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Le t  P be  a finite classical  po la r  space  of r a n k  r, wi th  r _> 2. A par t i a l  m-sys tem 

M of P, with  0 < m _< r - 1, is any set  {7rl, ~ '2, .  • •, 7r~} of k ( ~  0) total ly  s ingu la r  

m-spaces  of  P such tha t  no  max ima l  total ly  s ingular  space  con ta in ing  ~r i has  a 

po in t  in c o m m o n  wi th  Or I U zr 2 U • • ' U 7rk) - 7ri, i = 1 ,2  . . . .  , k .  In each  of the  
respec t ive  cases  an u p p e r  bound  ~ for [M[ is ob ta ined .  I f  [M1 = ~, t hen  M is 

ca l l ed  an m-sys t em of  P. For  m = 0 the  m-sys tems  are  the  ovoids  of P ;  for 

m = r - 1 the m-sys tems  are  the  sp reads  of P. Surpr is ingly  6 is i n d e p e n d e n t  of 

m,  giving the  exp lana t ion  why an ovoid and a sp read  of  a po la r  space  P have the  

same size. In the  p a p e r  m a n y  p rope r t i e s  of m-sys tems  are  proved.  W e  show tha t  

wi th  m-sys tems  of th ree  types of po la r  spaces  the re  co r respond  s t rongly  r egu la r  

g raphs  and two-weight  codes.  Also,  we descr ibe  several  ways to cons t ruc t  an 

m ' - sys tem f rom a given m-system.  Final ly,  examples  of m-sys tems  are  given. 

© 1994 Academic Press, Inc. 

1. F I N I T E  C L A S S I C A L  P O L A R  SPACES 

Let  P be a finite classical polar  space of  rank r, with r > 2 (see, e.g., 
Hirschfeld and Thas  [9]). We  use the following notat ion:  

Wn(q): the polar  space arising f rom a symplectic polari ty of  PG(n, q), 
n odd  and n >_ 3: here  r = (n + 1) /2 ;  

Q(2n, q): the polar  space arising f rom a non-singular  quadric  in 
PG(2n, q), n > 2: here  r = n; 

Q + ( 2 n  + 1, q): the polar  space arising f rom a non-singular  hyperbolic 
quadric  in PG(2n + 1, q), n >_ 1: here  r = n + 1; 
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Q-(2n + 1, q): the polar space arising from a non-singular elliptic 
quadric in PG(2n + 1, q), n >_ 2: here r = n; 

H(n, q2): the polar space arising from a non-singular hermitian vari- 
ety H in PG(n, q2), n > 3: for n odd r = (n + 1)/2,  for n even r = n/2. 

Let IPI denote the number of points of P, and let Z ( P )  be the set of all 
generators (or maximal totally singular subspaces) of P; all elements of 
Z ( P )  have dimension r - 1. For a proof of the following theorems we 
refer, e.g., to Hirschfeld and Thas [9]. 

THEOREM 1. The numbers of points of the finite classical polar spaces are 
given by the formulae 

[W,(q) I = ( q , + l  1 ) / ( q  - 1), 

iQ(2n,q) [ = (q2, _ 1 ) / ( q -  1), 

]O+(Zn + 1, q)] = (qn + l ) ( qn+ l  _ 1 ) / ( q  - 1), 

IQ-(2n + 1,q)l = (qn _ 1)(qn+l  + 1 ) / ( q  - 1), 

JH(n,qZ)l = (qn+l + ( _  ])n)(qn _ (_ l )n ) / (q2  __ 1). 

THEOREM 2. The numbers of generators of the finite classical polar 
spaces are given by 

[z(w2.+,(q))[ 
IZ(Q(2n,q))] 

IX(Q+(2n + 1, q ) )  I 

I Z ( Q - ( 2 n  + 1 , q ) ) [  

IZ(H(Zn,q2))] 

I Z ( H ( Z n  + 1,qZ))l  

= (q  + 1) (q  2 "k- ] ) . . . ( q n + l  + 1), 

= (q  ~_ ] ) ( q 2  _}_ 1 ) . . .  ( q "  + 1), 

= 2(q + 1)(q 2 + 1 ) . . . ( q n  + 1), 

= (q2 + 1)(q3 + 1 ) . . . ( q , + 1  + 1), 

= (q3 + 1)(q5 + 1 ) . . . ( q 2 , + 1  + 1), 

= (q + 1)(q 3 + 1 ) . . .  (q2n+, + 1). 

2. OVOIDS AND SPREADS OF POLAR SPACES 

Let P be a finite classical polar space of rank r _> 2. An ovoid 0 of P is 
a pointset of P, which has exactly one point in common with each 
generator of P. A spread S of P is a set of generators, which constitutes a 
partition of the pointset. The following theorem is easily proved; cf., e.g., 
Thas [24]. 
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THEOREM 3. Let 0 be an ovoid and let S be a spread of the finite 
classical polar space P. Then 

f o r  P = W2~+~(q), IOI = ISI --qn+l + 1, 

for P = Q(Zn,q),  ]O[ = IS[ -- q" + 1, 

for P = Q+(2n + 1 ,q ) ,  IO[ = ISI = q" + 1, 

for P = Q - ( 2  + 1 ,q ) ,  [O1 = [$1 = q ,+ l  + 1, 

for P = H(2n, q2), [OI = ISI -~ qZn+2 q_ 1, 

for P = H(Zn + 1,q2),  10[ = IS[ -- q2,+1 + 1. 

3. EXISTENCE AND NON-EXISTENCE OF SPREADS AND OVOIDS 

3.1. Spreads. A spread of Wn(q), n = 2t + 1, is also a t-spread of 
PG(n, q), that is, a partition of PG(n, q) by t-dimensional subspaces. For 
every n = 2t + 1 the polar space Wn(q) has a spread which is also a 
regular t-spread of PG(n, q); for details see, e.g., Thas [22]. Many other 
examples of spreads of W,(q) are known; see, e.g., Bader, Kantor and 
Lunardon [1], Dye [7], Kantor [10], Liineburg [13], Thas [20], and Thas [28]. 

Proofs of the following results on spreads of quadrics can be found in 
Conway, Kleidman, and Wilson [6], Dye [7], Kantor [10-12], Moorhouse 
[14, 15], Payne and Thas [17], Shult [18], and Thas [27]. It is clear that 
Q+(4n + 1, q) has no spread. For q even, Q(2n, q), Q-(2n + 1, q), and 
Q+(4n + 3, q) always have a spread. For q odd, Q+(3, q) and Q-(5,  q) 
have a spread; for q - -p  an odd prime and for q odd with q - 0 or 2 
(mod3), Q+(7, q) and Q(6, q) have a spread; the polar space Q(4n, q), 
with q odd, has no spread. 

Concerning spreads of the polar spaces H(n, q2) the following results 
are known. They are respectively due to Thas [27] and Brouwer [4]: the 
polar spaces H(2n + 1, q2) and H(4, 4) do not have a spread. 

Open problems. The existence or non-existence of spreads in the fol- 
lowing cases: 

(a) Q(6, q) for q odd, with q -= 1 (mod 3) and q not a prime; 

(b) Q(4n + 2, q) for n > 1 and q odd; 

(c) Q+(7, q) for q odd, with q -- 1 (mod3) and q not a prime; 

(d) Q+(4n + 3, q ) fo r  n > 1 and q odd; 

(e) Q-(2n + 1, q) for n > 2 and q odd; 

(f) H(4, qZ) for q > 2; 

(g) H(2n, q2) for n > 2. 
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3.2. Ovoids. In Thas [20] it is shown that W3(q) has an ovoid if and 
only if q is even. Moreover any ovoid of W3(q), q even, is an ovoid of 
PG(3, q). Conversely, any ovoid of PG(3, q), q even, is an ovoid of some 
W3(q) (see e.g., Hirschfeld [8]). Further, Thas [24] proves that Wn(q), 
n = 2t + 1 with t > 1, has no ovoid. 

Thas [24] also proves the non-existence of ovoids in Q(2n, q), with q 
even and n > 2, and Q-(2n + 1, q), with n > 1. Kantor [10] shows that 
there is no ovoid in Q+(2n + 1,2), n > 4, and Shult [19] proves that there 
is no ovoid in Q+(2n + 1,3), n > 4. More generally, Blokhuis and 
Moorhouse [3] show that in Q+(2n + 1, q), with q = ph, p prime, and 

2n + P l ,  
P n > ( p - 1 ]  

there is no ovoid. For n > 4 ,  this excludes p = 2 , 3 ;  for n > 5  this 
excludes p = 2, 3, 5, 7. The polar space Q(4, q) always has an ovoid; see, 
e.g., Payne and Thas [17]. Clearly Q+(3, q) has an ovoid and for all 
q, Q+(5, q) admits an ovoid; see, e.g., Hirschfeld [8]. For q = 3 h the polar 
space Q(6, q) has an ovoid; see Kantor [10] and Thas [23, 27]. Applying 
triality (cf. Hirschfeld and Thas [9]) to the results on spreads of Q+(7, q) 
in 3.1, we find that Q+(7, q) has an ovoid in at least the following cases: q 
even, q an odd prime, and q odd with q - 0 or 2 (rood 3). 

Concerning ovoids of the polar spaces H(n, q2) the following results are 
known: it is easy to show that H(3, q2) admits ovoids (see, e.g., Payne and 
Thas [17] and Thas [25]) and in Thas [24] it is proved that H(n, qZ), with n 
even, has no ovoid. 

Open problems. The existence or non-existence of ovoids in the follow- 
ing cases: 

(a) Q(6, q) for q odd with q ~ 3h; 

(b) Q(2n, q) for n > 3 and q odd; 

(c) Q+(7, q) for q odd, with q = 1 (mod3) and q not a prime; 

(d) Q+(2n + 1, q) for n > 3, q =ph ,  p prime, and 

pn< (2n+p];  
p - l )  

(e) H(n, q2) for n odd and n > 3. 

4. m-SYSTEMS AND PARTIAL m-SYSTEMS OF POLAR SPACES 

4.1. DEFINITION. Let P be a finite classical polar space of rank r, with 
r >_ 2. A partial m-system of P, with 0 < m _ < r - 1 ,  is any set 
{vrl, vr2, . . .  , ~r~} of k (=~ 0) totally singular m-spaces of P such that no 
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generator  containing ~'i has a point in common with (~-~ u 77 2 U " ' "  U 
~'g) -- 7r i, i = 1, 2 , . . . ,  k. A partial 0-system of size k is also called a 
partial ovoid, or a cap, or a k-cap; a partial (r  - D-system is also called a 
partial spread. 

4.2. THEOREM 4. Let M be a partial m-system of the finite classical polar 
space P. Then 

for P = W2n+ I( Q ) , IMI < qn+a + 1, 

for P = Q(2n, q), IMI < qn + 1, 

for P = Q + ( 2 n  + 1, q) ,  IMI -< qn + 1, 

for P = Q - ( 2 n  + l , q ) ,  IMI < q ~ + l + l ,  

for r = H(2n,  q2) ,  IMI ~ q2n+l + 1, 

for P = H(2n + 1, q2), IMI < q2n+l + 1. 

Proof. By Theorem 3 we may assume that m < r - 1, with r the rank 
of the polar space. 

If  the polar space has ambient space PG(s, q), then it will be denoted 
by P,. Further,  let IPsl = A,  and IM[ = o~. 

For each point Pi ~ P~ not in an element of M, let t i be the number  of 
totally singular (m + 1)-spaces of Ps containing Pi and an element of M. 

Now we count in different ways the number  of ordered pairs (pi,  so), 
with Pi ~ Ps not in an element of M and with s c a totally singular 
(m + 1)-space of Ps containing p~ and an element of M. 

We obtain 

~ ' t  i = o~qm+lAs_2m_2. (1) 

In (1), As_2m_ 2 = IPs-2m2, with Ps-2m-2  of the same type as Ps, and also 
polar spaces or rank 1 are admitted; for polar spaces of rank 1 we have 
IW~(q)[ = [Q(2, q)] = IH(1, q2)l = q  + 1, IQ+(1, q)l = 2, [Q-(3,  q)l = 
q2 q_ 1, IH(2, q2)l = q3 + 1. 

Next we count in different ways the number  of ordered triples (Pi, ~, ~'), 
with Pi ~ Ps not in an element of M and with ~: and ~:' distinct totally 
singular (m + 1)-spaces of Ps containing Pi and an element of M. 
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We obta in  

~ t i ( t  i - 1) = ~x(a - 1)As_2m_ 2. (2) 

The  r emarks  concern ing  (1) also hold for  (2). 
T h e  n u m b e r  of  points  Pi equals  

lit = A ,  - c e ( q  m + l  - 1 ) / ( q  - 1). (3) 

As I l l E t  2 - (Et i )  2 > 0, we obtain  f rom (1), (2), and (3) 

- a 2 ( q  r e + l -  1 ) + c ~ ( - ( q  m + l -  1 ) 2 + A s ( q  - 1) 

- A  q 2 m + 2 (  __ s-Zm-2 q 1)) 

q - A s ( q  m + I  - 1) (q  - 1) > 0. (4) 

Now an easy calculat ion gives us the bounds  in the s t a t ement  of  the 
theorem.  | 

4.3. m-Systems. Let  M be a part ial  m-sys tem of  the finite classical 
po la r  space P. I f  for  [MI the u p p e r  bound  in the s t a t ement  of  T h e o r e m  4 
is reached,  then  M is called an m-system of P. So for  an m-sys tem M we 
have in the respect ive  cases: 

if P = W2n+l(q),  then  IMI 

if P = Q ( 2 n ,  q) ,  then  IMI 

if P = Q + ( 2 n  + 1 , q ) ,  then  tMI 

if P = Q - ( 2 n  + 1, q) ,  then  IM[ 

if P = H ( 2 n ,  q 2 ) ,  t h e n  ]m[ 

if P = H ( 2 n  + 1, q 2 ) ,  t h e n  IMI 

= q n + l  + 1, 

= qn + 1, 

= qn + 1, 

= qn+l + 1, 

= q2n+l q_ 1, 

= q2n+l q_ 1. 

For  m = 0, the m-sys tem M is an ovoid of P;  for m = r - 1, with r the 
rank  of  P,  the  m-sys tem M is a spread  of P. The  fact that  [M[ is 
i ndependen t  of  m gives us the explanat ion  why an ovoid and a spread  of  a 
polar  space  P have the same  size. 

4.4. THEOREM 5. Let M be an m-system of  the finite classical polar 
space P o f  rank r, with m < r - 1. Then the number 0 o f  totally singular 
(m + 1)-spaces o f  P containing an element o f  M and a given point p ~ P not 
in an element o f  M is independent o f  the choice o f  p. In the respective cases 

582a/68/1-13 
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the number 0 is" given as follows: 
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for P = W2,+a(q) ,  0 = qn-m -t- 1, 

for P = Q(2n ,  q) ,  0 = qn-m-1 q_ 1, 

for P = Q + ( 2 n  + 1, q ) ,  0 = qn-m-1 q_ 1, 

for P = Q - ( 2 n  + 1, q) ,  0 = qn-m _~_ 1, 

for P = H ( 2 n ,  q2),  0 = qZn-2m-1 q_ 1, 

for P = H ( 2 n  + 1, q 2 ) ,  0 = q 2 n - 2 m - 1  -k 1. 

Proof. Let  M be an m-system of the polar  space P. As we then have 
equality in (4), it follows that  in the p roof  of  T h e o r e m  4 the number  t i is 
the constant  

-t = ( E t i ) / / l l I  

M m+l~ (qm+ _ = I Iq , - Z m - 2 / ( A s -  IMI 1 _ 1 ) / ( q  1)).  

Now an easy calculation gives us t = 0 in the respective cases. | 

Remark. If  p is a point  of  P not  in an e lement  of  the m-system M, 
then for m < r - 1 and P # W2,+~(q), the tangent  hyperplane  of  P at p 
contains exactly 0 elements  of  M:  for m < r - 1 and P = W2n+l(q), the 
hyperplane  p "  contains exactly 0 elements  of  M. 

5. INTERSECTIONS WITH H Y P E R P L A N E S  

F r o m  now on let P be a finite classical polar  space of  rank r, and let M 
be an m-system of  P.  

5.1. THEOREM 6. For P ~ Wzn+l(q), let ~ be the number of  elements of  
M contained in a non-tangent hyperplane ~r of  P; for P = Wzn+l(q), let 
be the number o f  elements of  M contained in a hyperplane p ~ , with p not in 
an element of  M. Then 

for P = W2n+l(q)  , we have ~ = 0 = q n - m  q_ 1, 

for P = Q(2n, q) and 7r (~ Q(2n, q) = Q + ( 2 n  - 1, q), we have ( = 
q n - m - I  -k 1, 

for P = Q - ( 2 n  + 1, q), we have ~ = qn-m + 1, 

for P = H(2n,  q2), we have ( = q Z n - Z m - I  -'k 1. 

Proof. It is clear that  for P = Wz,+l(q) we have ( = 0 (cf. the remark  
following T h e o r e m  5). 



m - S Y S T E M S  O F  P O L A R  S P A C E S  191 

Now let P = Q(2n, q) and let ~'i be an non- tangent  hyperplane  inter- 
secting Q(2n, q) in a polar  space of type Q+(2n  - 1, q). Fur ther ,  let (i be 
the number  of  e lements  of M in vr i. 

Count  in different  ways the number  of  o rdered  pairs (y,  ~'i), with y ~ M 
in 7r i. We  obtain 

E ; i  = (qn + 1)qn(q,,-m ' + 1 ) / 2 .  (5) 

NOW we count  in different  ways the number  of o rdered  triples (y,  y ' ,  7ri), 
with 3' and 3" distinct e lements  of M in 7r s. We  obtain 

E(i ( f f i  - 1) = (qn + 1)qnqn-m-l(qn--m-1 + 1 ) / 2 .  (6) 

The  number  of  hyperplanes  7r i equals 

III = qn(qn + 1 ) / 2 .  (7) 

By (5), (6), and (7), we have I l l E f f  2 "- ( E f t / )  e = 0, and so 

ffi -- ( E ~ i ) / l l I  = qn-m-1 + 1 

for all i ~ I. 
Next, let P = Q-(2n  + 1, q) and let 7r s be any non- tangent  hyperplane  

of  P. Fur ther ,  let (i be the number  of e lements  of  M in ~s. As in the 
previous section we obtain consecutively 

E ; i  = (qn+l  + 1)qn(qn-m + 1), (8) 

~ ( i ( ( i  -- 1) = (qn+l + 1)q2n-m(qn-m + 1), (9)  

I I [ =  qn(qn+,+ 1). (10) 

By (8), (9), and (10) we have IIlE~ c2 - (2~ri) 2 = 0, and so 

(i + ( ~ ' s ) / [ / I  = q"  m .~_ 1 

for all i ~ I. 
Now let P = H(2n, q2) and let ~s be any non- tangent  hyperplane  of  P.  

Fur ther ,  let (i be  the number  of  e lements  of  M in 7r s. As before  we obtain 
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consecut ively 

~ ' i  = (q2,+1 + 1)q2n(q2,-2m-1 + 1 ) / ( q  + 1) (11) 

E ( i ( ( i - -  1) = (q2~+l  + 1)q4n-2m-l(q2,-2m-i  + 1 ) / ( q +  1),  (12) 

III= q2n(q2n+l + 1 ) / ( q  + 1). (13) 

By (11), (12), and (13) we have I I IE~  2 - (E( i )  2 = 0, and so 

= = q2n-2m-l+ 1 

for a l l i ~ I .  | 

Remark. I f  P = Q ( 2 n ,  q)  and ~ - c ~ Q ( 2 n ,  q ) = Q - ( 2 n -  1, q), then  
~" = 0 for  m = n - 1, and  ~" depends  on the choice of  ~- for  m < n - 1. 

I f  P = Q + ( 2 n  + 1, q), then  £" = 0 for  m = n, and ~" depends  on the 
choice of  7r for  m < n. 

I f  P = H(2n + 1, q2), t hen  ( = 0 for n = m,  and ~" depends  on the 
choice of  ~- for  m < n. 

5.2. THEOREM 7. For P ~ {W2~+l(q),Q-(2n + 1, q) ,H(2n,  q2)} we 
have ~ = O; that is, any hyperplane contains either one or 0 elements of M. 
Hence the union M of the elements of M has two intersection numbers/3 ~, /32 
with respect to hyperplanes. 

Proof. By T h e o r e m s  5 and 6, any hyperp lane  ~r which is not  t angent  a t  
a poin t  of  P in M for  P 4: W2,+l(q) , and which is not  of  the  fo rm p ~ ,  
with p ~ _M, for  P = W2,+l (q)  , contains  ~" = 0 e lements  of  M. Any o ther  
hyperp lane  contains  exactly one  e l emen t  of  M. It  is now clear that  M has 
two intersect ion number s  with respec t  to hyperplanes .  | 

Calculation of the intersection numbers /31,/32- In the respect ive cases 
we obta in  

(a) P = W2.+l (q)  

q m + ' _  1 qm + 1 (qm+,  _ 1 ) (q"  + 1) 
/31 + q , + l  _ 

q - 1  q - 1  q - 1  

q m + l  _ 1 q,n _ 1 

/32 = (qn-m + 1) " ( q , + ,  _ q, , -m) .  _ _  
q - - 1  q - - 1  

( q " + '  - 1 ) ( q "  + 1) 

q - - 1  

- q",  
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(b) P = Q-(2n  + 1, q) 

qm+l _ 1 qm __ 1 
81 - + q ~ + l  . _ _  q - 1  q - 1  

qm+l _ 1 
= ( q . - m  + 1) • 

q - 1  

(qm+l _ 1)(qn q_ 1) 

q - - 1  

( q m + l  _ 1)(q,~ + 1) 

q - 1  
_ q n  

+ (qn+l  q n - m )  . _ _  
qm __ 1 

q - 1  

(c) P = H(2n,  q 2 )  

q2m+2 __ 1 q2m __ 1 

81 q2 _ 1 + q2,+1, q2 _ 1 

( q 2 m + 2  1)(qZn 1 + 1) 

q 2  1 
_ q2n-1 

82 = ( q 2 n - 2 m - 1  + 1) " 
q2m+2  _ 1 q2m _ 1 

q2 1 + ( q 2 n + l  _ q 2 n - 2 m - 1 )  . 
- q 2 -  1 

(q2,,+2 _ 1)(q2.--I + 1) 

q 2 _  1 

COROLLARY. For P ~ {W2n+~(q),Q-(2n + 1, q ) ,H(2n ,  q2)} any m- 
system defines a strongly regular graph and a two-weight code. 

Proof By Theorem 7 this follows immediately from Calderbank and 
Kantor [5]. | 

6. INTERSECTIONS WITH GENERATORS 

6.1. THEOREM 8. Let M be an m-system of the finite classical polar 
space P and let M be the union of all elements of  M. Then for any generator 
y of  P we haue 

13/ O ]~[  = ( q m + l  __ a ) / ( q  - 1). 

Proof Let Yi be any generator of Is, with s the dimension of the 
ambient space of Ps, and let lyil • 341 = t i. 
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Count in two different ways the number of ordered pairs (p, Yi), with 
p ~ 3~ contained in the generator 7i- We obtain 

Y'~ti = ~ [ ~ ( P s - 2 ) [ ,  ( 1 4 )  
i 

with 5 = IMI, with ~ ( e s _ 2 )  the set of all generators of Ps-2, and with 
Ps-2 of the same type as Ps. 

Next, count in two different ways the number of ordered triples 
(p, p',-/i), with p and p' different points o f / ~  in the generator 7i. 

We obtain 

qm_1 q m - 1 ]  
~i ti(ti. - 1) = 5  q q -  1 + ( a -  1) q--~---i-J[Z(Ps-4)l '  (15) 

with a = IM[ and with Ps-4 of the same type as Ps. 
The number of generators yi equals 

and 

] I I =  I,Y(Ps) I. (16) 

By (14), (15), and (16), and relying on 

we obtain 

and 

[ =lx(P,)l 

a ( q  + a - 1)[Z(Ps-a)[  = qlZ(Ps)  [, 

E t i  = ( q " + '  - 1 ) 1 2 ~ ( P ~ ) l / ( q  - 1) 
i 

~ . , t i ( t  i - 1) = ( q m + l  _ 1 ) ( q m  _ 1)qlZ(p~)l/(  q _ 1)2.  
i 

Hence [IlY'.i t2 - -  ( Z i t i ) 2  = O, and so 

ti=(~i ti)/]i ] = ( q m + l _  1 ) / ( q - l )  

for all i ~ I. | 

6.2. k-Ovoids of polar spaces. Let P be a finite polar space of rank r, 
r _> 2. A pointset K of P is called a k-ovoid of P if each generator of P 
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contains exactly k points of K. A k-ovoid with k = 1 is an ovoid. For 
r = 2, k-ovoids were already introduced by Thas [26]. 

By Theorems 8, the union of all elements of an m-system M of P is a 
k-ovoid with k = (qm+l _ 1) / (q  - 1). 

7. m ' =  SYSTEMS ARISING FROM A GIVEN m-SYSTEM 

Here  we describe some constructions of m'-systems starting from a 
given m-system. As the cases "ovoids arising from a given ovoid" and 
"spreads arising from a given spread" were already considered in the 
papers on ovoids and spreads mentioned in Section 3, these constructions 
are not repeated here. 

7.1. THEOREM 9. I f  Q-(2n + 1, q) has an m-system, then also Q(2n + 
1, q) and Q+(2n + 3, q) hat~e m-systems. 

Proof Let M be an m-system of Q-(2n + 1, q). Embed Q-(2n + 
1, q) in a Q(2n + 2, q) and embed Q(2n + 2, q) in a Q+(2n + 3, q). Any 
generator 7r of Q+(2n + 3, q) containing ~'i E M, intersects PG(2n + 
1, q) ~ Q-(2n + 1, q) in a generator of Q-(2n + 1, q); any generator ~-' 
of Q(2n + 2, q) containing 7r i ~ M, intersects PG(2n + 1, q) in a genera- 
tor of Q-(2n + 1, q). Hence ~" and ~-' are skew to each element of 
M - {~r/}. As IMI is the number of elements of an m-system of Q(2n + 
2, q), respectively Q+(2n + 3, q), the set M is also an m-system of 
Q(2n + 2, q), respectively Q+(2n + 3, q). | 

7.2. THEOREM 10. The polar space Q(2n, q), q euen, has an m-system if 
and only if the polar space W2~_ l(q) has an m-system. 

Proof Consider the polar space Q(2n, q), q even, in PG(2n, q). The 
nucleus of the quadric Q defining Q(2n, q) is denoted by z. Let PG(2n - 
1), be a hyperplane of PG(2n, q) not containing z. The projections from z 
onto PG(2n - 1, q) of the totally singular s-dimensional subspaces of 
Q(2n, q) are the totally singular s-dimensional subspaces of a polar space 
WEn_l(q) in PG(2n - 1, q). Hence an m-system of Q(2n, q) is projected 
onto an m-system of W2n_ l(q), and, conversely, any m-system of W2~_ l(q)) 
is the projection of an m-system of Q(2n, q). | 

7.3. THEOREM 11. Let S 1 and 8 2 be spreads of Q+(7, q), where the 
generators of S 1 and the generators of S 2 belong to different families. Then 
for each ~i ~ SI there is exactly one rlj ~ $2 with ~i N ~Tj = rcij a plane. 
Also, the q3 + 1 planes rrij form a 2-system of Q+(7, q). 
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Proof. Let S 1 = {~1, ~ 2 , - . .  } and let S 2 = {~ql, T]2 . . . .  ].  Fix a generator 
(:i. If [(:i n ~/il = tgj, then 

~ t i j  __ q3 + q2 + q + 1. (17) 
] 

As ¢i and ~/j are generators of different families, we have t~s c {1, q2 + 
q + 1}. Also, the number of indices ] is exactly ]$2[ = q3 + 1. Now it is 
clear that for exactly one index j we have tij = q2 + q + 1, while for any 
other index j '  we have tij, = 1. 

Since any two elements of S 1 are skew, any two distinct elements ¢i~ and 
~i 2 of S 1 define planes "Wiljl and 'Wi2J2 in distinct generators ~/Jl and ~/J2" 
Now indices can be chosen in such a way that ¢~ n ~g = 3Tii is a plane. 

As sci and T]i are the only generators containing ,wii , it is clear that every 
generator containing %i is skew to ~-jj, for all ] 4= i. 

We conclude that the q3 + 1 planes ,wii form a 2-system of Q+(7, q). 

I 

Remark. If Q+(4n + 3, q), n >_ 1, admits a 2n-system, then it admits a 
spread. This spread is obtained by considering all generators of a given 
family of generators of Q+(4n + 3, q), containing an element of the 
2n-system. 

7.4. THEOREM 12. (a) If  H(2n, q 2) admits an m-system M, then 
Q-(4n + 1, q) admits a (2m + D-system M'. 

(b) I f  H(2n + 1, q2) admits an m-system M, then Q+(4n + 3, q) admits 
a (2m + 1)-system M'. 

Proof. (a) Consider the polar space Q-(4n + 1, q), n > 1. In the 
extension PG(4n + 1, q2) of PG(4n + 1, q), the polar space Q+(4n + 
1, q) extends to the polar space Q+(4n + 1, q2). On the polar space 
Q-(4n + 1, q2) it is possible to choose a projective 2n-space ~- with 

• ~- = •, where ~- is conjugate to ~- with respect to the quadratic 
extension GF(q 2) of GF(q). The lines of Q-(4n + 1, q) whose extensions 
intersect ~- and ~- form a partition T of the pointset of Q-(4n + 1, q). It 
can be shown that the points common to ~" and the extensions of the lines 
of T form a hermitian variety H of ~-. Hence for n > 2 there arises a 
polar space H(2n, q2). 

Let M be an m-system of H(2n, q2) ,n ~ 2; then [M[ = q2,,+t + 1. If 
~'i ~ M and if ~-i is conjugate to ~'i, then the (2m + 1)-dimensional totally 
singular subspace of Q-(4n + 1, q) defined by % and ~'i will be denoted 
by 7r~. These q2n+l + 1 spaces ~-~ are mutually skew. Assume by way of 
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contradiction that there is a (2m + 2)-dimensional totally singular sub- 
space ( of Q-(4n + 1, q) which contains rr~ and has a point x in common 
with ~-~, i 4: j. If ~'ij is the (2m + 1)-dimensional subspace of ~- generated 
by ~'i and ~rj, then, as 77 i and ~i belong to an m-system of H(2n, q2), 
wij A H(2n, q2) is a polar space H(2m + 1, q2) if m > 0 and a Baer-sub- 
line H(1, q2) of 7ri/ if m = 0. Hence the lines of T whose extensions 
intersect ~- in the points of H(2m + 1, q2) have as union the pointset of a 
polar space Q+(4m + 3, q). Clearly 7r~, ~-~, ~ are totally singular subspaces 
o fQ+(4m + 3, q). As ~" has dimension 2m + 2, we have a contradiction. 
Consequently, no generator of Q - ( 4 n  + 1, q) containing ~-~ has a point in 
common with ~-~, i 4= j. 

As a (2m + 1)-system of Q-(4n + 1, q) has size q2,÷~ + 1, that is, the 
t t number of spaces ~-~, we conclude that the set M ' =  {~'1, ~'2 . . . .  } is a 

(2m + 1)-system of Q - ( 4 n  + 1, q). 

(b) Consider the polar space Q+(4n + 3, q), n > 0. In the extension 
PG(4n + 3, q2) of PG(4n + 3, q), the polar space Q+(4n + 3, q) extends 
to the polar space Q+(4n + 3, q;).  On the polar space Q+(4n + 3, q2) it 
is possible to choose a projective (2n + D-space ~r with ~- • ~- = Q, 
where ~- is conjugate to ~- with respect to the quadratic extension GF(q 2) 
of GF(q). The lines of Q+(4n + 3, q) whose extensions intersect ~ and ~- 
form a partition T of the pointset of Q+(4n + 3, q). It can be shown that 
the points common to ~- and the extensions of the lines of T form a 
hermitian variety H of ~-: Hence for n > 1 there arises a polar space 
H(2n + 1, q2). 

Let M be an m-system of H(2n + 1, q2), n > 1; then [MJ = q2n+l + 1. 
If .w i E M and if ~'i is conjugate to ~i, then the (2m + 1)-dimensional 
totally singular subspaces of Q+(4n + 3, q) defined by '77" i and ~'i will be 
denoted by ~-~. These qZn+I + 1 spaces ~'~ are mutually skew. Assume by 
way of contradiction that there is a (2m + 2)-dimensional totally singular 
subspace ~" of Q+(4n + 3, q) which contains 7r~ and has a point x in 
common with ~-~, i 4= j. If 7rij is the (2m + 1)-dimensional subspace of ~- 
generated by ~rg and ~'i, then, as 77" i and ~-j belong to an m-system of 
H(2n + 1, q2), 7riJ 0 H(2n + 1, q2) is a polar space H(2m + 1, q2) if 
m > 0 and a Baer-subline H(1, q2) of "rrij if m = 0. Hence the lines of T 
whose extensions intersect ~- in the points of H(2m + 1, q2) have as 
union the pointset of a polar space Q+(4m + 3, q). Clearly ~-~, ~-~, ( are 
totally singular subspaces of Q+(4m + 3, q). As ~" has dimension 2m + 2, 
we have a contradiction. Consequently, no generator of Q+(4n + 3, q) 
containing 7r~ has a point in common with ~-~, i ~ j. 

As a (2m + D-system of Q+(4n + 3, q) has size q2n+l + 1, that is, the 
r number of spaces ~-~, we conclude that the set M ' =  {7r'1, ~r2,. . .} is a 

(2m + 1)-system of Q+(4n + 3, q). II 
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For an irreducible conic of PG(2, q) we also use the notation Q(2, q). A 
0-system of the conic Q(2, q) is defined to be the set of all points of the 
conic. For an elliptic quadric of PG(3, q) we also use the notation 
Q-(3,  q). A 0-system of the elliptic quadric Q-(3,  q) is defined to be the 
set of all points of the quadric. 

7.5. THEOREM 13. (a) I f  Q(2n, q2), with n >_ 1 and q odd, admits an 
m-system M, then Q+(4n + 1, q) admits a (2m + 1)-system M'. I f  
Q(2n, q2), with n > 1 and q even, admits an m-system M, then Q(4n, q), 
and hence also Q+(4n + 1, q), admits a (2m + 1)-system M'. 

(b) If  Q-(2n + 1, q2), with n > 1, admits an m-system M, then 
Q-(4n + 3, q) admits a (2m + D-system M'. 

Proof. (a) In the extension PG(4n + 1, q2) of PG(4n + 1, q) we con- 
sider two 2n-dimensional subspaces 7r and ~- which are conjugate with 
respect to the extension GF(q 2) of GF(q), which are skew for q odd, and 
which have just one point p in common for q even. Clearly p belongs 
to PG(4n + 1, q). In PG(4n + 1, q) we now consider a polar space 
Q+(4n + 1, q) such that 7r and ~- are polar with respect to the polarity 0 
defined by the extension Q÷(4n + 1, q2) of Q+(4n + 1, q); for q even, we 
assume that p is not a point of Q+(4n + 1, q). Then ~- c~ Q+(4n + 1, q2) 
is a polar space Q(2n, q2) for n > 1, and an irreducible conic Q(2, q2) for 
n = 1. For q even, the 4n-dimensional space PG(4n, q2) defined by ~- and 
~- extends a space PG(4n, q) which intersects Q+(4n + 1, q) in a polar 
space Q(4n, q); the kernel of the polar spaces Q(2n, q2) and Q(4n, q) is 
the point p. 

Let M be an m-system of Q(2n, q2), n > 1; then IM[ = q2n + 1. If 
7/- i ~ M and if ~'i is conjugate to 'w i with respect to the extension GF(q 2) 
of GF(q), then the (2m + 1)-dimensional totally singular subspace of 
Q+(4n + 1, q) defined by % and ~'i will be denoted by 7r;. These q2n + 1 
spaces 7r~ are mutually skew. Assume by way of contradiction that there is 
a (2m + 2)-dimensional totally singular subspace ~" of Q+(4n + 1, q) 
which contains ~-~ and has a point x in common with 7r;, i ~ j. If ~'ij is the 
(2m + 1)-dimensional subspace of vr generated by 77" i and 7rj, then, as ~-~ 
and 7rj belong to an m-system of Q(2n, q2), %i n Q(2n, q2) is a polar 
space Q+(2m + 1, q 2) if m > 0  and a point-pair Q+(1, q 2) of %j if 
m = 0. Now it is easy to show that the (4m + 3)-dimensional space 
PG(4m + 3, q2) generated by ~'i and 7r~ intersects Q+(4n + 1, q2) in a 
polar space Q+(4m + 3, q2); the space 7r~j and its conjugate ~-~j with 
respect to the extension GF(q 2) of GF(q) are polar with respect to the 
polarity 0' induced by 0 in PG(4m + 3, q2). The space PG(4m + 3, q2) 
extends a space PG(4m + 3, q), and PG(4m + 3, q) C~ Q÷(4n + 1, q2) = 
PG(4m + 3, q) A Q+(4m + 3, q2) is a polar space Q÷(4m + 3, q). Clearly 
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~-~, ~-), ( are totally singular subspaces of Q+(4m + 3, q). As ( has dimen- 
sion 2m + 2, we have a contradiction. Consequently, no generator of 
Q+(4n + 1, q) containing ~'~ has a point in common with ~-), i ¢ j. 

As a (2m + 1)-system of Q+(4n + 1, q) has size qZn + 1, that is, the 
number of spaces ~-;, we conclude that the set M' = {7r'1, ~-~ . . . .  } is a 
(2m + D-system of Q+(4n + 1, q). 

In the even case all spaces of M'  are totally singular spaces of the polar 
space Q(4n, q). As a (2m + D-system of Q(4n, q) has size q2n + 1 = ]M'l, 
it is clear that M'  is also a (2m + 1)-system of Q(4n, q). 

(b) In the extension PG(4n + 3, q 2) of PG(4n + 3, q) we consider 
two (2n + D-dimensional subspaces ~- and ~- which are conjugate with 
respect to the extension GF(q 2) of GF(q) and for which 7r n ~ = ~.  In 
PG(4n + 3, q) we now consider a polar space Q - ( 4 n  + 3, q) such that ~- 
and ~- are polar with respect to the polarity 0 defined by the extension 
Q+(4n + 3, q2) of Q-(4n + 3, q). Assume by way of contradiction that 
• r N Q+(4n + 3, q2) is a polar space Q+(2n + 1, q 2 ) .  If ~ is a generator 
of Q + ( 2 n  + 1, q2) and ( is conjugate to ( with respect to the extension 
GF(q 2) o f  GF(q), then ~ and ( define a (2n + D-dimensional totally 
singular subspace of Q-(4n + 3, q), a contradiction. Hence ~- c3 Q-(4n 
+ 3, q2) is a polar space Q-(2n + 1, q2) for n > 1, and an elliptic quadric 
Q-(3, q2) for n = 1. 

Let M be an m-system of Q - ( 2 n  + 1, q2), n >__ 1; then IMf = q2n+2 + 
1. Then, as in case (a), one shows that M defines a (2m + D-system of the 
polar space Q-(4n + 3, q). | 

Remark. Recall that by 5.2 every m-system of Q - ( 2 n  + 1, q2), respec- 
tively Q - ( 4 n  + 3, q), defines a strongly regular graph and a two.weight. 
code. 

For a non-singular hermitian curve of PG(2, q2) we also use the 
notation H(2, q2). A 0-system of the hermitian curve H(2, q2) is defined 
to be the set of all points of the curve. 

7.6. THEOREM 14. If H(2n, q2), n > 1, admits an m-system M, then 
W4n+x(q) admits a (2m + D-system M'. 

Proof In the extension PG(4n + 1, q2) of PG(4n + 1, q) we consider 
two mutually skew 2n-dimensional subspaces 7r and ~- which are conju- 
gate with respect to the extension GF(q 2) of GF(q). We now consider a 
polar space W4n+l(q) in PG(4n + 1, q), such that ~-, and then also ~-, is 
self-polar with respect to the symplectic polarity 0 defined by the exten- 
sion W4,+l(q 2) of W4~+l(q). Let x ~ ~-, let ff be the point of ~- conjugate 
to x with respect to the extension GF(q 2) of GF(q), and let ~0 ¢3 ~- = ~'x. 
It is clear that the mapping 0=: x ~ ~-x is a (non-singular) polarity of 



200  SHULT AND THAS 

the projective space ~-. The absolute points of 0~ are exactly the points 
x of ~- for which the line x2 is totally singular for 0; in such a case 
x2 n PG(4n + 1, q) is a totally singular line of W4n+l(q). We now show 
that 0~, is a unitary polarity of ~-. 

Let L be any line of ~" and let L be the corresponding line of ~. The 
lines L and L generate a threespace PG(3, q2), which is an extension of 
PG(3, q). Now we determine the number a of absolute points of 0= on L; 
that is, we determine the number of totally singular lines of Wan + ~(q) in 
PG(3, q) whose extensions contain a point of L and L. First, assume that 
the polarity induced by 0 in PG(3, q2) is singular with radical PG(3, q2). 
Then all lines of PG(3, q2) are totally singular, and so o~ = q2 + 1. Next, 
assume that the polarity induced by 0 in PG(3, q2) is singular with radical 
PG(1, q2). In such a case the totally singular lines of 0 in PG(3, q2) are all 
lines of PG(3, q2) having a non-empty intersection with PG(1, q2). Since 
L and L are totally singular, the lines L and L have respective points x 
and ff in common with PG(1, q2). It is now clear that x2 is the only totally 
singular line of 0 in PG(3, q2), intersecting L and Z in points conjugate 
with respect to the extension GF(q 2) of GF(q); hence, o~ = 1. Finally, 
assume that the polarity induced by 0 in PG(3, q2) is non-singular. Then 
there are exactly a = q  + 1 totally singular lines of 0 in PG(3, q2), 
interesting L and L in conjugate points. Consequently a ~ {1, q + 1, q2 
+ 1}. Since the dimension of ~- is even 0~, either is a unitary polarity or a 
pseudopolarity. Assume, by way of contradiction, that 0,~ is a pseudopolar- 
ity. Then 0,, has a (2n - 1)-dimensional space ( of absolute points. As for 
the line L joining any two of these absolute points it holds that a = q2 + 1, 
and we necessarily have PG(3, q2)___ L~. c PG(3, q2) °. Let ( '  be the 
(4n - 1)-dimensional space generated by ( and ~. Further,  let N be a line 
over GF(q) contained in ('. If the extension N '  of N contains a point of ~" 
and ~, then clearly N '  is totally singular for 0. So assume that N '  has an 
empty intersection with ~" and g'. The lines containing a point of N' ,  ~" and 
~, intersect ~ and g in the points of lines L and L which are conjugate 
with respect to the extension GF(q 2) of GF(q). Since every line of LL is 
totally singular for 0, it follows that N '  is totally singular for 0. Hence ~" is 
totally singular for 0, a contradiction as ~" has dimension 4n - 1. We 
conclude that 0= is a unitary polarity. 

So for n = 1, 0~ defines a non-singular hermitian curve H(2, q2), and 
for n > 1 0~ defines a polar space H(2n, q2). 

Let M be an m-system of H(2n, q2), n >_ 1; then ]M[ = qZn+l + l. If 
.rr itE M and if ~'i is conjugate to "rr i with respect to the extension GF(q 2) 
of GF(q), then, by a reasoning analogous to the one used in the last part 
of the previous section, the (2m + 1)-dimensional subspace ~-~ of 
PG(4m + 1, q) defined by ~'i and ~'i is a totally singular subspace of 
W4n+l(q). These qZn+l = 1 spaces ~'~ are mutually skew. Assume by way 
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of contradic t ion  tha t  there  is a (2m + 2)-dimensional  totally singular  
subspace  r/ of  W4~+~(q)which contains  ~-~ and has a point  x in c o m m o n  
with ~r~, i ¢ j. Le t  z~,, with z ~ rr i and ~ ~ ~'i, contain  x. Then  for  any 
point  y of  v-~ the space y0 contains  z. H e n c e  the line yz is a line of  
H(2n, q2). Consequen t ly  ~-~z is an (m + 1)-dimensional  totally singular  
subspace  of  H(2n, q2) containing a point  of  ~'i, a contradic t ion as M is an 
m-sys tem of  H(2n, q2). So no gene ra to r  of  W4~+1(q) containing 7r~ has a 
point  in c o m m o n  with ~r~, i ¢ j. 

As a (2m + 1)-system of  W4~+~(q) has size q2~+1 + 1, that  is, the 
t t t n u m b e r  of  spaces ~'i, we conclude that  M '  = {~'i, ~'2 . . . .  } is a (2m + 1)- 

system of  W4~+l(q). | 

Remark. Recal l  that  by 5.2 every m-sys tem of H(2n, q2), respect ively 
W4~+ l(q), defines a strongly regular  g raph  and a two-weight  code. 

8. EXAMPLES OF m-S YS TEMS 

8.1. m-Systems of Q (2n + 1, q), n > 1. We apply T h e o r e m  7.5(b). 

(a) Let q = p 2hu, with p any prime and u odd. As Q - ( 3 ,  q) has a 
0-system, the po la r  space Q - ( 2  ~+2 - 1, p 2h s,) has a (2 s - D-sys tem for  
a l l 0  < s _ < h .  

2h - s  u -  
As Q - ( 5 ,  q)  has a spread,  the po la r  space Q - ( 3 . 2  s+l - 1, p ) has a 

(2 ~+~ - D-sys tem for all 0 < s < h. 

(b) Let q = 22h", with u odd. As Q-(2n + 1, q), n > 1, has an (n - 
D-sys tem,  the  po l a r  space  Q-((n  + 1)2 s + l -  1,22h "") has  an 
( n  2 s - 1 ) - s y s t e m  f o r  a l l  0 < 
s < h .  

8.2. m-Systems of Q(2n, q), n > 2. 1. We apply T h e o r e m  9 and rely 
on 8.1. 

(a) Let q = p  2h", with p any prime and u odd. The  polar  space 
Q(2~+2 ' pZh ~,) has a (2 ~ - D-sys tem for  all 0 _< s < h. 

T h e  polar  space Q(3.2 s+l, p 2h-'") has a (2 ~+1 - 1)-system for all 0 < s 
< h .  

(b) Let q = 22hu, with u odd. The  polar  space Q((n + 1)2s+1,22h ~") 
has an (n2  s - D-sys tem for  all 0 < s < h. 

2. Cons ider  the classical genera l ized  hexagon H(q) of o rder  q embed-  
ded in the non-s ingular  quadr ic  Q of  PG(6, q) (cf. Thas  [23]). A spread  of  
H(q) is a set S of  lines of  H(q), any two of  which are  at dis tance 6 in the 
incidence graph  of  H(q), such that  each line of  H(q) not  in S is 
concur ren t  with a unique line of  S. Clearly ISI = q3 + 1. In [23] it is 
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shown that H(q) always has a spread and that for q = 3 2h+l, h > O, H(q) 
admits at least two projectively inequivalent spreads. 

Let  S be a spread of H(q). We will show that S is a 1-system of the 
polar space Q(6, q) arising from the quadric Q. Assume by way of 
contradiction that the generator 7r of Q(6, q) containing L ~ S has a 
point x in common with M ~ S - {L}. Then d(x, L) = 3, so d(L, M) = 4, 
a contradiction. 

We conclude that every spread S of H(q) is also a 1-system of Q(6, q). 

Problems. (1) Does there exist a 1-system of Q(6, q), q ~ 3 2h+l, which 
is not a spread of a Q-(5 ,  q) c Q(6, q)? 

(2) Does there exist a spread of H(q), q 4:3 2h+1, which is not a 
spread of a Q-(5 ,  q) c Q(6, q), with Q(6, q) the polar space defined by 
the quadric Q in which H(q) is embedded? 

8.3. m-systems of Q+(2n + 1, q), n >__ 2. 1. We apply Theorem 9 and 
rely on 8.1. 

h 
(a) Let q =p2 ,, wtth p any prime and u odd. The polar space 

Q+(2 s+2 + 1, p2"-,u) has a (2'  - 1)-system for all 0 < s < h. 
The polar space Q+(3.2 s+l + 1, p 2h-'u) has a (2 s+l - D-system for all 

O<s<_h.  

(b) Let q = 2 2h", with u odd. The polar space Q+((n + 1)2 s+l + 
1, 2 2h-su) has an (n2 s - 1)-system for all 0 < s < h. 

2. (a) Let  O be any ovoid of H(3, q2). Then, by Theorem 12(b), with O 
there corresponds a 1-system of Q+(7, q). 

(b) Let  ~1 and ~2 be the families of generators of Q+(7, q). For q 
even, for p = q an odd prime, and for q odd with q - 0 or 2 (mod3), 
Q+(7, q) admits a spread S. Assume, e.g., that the elements of S belong to 
~21. Then ~2 has a spread S' projectively equivalent to S. By Theorem 11 
the spreads S and S' define a 2-system of Q+(7, q). 

8.4. m-Systems of WZn+l(q), n >_ 1. 1. Applying Theorem 10 and rely- 
- 2 h - s  u -  

i n g  on 8.2 we see that the polar space W(n+l)zs+,_l(2 ), with u odd, has 
an (n2 '  - 1)-system for all n > 1 and 0 < s < h. 

2. Applying Theorem 14 we see that Ws(q) admits a 1-system for 
each prime power q. 

8.5. m-Systems of H ( 3 n -  2, q2), n odd. Under  the trace map: 
GF(q 2n) ~ GF(q 2) when n is odd, a non-degenerate Hermitian form on 
GF(qZn) (m) becomes a non-degenerate Hermitian form on GF(q2) (nm). 
Upon applying this when m = 3, a unital H(2, q2n) becomes a (n - 1)- 
system of H(3n - 1, q2). Thus W(6n - 1, q) and Q-(6n - 1, q) admit a 
(2n - 1)-system (resp. Theorem 14 and Theorem 12), so that in turn, 
Q(6n, q) and Q+(6n + 1, q) admit a (2n - 1)-system (Theorem 9). 
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9. CLASSIFICATION OF ALL 1-SYSTEMS OF Q+(5, q) 

THEOREM 15. Up to a projectivity Q + ( 5 ,  q), with q odd, has a unique 
1-system. For q even each 1-system of Q + ( 5 ,  q) is a spread of a Q ( 4 ,  q )  c 

Q+(5, q). 

Proof. Let M be a 1-system of Q+(5, q). Consider Q+ as the Klein 
quadric of the lines of PC(3, q); see Hirschfeld [8]. With the q2 + 1 lines 
of M there correspond q2 + 1 pencils of lines, with respective vertices 
Po,Pl . . . .  and contained in the respective plans rr0, 7 r l , . . . .  As M is a 
1-system we have Pi ~ 7rj for i 4:j. By Theorem 8 each plane 7r of 
PC(3, q) contains either one or q + 1 points of 0 = {P0, P l , - . .  }. Now by 
Thas [21] the set O is an ovoid of PC(3, q). 

Let q be odd. Then by the theorem of Barlotti [2] and Panella [16] the 
ovoid O is an elliptic quadric. Hence, up to a projectivity, O and M are 
uniquely defined. 

Let q be even. Then the tangents of O are the lines of a polar space 
W3(q) in PG(3, q); see Hirschfeld [8]. Hence M is a spread of the image 
Q(4, q) of W3(q) onto Q+(5, q); see also Payne and Thas [17]. II 

Note added in proof. Let ~ = {~'i} be an m-system of the classical polar space a. In the 
appropiate Grassmannian space G, ,Y may be regarded as sets of points which are as far 
apart as possible. Also for each ~" in ~, its perp-space in a defines a geometric hyperplane 
H(Tr) of G which contains the Grassmann point G(~-) representing ~r. In turn this geometric 
hyperplane is known to arise from a projective hyperplane of the projective space of the 
(m + 1)-exterior product into which the Grassmannian embedds. Since, for distinct ~" and ~" 
in ,Y, G(~-) is never contained in H(~-') recently discovered inequalities of Blokhuis and 
Moorehouse bounding p-ranks of point-hyperplane incidence matrices can be applied to give 
a bound on v.  Here are two consequences: In characteristic 2, there can be no 1-systems of 
Q+(2s  + 1, q) for s at least 7, nor of H(2s, q2) with s at least 6. 
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