with associated names, and sets of constraints. Formally:

Definition 7 (Security policy framewopk A security policy frameworkor just framework is a tuple
SP =(TG, (P,rp), Pos, Neg), where

e TGis atype graph,
e the pair(P, rp) consists of a set of rule namBsand a total mappingp : P — |Rule(T G)| mapping

each rule name to a rule— R of TG-typed graphs,
e Posis a set of positive constraints, aNegis a set of negative constraints.

The security policy framework for the LBAC policy consists of the type graph in Eignd the
negativers, c4, cs and positiver1, c3 constraints in Fig. The rule name§iewprocess, deleteprocess,
newobject, deleteobject} are mapped to the rules in Examfle

A security policy framework morphisnf : SP; — SPp, or just framework morphisim
relates security policy frameworks by a total graph morphisrg : 7TG1 — T G2 between the
type graphs and a mappint : P1 — P> between the sets of rule names. The mappfagmust
preserve the structure of the rules in the sense that the rule corresponding to thefmamee-
duces to the rule corresponding to the nami the retyping induced byfrg is forgotten. More
precisely:

Definition 8 (Framework morphisin A framework morphisrbetween security policy frameworl§s?;
= (TG, (P,', rpl.), Pos;, Ne‘gi)fOl’i =1, 2isapairf = (fTG’ fp) :SP1 — SP2,WheI'8fTG TG, —
T G, is atotal graph morphismarnp : Py — P, is atotal mapping, so thads, . (rp,(fr(p))) = rp,(p)
forall p € P1.

Note that the definition of a framework morphism does not constrain the sets of constraints.

Example 9(Framework morphisin Consider, as an example, the framework morphigm SP; —

S P, with the total graph morphisnfiy in Fig. 7 between the type graplisG1 and7T G». The intended
meaning of this morphism is that the typAsand B of the security frameworl§ P, are renamed to
C andD, respectively, and that there is a new typén the security frameworl§ P,. The rule pl of
SP1 can be mapped to the rule of SP, since the application of the forgetful functdt;,, to p2
yields the rulepl1. The rulep1 cannot be mapped to the ryg since the forgetful functor yields a rule
different fromp1.
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TG, TG,

® 0
fre

B D

rule p2

)  ©
T e ® @@

rule p2’

© ©

Fig. 7. Framework morphism.

5. Access control policy integration by pushouts

Integration is concerned with the merging of AC policies. A merge is necessary on the syntactical
level, i.e. a merge of the security policy frameworks, and on the semantical level, i.e. the merge of
the system graphs representing the state at merge time. We consider here only the integration on the
syntactical level and omit the integration on the semantical level (semantical integration is considered in
more detail i10]). The integration of two AC policies on the syntactical level is a pushout of the security
policy frameworks in the catego§P (see the appendix). Two security policy framewoskd andsS P>
are related by an auxiliary framewoPy that identifies the common parts (types and rules) in both
frameworks; the actual integration is formally expressed by framework morphismssPy — SP;
and f> : SPp — SP2. The pushout off; and f> in SP integrates the framework&P; andSP; in a
new security policy frameworgPcalled theintegrated frameworknformally, it is theunionof the two
policiesS P, andS P>, where the common subpolicy/Py is not duplicated.

Throughout this section, the integration of the lattice-based access control (LBAC) framework with an
ACL framework (introduced next in Sectidnl) is used as an example.

5.1. Access control list

The access control list (ACL) policy is an implementation of a discretionary AC policy. We consider an
ACL policy similar, but simpler, to that one used in the UNIX operating system. Our model distinguishes
only between the owner of an object and the rest of the world and, for simplicity, groups are not considered.
The owner of the object has read, write and execution rights and can change the access permissions o
the object with respect to the world.
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s
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Fig. 8. The type graph for the ACL.

create object

@ new proces @ - @ @
l remove object l

remove process

connect ®'® giV_eriad
@ ‘ re;:eread RX

Fig. 9. Graph rules for the ACL model.

Example 10(Graph rules for the AC). The type grapiT' G 4, in Fig. 8 provides the node typés, O
andP. Just as in the LBAC model, a node of tyPerepresents a user, a node of typen object, and

a node of typd® a process. An edge between a user nddmd an object nod® specifies thaU is the
owner of the objecO. An edge of typeR, W or X represents the read, write or execute permission of an
object to the world. The owner of the object has always all the permissions jdrehisbjects and does
not need the loops. Some of the ACL graph rules are shown irBFiche rulenew process starts a
new process on behalf of a user. To kill a process, theranf®ve process deletes the process node
and its connection to the user. The rateate object adds a new nod@xto the system, connecting

it to the process nodexthat has created the object and to the user hbd® which the process belongs.
The ruleconnect connects a process of a user to an object of the user. The rule has a NAC (indicated
by the dashed edge betweerandOx on the left-hand side of the rule) that forbids the application of
the rule to processes and objects of the user already connected. Thweuleead gives to the world

the read permission on an object, provided that it has not already been granted. Other rulegisech as
write andgive execution are similar and not shown.

Example 11(Constraints for AC). The constraints for the ACL framework in FigOrequire that each
process belongs to a unique user (the positive considirand the negative constraii®), that each

object belongs to a unique user (the positive consteZ8rand the negative constra) and that there

is at most one permission loop with the same permission attached to the same object (negative constraint
d5). Note that the last diagram represents three negative constraints, éh®fa forWW and one foix.
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positive constraint:

di
&= B0 @ —0)

negative constraints:

®
&® = ey ‘ ey

W (R,X W (R,X)
(é) RX) g5 Q’
O W (R,X)

Fig. 10. Positive and negative constraints for the ACL.

type graph for ACL common types type graph for LBAC

i
W —— | (& —| O—s—©
© SR

\ integrated type graph /

Fig. 11. Integrated type graph for the combined LBAC and ACL security model.

5.2. Integration of ACL and LBAC

The type graph in the middle of Fig1 shows the types common to ACL and LBAC. TbeO and
the P type nodes are to be considered the same in both models. The edge betwdamththeP node
is a common part as well. The gluing (pushout) of the two type graphs is the type graph at the bottom

of Fig. 11

All rules are kept in the integrated security policy framework, but their component graphs are now
typed over the integrated type graph. The constraints of the integrated policy framework in this example
are given by the union of the constraint sets of the LBAC model (now typed over the integrated type
graph) and the ACL model. Other combinations of the sets of constraints are possible (see the appendix

and the next section).
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6. Coherence

The graphs that can be constructed by the rules of a framework represent the system states possible
within the policy model. These graphs are calB®gtem graphsn the sequel. We Have added the
constraints to the security policy framework to have a declarative description of wanted and unwanted
system graphs, but we have not related the constraints with the rules of a framework. Do the rules construct
all the wanted system graphs required by the positive constraints and do the rules prevent the construction
of unwanted system states expressed by the negative constraints? If the rules do so, the framework is
calledcoherent

Definition 12 (Coherencg A security policy framework ipositive(resp.negative coherentf all system
graphs satisfy the constraintshos(resp.Neg.
A security policy framework igoherentf it is both positive and negative coherent.

If we consider the integrated security framework in SecEpim which the set of rules and constraints
is constructed by the union of rules and constraints of the LBAC security framework and the ACL security
framework, we realize that the integrated framework is not coherent. An example of such aninconsistency
is given by the LBAC constraintsl andc3 in Fig. 6, which require a security level for each object and
process, and by the ACL rules that create objects and processes without a security level, generating graph:s
that do not satisfy the constraint$ andc3. Moreover, we have now both the negative LBAC constraint
¢5 which forbids an owner for any object and the positive ACL constr@Bwvhich requires an owner
for each object. The constraints are in conflict in the sense that it is not possible to find a graph satisfying
both constraints at the same time.

Beside the conflicts that render a framework incoherent, because of the rules that produce graphs which
does not satisfy the constraints, we have conflicts even if the rules may produce only graphs that satisfy the
constraints. These conflicts occur between rules stemming from different component policy frameworks.
Consider as an example the LBAC rulew object in Fig.3 and the ACL rulecreate object in
Fig. 12. The rulecreate object creates an object with a security level, the méav object an
object without one. Which rule shall be applied in this type of conflict?

The examples show that an integration of previously coherent frameworks does not lead in general to a
coherent framework. Problems may occur between arule and a constraint, between two or more constraints
or between two or more rules. We investigate first how the pushout preserves coherence. Since the pushou
cannot guarantee conflict-freeness, in the following sections we consider conflict management strategies
to resolve conflicting constraints, conflicting rules and conflicts between a rule and a constraint.

LBAC ACL

new object create object @ @
@ (©

Fig. 12. Two rules for creating objects: the rulew object of the LBAC model (left-hand side) and the rutecate
object of the ACL (right-hand side).
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The question now is:
if the frameworksS P1 and S P, are coherent, is the pushdslPalso coherent? As shown before, this is
not generally the case. If we choose the intersection as the operation to construct the constraint sets of
the pushout framework (see Theorénd), coherence is preserved.

Proposition 13 (Preservation of coherengeGiventhe coherentframework#; andS P, and the frame-
work morphismsfy : SPo — SPiand f» : SPy — S P, the pushout objec§ P = (TG™, (P™™, 7 pint),
Pos™, Neg) of 1 and f>in SPwith Pos™ = Fy . (Posl)ﬂFf;G (Posp) andNeg"t = Fy . (Neg1)N
Ff%c (Neg2) is coherent

Proof. Each constraint inVeg™ is also given inNeg1 and Negz (up to re-typing). The intersection
requires that the negative constraintsz\ig'”t refer to common types only. L& be a graph generated
by the rules inSPandc¢ € Neg'™. Since the policiess P, and SP, are coherent, their rules do not
create a graph that does not satisfiafter re-typing). If the rules of P1 and S P, are not identified by
f andg, they occur up to re-typing i8P, i.e., they create iBPthe same graphs as §wP; and S Py,
respectively, all satisfying. If a rule p1 from SP; and a rulep, from S P, are identified byf andg,
their amalgamated rule is constructedSR The rulesp; and p2 perform the same action on the com-
mon types, as they differ only on the hon-common types. Since the congtraimvever, refers only
to the common types, the amalgamated rul&icannot create more on the common types than the
component rulegp; and p». Since they construct only coherent graphs, so does the amalgamated rule
in SP.

The argument for the satisfaction of constraint®iss™™ is similar. O

Coherence with respectto the union operation on constraints (in Théod@m generally not preserved
by the pushout construction, as the ACL-LBAC integration example shows. The positive ACL constraint
d3, which requires a user for each object, is satisfied by the ACL rules, but the integrated framework
contains also the LBAC rules and, in particular, the nég object , so that graphs that do not satisfy
d3 can be constructed.

The reason for the incoherence with respect to the constraints, in the case where the union operation
is used, can be reduced to the parts of the constraints referring to the common types. Coherence of
constraints referring to types occurring onlySi; or only in S P, is preserved.

Proposition 14. Given the coherent frameworksP; and SP, and the framework morphismf :

SPy — SPrand fo : SPy — SPy, the pushoutSP = (TG™, (P™, rpin), Pos™, Neg™) of

f1 and f> in SP with Pos'nthrTG(Posl) UFy (Pos») and Neg'nthrTG (Neg1) U Fp. (Neg») is in-
coherent if and only if SP is incoherent with respect to the constraints containing types
in TGo.

Proof. The direction« follows by definition. For the directiors, consider a grapls generated by
the rules ofSPthat does not satisfy a constrambf SP. If ¢ is a constraint that refers to non-common
types occurring only ir§ P1 (resp.S P»), only the rules ofS P1 (S P2) are concerned with these types. By
pushout construction, the rules ®P; (S P2) occur up to re-typing as rules or sub-rulesSR There are
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no other actions on non-common typesSRthan those inS P, (S P2). Therefore, the generated graph
structures with respect to the non-common typesS fa and SP coincide and each constraint referring
only to non-common types is satisfied [

7. Conflict management

The previous section shows that the satisfaction of constraints is generally not preserved when policies
are combined. By restricting the construction of the set of constraints, coherence can be achieved in
some cases, but there are still many practical cases that lead to inconsistent frameworks. Therefore, this
section investigates static conflict detection and automatic conflict resolution strategies to transform an
incoherent framework into a coherent framework.

We deal first with conflicts between constraints, then consider conflicts between rules. The next section
deals with conflicts between rules and constraints.

7.1. Constraint—constraint conflict

In this section we discuss the problem of a security policy framework having constraints which require
contradictory properties of a system graph.

Definition 15 (Contradictory constraints, contradictory policyTwo constraints areontradictory iff
there are no graphs that properly satisfy both constraints. A security policy frameuors (TG,
(P, rp), Pos, Neg) is contradictoryiff Neg U Pos contains at least a pair of contradictory constraints.

An example is the integrated ACL-LBAC framework, where the ACL constrdghand the LBAC
constraintcs5 cannot be satisfied by the same graph.
One way to determine whether a framework is contradictory is to analyze constraints in pairs.

Definition 16 (Conflict of constraints Given two constraints; : X; — Y; fori = 1, 2, ¢ isin conflict
with ¢ iff there exist graph morphismgy : X3 — X, and fy : Y1 — Y> such thatfy o c1 = ¢z 0 f¥.

chﬁlyl

Tk

X2 7 YQ
The conflict isstrict if the diagram is a pushout. Two constrainisandc, are in conflict if eitherq is in
conflict with ¢z or ¢z is in conflict withey.

Conflicts of constraints can be classifiectiitical andharmlessthe latter referring to constraints that
contain redundant restrictions as the following result indicates. In the harmless aeass, iii conflict
with ¢5, thenc is really a subconstraint @b.
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Fact 17 (Harmless conflics (1) If ¢1, c2 € Neg andcy is in conflict withep, then if G satisfiess, then
G satisfies:;.
(2) If c1, c2 € Pos andc; is in strict conflict withe,, then if G satisfiess, then G satisfiesy.

Proof. (1) If g : X — G thengo fx : X1 — G. If G did not satisfycy, then there would exist
h:Yo,— Gsuchthati oco = g. Buttheng o fx = hocoo fx = ho fy oc1, contradicting the fact
thatG satisfies.

2)If g: X2 — Gthengo fy : X1 — G. SinceG satisfiesc1, there existd: : Y1 — G such that
hoc1 = go fx.Bythe Universal Property of pushouts, there extsts¥, — G such thak o fy = h
andk o co = g. The last equality is exactly what is needed to conclude@wtisfiess. [

When the two constraints in conflict are one positive and one negative, then any graph satisfying one
cannot properly satisfy the other one.

Proposition 18 (Critical conflicty. If ¢ is in conflict withcy, then

(1) if c1 € Neg andcp € Pos, then if G satisfies, then G does not properly satisfy,

(2) if c1 € Pos andca € Neg, and the conflict is strigtthen if G satisfies, then G does not properly
satisfyca,

(3) if c1 € Neg and fx does not satisfyq, then if G properly satisfies, then G does not satisty.

Proof. Let ¢1 be in conflict witheo via fy and fy.

(1) If g : X2 — G andG satisfiescp, then there existg : Y — G such that: o c; = g. But then for
go fx : X1 — Gthereexistdio fy : Y1 — G suchthatio fy oci =hoczo fx = g o fx, which
says thats does not satisfy;.

(2) If g: X2 — G andG satisfiescy, then there exists : Y1 — G such that: o ¢c1 = g o fx. By the
Universal Property of pushouts, there existsY, — G such thatk o fy = h andk o c2 = g, and
thusG does not satisfy,.

(3) Since by Definitionl6 fx does not satisfy; there is a total morphisny : Y1 — X5 so that
yoci= fx.lfgo: Xo— Gthengo fx : X1 — Gandgoy:Yy — Gwithgo fxy =goyoci.
ThereforeG does not satisfy;. O

The ACL constraint/3 in Fig. 10 and the LBAC constraint5 in Fig. 6 are in a critical conflict.

Conflicts between constraints that render a framework contradictory can be resolved by removing
or weakening one of the constraints. Weakening a constraint means to require the satisfaction of the
constraint only conditionally. A condition for a constraint is a negative constraint that has to be satisfied
before the constraint is checked.

Definition 19 (Conditional constraint. A positive (negativeonditional constraint(x, ¢) consists of
a negative constraint : X — N, called constraint conditionand a positive (negative) constraint
c: X — Y. Atotal graph morphismt : X — G satisfies a conditional constrai@t, ¢) if and only if
whenevelk satisfies the constraint conditiank also satisfies. A graphG satisfies(x, ¢) iff each total
graph morphisnt : X — G satisfieq(x, ¢).
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A conditional constraint solves the conflict of a constraintvith a constraint, (via fx and fy) by
introducing a constraint condition fef that requires the satisfaction of if and only if ¢2 is vacuously
satisfied (i.e., the premise of does not occur). The constraint conditign has this property foe;.

Fact 20. Letcy : X1 — Y1 beaconstraintin conflictwith the constraint: Xo — Yovia fx : X1 — X»
and fy : Y1 — Yo, then G satisfieg’y (considered as negative constrgiiftand only if G vacuously
satisfiess.

Proof. (=) If there exists a morphism : X — G, theng o fx : X1 — G and, thereforeG would not
satisfy fx. This is a contradiction to the assumption tagatisfiesfy.

(<) The graphG can satisfyfx either vacuously or properly. If there is no morphigm X; — G,
then G satisfiesfx vacuously. If there is a morphism : X1 — G, then there cannot be a morphism
g : X2 — G with g o fx = p sinceG vacuously satisfies,. HenceG satisfiesfxy. O

Definition 21 (Conditional constraint confligt A conditional constraintx1 : X1 — N,c1: X1 — Y1)
is in conflict with a conditional constraitiis : Xo — N, c2 : X2 — Y2) if ¢1 is in conflict with ¢ (cf.
Definition 16) and fx satisfiesy;.

Definition 22 (Weak constraint Letc; be a constraint in conflict with the constraintvia fx and fy.
Theweak constrainti2 for c1 with respect ta:; is the conditional constrairzrfl2 = (fx,c1)-

Fact 23. If ¢1 is a constraint in conflict with the constraimp, then the weak constraim‘f is not in
conflict with the constraint;.

Proof. While there are still morphismgy and fy, the morphismfy satisfies;? by construction of the
weak constraint, sincgy does not satisfy the constraint conditionc§f. Thereforec? andc; are not
in conflict. O

The strategy adopted to solve conflicts (removing or weakening) depends on the particular application
and on the context of the conflict. If the conflict arises from a transition between two policy frameworks,
then a radical strategy giving priority to the new policy would consistently choose the constraint from
the surviving policy and remove the other one. In conflicts arising from integration, another strategy may
select constraints from either policy depending on the specific pair and weaken them. A general discussion
of strategies is outlined iflL1]. It is worth stressing that determining a conflict between constraints can
be performed statically and automatically.

7.2. Rule-rule conflicts

Two rules are in g@-conflict(potential conflict) if they do (partly) the same things but under different
conditions. Aconflictoccurs if p-conflicting rules can be applied to the same system graph. The choice
for one rule in a conflict may prevent the applicability of the other rule. This kind of conflict is called
critical, otherwise it is only darmless conflict
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The example in Figl2 shows the LBAC rulmmew object and the ACL rulecreate object
These rules are in p-conflict, since both rules create a new objecthodbe rulenew object creates
an object with a security level, the ruteeate object an object without one.

A static analysis of the rules can detect the critical and the harmless conflicts before run-time so that
the rules can be changed to avoid the conflicts. The static analysis of the rules make is based on graph
transformation concepts.

Definition 24 (Conflict pair). Two rules p1 : Llil\ R1 with application conditionA(p1) and ps :

ng R> with application conditionA(p2) are inp-conflictif there exists a common non-empty sub-
rule for p1 and p».2

Each painmy : L1 — G, m2 : L» — G) of matchesn1 andm for rulesp; andp», respectively, is a
conflict pairfor p1 and p2. The rulesp1 and p» are inconflict if they are inp-conflict and there exists a
conflict pair for p; and p». Otherwise, they are callemnflict-free

Notice that in Definition24, m;, i = 1, 2, is a match forp; and therefore it satisfies the application
conditionA(p;). The definition of a conflict between rules considers matches for p-conflicting rules into
arbitrary graphs. In general there exist infinitely many matches for one rule, so that the decision cannot
be made whether two p-conflicting rules are in conflict by checking each of them. Therefore, the set of
matches must be reduced for a static analysis. To detect a conflicting rule pair, it is sufficient to consider
all the gluings of the left-hand sides of the rules.

Definition 25 (Set of conflict pairs Given p-conflicting rulegp; : Lli1 R1, A(p1) and(p> : LZL2
R>, A(p2)), thesetC P(p1, p») of conflict pairsfor p; and p> consists of all conflict pairény : L1 —
G,m2: L, — G), wherem1 andm> are jointly surjective?

The set of conflict pairs for two rules in a rule-conflict consists of a finite number of pairs since the left-
hand side of a rule is a finite graph. It is sufficient to investigate the conflict pairs into tGePget, p»)
to decide the conflict-freeness of the two rules.

Theorem 26(Conflict-freenegs Let C P(p1, p2) be the set of static conflict pairs for the p-conflicting

rules(p1 : L1 A R1, A(p1) and(p2 : Lo s R>, A(p2)). Then the rulesp1 and p, are conflict-free if
and only ifC P (p1, p2) is empty

Proof. We show thap1 andp2 are in conflict if and only if there is a conflict pdirn1, m2) € CP(p1, p2).

(=) If p1 andp2 are in conflict, there is a conflict paimy : L1 — G, m2 : Lo, — G). Let the outer
diagram below be the pullback ef; andm2 and diagram (1) be the pushoutiaf andins.

2A rule pg : Lo2 Rp is a subrule of rulep : L L R if there are total morphismg; : Lo — L and fg : Rg — R with
ro fr = frorg.
Sthatis,mq(L1) Uma(Ly) = G.
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The pair(m’, m%) is a conflict pair inC P(p1, p2) sincem’ andm, are jointly surjective by (pushout)
construction. Furthermore, they satisfyp1) and A(p2), respectively, since otherwise, there would be
total morphisms:; : N; — G’ with n} o x; = m! for (x; : L; — N;) € A(p;) andi = 1, 2. Since
diagram (1) is a pushout diagram, there would exist a uniqué’ — G withu om = m; (i = 1, 2).
Therefore, the morphism o n! for i = 1, 2 would prevent the satisfaction ¢f; : L; — N;) for m;.
This is a contradiction.

The direction«= follows directly from Definition24. O

Ly

The set of conflict pairs for rules may be split iftarmless conflict pairandcritical conflict pairs
The distinction is based on whether the order of rule application is critical. Edtieal conflict pair
(m1, mp) the order is important: after applying at matchmny, the rulep, is no longer applicable or vice
versa. For darmless conflict paim1, m2) the order does not matter: after applyipgat matchm, the
rule p» is still applicable and vice versa. Critical and harmless conflict pairs are defined and detected by
the graph transformation conceptprallel independencgt].

Definition 27 (Parallel independenge Givenrules(p; : L1 A R1, A(p1)) and(p2 : Lo 2 R2, A(p2)),

the derivationG £ Hi andG 2 H> areparallel independentf r5 o m1 is total and satisfied (p1) and
r] o mz is total and satisfied (p2). Otherwise, the derivations are callearallel dependent

Ri<"—1L, Ly,—"2>R,

H~—r—G———H

1 2

Two derivations are parallel independent if the first rule does not delete anything needed by the second
rule and it does not create anything that the NAC of the second rule forbids. The same conditions must
be satisfied for the second rule with respect to the first rule. In the case of parallel independence, the
application of rulep at matchni and the subsequent application of rpleatr; o mp results in the same
graph (up to isomorphism) as the application of rpjeat matchmy and the subsequent application of
rule p1 atr; o my. For a proof of this result, s¢d].

Definition 28 (Harmlesgcritical conflict pair). A conflict pair(m1, m2) forrulesp; andp2 is aharmless

conflictif the derivationsG """ H; andG "2 H, areparallel independenOtherwise, the conflict pair
is acritical conflict
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LBAC ACL
new object create object @ @
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weak "new object" w.r.t. "create object" weak "create object” w.r.t. "new object”
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@ (29

Fig. 13. The weak rule fonew object andcreate object

We propose two possible strategies to solve critical conflicts between p-conflicting rules. In the first
strategy, one rule is given priority over the other one. One rule is choseajasruleand denoted by,
and one asninor ruleand denoted by,. For a conflict paim1, m2), the rulep, is changed by adding
a NAC that forbids its application at matelyp if p1 can be applied at1. The second strategy integrates
the two rules into one rule. If11] we discuss alternative strategies.

Definition 29 (Weak rul@. Given a conflict paifim1, m») for rules(p1 : Lli1 R1, A(p1) and(p2 :

Lo z R>, A(p2)), theweak rulefor py w.r.t. (m1, mo), denoted byW R(p1, p2, (m1, m2)), is the rulepo
with the NAC (L2, N), where the outer diagram below is a pullback and diagram (1) (the top half) is a
pushout diagram.

e9)

L1—>N<—L2

SN

We call the NAC(L», N) theweak conditiorand denote it bW C (p1, p2, (m1, m2))

The addition of the negative application conditi@hC (p1, p2, (m1, m2)) to the minor rule ensures
that the major and the minor rules cannot be applied both to the same system graph with matohes
ma, respectively.

Example 30(Weak rulg. Let us show an example of theeak rule the rule extended by the weak
conditionWC (p1, p2, (m1, m2)) in Definition 29. Fig. 13 shows the example of the p-conflicting ACL
rule create object and the LBAC rulenew object . The set of conflict pairs for these two rules
has two elements: the inclusioi$, : L1 — L1 ® Lo, in2 : Lo — L1 @ L) of the left-hand sides
into the disjoint union of left-hand sides, and the inclusigng : L1 — G,in, : L, — G) of the
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Fig. 14. Amalgamation of rule-conflicting rules.

left-hand sides into the grap®, which is the gluing of the left-hand sides over the néde Fig. 13

shows the weak rules with respect to the second conflict pair. The weak ruteefite object

w.r.t.new object has a NAC that forbids a security level for the process. Therefore, the weak rule for
create object is only applicable to processes belonging to the ACL model and without a counterpart

in the LBAC model. The weak rule fatew object with respect tacreate object has a NAC

that forbids a user connected to the process. Since each user is connected to a process, the rule is neve
applicable.

Proposition 31 (Major rule and extended minor rule are conflict-flfee€siven the set of conflict pairs
C P (p1, p2) for p-conflicting rulesp; and p2, the rulep; and the weak rule’, extended by & C (p1, p2,
(m1, m2)) for each(mq, mo) € C P(p1, p2) are conflict-free

Proof. Letmy : L, — G be a match fop, extended by C(p1, p2, (m1, m2)) (see Definition29),
i.e. my satisfiesW C(p1, p2, (m1, m2)). If we assume thatk; : L1 — G is a match forpq, then there
exists, by construction oW C(p1, p2, (m1, m2)), a unique morphisnk : N — G so thatu on =
mo2 (the outer diagram commutes by the pullback property). This is a contradiction,iginsatisfies
WC(p1, p2, (m1,mp)). 0O

The second solution for solving conflicts between rules isatinalgamatiorof the conflicting rules
over their common subrule. The amalgamated rule for two rules over a common subrule has as left-
hand side the colimit of the subrule-morphisms for the left-hand sides, as right-hand side the colimit of
the subrule-morphisms for the right-hand sides and the rule morphism is given by the universal colimit
property[1]. The NACs of the rules are integrated over the common objects specified in the left-hand
sides.

Definition 32 (Amalgamated rule Let (p; : L; U R, A(p;)) fori = 1, 2 be p-conflicting rules and
pPo: LOE\ Rowith f7, : Lo — L; and fg, : Ro — R; their common subrule (cf. Fid.4).

Theamalgamated rulef p1 and p> with respect tqg is given by(p : L N R, A(p)), where diagram
(1) is the pushout of 7, and f7,, diagram (2) is the pushout ¢k, and fz, andr is the induced universal
pushout morphism.
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Fig. 15. Amalgamation of rule-conflicting ruleseate object andnew object .

The setA(p) contains a NACG: : L — N for each pair of NACs1; : L1 — N1 € A(p1) and
np : L — N2 € A(p2), whereN is the pushout of1 o f7, andnz o f1, andnis the induced universal
pushout morphism.

Example 33. Fig. 15shows the amalgamated rule for the rutesate object andnew object

Their common subrule is shaded in the rules and contains the procesBxivdine left-hand side and

the node®xandOxin the right-hand side. The amalgamated rule creates an object that belongs to a user
as well as a process and carries a security level.

The amalgamated rule answers the question “which rule shall be applied in a conflict” by “both”
instead of favouring one. As in the case of constraints, the actual conflict resolution strategy depends
on the application and the context of the conflict. Also rule conflicts can be determined statically and
automatically.

8. Rule-constraint conflict

In this section, in order to address conflicts between constraints and rules, we classify delesing
andexpandingrules. Deleting rules delete graph elements, but do not add anything-§isge(r) =
R C L); expanding rules may add graph elements, but do not delete anythind4igr) = L € R).

A conflictbetween a rule and a constraint occurs when the application of the rule produces a graph
which does not satisfy the constraint. The potential for conflict can be checked statically directly with
the rule and the constraint without knowledge of specific graphs and derivations. A deleting rule never
violates a negative constraint, since the rule does not add forbidden graph elements. But a deleting rule
may violate a positive constraint if the rule deletes conditionally required graph elements but preserves
the condition for their existence. An expanding rule may violate both negative and positive constraints:
it may add forbidden graph elements specified in a negative constraint or it may complete the condition
for a positive constraint without making sure that the required graph elements exist under this condition
as well.
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Definition 34 (Rule-constraint conflic}s Let p : L S~ Rbean expanding rule and: X — Y a con-
straint, thenp andc are inconflictif there exists a non-empty graghand injective total morphisms
s1:8 — Rands2: S — X sothats1(S) N (R\ r(L)) # 0.

Letp : L L Rbea deleting rule and : X — Y a positive constraint, themandc are inconflict
if there exists a non-empty graf@and injective total morphismg : S — L andsz : S — Y so that
s1(S) N (L \ dom(r)) # @ ands2(S) N (Y \ X) # 0.

Conflicts between rulgs and constraints : X — Y can be resolved by adding NACs to the rutes
We present next the construction of these negative application conditions and then show how it is used
to resolve conflicts.

Definition 35 (Reductio. Given a rulep : L L“Rand a non-empty overlaf betweenR and the
conclusiony of the constraint : X — Y as in the following diagram:

>R G2 X

T

C Y

r

LetC = R +s Y be the pushout objectaf : S — R andcosz : § — Y in the categoryGraph,
-1 -1
and letc =" N be the derivation with the inverse rule’ : R'— L with matchh. Define A(p, ¢) =

-1
{(L,N)| C (r:>’h) N, C = R +g Y for some overlagg}. The rule p(c) consists of the partial morphism
L~ R and the sefd(p, ¢) of NACs and is called theeduction of p by ¢

The construction considers arbitrary rules and constraints, i.e., itis not restricted to deleting or expand-
ing rules, respectively. This construction reduces to the one descrilp@lifthe constraint : X — Y
is the identity morphism.

The construction in DefinitioB5 may generate redundant application conditions. In fact, if we assume
that G already satisfies the constraiytsome application conditions are automatically satisfied. This
corresponds to the case where the oveflap- R can be decomposed infb— L — R. The graphN
generated from such an overlap can be eliminated directly from Defir@fdny requiring only overlaps
Sfor whichs1(S) N (R \ (L)) # @. In this manner, the application conditidhAC1 of Fig. 18 can be
removed.

Another form of redundancy stems from the fact thagiifwith morphisms;% and s21 and S> with
morphisms:? ands3 are overlaps and, say C S, sils, = 52, s3|s, = s2thenC2 = R+, ¥ C C1 =
R +s, Y and thusV, € N1. Hence, if a matclh. — G satisfieg L, N»), then it also satisfied., N1) and
the application conditiogL, N1) can be removed from (p, c¢). Consider for example Fid.7, where the
overlaps$s is included into the overlaps. Therefore NAC3 C NAC1 (cf. Fig.18) and we can remove
NAC1.

In the next subsections, the different combinations of exparidilgting rules and positiyeegative
constraints are analyzed and the appropriate preservation results presented.
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8.1. Conflicts between constraints and deleting rules

There can be no conflict between a deleting puteL L Randa negative constraint X — Y, since
the deleting rule may remove parts¥fin which case is trivially satisfied, or parts oX, in which case
cis vacuously satisfied.

Theorem 36(Deleting preserves satisfactipnLetp : L L Rbe a deleting ruleG a graph that satisfies
the negative constraint: X — Y andG L H, then H satisfies ¢

Proof. By definition, the following is a pushout diagram:

L——~R
G—H

T

Sincep is deleting, there exist total morphisnfs: R — L andg : H — G suchthain o f = g o m*.
Letk : X — H. If H did not satisfyc, then there would exist a morphisgn: ¥ — H such that
XxSy4H=xLH Butthenx Sy %5 HSEG6 = x5 HS G, contradicting the assumption
thatG satisfiex. 0O

For the conflict between deleting rules and positive constraints, it is possible to add NACs that prevent
the rule from destroying the conclusid¥nby preventing the applicability in the presencexaf part of
the conclusiorY is intended to be deleted by the rule.

Theorem 37(Satisfaction by reductign Letp : L L Rbea deleting rule and G a graph that satisfies
the positive constraint : X — Y. Furthermore let p(idy) = (idp, A(idr, ¢)) be the reduction of

id, : L — Lbyidy : Y — Y,and definep(c) = (r, A(idy, ). If G5 H is a derivation withp (c),
then H satisfies.c

Proof. Let G % H via the matching morphism : L — G andk : X — H a morphism.
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negative constraint

N

Fig. 16. Negative constraint for the LBAC model which requires at most one successor security lattice level.

Sincep is deleting and is injective,k’ = P ok:X — H — G is well-defined and total. By the
assumption tha® satisfiesc : X — Y, there exists a total morphisqn: Y — G such thaty o ¢ = k'.
Now (r*og)oc =r*o(goc) =r*o (r*fl o k) = k, so that the proof is complete if we can show
thatr* o g : Y — H is total. Sinceqis total, it is sufficient to show that* is defined forg (y) for every
y € Y. Suppose not. Then, for somes Y andl € L \ dom(r), q(y) = m(l) defining hence an overlap
of L andY and thus contradicting the assumption thmegatisfies the NACA(id; , ¢) of p(c). O

8.2. Conflicts between negative constraints and expanding rules

For the conflict between expanding rules and negative constraints, the NACs prevent the rule from
completing the conclusioyiof the negative constraiat: X — Y. The following result confirms that the
construction is the appropriate one.

Theorem 38(Reduction preserves satisfactjorLet p : L ' R be an expanding rule and G a graph

@g)

that satisfies the negative constraint X — Y. If p(c) is the reduction of p by ¢ an@ H is a

derivation withp(c), then H satisfies.c

Proof. Suppose, looking for a contradiction, that there exists a morpliisit — H.SinceH = R+, G,
there exist partial morphismg : Y — R andfg : Y — G such thatfg U f¢ = f. SinceG satisfies
¢, fr cannot be empty. Hence there exist an ove8ayh R andY which generates one of the NACs in
A(p, c¢) in Definition 35. This contradicts the applicability gf(c) to G necessary to produdé. O

Example 39(Negative constraints and expanding rules conflide give an example for the LBAC

model to which we add the negative constraint in Hig, denoted byc(succ) in the sequel, which

forbids two (or more) successors for a security level. The (expandinghewdevel 2 in Fig.5may

produce an inconsistent state by adding a successor level to a security level which already has a successo
Fig. 17 shows non-empty overlapgl, $2 andS3 of the right-hand side of the ruleew level 2

and the constraint(succ). The remaining overlaps use the same subgraghs2 andsS3, but different

morphismss; andsz. For each overlaf, the pushoutC, R — C, X — C) of the morphisms — R

andS — X — Y is constructed (see Fig7 for the example overlaps). The application conditidn V)

is constructed by applying the inverse rfilef new level 2 to the graph<i resulting in the graphs

-1
4Theinverse rule ofa rulg: L L Rwithan application condition is the ru)e‘1 : R~ L without the application condition.
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Fig. 17. Non-empty overlaps between the right-hand Bidénew level 2 and the conclusiol of the negative constraint
c(succ).

S1 S,

h1

NAC 1 NAC 2 NAC 3

N ¥
fsLyorsL @ - -

Fig. 18. NACs constructed from the overlaps.

Ni. The inverse rule ofiew level 2 deletes a security level. The generated application condition for
the gluingC is then the paifL, N). Fig. 18 shows the pairg¢L, N) for the three overlaps in Fig.7. We
depict only the grapN in which the graph. is drawn by solid lines, and the pavt\ L by dashed lines.

8.3. Conflicts between positive constraints and expanding rules

The following result shows that the construction in DefinitRiis sufficient to guarantee the preser-
vation of satisfaction of constraints in the case of an expanding rule and a positive constraint too.

Theorem 40(Reduction preserves satisfactjorLet p : L R be an expanding rule and G a graph
that satisfies the positive constraint X — Y. If p(idy) is the reduction of p bydyx : X — X, and

id . L ) -
G p(’:>X) H is a derivation withp(idy), then H satisfies.c

Proof. The proof is this result is straightforward. By construction, the reductiomof idx prevents
the application op from constructing additional occurrencesfin H. Therefore, eitheH vacuously
satisfiex (no occurrences of in H) or occurrences oX in H are inherited fronG. SinceG satisfiesc,
the occurrence oX can be extended tand, since is expanding, it remains iH. O

For the conflict between expanding rules and positive constraints, the NACs prevent the rule from
completing the conditioiX.
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Fig. 19. The negative application condition is too strong.

Example 41(Positive constraints and expanding rules conjlideig. 19 on the left-hand side describes

an example for the reduction of the expanding rtieate object and a positive constraint which
requires a value for each object. The reduction adds a NAQ.) which has been drawn explicitly. The
right-hand side of the figure shows the deleting rdédete level and a positive constraint which
requires a security level for each object. The NAC for the dellete level is the NAC of the reduction

of the identity rule on the nod8Lxby the identity morphism on the conclusion of the constraint. This
NAC forbids the deletion of security levels that are connected to an object. This NAC is already described
in Fig. 5 and shows the correctness of our LBAC graph model with respect to thdeldee level

and the constraint for the existence of a security level for each object.

The solution for conflicts between expanding rules and negative constraints as well as for conflicts
between deleting rules and positive constraints is a reasonable reduction of the number of system graphs
which the rules can produce. The solution for conflicts between expanding rules and positive constraints,
however, is not very satisfactory, since it reduces the number of system graphs that can be generated mort
than necessary. For example, the reduction of thecnglate object by the positive constraint in Fig.

19 preserves consistency, but it cannot be applied since the NAC is never satisfied. This example of the
required object value suggests for positive constraints and expanding rules a construction which extends
the right-hand side of a rule so that the rule creates the entire conclusf@constraint : X — Y and

not only parts of it, when the rule constructs parkofn the object value example, the right-hand side of

the rulecreate object must not only create the object no@g, but Ox together with a value node.

The construction in Definitiod2 describes the details of a possible solution.
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Definition 42 (Completing rulg¢. Letc : X — Y be a positive constraint anel: L 5 Ran expanding
rule. Thecompleting rulep*(c) for p andcis given byv; o h; or : L — R’, where

LRt g P x
-
R<%_¢, __y

e Q=1{R & Si 2 X, I =1,...n}isthe set of all non-empty overlapsiRfandX so thatsi(S,-) N(R\
r(L)) # 9,

e foreachR <~ 5, 2 X € @, (Ci, hyi, yi) is the pushout of the injective morphismisandc o s5 in
Graph,
e (R',v; : C; — R)is the colimit of the morphisma; : R — C; in Graph.

Notice that, by definition of colimity; o #; =v; o h;, for all i, j, and therefore the choice of the index
in definingp*(c) = v; o h; or : L — R’ is immaterial.

Fig. 20illustrates the construction of the completing rule for the onésate object and the positive
constraint in the left-hand side of Fij9. The figure shows the only non-empty overlagRandX which
contains created elements. The construction extends the right-hand side of tireatdeobject o]
that the value node for the new object is also created.

The completing rule, however, does not preserve consistency for each positive constraint. The coun-
terexample in Fig21shows the completing rule for a rule which creates a oded a positive constraint
c which requires all node& andB to be connected via@ node. The completing rulg(c) is applied to
a consistent grap@ on the right-hand side of Fi@1, but the resulting grapH is not consistent.

s2

<

-
o

Fig. 20. Construction of the completing rule.
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Fig. 21. Counterexample construction.

If we restrict positive constraints teingle positive constraints, the construction always produces a
consistency—preserving rule. A positive constraint X — Y is a single positive constraint X
contains at most one node.

Proposition 43. If ¢ is a single positive constrainthe completing rulep*(c) for a rule p is consistent
with respect to ¢

Proof. Let G be a graph which is consistent with respect toX — G, andG p-:gc) H a derivation with
p*(c) and co-match* : R — H. If there is no morphisng : X — H, thenH vacuously satisfies.

If cis a single positive constraint and there is a graph morplisti — H, theng(X) € H \ m*(R’)
org(X) € m*(R). If g(X) € H\ m*(R") theng(X) contains only elements already occurring@n
SinceG satisfiesc, there is a morphism : Y — H with ¢ = g o c. If g(X) € m*(R’) thenXis one
of the overlapsS; betweenX andR in the construction of Definitiod2. If Sy is the overlap, then, since
C1 is the pushout object, there is a morphiggnt ¥ — Cj so thatm™ o v1 o y1 IS the needed extension
ofg. O

Another possibility to resolve conflicts between positive constraints and expanding islestrans-
form the positive constraint into a rule and then require that this rule be applied (after the applicgjion of
as long as there are occurrenceXafot “visited” in H. The new rule is just the total morphiskh— Y
with negative application conditiofX, Y) to avoid its application repeatedly on the same paH .of

Definition 44 (Constraint-repair rulg. For a positive constrainrt: X — Y, theconstraint-repair rule
for cis given byrep(c) = ¢ : X — Y with NAC (X, Y).

The proof of the following result is straightforward.

Proposition 45(Satisfaction after repajr Let p : L R be an expanding rule and G a graph that
satisfies the positive constraint: X — Y. If G = H is a derivation consisting of applying the
expanding rule p once and théfi is obtained by applying to H the constraint-repair rulep(c) as long
as possiblethen H' satisfies ¢
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It is necessary to add “control” on the framework to ensure that this new rule is applied ‘as long as
possible’. Control can be introduced either by using rule exprespidos the notion of a transformation
unit [14] as an encapsulation mechanism used in a way similar to procedure calls.

9. Concluding remarks

In the formalism presented here to specify AC policies, states are represented by graphs and their
evolution by graph transformations. A policy is formalized by four components: a type graph, positive
and negative constraints (a declarative way of describing what is wanted and what is forbidden) and a set
of rules (an operational way of describing what can be constructed). The framework offers the conceptual
tools needed to discuss the effect of integrating two policies using a pushout in the category of policy
frameworks and framework morphisms.

An important problem addressed here is how to deal with inconsistencies caused by conflicts between
two constraints, between two rules or between a rule and a constraint. Often such problems arise when
trying to predict the behavior of an AC policy obtained by integrating two separate coherent Ja}ies
The conflict between a rule of one policy and a simple constraint of the other policy has already been
addressed in part elsewhgi,13], where it is also shown the adequacy of this framework to represent
different Access Control policies. Here we have tackled the problem of conflicts by making effective use
of the graph-based formalism. Conflicts are detected and resolved statically by using standard formal
tools typical of this graph-based formalism. In the process, we have introduced the notions of conditional
constraint and of weakening of a rule.

We have shown how conflicts can be detected in a security framework and proposed several strategies to
automatically resolve the conflicts. Since there are several possible resolution strategies, the administrator
has a choice. These resolution strategieswagta policiesthat deal with the choices in the application
of policies. We have introduced the notion of a metapolicji®] and proposed three examples:

e The meta policyadical chooses a major polic§ P1 and a minor policys P, and solves the problem
of conflicting rules or constraints globally by selecting the rules or constrait®pénd deleting the
rules and constraints ofP5.

e The meta policyweakRadicakeeps the conflicting rules or constraintsSa?,, but weakens them to
favour the application or the satisfaction, respectively, of the corresponding rules and constraints of
SPq.

e The meta policystatickeeps some rules and constraint fr6i® and some fron$ P2, weakening the
corresponding conflicting rules and constraints of the other policy. The choice of which one to weaken
is made on a pair-by-pair basis.

The choice of the appropriate meta policy may depend on the specific application domain of the particular
AC model.

Among the problems still under investigation are the transition from a system using one policy to a
system using another policy.

A tool, based on a generic graph transformation engine, is under development to assist in the system-
atic detection and resolution of conflicts and in the stepwise modification of an evolving policy while
maintaining its coherence.
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Appendix A. Category of security policy frameworks

We provide in this appendix the categorical formalization of our model by defining the category of
security policy frameworks and framework morphisms.

Definition A.1 (Category of security policy framewonksThe category of security policy frameworks
denoted by5P, has as objects all security policy frameworks and as morphisms all framework morphisms.

Proof. For each framewor8P, the paitidsp = (idrg, idp) is the identity morphism and the composition
of framework morphismg = (frg, fp) : SP1 — SP> andg = (grg, gp) : SP2 — SP3is defined
componentwise as the morphigpv f = (grG o frg,gp o fp) : SP1 — SP3. The composition is
associative since the composition for the component morphisms is associative.

Since a framework morphism does not constrain the sets of constraints, frameworks with an isomorphic
type graph and isomorphic rules are isomorphic, independently of their constraint sets.

Proposition A.2 (Framework isomorphisms The framework morphisn = (frg, fp) : SP — SP’
with SP = (TG, (P,rp), Pos, Neg) andSP’' = (TG', (P, r}), Pos’, Neg’) is an isomorphism if and
onlyif fr¢ : TG — TG and fp : P — P’ are isomorphisms in the appropriate categories

Proof. =: If fis an isomorphism, there is a framework morphismSP’ — SP sothatf o g = idsp
andg o f =idsp. Then,fTG 0grG = idSP}G andgTG o fTG = idSPTGa i.e.,fTG is an isomorphism.
Furthermorefp o gpr = idsp;) andgp o fp =idsp,,, i.€. fp is an isomorphism.

«: If the component morphismgrg and fp are isomorphisms, then by definition of composition
soisf. O

Proposition A.3 (Initial security policy framework The initial object inSP is given by the security
policy frameworkS P; = (0, (4, r), 9, 9).

Proof. GivenSP = (TG, (P, rp), Pos, Neg), we defined = (iyg,ip) : SP; — SP,whereirg : 0 —

T G is the unique morphism for the initial graghandTG andip : ¥ — P is the unique morphism for

the set andP. The properties of the initial component objects in the respective categories ensure the
required property fos P;. O

Security policy frameworks can be glued together using the standard categorical constructions.

Theorem A.4 (Pushouts. The categonsP has all pushouts

Proof. Let Op : Setx Set— Setbe an operation on sets. For given framework morphigms Py —
SPpandg : SPy — SPythe pushouSP = (TG, (P, rp), Pos, Neg) is constructed as follows:

(1) Construct the pushout gfrg andgr¢ in the categoryGraph (diagram (1)).



32 M. Koch et al. / Journal of Computer and System Sciences 71 (2005) 1-33

(2) Construct the pushout ¢gf andgp in Set(diagram (2)).
(3) The mapping p(x) is defined for allk € P as follows:

(a) ifthereis ay € Py with g,(P1)(y) = x andx ¢ f,(P2) thenrp(x) = Fg’m (rp, (),

(b) ifthereis ay € P, with f,(P2)(y) = x andx ¢ g/, (P1) thenrp(x) = Ff%c (re,()),

(c) if x € gh(P) N fp(P2), then there is a non-empty s& C Pp so that for eachxg € X,
gp(fp(x0)) = fp(gp(x0)) = x by construction of pushouts et We explain the construction
of rp(x) for the case of a singleton s&t= {xo}. This construction can then be generalized to an
arbitrary sefX. By definition of framework morphismsp,(xo) is a subrule of p, ( fr(x0)) :=y
andrp,(gp(xg)) := y'. The two squarefg - L1 — L < LpandRyp - R1 — R < Rz In
the diagrsam below on the right are pushout&imph andrp (x) is given by the unique pushout
property.

TG()&TGl P()LP 1 Lum)—@Ro

Fl'wl m ly/’m -ql’l 2 ly’p / >< \
L|—y>R1 L0L>R2

TGQ —>TG Pf_)—>P

" ’ \ >< /
LR

R
rp(x)

(4) The set of positive constraints is definedras Op(Fg/TG(Posl), Ff}G(Posz)), the set of negative
constraints adveg = Op(FngG (Neg1), Ff%c (Neg2))

The pushout morphisms are defined gs= (g7;,8p) : SPL — SP and f' = (frq. fp) :
SP, — SP.

To check, thaSPis a framework, the well-definednessrgf has to be shown. For cases 3(a) and 3(b)
the well-definedness follows from the fact that| p,\ 7, (ry) and 5| o\ g5 (o) are injective. For case 3(c),
the rules p,(xo) for eachxg € X are equal due to the definition of a framework morphism. This ensures
a well-defined construction af> (x). By construction, the morphismg, ¢’ are framework morphisms
suchthag’o f = fog.LetSP' = (TG', (P’ : rp:), Pos’, Neg') be a security policy framework with
framework morphisms : SP; — SP’ andb : SP, — SP’ sothatuo f = bo g. By construction, there
is a unique total graph morphismyc : TG — TG’ with urg o gy, = arc andurg o f; = brg.
Moreover, there is a unique mapping : P — P’ withupog), = ap andupo f, = bp. The definition
u = (urg,up) : SP — SP’ yields a framework morphism by definition @f. The commutativity
property and the uniqueness of this morphism follow from the corresponding properties of the component
morphisms.

The pushout construction defines the constraint sets in the pushout framework as the result of an
operationOp on sets. This operatio®@p may be the union or the intersection, etc. Proposiioa
shows that the choice of the operati@p does not influence the pushout property. The actual op-
eration, however, becomes important when we considerctierenceof a security framework in
Section6.

By combining the previous two results, we obtain the last result of this papeér.

5 This construction is known aamalgamation of rulegl6].
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Theorem A.5(Colimits). The categongPis finitely complete
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