m-Systems of Polar Spaces

E. E. Shult

Kansas State University, Department of Mathematics, Cardwell Hall, Manhattan, Kansas 66506-2602

AND

J. A. Thas

University of Ghent, Department of Pure Mathematics, Krijgslaan 281, B-9000 Gent, Belgium

Communicated by Francis Buekenhout

Received March 15, 1993

1. FINITE CLASSICAL POLAR SPACES

Let P be a finite classical polar space of rank r, with $r \ge 2$ (see, e.g., Hirschfeld and Thas [9]). We use the following notation:

 $W_n(q)$: the polar space arising from a symplectic polarity of PG(n,q), n odd and $n \ge 3$: here r = (n + 1)/2;

Q(2n,q): the polar space arising from a non-singular quadric in PG(2n,q), $n \ge 2$: here r = n;

 $Q^+(2n + 1, q)$: the polar space arising from a non-singular hyperbolic quadric in PG(2n + 1, q), $n \ge 1$: here r = n + 1;

 $Q^{-}(2n + 1, q)$: the polar space arising from a non-singular elliptic quadric in PG(2n + 1, q), $n \ge 2$: here r = n;

 $H(n, q^2)$: the polar space arising from a non-singular hermitian variety H in $PG(n, q^2)$, $n \ge 3$: for n odd r = (n + 1)/2, for n even r = n/2.

Let |P| denote the number of points of P, and let $\Sigma(P)$ be the set of all generators (or maximal totally singular subspaces) of P; all elements of $\Sigma(P)$ have dimension r-1. For a proof of the following theorems we refer, e.g., to Hirschfeld and Thas [9].

THEOREM 1. The numbers of points of the finite classical polar spaces are given by the formulae

$$|W_n(q)| = (q^{n+1} - 1)/(q - 1),$$

$$|Q(2n,q)| = (q^{2n} - 1)/(q - 1),$$

$$|Q^+(2n + 1,q)| = (q^n + 1)(q^{n+1} - 1)/(q - 1),$$

$$|Q^-(2n + 1,q)| = (q^n - 1)(q^{n+1} + 1)/(q - 1),$$

$$|H(n,q^2)| = (q^{n+1} + (-1)^n)(q^n - (-1)^n)/(q^2 - 1).$$

THEOREM 2. The numbers of generators of the finite classical polar spaces are given by

$$\begin{split} \left| \Sigma(W_{2n+1}(q)) \right| &= (q+1)(q^2+1)\dots(q^{n+1}+1), \\ \left| \Sigma(Q(2n,q)) \right| &= (q+1)(q^2+1)\dots(q^n+1), \\ \left| \Sigma(Q^+(2n+1,q)) \right| &= 2(q+1)(q^2+1)\dots(q^n+1), \\ \left| \Sigma(Q^-(2n+1,q)) \right| &= (q^2+1)(q^3+1)\dots(q^{n+1}+1), \\ \left| \Sigma(H(2n,q^2)) \right| &= (q^3+1)(q^5+1)\dots(q^{2n+1}+1), \\ \left| \Sigma(H(2n+1,q^2)) \right| &= (q+1)(q^3+1)\dots(q^{2n+1}+1). \end{split}$$

2. Ovoids and Spreads of Polar Spaces

Let P be a finite classical polar space of rank $r \ge 2$. An *ovoid* O of P is a pointset of P, which has exactly one point in common with each generator of P. A spread S of P is a set of generators, which constitutes a partition of the pointset. The following theorem is easily proved; cf., e.g., Thas [24]. THEOREM 3. Let O be an ovoid and let S be a spread of the finite classical polar space P. Then

for	$P=W_{2n+1}(q),$	$ O = S = q^{n+1} + 1,$
for	P=Q(2n,q),	$ O = S =q^n+1,$
for	$P=Q^+(2n+1,q),$	$ O = S =q^n+1,$
for	$P=Q^{-}(2+1,q),$	$ O = S = q^{n+1} + 1,$
for	$P=H(2n,q^2),$	$ O = S = q^{2n+2} + 1,$
for	$P=H(2n+1,q^2),$	$ O = S = q^{2n+1} + 1.$

3. EXISTENCE AND NON-EXISTENCE OF SPREADS AND OVOIDS

3.1. Spreads. A spread of $W_n(q)$, n = 2t + 1, is also a *t*-spread of PG(n, q), that is, a partition of PG(n, q) by *t*-dimensional subspaces. For every n = 2t + 1 the polar space $W_n(q)$ has a spread which is also a regular *t*-spread of PG(n, q); for details see, e.g., Thas [22]. Many other examples of spreads of $W_n(q)$ are known; see, e.g., Bader, Kantor and Lunardon [1], Dye [7], Kantor [10], Lüneburg [13], Thas [20], and Thas [28].

Proofs of the following results on spreads of quadrics can be found in Conway, Kleidman, and Wilson [6], Dye [7], Kantor [10–12], Moorhouse [14, 15], Payne and Thas [17], Shult [18], and Thas [27]. It is clear that $Q^+(4n + 1, q)$ has no spread. For q even, Q(2n, q), $Q^-(2n + 1, q)$, and $Q^+(4n + 3, q)$ always have a spread. For q odd, $Q^+(3, q)$ and $Q^-(5, q)$ have a spread; for q = p an odd prime and for q odd with $q \equiv 0$ or 2 (mod 3), $Q^+(7, q)$ and Q(6, q) have a spread; the polar space Q(4n, q), with q odd, has no spread.

Concerning spreads of the polar spaces $H(n, q^2)$ the following results are known. They are respectively due to Thas [27] and Brouwer [4]: the polar spaces $H(2n + 1, q^2)$ and H(4, 4) do not have a spread.

Open problems. The existence or non-existence of spreads in the following cases:

- (a) Q(6,q) for q odd, with $q \equiv 1 \pmod{3}$ and q not a prime;
- (b) Q(4n + 2, q) for n > 1 and q odd;
- (c) $Q^+(7, q)$ for q odd, with $q \equiv 1 \pmod{3}$ and q not a prime;
- (d) $Q^+(4n + 3, q)$ for n > 1 and q odd;
- (e) $Q^{-}(2n + 1, q)$ for n > 2 and q odd;
- (f) $H(4, q^2)$ for q > 2;
- (g) $H(2n, q^2)$ for n > 2.

3.2. Ovoids. In Thas [20] it is shown that $W_3(q)$ has an ovoid if and only if q is even. Moreover any ovoid of $W_3(q)$, q even, is an ovoid of PG(3, q). Conversely, any ovoid of PG(3, q), q even, is an ovoid of some $W_3(q)$ (see e.g., Hirschfeld [8]). Further, Thas [24] proves that $W_n(q)$, n = 2t + 1 with t > 1, has no ovoid.

Thas [24] also proves the non-existence of ovoids in Q(2n, q), with q even and n > 2, and $Q^{-}(2n + 1, q)$, with n > 1. Kantor [10] shows that there is no ovoid in $Q^{+}(2n + 1, 2)$, $n \ge 4$, and Shult [19] proves that there is no ovoid in $Q^{+}(2n + 1, 3)$, $n \ge 4$. More generally, Blokhuis and Moorhouse [3] show that in $Q^{+}(2n + 1, q)$, with $q = p^{h}$, p prime, and

$$p^n > \binom{2n+p}{p-1},$$

there is no ovoid. For $n \ge 4$, this excludes p = 2, 3; for $n \ge 5$ this excludes p = 2, 3, 5, 7. The polar space Q(4, q) always has an ovoid; see, e.g., Payne and Thas [17]. Clearly $Q^+(3, q)$ has an ovoid and for all $q, Q^+(5, q)$ admits an ovoid; see, e.g., Hirschfeld [8]. For $q = 3^h$ the polar space Q(6, q) has an ovoid; see Kantor [10] and Thas [23, 27]. Applying triality (cf. Hirschfeld and Thas [9]) to the results on spreads of $Q^+(7, q)$ in 3.1, we find that $Q^+(7, q)$ has an ovoid in at least the following cases: q even, q an odd prime, and q odd with $q \equiv 0$ or 2 (mod 3).

Concerning ovoids of the polar spaces $H(n, q^2)$ the following results are known: it is easy to show that $H(3, q^2)$ admits ovoids (see, e.g., Payne and Thas [17] and Thas [25]) and in Thas [24] it is proved that $H(n, q^2)$, with n even, has no ovoid.

Open problems. The existence or non-existence of ovoids in the following cases:

(a) Q(6, q) for q odd with $q \neq 3^h$;

- (b) Q(2n, q) for n > 3 and q odd;
- (c) $Q^+(7, q)$ for q odd, with $q \equiv 1 \pmod{3}$ and q not a prime;
- (d) $Q^+(2n + 1, q)$ for n > 3, $q = p^h$, p prime, and

$$p^n \le \binom{2n+p}{p-1};$$

(e) $H(n, q^2)$ for n odd and n > 3.

4. *m*-Systems and Partial *m*-Systems of Polar Spaces

4.1. DEFINITION. Let P be a finite classical polar space of rank r, with $r \ge 2$. A partial *m*-system of P, with $0 \le m \le r - 1$, is any set $\{\pi_1, \pi_2, \ldots, \pi_k\}$ of $k \ (\neq 0)$ totally singular *m*-spaces of P such that no

generator containing π_i has a point in common with $(\pi_1 \cup \pi_2 \cup \cdots \cup \pi_k) - \pi_i$, $i = 1, 2, \ldots, k$. A partial 0-system of size k is also called a *partial ovoid*, or a *cap*, or a *k-cap*; a partial (r - 1)-system is also called a *partial spread*.

4.2. THEOREM 4. Let M be a partial m-system of the finite classical polar space P. Then

for	$P=W_{2n+1}(q),$	$ M \le q^{n+1} + 1,$
for	P=Q(2n,q),	$ M \le q^n + 1,$
for	$P=Q^+(2n+1,q),$	$ M \le q^n + 1,$
for	$P=Q^{-}(2n+1,q),$	$ M \leq q^{n+1} + 1,$
for	$P=H(2n,q^2),$	$ M \le q^{2n+1} + 1,$
for	$P=H(2n+1,q^2),$	$ M \le q^{2n+1} + 1.$

Proof. By Theorem 3 we may assume that m < r - 1, with r the rank of the polar space.

If the polar space has ambient space PG(s, q), then it will be denoted by P_s . Further, let $|P_s| = A_s$ and $|M| = \alpha$.

For each point $p_i \in P_s$ not in an element of M, let t_i be the number of totally singular (m + 1)-spaces of P_s containing p_i and an element of M.

Now we count in different ways the number of ordered pairs (p_i, ξ) , with $p_i \in P_s$ not in an element of M and with ξ a totally singular (m + 1)-space of P_s containing p_i and an element of M.

We obtain

$$\sum t_i = \alpha q^{m+1} A_{s-2m-2}.$$
(1)

In (1), $A_{s-2m-2} = |P_{s-2m2}$, with P_{s-2m-2} of the same type as P_s , and also polar spaces or rank 1 are admitted; for polar spaces of rank 1 we have $|W_1(q)| = |Q(2,q)| = |H(1,q^2)| = q + 1$, $|Q^+(1,q)| = 2$, $|Q^-(3,q)| = q^2 + 1$, $|H(2,q^2)| = q^3 + 1$.

Next we count in different ways the number of ordered triples (p_i, ξ, ξ') , with $p_i \in P_s$ not in an element of M and with ξ and ξ' distinct totally singular (m + 1)-spaces of P_s containing p_i and an element of M.

We obtain

$$\sum t_i(t_i - 1) = \alpha(\alpha - 1)A_{s-2m-2}.$$
 (2)

The remarks concerning (1) also hold for (2).

The number of points p_i equals

$$|I| = A_s - \alpha (q^{m+1} - 1) / (q - 1).$$
(3)

As $|I| \sum t_i^2 - (\sum t_i)^2 \ge 0$, we obtain from (1), (2), and (3)

$$-\alpha^{2}(q^{m+1}-1) + \alpha \Big(-(q^{m+1}-1)^{2} + A_{s}(q-1) \\ -A_{s-2m-2}q^{2m+2}(q-1)\Big) \\ + A_{s}(q^{m+1}-1)(q-1) \ge 0.$$
(4)

Now an easy calculation gives us the bounds in the statement of the theorem. \blacksquare

4.3. *m-Systems*. Let M be a partial *m*-system of the finite classical polar space P. If for |M| the upper bound in the statement of Theorem 4 is reached, then M is called an *m*-system of P. So for an *m*-system M we have in the respective cases:

if $P = V$	$W_{2n+1}(q),$	then	$ M =q^{n+1}+1,$
if $P = Q$	Q(2n,q),	then	$ M = q^n + 1,$
if $P = Q$	$Q^+(2n+1,q),$	then	$ M =q^n+1,$
if $P = Q$	$Q^{-}(2n+1,q),$	then	$ M = q^{n+1} + 1,$
if $P = H$	$H(2n,q^2),$	then	$ M = q^{2n+1} + 1,$
if $P = H$	$I(2n+1,q^2),$	then	$ M = q^{2n+1} + 1.$

For m = 0, the *m*-system *M* is an ovoid of *P*; for m = r - 1, with *r* the rank of *P*, the *m*-system *M* is a spread of *P*. The fact that |M| is independent of *m* gives us the explanation why an ovoid and a spread of a polar space *P* have the same size.

4.4. THEOREM 5. Let M be an m-system of the finite classical polar space P of rank r, with m < r - 1. Then the number θ of totally singular (m + 1)-spaces of P containing an element of M and a given point $p \in P$ not in an element of M is independent of the choice of p. In the respective cases

the number θ is given as follows:

$$\begin{array}{ll} for & P = W_{2n+1}(q), & \theta = q^{n-m} + 1, \\ for & P = Q(2n,q), & \theta = q^{n-m-1} + 1, \\ for & P = Q^+(2n+1,q), & \theta = q^{n-m-1} + 1, \\ for & P = Q^-(2n+1,q), & \theta = q^{n-m} + 1, \\ for & P = H(2n,q^2), & \theta = q^{2n-2m-1} + 1, \\ for & P = H(2n+1,q^2), & \theta = q^{2n-2m-1} + 1. \end{array}$$

Proof. Let M be an m-system of the polar space P. As we then have equality in (4), it follows that in the proof of Theorem 4 the number t_i is the constant

$$\bar{t} = \left(\sum t_i\right) / |I| = |M|q^{m+1}A_{s-2m-2} / \left(A_s - |M|(q^{m+1}-1)/(q-1)\right).$$

Now an easy calculation gives us $t = \theta$ in the respective cases.

Remark. If p is a point of P not in an element of the m-system M, then for m < r - 1 and $P \neq W_{2n+1}(q)$, the tangent hyperplane of P at p contains exactly θ elements of M: for m < r - 1 and $P = W_{2n+1}(q)$, the hyperplane p^{\perp} contains exactly θ elements of M.

5. INTERSECTIONS WITH HYPERPLANES

From now on let P be a finite classical polar space of rank r, and let M be an *m*-system of P.

5.1. THEOREM 6. For $P \neq W_{2n+1}(q)$, let ζ be the number of elements of M contained in a non-tangent hyperplane π of P; for $P = W_{2n+1}(q)$, let ζ be the number of elements of M contained in a hyperplane p^{\perp} , with p not in an element of M. Then

for $P = W_{2n+1}(q)$, we have $\zeta = \theta = q^{n-m} + 1$, for P = Q(2n, q) and $\pi \cap Q(2n, q) = Q^+(2n - 1, q)$, we have $\zeta = q^{n-m-1} + 1$,

for $P = Q^{-}(2n + 1, q)$, we have $\zeta = q^{n-m} + 1$, for $P = H(2n, q^2)$, we have $\zeta = q^{2n-2m-1} + 1$.

Proof. It is clear that for $P = W_{2n+1}(q)$ we have $\zeta = \theta$ (cf. the remark following Theorem 5).

Now let P = Q(2n, q) and let π_i be an non-tangent hyperplane intersecting Q(2n, q) in a polar space of type $Q^+(2n - 1, q)$. Further, let ζ_i be the number of elements of M in π_i .

Count in different ways the number of ordered pairs (γ, π_i) , with $\gamma \in M$ in π_i . We obtain

$$\sum \zeta_i = (q^n + 1)q^n (q^{n-m-1} + 1)/2.$$
(5)

Now we count in different ways the number of ordered triples (γ, γ', π_i) , with γ and γ' distinct elements of M in π_i . We obtain

$$\sum \zeta_i(\zeta_i - 1) = (q^n + 1)q^n q^{n-m-1} (q^{n-m-1} + 1)/2.$$
 (6)

The number of hyperplanes π_i equals

$$|I| = q^{n}(q^{n} + 1)/2.$$
(7)

By (5), (6), and (7), we have $|I| \sum \zeta_i^2 - (\sum \zeta_i)^2 = 0$, and so

$$\zeta_i = \left(\sum \zeta_i\right) / |I| = q^{n-m-1} + 1$$

for all $i \in I$.

Next, let $P = Q^{-}(2n + 1, q)$ and let π_i be any non-tangent hyperplane of *P*. Further, let ζ_i be the number of elements of *M* in π_i . As in the previous section we obtain consecutively

$$\sum \zeta_i = (q^{n+1} + 1)q^n(q^{n-m} + 1), \tag{8}$$

$$\sum \zeta_i(\zeta_i - 1) = (q^{n+1} + 1)q^{2n-m}(q^{n-m} + 1), \qquad (9)$$

$$|I| = q^{n} (q^{n+1} + 1).$$
 (10)

By (8), (9), and (10) we have $|I| \sum \xi_i^2 - (\sum \zeta_i)^2 = 0$, and so

$$\zeta_i + \left(\sum \zeta_i\right) / |I| = q_i^{n-m} + 1$$

for all $i \in I$.

Now let $P = H(2n, q^2)$ and let π_i be any non-tangent hyperplane of P. Further, let ζ_i be the number of elements of M in π_i . As before we obtain consecutively

$$\sum \zeta_i = (q^{2n+1}+1)q^{2n}(q^{2n-2m-1}+1)/(q+1)$$
(11)

$$\sum \zeta_i(\zeta_i - 1) = (q^{2n+1} + 1)q^{4n-2m-1}(q^{2n-2m-1} + 1)/(q+1), \quad (12)$$

$$|I| = q^{2n} (q^{2n+1} + 1) / (q+1).$$
(13)

By (11), (12), and (13) we have $|I|\sum \xi_i^2 - (\sum \zeta_i)^2 = 0$, and so

$$\zeta_i = \left(\sum \zeta_i\right) / |I| = q^{2n - 2m - 1} + 1$$

for all $i \in I$.

Remark. If P = Q(2n, q) and $\pi \cap Q(2n, q) = Q^{-1}(2n - 1, q)$, then $\zeta = 0$ for m = n - 1, and ζ depends on the choice of π for m < n - 1.

If $P = Q^+(2n + 1, q)$, then $\zeta = 0$ for m = n, and ζ depends on the choice of π for m < n.

If $P = H(2n + 1, q^2)$, then $\zeta = 0$ for n = m, and ζ depends on the choice of π for m < n.

5.2. THEOREM 7. For $P \in \{W_{2n+1}(q), Q^{-}(2n + 1, q), H(2n, q^2)\}$ we have $\zeta = \theta$; that is, any hyperplane contains either one or θ elements of M. Hence the union \tilde{M} of the elements of M has two intersection numbers β_1, β_2 with respect to hyperplanes.

Proof. By Theorems 5 and 6, any hyperplane π which is not tangent at a point of P in \tilde{M} for $P \neq W_{2n+1}(q)$, and which is not of the form p^{\perp} , with $p \in \tilde{M}$, for $P = W_{2n+1}(q)$, contains $\zeta = \theta$ elements of M. Any other hyperplane contains exactly one element of M. It is now clear that \tilde{M} has two intersection numbers with respect to hyperplanes.

Calculation of the intersection numbers β_1, β_2 . In the respective cases we obtain

(a) $P = W_{2n+1}(q)$

$$\beta_{1} = \frac{q^{m+1} - 1}{q - 1} + q^{n+1} \cdot \frac{q^{m} + 1}{q - 1} = \frac{(q^{m+1} - 1)(q^{n} + 1)}{q - 1} - q^{n},$$

$$\beta_{2} = (q^{n-m} + 1) \cdot \frac{q^{m+1} - 1}{q - 1} - (q^{n+1} - q^{n-m}) \cdot \frac{q^{m} - 1}{q - 1}$$

$$= \frac{(q^{m+1} - 1)(q^{n} + 1)}{q - 1}.$$

$$\beta_{1} = \frac{q^{m+1} - 1}{q - 1} + q^{n+1} \cdot \frac{q^{m} - 1}{q - 1} = \frac{(q^{m+1} - 1)(q^{n} + 1)}{q - 1} - q^{n},$$

$$\beta_{2} = (q^{n-m} + 1) \cdot \frac{q^{m+1} - 1}{q - 1} + (q^{n+1} - q^{n-m}) \cdot \frac{q^{m} - 1}{q - 1}$$

$$= \frac{(q^{m+1} - 1)(q^{n} + 1)}{q - 1}.$$

(c) $P = H(2n, q^2)$

(b) $P = O^{-}(2n + 1, q)$

$$\beta_{1} = \frac{q^{2m+2}-1}{q^{2}-1} + q^{2n+1} \cdot \frac{q^{2m}-1}{q^{2}-1}$$
$$= \frac{(q^{2m+2}-1)(q^{2n-1}+1)}{q^{2}-1} - q^{2n-1},$$

$$\beta_{2} = (q^{2n-2m-1}+1) \cdot \frac{q^{2m+2}-1}{q^{2}-1} + (q^{2n+1}-q^{2n-2m-1}) \cdot \frac{q^{2m}-1}{q^{2}-1}$$
$$= \frac{(q^{2m+2}-1)(q^{2n-1}+1)}{q^{2}-1}.$$

COROLLARY. For $P \in \{W_{2n+1}(q), Q^{-1}(2n+1, q), H(2n, q^2)\}$ any msystem defines a strongly regular graph and a two-weight code.

Proof. By Theorem 7 this follows immediately from Calderbank and Kantor [5].

6. Intersections with Generators

6.1. THEOREM 8. Let M be an m-system of the finite classical polar space P and let \tilde{M} be the union of all elements of M. Then for any generator γ of P we have

$$|\gamma \cap \tilde{M}| = (q^{m+1}-1)/(q-1).$$

Proof. Let γ_i be any generator of P_s , with s the dimension of the ambient space of P_s , and let $|\gamma_i| \cap \tilde{M}| = t_i$.

Count in two different ways the number of ordered pairs (p, γ_i) , with $p \in \tilde{M}$ contained in the generator γ_i . We obtain

$$\sum_{i} t_{i} = \tilde{\alpha} |\Sigma(P_{s-2})|, \qquad (14)$$

with $\tilde{\alpha} = |\tilde{M}|$, with $\Sigma(P_{s-2})$ the set of all generators of P_{s-2} , and with P_{s-2} of the same type as P_s .

Next, count in two different ways the number of ordered triples (p, p', γ_i) , with p and p' different points of \tilde{M} in the generator γ_i .

We obtain

$$\sum_{i} t_{i}(t_{i}-1) = \tilde{\alpha} \left(q \frac{q^{m}-1}{q-1} + (\alpha-1) \frac{q^{m}-1}{q-1} \right) |\Sigma(P_{s-4})|, \quad (15)$$

with $\alpha = |M|$ and with P_{s-4} of the same type as P_s .

The number of generators γ_i equals

$$|I| = |\Sigma(P_s)|. \tag{16}$$

By (14), (15), and (16), and relying on

$$\alpha \big| \Sigma(P_{s-2}) \big| = \big| \Sigma(P_s) \big|$$

and

$$\alpha(q+\alpha-1)|\Sigma(P_{s-4})|=q|\Sigma(P_s)|,$$

we obtain

$$\sum_{i} t_{i} = (q^{m+1} - 1) |\Sigma(P_{s})| / (q - 1)$$

and

$$\sum_{i} t_{i}(t_{i}-1) = (q^{m+1}-1)(q^{m}-1)q|\Sigma(P_{s})|/(q-1)^{2}.$$

Hence $|I|\sum_i t_i^2 - (\sum_i t_i)^2 = 0$, and so

$$t_i = \left(\sum_i t_i\right) / |I| = (q^{m+1} - 1) / (q - 1)$$

for all $i \in I$.

6.2. k-Ovoids of polar spaces. Let P be a finite polar space of rank r, $r \ge 2$. A pointset K of P is called a k-ovoid of P if each generator of P

contains exactly k points of K. A k-ovoid with k = 1 is an ovoid. For r = 2, k-ovoids were already introduced by Thas [26].

By Theorems 8, the union of all elements of an *m*-system *M* of *P* is a *k*-ovoid with $k = (q^{m+1} - 1)/(q - 1)$.

7. m' = Systems Arising from a Given *m*-System

Here we describe some constructions of m'-systems starting from a given m-system. As the cases "ovoids arising from a given ovoid" and "spreads arising from a given spread" were already considered in the papers on ovoids and spreads mentioned in Section 3, these constructions are not repeated here.

7.1. THEOREM 9. If $Q^{-}(2n + 1, q)$ has an m-system, then also Q(2n + 1, q) and $Q^{+}(2n + 3, q)$ have m-systems.

Proof. Let M be an m-system of $Q^{-}(2n + 1, q)$. Embed $Q^{-}(2n + 1, q)$ in a Q(2n + 2, q) and embed Q(2n + 2, q) in a $Q^{+}(2n + 3, q)$. Any generator π of $Q^{+}(2n + 3, q)$ containing $\pi_i \in M$, intersects $PG(2n + 1, q) \supset Q^{-}(2n + 1, q)$ in a generator of $Q^{-}(2n + 1, q)$; any generator π' of Q(2n + 2, q) containing $\pi_i \in M$, intersects PG(2n + 1, q) in a generator of $Q^{-}(2n + 1, q)$ in a generator of $Q^{-}(2n + 1, q)$ in a generator of $Q^{-}(2n + 1, q)$. Hence π and π' are skew to each element of $M - \{\pi_i\}$. As |M| is the number of elements of an m-system of Q(2n + 2, q), respectively $Q^{+}(2n + 3, q)$.

7.2. THEOREM 10. The polar space Q(2n, q), q even, has an m-system if and only if the polar space $W_{2n-1}(q)$ has an m-system.

Proof. Consider the polar space Q(2n, q), q even, in PG(2n, q). The nucleus of the quadric Q defining Q(2n, q) is denoted by z. Let PG(2n - 1), be a hyperplane of PG(2n, q) not containing z. The projections from z onto PG(2n - 1, q) of the totally singular s-dimensional subspaces of Q(2n, q) are the totally singular s-dimensional subspaces of a polar space $W_{2n-1}(q)$ in PG(2n - 1, q). Hence an m-system of Q(2n, q) is projected onto an m-system of $W_{2n-1}(q)$, and, conversely, any m-system of $W_{2n-1}(q)$ is the projection of an m-system of Q(2n, q).

7.3. THEOREM 11. Let S_1 and S_2 be spreads of $Q^+(7, q)$, where the generators of S_1 and the generators of S_2 belong to different families. Then for each $\xi_i \in S_1$ there is exactly one $\eta_j \in S_2$ with $\xi_i \cap \eta_j = \pi_{ij}$ a plane. Also, the $q^3 + 1$ planes π_{ii} form a 2-system of $Q^+(7, q)$.

Proof. Let $S_1 = \{\xi_1, \xi_2, ...\}$ and let $S_2 = \{\eta_1, \eta_2, ...\}$. Fix a generator ξ_i . If $|\xi_i \cap \eta_i| = t_{ii}$, then

$$\sum_{j} t_{ij} = q^3 + q^2 + q + 1.$$
(17)

As ξ_i and η_j are generators of different families, we have $t_{ij} \in \{1, q^2 +$ q + 1. Also, the number of indices j is exactly $|S_2| = q^3 + 1$. Now it is clear that for exactly one index j we have $t_{ii} = q^2 + q + 1$, while for any other index j' we have $t_{ii'} = 1$.

Since any two elements of S_1 are skew, any two distinct elements ξ_{i_1} and ξ_{i_2} of S_1 define planes $\pi_{i_1j_1}$ and $\pi_{i_2j_2}$ in distinct generators η_{j_1} and η_{j_2} . Now indices can be chosen in such a way that $\xi_i \cap \eta_i = \pi_{ii}$ is a plane.

As ξ_i and η_i are the only generators containing π_{ii} , it is clear that every generator containing π_{ii} is skew to π_{jj} , for all $j \neq i$. We conclude that the $q^3 + 1$ planes π_{ii} form a 2-system of $Q^+(7, q)$.

Remark. If $Q^+(4n + 3, q)$, $n \ge 1$, admits a 2*n*-system, then it admits a spread. This spread is obtained by considering all generators of a given family of generators of $Q^+(4n+3,q)$, containing an element of the 2n-system.

7.4. THEOREM 12. (a) If $H(2n, q^2)$ admits an m-system M, then $Q^{-}(4n + 1, q)$ admits a (2m + 1)-system M'.

(b) If $H(2n + 1, q^2)$ admits an m-system M, then $Q^+(4n + 3, q)$ admits a (2m + 1)-system M'.

Proof. (a) Consider the polar space $Q^{-}(4n + 1, q), n \ge 1$. In the extension $PG(4n + 1, q^2)$ of PG(4n + 1, q), the polar space $Q^+(4n + 1, q)$ 1, q) extends to the polar space $Q^+(4n + 1, q^2)$. On the polar space $Q^{-}(4n + 1, q^2)$ it is possible to choose a projective 2n-space π with $\pi \cap \overline{\pi} = \emptyset$, where $\overline{\pi}$ is conjugate to π with respect to the quadratic extension $GF(q^2)$ of GF(q). The lines of $Q^{-}(4n + 1, q)$ whose extensions intersect π and $\overline{\pi}$ form a partition T of the pointset of $Q^{-}(4n + 1, q)$. It can be shown that the points common to π and the extensions of the lines of T form a hermitian variety H of π . Hence for $n \ge 2$ there arises a polar space $H(2n, q^2)$.

Let M be an m-system of $H(2n, q^2)$, $n \ge 2$; then $|M| = q^{2n+1} + 1$. If $\pi_i \in M$ and if $\overline{\pi}_i$ is conjugate to π_i , then the (2m + 1)-dimensional totally singular subspace of $Q^{-}(4n + 1, q)$ defined by π_i and $\overline{\pi}_i$ will be denoted by π'_i . These $q^{2n+1} + 1$ spaces π'_i are mutually skew. Assume by way of contradiction that there is a (2m + 2)-dimensional totally singular subspace ζ of $Q^{-}(4n + 1, q)$ which contains π'_i and has a point x in common with π'_j , $i \neq j$. If π_{ij} is the (2m + 1)-dimensional subspace of π generated by π_i and π_j , then, as π_i and π_j belong to an m-system of $H(2n, q^2)$, $\pi_{ij} \cap H(2n, q^2)$ is a polar space $H(2m + 1, q^2)$ if m > 0 and a Baer-subline $H(1, q^2)$ of π_{ij} if m = 0. Hence the lines of T whose extensions intersect π in the points of $H(2m + 1, q^2)$ have as union the pointset of a polar space $Q^+(4m + 3, q)$. Clearly π'_i, π'_j, ζ are totally singular subspaces of $Q^+(4m + 3, q)$. As ζ has dimension 2m + 2, we have a contradiction. Consequently, no generator of $Q^-(4n + 1, q)$ containing π'_i has a point in common with $\pi'_i, i \neq j$.

As a (2m + 1)-system of $Q^{-}(4n + 1, q)$ has size $q^{2n+1} + 1$, that is, the number of spaces π'_i , we conclude that the set $M' = {\pi'_1, \pi'_2, ...}$ is a (2m + 1)-system of $Q^{-}(4n + 1, q)$.

(b) Consider the polar space $Q^+(4n + 3, q)$, $n \ge 0$. In the extension $PG(4n + 3, q^2)$ of PG(4n + 3, q), the polar space $Q^+(4n + 3, q)$ extends to the polar space $Q^+(4n + 3, q^2)$. On the polar space $Q^+(4n + 3, q^2)$ it is possible to choose a projective (2n + 1)-space π with $\pi \cap \overline{\pi} = \emptyset$, where $\overline{\pi}$ is conjugate to π with respect to the quadratic extension $GF(q^2)$ of GF(q). The lines of $Q^+(4n + 3, q)$ whose extensions intersect π and $\overline{\pi}$ form a partition T of the pointset of $Q^+(4n + 3, q)$. It can be shown that the points common to π and the extensions of the lines of T form a hermitian variety H of π : Hence for $n \ge 1$ there arises a polar space $H(2n + 1, q^2)$.

Let *M* be an *m*-system of $H(2n + 1, q^2)$, $n \ge 1$; then $|M| = q^{2n+1} + 1$. If $\pi_i \in M$ and if $\overline{\pi}_i$ is conjugate to π_i , then the (2m + 1)-dimensional totally singular subspaces of $Q^+(4n + 3, q)$ defined by π_i and $\overline{\pi}_i$ will be denoted by π'_i . These $q^{2n+1} + 1$ spaces π'_i are mutually skew. Assume by way of contradiction that there is a (2m + 2)-dimensional totally singular subspace ζ of $Q^+(4n + 3, q)$ which contains π'_i and has a point x in common with π'_j , $i \ne j$. If π_{ij} is the (2m + 1)-dimensional subspace of π generated by π_i and π_j , then, as π_i and π_j belong to an *m*-system of $H(2n + 1, q^2)$, $\pi_{ij} \cap H(2n + 1, q^2)$ is a polar space $H(2m + 1, q^2)$ if m > 0 and a Baer-subline $H(1, q^2)$ of π_{ij} if m = 0. Hence the lines of T whose extensions intersect π in the points of $H(2m + 1, q^2)$ have as union the pointset of a polar space $Q^+(4m + 3, q)$. Clearly π'_i, π'_j, ζ are totally singular subspaces of $Q^+(4m + 3, q)$. As ζ has dimension 2m + 2, we have a contradiction. Consequently, no generator of $Q^+(4n + 3, q)$ containing π'_i has a point in common with $\pi'_i, i \ne j$.

As a (2m + 1)-system of $Q^+(4n + 3, q)$ has size $q^{2n+1} + 1$, that is, the number of spaces π'_i , we conclude that the set $M' = {\pi'_1, \pi'_2, ...}$ is a (2m + 1)-system of $Q^+(4n + 3, q)$.

For an irreducible conic of PG(2, q) we also use the notation Q(2, q). A 0-system of the conic Q(2, q) is defined to be the set of all points of the conic. For an elliptic quadric of PG(3, q) we also use the notation $Q^{-}(3, q)$. A 0-system of the elliptic quadric $Q^{-}(3, q)$ is defined to be the set of all points of the quadric.

7.5. THEOREM 13. (a) If $Q(2n, q^2)$, with $n \ge 1$ and q odd, admits an m-system M, then $Q^+(4n + 1, q)$ admits a (2m + 1)-system M'. If $Q(2n, q^2)$, with $n \ge 1$ and q even, admits an m-system M, then Q(4n, q), and hence also $Q^+(4n + 1, q)$, admits a (2m + 1)-system M'.

(b) If $Q^{-}(2n + 1, q^2)$, with $n \ge 1$, admits an m-system M, then $Q^{-}(4n + 3, q)$ admits a (2m + 1)-system M'.

Proof. (a) In the extension $PG(4n + 1, q^2)$ of PG(4n + 1, q) we consider two 2*n*-dimensional subspaces π and $\overline{\pi}$ which are conjugate with respect to the extension $GF(q^2)$ of GF(q), which are skew for q odd, and which have just one point p in common for q even. Clearly p belongs to PG(4n + 1, q). In PG(4n + 1, q) we now consider a polar space $Q^+(4n + 1, q)$ such that π and $\overline{\pi}$ are polar with respect to the polarity θ defined by the extension $Q^+(4n + 1, q^2)$ of $Q^+(4n + 1, q)$; for q even, we assume that p is not a point of $Q^+(4n + 1, q)$. Then $\pi \cap Q^+(4n + 1, q^2)$ is a polar space $Q(2n, q^2)$ for n > 1, and an irreducible conic $Q(2, q^2)$ for n = 1. For q even, the 4*n*-dimensional space $PG(4n, q^2)$ defined by π and $\overline{\pi}$ extends a space PG(4n, q) which intersects $Q^+(4n + 1, q)$ in a polar space Q(4n, q); the kernel of the polar spaces $Q(2n, q^2)$ and Q(4n, q) is the point p.

Let *M* be an *m*-system of $Q(2n, q^2)$, $n \ge 1$; then $|M| = q^{2n} + 1$. If $\pi_i \in M$ and if $\overline{\pi}_i$ is conjugate to π_i with respect to the extension $GF(q^2)$ of GF(q), then the (2m + 1)-dimensional totally singular subspace of $Q^+(4n + 1, q)$ defined by π_i and $\overline{\pi}_i$ will be denoted by π'_i . These $q^{2n} + 1$ spaces π'_i are mutually skew. Assume by way of contradiction that there is a (2m + 2)-dimensional totally singular subspace ζ of $Q^+(4n + 1, q)$ which contains π'_i and has a point x in common with π'_j , $i \ne j$. If π_{ij} is the (2m + 1)-dimensional subspace of π generated by π_i and π_j , then, as π_i and π_j belong to an *m*-system of $Q(2n, q^2), \pi_{ij} \cap Q(2n, q^2)$ is a polar space $Q^+(2m + 1, q^2)$ if m > 0 and a point-pair $Q^+(1, q^2)$ of π_{ij} if m = 0. Now it is easy to show that the (4m + 3)-dimensional space $PG(4m + 3, q^2)$ generated by π'_i and π'_j intersects $Q^+(4n + 1, q^2)$ in a polar space $Q^+(4m + 3, q^2)$; the space π_{ij} and its conjugate $\overline{\pi}_{ij}$ with respect to the extension $GF(q^2)$ of GF(q) are polar with respect to the polarity θ' induced by θ in $PG(4m + 3, q^2)$. The space $PG(4m + 3, q^2) = PG(4m + 3, q) \cap Q^+(4m + 3, q^2)$ is a polar space $Q^+(4m + 3, q)$, and $PG(4m + 3, q) \cap Q^+(4m + 1, q^2) = PG(4m + 3, q)$. Clearly

 π'_i, π'_j, ζ are totally singular subspaces of $Q^+(4m + 3, q)$. As ζ has dimension 2m + 2, we have a contradiction. Consequently, no generator of $Q^+(4n + 1, q)$ containing π'_i has a point in common with $\pi'_i, i \neq j$.

As a (2m + 1)-system of $Q^+(4n + 1, q)$ has size $q^{2n} + 1$, that is, the number of spaces π'_i , we conclude that the set $M' = {\pi'_1, \pi'_2, ...}$ is a (2m + 1)-system of $Q^+(4n + 1, q)$.

In the even case all spaces of M' are totally singular spaces of the polar space Q(4n, q). As a (2m + 1)-system of Q(4n, q) has size $q^{2n} + 1 = |M'|$, it is clear that M' is also a (2m + 1)-system of Q(4n, q).

(b) In the extension $PG(4n + 3, q^2)$ of PG(4n + 3, q) we consider two (2n + 1)-dimensional subspaces π and $\overline{\pi}$ which are conjugate with respect to the extension $GF(q^2)$ of GF(q) and for which $\pi \cap \overline{\pi} = \emptyset$. In PG(4n + 3, q) we now consider a polar space $Q^{-}(4n + 3, q)$ such that π and $\overline{\pi}$ are polar with respect to the polarity θ defined by the extension $Q^+(4n + 3, q^2)$ of $Q^-(4n + 3, q)$. Assume by way of contradiction that $\pi \cap Q^+(4n + 3, q^2)$ is a polar space $Q^+(2n + 1, q^2)$. If ξ is a generator of $Q^+(2n + 1, q^2)$ and $\overline{\xi}$ is conjugate to ξ with respect to the extension $GF(q^2)$ of GF(q), then ξ and $\overline{\xi}$ define a (2n + 1)-dimensional totally singular subspace of $Q^-(4n + 3, q)$, a contradiction. Hence $\pi \cap Q^-(4n + 3, q^2)$ is a polar space $Q^-(2n + 1, q^2)$ for n > 1, and an elliptic quadric $Q^-(3, q^2)$ for n = 1.

Let M be an m-system of $Q^{-}(2n + 1, q^2)$, $n \ge 1$; then $|M| = q^{2n+2} + 1$. Then, as in case (a), one shows that M defines a (2m + 1)-system of the polar space $Q^{-}(4n + 3, q)$.

Remark. Recall that by 5.2 every *m*-system of $Q^{-}(2n + 1, q^2)$, respectively $Q^{-}(4n + 3, q)$, defines a strongly regular graph and a two-weight code.

For a non-singular hermitian curve of $PG(2, q^2)$ we also use the notation $H(2, q^2)$. A 0-system of the hermitian curve $H(2, q^2)$ is defined to be the set of all points of the curve.

7.6. THEOREM 14. If $H(2n, q^2)$, $n \ge 1$, admits an m-system M, then $W_{4n+1}(q)$ admits a (2m + 1)-system M'.

Proof. In the extension $PG(4n + 1, q^2)$ of PG(4n + 1, q) we consider two mutually skew 2*n*-dimensional subspaces π and $\overline{\pi}$ which are conjugate with respect to the extension $GF(q^2)$ of GF(q). We now consider a polar space $W_{4n+1}(q)$ in PG(4n + 1, q), such that π , and then also $\overline{\pi}$, is self-polar with respect to the symplectic polarity θ defined by the extension $W_{4n+1}(q^2)$ of $W_{4n+1}(q)$. Let $x \in \pi$, let \overline{x} be the point of $\overline{\pi}$ conjugate to x with respect to the extension $GF(q^2)$ of GF(q), and let $\overline{x}^{\theta} \cap \pi = \pi_x$. It is clear that the mapping $\theta_{\pi}: x \to \pi_x$ is a (non-singular) polarity of the projective space π . The absolute points of θ_{π} are exactly the points x of π for which the line $x\bar{x}$ is totally singular for θ ; in such a case $x\bar{x} \cap PG(4n + 1, q)$ is a totally singular line of $W_{4n+1}(q)$. We now show that θ_{π} is a unitary polarity of π .

Let L be any line of π and let \overline{L} be the corresponding line of $\overline{\pi}$. The lines L and \overline{L} generate a threespace $PG(3, q^2)$, which is an extension of PG(3, q). Now we determine the number α of absolute points of θ_{π} on L; that is, we determine the number of totally singular lines of $W_{4n+1}(q)$ in PG(3,q) whose extensions contain a point of L and \overline{L} . First, assume that the polarity induced by θ in $PG(3, q^2)$ is singular with radical $PG(3, q^2)$. Then all lines of $PG(3, q^2)$ are totally singular, and so $\alpha = q^2 + 1$. Next, assume that the polarity induced by θ in $PG(3, q^2)$ is singular with radical $PG(1, q^2)$. In such a case the totally singular lines of θ in $PG(3, q^2)$ are all lines of $PG(3, q^2)$ having a non-empty intersection with $PG(1, q^2)$. Since L and \overline{L} are totally singular, the lines L and \overline{L} have respective points x and \bar{x} in common with $PG(1, q^2)$. It is now clear that $x\bar{x}$ is the only totally singular line of θ in PG(3, q^2), intersecting L and \overline{L} in points conjugate with respect to the extension $GF(q^2)$ of GF(q); hence, $\alpha = 1$. Finally, assume that the polarity induced by θ in $PG(3, q^2)$ is non-singular. Then there are exactly $\alpha = q + 1$ totally singular lines of θ in $PG(3, q^2)$, interesting L and \overline{L} in conjugate points. Consequently $\alpha \in \{1, q + 1, q^2\}$ + 1]. Since the dimension of π is even θ_{π} , either is a unitary polarity or a pseudopolarity. Assume, by way of contradiction, that θ_{π} is a pseudopolarity. Then θ_{π} has a (2n-1)-dimensional space ζ of absolute points. As for the line L joining any two of these absolute points it holds that $\alpha = q^2 + 1$, and we necessarily have $PG(3, q^2) = L\overline{L} \subset PG(3, q^2)^{\theta}$. Let ζ' be the (4n-1)-dimensional space generated by ζ and $\overline{\zeta}$. Further, let N be a line over GF(q) contained in ζ' . If the extension N' of N contains a point of ζ and $\overline{\zeta}$, then clearly N' is totally singular for θ . So assume that N' has an empty intersection with ζ and $\overline{\zeta}$. The lines containing a point of N', ζ and ζ , intersect ζ and ζ in the points of lines L and L which are conjugate with respect to the extension $GF(q^2)$ of GF(q). Since every line of $L\overline{L}$ is totally singular for θ , it follows that N' is totally singular for θ . Hence ζ' is totally singular for θ , a contradiction as ζ' has dimension 4n - 1. We conclude that θ_{π} is a unitary polarity.

So for n = 1, θ_{π} defines a non-singular hermitian curve $H(2, q^2)$, and for n > 1 θ_{π} defines a polar space $H(2n, q^2)$.

Let *M* be an *m*-system of $H(2n, q^2)$, $n \ge 1$; then $|M| = q^{2n+1} + 1$. If $\pi_i \in M$ and if $\overline{\pi}_i$ is conjugate to π_i with respect to the extension $GF(q^2)$ of GF(q), then, by a reasoning analogous to the one used in the last part of the previous section, the (2m + 1)-dimensional subspace π'_i of PG(4m + 1, q) defined by π_i and $\overline{\pi}_i$ is a totally singular subspace of $W_{4n+1}(q)$. These $q^{2n+1} = 1$ spaces π'_i are mutually skew. Assume by way

of contradiction that there is a (2m + 2)-dimensional totally singular subspace η of $W_{4n+1}(q)$ which contains π'_i and has a point x in common with $\pi'_j, i \neq j$. Let $z\overline{z}$, with $z \in \pi_j$ and $\overline{z} \in \overline{\pi}_j$, contain x. Then for any point y of π_i the space \overline{y}^{θ} contains z. Hence the line yz is a line of $H(2n, q^2)$. Consequently $\pi_i z$ is an (m + 1)-dimensional totally singular subspace of $H(2n, q^2)$ containing a point of π_i , a contradiction as M is an *m*-system of $H(2n, q^2)$. So no generator of $W_{4n+1}(q)$ containing π'_i has a point in common with π'_i , $i \neq j$.

As a (2m + 1)-system of $W_{4n+1}(q)$ has size $q^{2n+1} + 1$, that is, the number of spaces π'_i , we conclude that $M' = \{\pi'_1, \pi'_2, \ldots\}$ is a (2m + 1)system of $W_{4n+1}(q)$.

Remark. Recall that by 5.2 every *m*-system of $H(2n, q^2)$, respectively $W_{4n+1}(q)$, defines a strongly regular graph and a two-weight code.

8. Examples of m-Systems

8.1. *m-Systems of* $Q^{-}(2n + 1, q)$, $n \ge 1$. We apply Theorem 7.5(b).

(a) Let $q = p^{2^{h_u}}$, with p any prime and u odd. As $Q^{-}(3, q)$ has a 0-system, the polar space $Q^{-}(2^{s+2} - 1, p^{2^{h-s_u}})$ has a $(2^s - 1)$ -system for all $0 \leq s \leq h$.

As $Q^{-}(5,q)$ has a spread, the polar space $Q^{-}(3.2^{s+1}-1, p^{2^{h-s_u}})$ has a $(2^{s+1} - 1)$ -system for all $0 \le s \le h$.

(b) Let $q = 2^{2^{h_u}}$, with *u* odd. As $Q^{-}(2n + 1, q), n \ge 1$, has an (n - 1)-system, the polar space $Q^{-}((n + 1)2^{s+1} - 1, 2^{2^{h-s_u}})$ has an $(n 2^{s} - 1)$ -system for all $0 \leq$ $s \leq h$.

8.2. *m-Systems of* Q(2n, q), $n \ge 2$. 1. We apply Theorem 9 and rely on 8.1.

(a) Let $q = p^{2^{h_u}}$, with p any prime and u odd. The polar space $Q(2^{s+2}, p^{2^{h-s_u}})$ has a $(2^s - 1)$ -system for all $0 \le s \le h$. The polar space $Q(3.2^{s+1}, p^{2^{h-s_u}})$ has a $(2^{s+1} - 1)$ -system for all $0 \le s$

< h.

(b) Let $q = 2^{2^{h_u}}$, with *u* odd. The polar space $Q((n + 1)2^{s+1}, 2^{2^{h-s_u}})$ has an $(n2^s - 1)$ -system for all $0 \le s \le h$.

2. Consider the classical generalized hexagon H(q) of order q embedded in the non-singular quadric Q of PG(6, q) (cf. Thas [23]). A spread of H(q) is a set S of lines of H(q), any two of which are at distance 6 in the incidence graph of H(q), such that each line of H(q) not in S is concurrent with a unique line of S. Clearly $|S| = q^3 + 1$. In [23] it is

shown that H(q) always has a spread and that for $q = 3^{2h+1}$, $h \ge 0$, H(q) admits at least two projectively inequivalent spreads.

Let S be a spread of H(q). We will show that S is a 1-system of the polar space Q(6, q) arising from the quadric Q. Assume by way of contradiction that the generator π of Q(6, q) containing $L \in S$ has a point x in common with $M \in S - \{L\}$. Then d(x, L) = 3, so d(L, M) = 4, a contradiction.

We conclude that every spread S of H(q) is also a 1-system of Q(6, q).

Problems. (1) Does there exist a 1-system of Q(6, q), $q \neq 3^{2h+1}$, which is not a spread of a $Q^{-}(5, q) \subset Q(6, q)$?

(2) Does there exist a spread of H(q), $q \neq 3^{2h+1}$, which is not a spread of a $Q^{-}(5,q) \subset Q(6,q)$, with Q(6,q) the polar space defined by the quadric Q in which H(q) is embedded?

8.3. *m*-systems of $Q^+(2n + 1, q)$, $n \ge 2$. 1. We apply Theorem 9 and rely on 8.1.

(a) Let $q = p^{2^{h_u}}$, with p any prime and u odd. The polar space $Q^+(2^{s+2}+1, p^{2^{h-s_u}})$ has a $(2^s - 1)$ -system for all $0 \le s \le h$.

The polar space $Q^+(3.2^{s+1}+1, p^{2^{h-s}u})$ has a $(2^{s+1}-1)$ -system for all $0 \le s \le h$.

(b) Let $q = 2^{2^{h_u}}$, with u odd. The polar space $Q^+((n+1)2^{s+1} + 1, 2^{2^{h-s_u}})$ has an $(n2^s - 1)$ -system for all $0 \le s \le h$.

2. (a) Let O be any ovoid of $H(3, q^2)$. Then, by Theorem 12(b), with O there corresponds a 1-system of $Q^+(7, q)$.

(b) Let Σ_1 and Σ_2 be the families of generators of $Q^+(7, q)$. For q even, for p = q an odd prime, and for q odd with $q \equiv 0$ or 2 (mod 3), $Q^+(7, q)$ admits a spread S. Assume, e.g., that the elements of S belong to Σ_1 . Then Σ_2 has a spread S' projectively equivalent to S. By Theorem 11 the spreads S and S' define a 2-system of $Q^+(7, q)$.

8.4. *m-Systems of* $W_{2n+1}(q)$, $n \ge 1$. 1. Applying Theorem 10 and relying on 8.2 we see that the polar space $W_{(n+1)2^{s+1}-1}(2^{2^{h-s_u}})$, with u odd, has an $(n2^s - 1)$ -system for all $n \ge 1$ and $0 \le s \le h$.

2. Applying Theorem 14 we see that $W_5(q)$ admits a 1-system for each prime power q.

8.5. *m-Systems of* $H(3n - 2, q^2)$, *n odd.* Under the trace map: $GF(q^{2n}) \rightarrow GF(q^2)$ when *n* is odd, a non-degenerate Hermitian form on $GF(q^{2n})^{(m)}$ becomes a non-degenerate Hermitian form on $GF(q^2)^{(nm)}$. Upon applying this when m = 3, a unital $H(2, q^{2n})$ becomes a (n - 1)system of $H(3n - 1, q^2)$. Thus W(6n - 1, q) and $Q^{-}(6n - 1, q)$ admit a (2n - 1)-system (resp. Theorem 14 and Theorem 12), so that in turn, Q(6n, q) and $Q^{+}(6n + 1, q)$ admit a (2n - 1)-system (Theorem 9).

9. Classification of All 1-Systems of $Q^+(5,q)$

THEOREM 15. Up to a projectivity $Q^+(5,q)$, with q odd, has a unique 1-system. For q even each 1-system of $Q^+(5,q)$ is a spread of a $Q(4,q) \subset Q^+(5,q)$.

Proof. Let M be a 1-system of $Q^+(5, q)$. Consider Q^+ as the Klein quadric of the lines of PG(3, q); see Hirschfeld [8]. With the $q^2 + 1$ lines of M there correspond $q^2 + 1$ pencils of lines, with respective vertices p_0, p_1, \ldots and contained in the respective plans π_0, π_1, \ldots As M is a 1-system we have $p_i \notin \pi_j$ for $i \neq j$. By Theorem 8 each plane π of PG(3, q) contains either one or q + 1 points of $0 = \{p_0, p_1, \ldots\}$. Now by Thas [21] the set O is an ovoid of PG(3, q).

Let q be odd. Then by the theorem of Barlotti [2] and Panella [16] the ovoid O is an elliptic quadric. Hence, up to a projectivity, O and M are uniquely defined.

Let q be even. Then the tangents of O are the lines of a polar space $W_3(q)$ in PG(3, q); see Hirschfeld [8]. Hence M is a spread of the image Q(4, q) of $W_3(q)$ onto $Q^+(5, q)$; see also Payne and Thas [17].

Note added in proof. Let $\Sigma = \{\pi_i\}$ be an *m*-system of the classical polar space Δ . In the appropriate Grassmannian space G, Σ may be regarded as sets of points which are as far apart as possible. Also for each π in Σ , its perp-space in Δ defines a geometric hyperplane $H(\pi)$ of G which contains the Grassmann point $G(\pi)$ representing π . In turn this geometric hyperplane is known to arise from a projective hyperplane of the projective space of the (m + 1)-exterior product into which the Grassmannian embedds. Since, for distinct π and π' in Σ , $G(\pi)$ is never contained in $H(\pi')$ recently discovered inequalities of Blokhuis and Moorehouse bounding *p*-ranks of point-hyperplane incidence matrices can be applied to give a bound on Σ . Here are two consequences: In characteristic 2, there can be no 1-systems of $Q^+(2s + 1, q)$ for *s* at least 7, nor of $H(2s, q^2)$ with *s* at least 6.

References

- 1. L. BADER, W. M. KANTOR, AND G. LUNARDON, Symplectic spreads from twisted fields, to appear.
- 2. A. BARLOTTI, Un 'estensione del teorema di Segre-Kustaanheimo, Boll. Un. Mat. Ital. 10 (1955), 96-98.
- 3. A. BLOKHUIS AND E. MOORHOUSE, private communication, 1992.
- 4. A. E. BROUWER, private communication, 1981.
- 5. A. R. CALDERBANK AND W. M. KANTOR, The geometry of two-weight codes, Bull. London Math. Soc. 18 (1986), 97-122.
- 6. J. H. CONWAY, P. B. KLEIDMAN, AND R. A. WILSON, New families of ovoids in O_8^+ , Geom. Dedicata 26 (1988), 157–170.
- 7. R. H. DYE, Partitions and their stabilizers for line complexes and quadrics, Ann. Mat. Pura Appl. 114 (1977), 173-194.
- 8. J. W. P. HIRSCHFELD, "Finite Projective Spaces of Three Dimensions," Oxford Univ. Press, Oxford, 1985.
- 9. J. W. P. HIRSCHFELD AND J. A. THAS, "General Galois Geometries," Oxford Univ. Press, Oxford, 1991.

- 10. W. M. KANTOR, Ovoids and translation planes, Canad. J. Math. 34 (1982), 1195-1207.
- W. M. KANTOR, Spreads, translation planes and Kerdock sets, I, SIAM J. Algebra Discuss. Math. 3 (1982), 151-165.
- W. M. KANTOR, Spreads, translation planes and Kerdock sets, II, SIAM J. Algebra Discuss. Math. 3 (1982), 308-318.
- H. LÜNEBURG, "Die Suzukigruppen und ihre Geometrien," Lecture Notes in Mathematics, Vol. 10, Springer-Verlag, Berlin, 1965.
- 14. G. E. MOORHOUSE, Root lattice constructions of ovoids, in "Finite Geometry and Combinatorics," Cambridge Univ. Press, Cambridge, 1993.
- 15. G. E. MOORHOUSE, Ovoids from the E_8 root lattice, Geom. Dedicata, to appear.
- G. PANELLA, Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito, *Boll. Un. Mat. Ital.* 10 (1955), 507–513.
- 17. S. E. PAYNE AND J. A. THAS, "Finite Generalized Quadrangles," Research Notes in Mathematics, Vol. 110, Pitman, Boston/London/Melbourne, 1984.
- 18. E. E. SHULT, A sporadic ovoid in $\Omega^+(8,7)$, Algebras Groups Geom. 2 (1985), 495-513.
- 19. E. E. SHULT, Nonexistence of ovoids in $\Omega^+(10, 3)$, J. Combin. Theory Ser. A 51 (1989), 250–257.
- 20. J. A. THAS, Ovoidal translation planes, Arch. Math. (Basel) 23 (1972), 110-112.
- 21. J. A. THAS, A combinatorial problem, Geom. Dedicata 1 (1973), 236-240.
- J. A. THAS, Two infinite classes of perfect codes in metrically regular graphs, J. Combin. Theory Ser. B 23 (1977), 236–238.
- J. A. THAS, Polar spaces, generalized hexagons and perfect codes, J. Combin. Theory Ser. A 29 (1980), 87–93.
- J. A. THAS, Ovoids and spreads of finite classical polar spaces, Geom. Dedicata 10 (1981). 135–144.
- J. A. THAS, Semi-partial geometries and spreads of classical polar spaces, J. Combin. Theory Ser. A 35 (1983), 58-66.
- J. A. THAS, Interesting pointsets in generalized quadrangles and partial geometries, Linear Algebra Appl. 114/115 (1989), 103-131.
- J. A. THAS, Old and new results on spreads and ovoids of finite classical polar spaces, Ann. Discrete Math. 52 (1992), 529-544.
- J. A. THAS, Projective geometry over a finite field, in "Handbook of Incidence Geometry" (F. Buekenhout, Ed.), Chap. 7, North-Holland, Amsterdam, to appear.