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Abstract

An important issue in the probabilistic prediction modelling of multivariate soil properties (usually including cohesion, friction angle, and unit
weight) is the measurement of dependence structure among these properties. The use of Pearson's correlation as a dependence measure has
several pitfalls; therefore, it may not be appropriate to use probabilistic prediction models in geotechnical engineering problems based on this
correlation. As an alternative, a copula-based methodology for prediction modelling and an algorithm to simulate multivariate soil data are
proposed.
In this method, all different random variables are transformed to a rank/uniform domain in order to form a copula function by applying

cumulative distribution function transformations. The technique of copulas, representing a promising alternative for solving multivariate problems
to describe their dependence structure by a ranked correlation coefficient, is highlighted. Two existing observed soil data sets from river banks are
used to fit a trivariate normal copula and a trivariate fully nested Frank copula. The ranking correlation coefficient Kendall's τ and the copula
model parameters are estimated. The goodness-of-fit test to choose the best-fitting model is discussed.
A series of triplet samples (i.e., cohesion, friction angle, and unit weight) simulated from the trivariate normal copula with flexible marginal

distributions are used as input parameters to evaluate the uncertainties of soil properties and to define their correlations. The influence of the
cross-correlation of these soil properties on reliability-based geotechnical design is demonstrated with two simple geotechnical problems: (a) the
bearing capacity of a shallow foundation resting on a clayey soil and (b) the stability of a cohesive-frictional soil in a planar slope. The sensitivity
analysis of their correlations of random variables on the influence of the reliability index provides a better insight into the role of the dependence
structure in the reliability assessment of geotechnical engineering problems.
& 2013 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

The measurement of geotechnical properties of clayey and
sandy soils such as cohesion (c), inner friction angle (φ, called
friction angle hereafter) and unit weight (or bulk density,
usually distinguished with moist density γm, dry density γd,
and saturated density γsat) by laboratory tests demonstrate large
variations and uncertainties (Matsuo and Kuroda, 1974; Phoon
Elsevier B.V. All rights reserved.

https://core.ac.uk/display/82715123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sandf.2013.06.006&domain=pdf
www.elsevier.com/locate/sandf
dx.doi.org/10.1016/j.sandf.2013.06.006
dx.doi.org/10.1016/j.sandf.2013.06.006
dx.doi.org/10.1016/j.sandf.2013.06.006
mailto:xingzhengwu@gmail.com
dx.doi.org/10.1016/j.sandf.2013.06.006


Nomenclature

Symbol: description

AIC Akaike Information Criterion
B width of strip foundation
C copula distribution function
Cn empirical copula
c cohesion
cθ density function of copula Cθ

CBSM Copula-based sampling method
CoV coefficient of variance
Df depth of footing
darea relative percentage area difference of confidence

regions
F marginal distribution
Fc critical Fs

FNFC fully nested Frank Copula
FORM first order reliability method
Fs factor of safety (defined with respect to shear

strength)
H distribution function
Hs height of the slope
Io enclosed area of confidence region for observed data
Ip enclosed area of confidence region for predicted data
L log-pseudo likelihood function
lθ derivative of L
m total number of failed cases
n total number of simulations
Nc factor of bearing capacity
Nq factor of bearing capacity
Nγ factor of bearing capacity
P probability
Pf probability of failure
pc level for the statistic Sn

qa allowable bearing capacity
qu ultimate bearing capacity
S number of variables
Sn Cramer-von Mises statistic
tanϕ tangent of inner friction angle
Ui ith uniform random variable, ¼FðZiÞ
ui ith realisation of Ui

Zi ith random variable
zi ith realisation of Zi

Z vector of random variables
sc shape factor of a foundation
sq shape factor of a foundation
sγ shape factor of a foundation
α inclination of slope
βHL the Hasofer–Lind reliability index
βcb reliability index
γ bulk unit weight of soil
γb bulk unit weight of soil under the foundation base
γd dry bulk unit weight of soil
γm moist bulk unit weight of soil
γsat saturated bulk unit weight of soil
γu bulk unit weight of soil over the foundation base
μ mean
ρp Pearson’s correlation coefficient
ρs Spearman’s correlation coefficient
s standard deviation
Σ symmetrical covariance matrix
τ Kendall correlation coefficient
ϕ inner friction angle
ϕθð⋅Þ generator function of the Archimedean function
Φ normal distribution
θ inclination of a failure plane; Frank copula

parameter
ψ inclination of the front of a slope
Ω failure domain
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and Kulhawy, 1999; Nadim, 2007; Parker et al., 2008). The
traditional deterministic analysis cannot fully explain the safety
of geo-structures because the variations of these soil properties
are not considered (Lumb, 1970; Matsuo and Kuroda, 1974;
Whitman, 1984; Tamimi et al., 1989; Duncan, 2000). Prob-
abilistic analyses provide an alternative approach for assessing
the reliability of geotechnical engineering, whereby the vari-
ables included in the analyses are expressed in probabilistic
terms to account for the inherent uncertainty of each input
variable (Phoon and Kulhawy, 1999; Baecher and Christian,
2003). This becomes possible when our knowledge of the
statistical properties of the soil is improved.

The values of these geotechnical parameters are influenced
by the same geological and geotechnical processes in different
ways and to different extents; therefore, there may be positive
or negative correlation between any pair of variables.
A positive correlation for a pair of variables implies that both
variables tend to assume either large values or small values
simultaneously. Conversely, a negative correlation means one
variable may take on a large value while the other assumes a
small one and vice versa. Examples of this have been
previously presented, including a positive correlation between
soil unit weight and soil strengths (including cohesion and
friction angle) (Matsuo and Kuroda, 1974) and a negative
correlation (Lumb, 1970; Wolff, 1985). The development of
techniques to reproduce or establish the correlations while
maintaining the desired accuracy is key for probabilistic
assessment.
The correlation involved in a design equation is the most

important issue encountered in the probabilistic analysis of
geotechnical engineering. Some existing probabilistic models
assume independence between the random variables by ignoring
all possible correlations (Alonso, 1976; Tobutt, 1982; Nguyen and
Chowdhury, 1984; Huang et al., 2010). Other models realise the
importance of including the correlations in their numerical
approximations (Nguyen and Chowdhury, 1985; Tamimi et al.,
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1989; Fenton and Griffiths, 2003; Ferson and Hajagos, 2006;
Youssef Abdel Massih et al., 2008; Griffiths et al., 2009; Cho and
Park, 2010; Lü and Low, 2011). However, Fenton and Griffiths
(2003) found that the varying cross-correlation has only a minor
influence on the stochastic behaviour of the bearing capacity. A
more thorough investigation needs to be made to explore this
controversial area.

The influence of the correlation between strength parameters
on geotechnical stability analysis was investigated using
various well-established numerical approximation techniques
such as the First Order Second Moment (FOSM), First-Order
Reliability Method (FORM) and Monte Carlo simulation. The
reliability index estimated using the FOSM approach is not
“invariant”, which gives several expressions of performance
function (Duncan, 2000; Nadim, 2007). Hasofer and Lind
(1974) proposed an invariant definition for the reliability
index βHL, which is referred to as the FORM (Nguyen and
Chowdhury, 1984) in standard normal space. Low and Tang
(1997) proposed a more intuitive interpretation of the Hasofer
and Lind reliability index for correlated variables in the
original coordinate system. The non-normal distributions are
replaced by an equivalent normal ellipsoid calculated using a
Rackwitz–Fiessler transformation (Rackwitz and Fiessler,
1978). In addition, Zahn (1989) derived a transformation
algorithm for the Hasofer–Lind index without requiring the
user to leave the original space of correlated variables based on
the existed formulas for independent variables. The commonly
used Monte Carlo simulation technique for correlated variables
as applicable to geotechnical calculations has been described in
a reference (Nguyen and Chowdhury, 1985). A number of
algorithms have been developed in the literature to generate
correlated random numbers (Nawathe and Rao, 1979; Iman
et al., 1980; Tamimi et al., 1989), and some of them integrate
with highly optimised software programs such as @RISK
(Palisade, 2000).

The above approximation approaches have the merit of
simplicity, but they also possess shortcomings because the
approximate theoretical formulation of the statistical distribution
of soil parameters has to be known. Non-parametric methods are
preferable when data sets are available because they impose no
structure on the estimated distribution (Karmakar and
Simonovic, 2009). Additionally, the application of traditional
Pearson's correlation coefficient by the study efforts to consider
the dependence of variables has been criticised by some
researchers in regards to the statistical aspects (Kendall
and Gibbons, 1990; Boyer et al., 1999; Embrechts et al.,
2002). These problems can be avoided by resorting to very
flexible joint distributions, copula functions, first mentioned by
Sklar (1959), which permit the marginal parameters to be
dependent on each other. Copulas are able to handle mixed
marginal distributions families (including parametric or
non-parametric) and account for the structure of depen-
dence overlooking the margins (Nelsen, 2006; Clemen and
Reilly, 1999; Lambert and Vandenhende, 2002). When using
copulas, the dependence function can also be studied separately
from the marginal distributions (Salvadori and De Michele,
2004).
In this study, the triplet parameters (c, φ, and γ) are fitted by
a trivariate normal copula (also called Gaussian copula) and a
trivariate fully nested Frank copula (FNFC) model. The
dependence structures are examined by two available soil
parameter data sets, and a goodness-of-fit for the different
models is assessed with the Akaike Information Criterion
(AIC, Akaike, 1974). Thus, a clear understanding of system
reliability through multiple soil properties and their possible
dependences, constructed by copula-based simulations, might
pave the way for an objective description of the overall
reliability of a practical geotechnical engineering problem.
The paper is organised as follows: the variability of

geotechnical parameters and dependence structures among
them are provided in Section 2. Section 3 contains some
expressions of the multivariate copula theory. In Section 4, the
fitted copulas of multi-geotechnical parameters are illustrated
by existing laboratory observations, including the application
of goodness-of-fit tests for the model selection. The overall
results of the application to the bearing capacity of a footing
and the stability of a planar slope are presented and discussed
in Section 5, and the paper closes with a summary of the key
findings and the conclusions in Section 6.

2. Variability and correlation of geotechnical parameters

2.1. Probability distribution and coefficient of variation

Among soil properties, c, ϕ, and γ are the most frequently
studied variables in regards to the reliability analysis of
geotechnical engineering practice (Phoon and Kulhawy,
1999; Duncan, 2000). In the vast body of literature on
statistical and probabilistic applications in geotechnics, the
normal, log-normal, beta, and truncated normal distributions
have been customarily used to model the variability and
uncertainty of these geotechnical parameters (Lumb, 1970;
Wolff, 1985). The applicability of the normal distribution to
soil properties has gained popularity (Lumb, 1970; Tobutt,
1982; Duncan, 2000; Baecher and Christian, 2003). To avoid
negative values, the log-normal (Brejda et al., 2000; Fenton
and Griffiths, 2003), gamma distribution (Baecher and
Christian, 2003; Forrest and Orr, 2010), and a truncated
normal distribution (Duncan, 2000) can be used. Beta dis-
tributions (Lumb, 1970; Harrop-Williams, 1986; Harr, 1987;
Fenton and Griffiths, 2003) are very versatile distributions that
can be used to replace almost any of the common distributions
and that do not suffer from extreme value problems because
the domain (range) is bounded by specified values.
The variation of a parameter is commonly described with a

coefficient of variation (CoV) because of the advantages of
being dimensionless as well as providing a meaningful
measure of the relative dispersion of the data around the
sample mean. The typical CoV values for soil properties were
summarised by Alonso (1976), Phoon et al. (1995), Becker
(1996), and Alawneh et al. (2006) in their publications. The
typical distribution types and values of CoV for soil properties
published in some leading journals are revisited and sum-
marised in Table 1. The CoV of c (9–145%), as estimated from



Table 1
CoV of geotechnical parameters

Type No. CoV (%) Distribution Reference

CoV of c C1 16.2–31.6 / Alonso (1976)
C2 12–85 / Becker (1996)
C3 10–70 / Cherubini (2000a)
C4 12–145 / Cherubini (2000b)
C5 20–40 Normal Forrest and Orr (2010)
C6 14.5–106.8 / Hata et al. (2011)
C7 9–23 / Lumb (1970)
C8 20–40 / Matsuo and Kuroda (1974)
C9 18–49 / Nguyen and Chowdhury

(1984)
CoV of
ϕ

F1 13.8–22.9
( tanϕ)

/ Alonso (1976)

F2 5–25 / Becker (1996)
F3 5–50 / Cherubini (2000a)
F4 1–87.2 / Cherubini (2000b)
F5 5–15 Normal Forrest and Orr (2010)
F6 5.7–76 / Hata et al. (2011)
F7 12–56 / Lee et al. (1983)
F8 0.8–5.9 ( tanϕ) / Lumb (1970)
F9 5.8–46.6 / Matsuo and Kuroda (1974)
F10 2–5 / Nadim (2007)
F11 14–33 / Nguyen and Chowdhury

(1984)
F12 5–15 / Phoon and Kulhawy (1999)

CoV of γ G1 2.5–6.8 / Alonso (1976)
G2 4–16 / Becker (1996)
G3 3–10 / Cherubini (2000a)
G4 1–27.9 / Cherubini (2000b)
G5 3–7 / Duncan (2000)
G6 1–10 Normal Forrest and Orr (2010)
G7 1–8 / Matsuo and Kuroda (1974)
G8 3–20 / Phoon and Kulhawy (1999)

Note: / denotes for the author does not assign any distribution type.
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the minimum and maximum values, respectively, given in the
table and the CoV for ϕ (or tanϕ) are between approximately
0.8% and 87.2%. Unit weight varies in a relatively limited
range with a CoV between 1% and 27.9%.

2.2. Dependence of soil properties

The traditional concept of correlation coefficient ρp (i.e., the
Pearson's product–moment correlation coefficient) is a measure
of linear dependence between two random variables Z1 and Z2,
and can be written as

ρpðZ1;Z2Þ ¼
covðZ1; Z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðZ1Þs2ðZ2Þ

p ð1Þ

where covðZ1;Z2Þ is the covariance between Z1 and Z2,
covðZ1;Z2Þ ¼ μðZ1;Z2Þ−μðZ1ÞμðZ2Þ. μðZ1Þ and sðZ1Þ denotes
the mean and standard deviation of Z1, respectively. There are
some limitations, as ρp¼0 does not necessarily imply inde-
pendence (Embrechts et al., 2002); it is not informative for
asymmetric distributions (Boyer et al., 1999); and the attain-
able correlation coefficient values within the ½−1; 1� range
depend upon the marginal distributions F1ð⋅Þ and F2ð⋅Þ
(Embrechts et al., 2002).
This has led statisticians to the use of concordance measures to
characterise dependence (Capéraà and Genest, 1993) such as
Kendall's τ and Spearman's ρs. As Kendall and Gibbons (1990)
argue, the confidence intervals for Spearman's ρs are less reliable
and less interpretable than confidence intervals for Kendall's τ.
Kendall's τ measure of dependence between two random variables
ðZ1;Z2Þ is defined as the probability of concordance minus the
probability of discordance (Conover, 1998). This can be written as

τðZ1;Z2Þ ¼ P½ðZ1− ~Z 1ÞðZ2− ~Z 2Þ40�−P½ðZ1− ~Z 1ÞðZ2− ~Z 2Þo0�
ð2Þ

where ð ~Z 1; ~Z 2Þ is an independent copy of the vector ðZ1; Z2Þ. The
first expression on the right side is the probability of concordance
of ðZ1; Z2Þ and ð ~Z 1; ~Z 2Þ, and the second expression on the right
side is the probability of discordance of the same two vectors. In
common with other measures of correlation, Kendall's τ will
produce values between −1 and 1, with a positive correlation
indicating that the ranks of both variables increase together whilst a
negative correlation indicates that as the rank of one variable
increases, that of the other one decreases.
Soil strengths (usually described by c and φ) based on the

Mohr–Coulomb criterion are associated with a single observation,
so they are not independent. The dependence between the random
variables is mostly determined by the Pearson's coefficient ρp of
linear correlation, as reported by Lumb (1970), Cherubini (1997),
Forrest and Orr (2010). Negative correlation is mainly reported
against their laboratory measurements (Lumb, 1970; Cherubini,
1997; Forrest and Orr, 2010; Hata et al., 2011). However, this is
not always the case, as some results of positive correlation have
been reported by Lumb (1970) and Wolff (1985). More extensive
discussion of this important subject requires more data that are
realistic. There is a scarcity in the availability of raw data to
examine the correlation between c and γ, and the correlation
between ϕ and γ. Available data supported with experimental tests
are only given by Matsuo and Kuroda (1974) and Parker et al.
(2008). A positive correlation coefficient is more often just
assumed in the leading literature articles (Chowdhury and Xu,
1992; Low and Tang, 1997).
A summary of the correlation coefficients between these

pairs is provided in Table 2.

3. The copula approach for multivariate distributions

With the identification of marginal distributions and depen-
dence measures among a set of random variables, the construc-
tion of a joint description of these cross-correlated geotechnical
parameters through copula approaches is introduced below.

3.1. Theory of copulas

Let ‘observed’ pairs ðz11;…; z1SÞ;…; ðzn1;…; znSÞ be drawn from a
multivariate population of Z1;…;ZS, where n is the number
of observations and S is the number of variables. As stated
by Sklar's Theorem (Sklar 1959), the joint multivariate distribution,
denoted as HZ1;…;ZS ðz1;…; zSÞ or PðZ1≤z1;…;ZS≤zSÞ of these
populations are connected with their one-dimensional marginal



Table 2
Correlation coefficient between soil properties

Property ρp Notes Reference

c, tanϕ or c;ϕ −0.61 Cherubini (2000a)
−0.47 Triaxial test (clay) Forrest and Orr (2010)
0.25 Consolidated undrained triaxial test Harr (1987)
−0.1 Consolidated drained triaxial test Hata et al. (2011)
−0.81
−0.87
−0.572
−0.554
−0.49
−0.359
−0.557
−0.7 to −0.37 Lumb (1970)
−0.412 (Soil 1) Direct shear test (clay) Matsuo and Kuroda (1974)
0.316 (Soil 2)
0.369 (Soil 3)
−0.474 (Soil 3)
−0.748 (Soil 3)
−0.47 Drained triaxial test Wolff (1985)

γ; c 0.25 / Babu and Srivastava (2007)
0.5
0.75
0.4 / Chowdhury and Xu (1992)
0.5 / Low and Tang (1997)
0.44 Direct shear test (clay) Matsuo and Kuroda (1974)

γ; tanϕ or γ;ϕ 0.25 / Babu and Srivastava (2007)
0.5
0.75
0.7 / Chowdhury and Xu (1992)
0.5 / Low and Tang (1997)
0.713 (soil 1) Direct shear test (clay, silt, silt sand) Matsuo and Kuroda (1974)
0.656 (soil 2)
0.926 (soil 3)
0.859 (soil 3)
−0.943 (soil 3)

Note: / denotes for non-experimental data.
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probability distributions FiðziÞ; i¼ 1;…; S through copula
(Nelsen, 2006). Seeing as the continuous marginal probability
distribution FiðziÞ is defined on the range ½0; 1�, a copula function,
written as CðF1ðz1Þ;…;FSðzSÞÞ, is the S-dimensional probability
distribution on a unit hyper-cube ½0; 1�S, i.e.,
Hðz1;…; zSÞ ¼ CðF1ðz1Þ;…;FSðzSÞÞ ð3Þ

Thus, the relationship between Hðz1;…; zSÞ and
FiðziÞði¼ 1;…; SÞ is well established by unique copula map-
ping. Letting ui ¼ FiðziÞ represent a sample of a standard
uniform random variable, a copula function can be recast as
the joint cumulative distribution function of ðU1;…;USÞ
Cðu1;…; uSÞ ¼ PðU1≤u1;…;US≤uSÞ ð4Þ
where Pð⋅Þ represents the joint probability. The significance of the
cumulative distribution function transformation lies in the property
that its application does not affect the dependence structure of the
original observations. This implies that the multivariate model of
original observations can be constructed in the transformed unit
hyper-cube using a copula as a basis. The procedure is flexible
because no restrictions are placed on the marginal distributions
(Clemen and Reilly, 1999; McNeil et al., 2005), which is the main
reason for the popularity of copula theory in many areas of
research (Embrechts et al., 2002; Lambert and Vandenhende, 2002;
Zhang and Singh, 2007). Most importantly, this approach can
handle arbitrarily complicated dependence between the input
variables. This makes the approach significantly more general than
the methods implemented in common risk analysis software
packages, which model correlations but not dependencies in
general (Ferson and Hajagos, 2006).
A rich set of copula types has been generated using inversion

and other methods (Nelsen, 2006). Considering that the inference
for copula models is still under development (Genest and Favre,
2007), the normal copula (Elliptical class) and the Frank copula
(Archimedean class) will be discussed here, as they permit both
positive and negative dependence. These popular copulas are given
in the context of trivariate expressions.
3.2. Normal copula

For S¼3, the trivariate normal copula can be written as

CG
ρ ðu1; u2; u3; ρpÞ ¼ΦρðΦ−1ðu1Þ;Φ−1ðu2Þ;Φ−1ðu3Þ; ρpÞ
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Fig. 1. Relationships of Pearson's ρp or Frank copula parameter θ with
Kendall's τ.
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¼
Z Φ−1ðu1Þ

−∞

Z Φ−1ðu2Þ

−∞

Z Φ−1ðu3Þ

−∞

1

ð2πÞ3=2jΣ3j1=2
exp −

1
2
WT Σ3ð Þ−1W

�
dW

�
ð5Þ

where ΦρðΦ−1ðu1Þ;Φ−1ðu2Þ;Φ−1ðu3Þ; ρpÞ denotes the joint
cumulative distribution function of a multivariate normal
distribution with mean vector zero and covariance matrix
equal to the correlation matrix Σ3, ΦρðtÞ ¼

R z
−∞

ð1= ffiffiffiffiffi
2π

p Þe−t2=2dt denotes the standard normal distribution and
Φ−1ð⋅Þ is the quantile function of the univariate standard
normal distribution. u1 ¼ F1ðz1Þ is the marginal cumulative

distribution function of Z1. The integral variable W¼
t1
t2
t3

8><
>:

9>=
>;,

2 3

and Σ3¼

1 ρ12p ρ13p

ρ12p 1 ρ23p

ρ13p ρ23p 1

664 775 is the symmetrical covariance matrix
with the linear Pearson's correlation coefficient ρp, which is
correlation parameter and restricted to the interval from −1 to
1 (see Embrechts et al., 2002). The necessary parameters
within marginal normal distributions of these normal copulas
have further extended the concept of linear dependence to the
modelling of correlated non-normal random variables (Clemen
and Reilly, 1999; Lambert and Vandenhende, 2002), which
has obviously gained more popularity.
3.3. Frank copula

Another widely used family of copula functions is the
Archimedean family (Nelsen, 2006), which is constructed in a
completely different way from the normal copula by using a
generator function ϕθ. The generator function of the Frank
copula is ϕθ ¼ −lnðe−θt−1Þ=ðe−θ−1Þ, where θ is copula depen-
dence parameter. For S¼3, the trivariate Frank copula is given
by

Cφðu1; u2; u3; θÞ ¼ φ−1ðφðu1Þ;φðu2Þ;φðu3Þ; θÞ

¼−
1
θ
ln

�
1þ ðe−θu1−1Þðe−θu2−1Þðe

−θu3−1Þ
ðe−θ−1Þ2

�
ð6Þ

where the Frank copula Cφðui; ujÞ and φθ is a convex
decreasing function with φθð1Þ ¼ 0, and φθ

−1ð⋅Þ is the
pseudo-inverse of φθð⋅Þ.
For the above trivariate Frank copula, the generator function

solely characterises the dependence structure of random
variables and is often described by a univariate function with
the model parameter θ. It usually is designated as an exchange-
able (or symmetric) multivariate Archimedean copula (Mcneil,
2008). If one correlation parameter is extended, such as the
node u1 and u2 are coupled through copula C11, and node u3 is
coupled with C11ðu1; u2Þ through copula C21, an asymmetric
Frank copula will be formed, which requires two bivariate
copulas C11 and C21, with corresponding the generators ϕ11

and ϕ21

Cðu1; u2; u3; θ11; θ21Þ ¼C21ðu3;C11ðu1; u2; θ11Þ; θ21Þ
¼ ϕ21 ϕ−1

11 ϕ11ðu1Þ þ ϕ11ðu2Þ
� �	 
 ð7Þ

In this structure, which Berg and Aas (2007) refer to as fully
nested, all bivariate margins are themselves Archimedean
copulas. Hence, the asymmetric 3-dimensional model can be
properly applied when two variables, e.g., u1, u2, are likely
correlated with the third one u3, and the degree of dependence
between u1, u2, is stronger than that of u1, u2 with u3.
More specifically, the two pairs (u1,u3) and (u2,u3) both have

copula C21 with the dependence parameter θ21. To generate a
proper copula, the level of nesting must decrease with the level
of nesting, i.e., θ114θ21. For more related studies on trivariate
analyses, the reader is encouraged to examine the literature
(McNeil et al., 2005; Berg and Aas, 2007; Zhang and Singh,
2007; Serinaldi and Grimaldi, 2007; Mcneil, 2008; Wong
et al., 2010).
3.4. Relationship between Kendall's τ and copula's parameter

For the bivariate normal copula, there is a relationship
between the linear correlation ρp and the rank correlation τ
(Frees and Valdez, 1998):

τðu1; u2Þ ¼
2
π
arcsinðρ12Þ ð8Þ

where arcsinðtÞ is an inverse trigonometric function such that
sin ðarcsinðtÞÞ ¼ t. This expression prompts an alternative
estimation of ρp. The use of Eq. (8) may be more advantageous
as τ is rank-dependent and invariant with respect to strictly
monotonic nonlinear transformations.
For the bivariate Frank copula Cφ, Genest and MacKay

(1986) have shown that τ depends on the generator φθð⋅Þ and
its derivative in the simple following form:

τðu1; u2Þ ¼ 4
Z 1

0

Z 1

0
Cðu1; u2; θÞdCðu1; u2; θÞ−1
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¼ 1þ 4
Z 1

0

φθðtÞ
φ

0
θðtÞ

dt ð9Þ

If the Kendall's τ is known, the correlation parameter of the
copula, θ, can be estimated using this expression. An illustra-
tion of these expressions between ρp or θ, and τ is shown in
Fig. 1.

If appropriate marginal distributions are already available,
then the likelihood function for the data can be derived. The
resulting estimate of θ or τ would then be marginal dependent.
For the semi-parametric estimation method, let a random
sample fzk1; zk2; k ¼ 1;…; ng be drawn from the distribution
Hðz1; z2Þ ¼CθðF1ðz1Þ;F2ðz2ÞÞ. The log-pseudo likelihood func-
tion LðθÞ of the copula CθðÞ can be expressed as

LðθÞ ¼ ∑
n

k ¼ 1
log½cθðFn

1ðzk1Þ;Fn
2ðzk2ÞÞ� ð10Þ

where cθðÞ denotes the density function of the copula, which
has the same meaning as the density function of univariate
random variables, Fn

1ðzk1Þ is marginal empirical distribution
function of Z1 multiplied by n/n+1 for avoiding the difficulty
of the potential unboundedness of logðcθðF1ðz1Þ;F2ðz2ÞÞÞ, as
discussed by Zhang and Singh (2007). The same applies to the
distribution function of Z2. Analogous to the maximum like-
lihood estimation, Eq. (10) is maximised by taking the partial
derivative of LðθÞ and equating it to zero as

1
n

∂
∂θ

LðθÞ ¼ 1
n

∑
n

k ¼ 1
lθ½θ; ðFn

1ðzk1Þ;Fn
1ðzk2ÞÞ� ¼ 0 ð11Þ

where LðθÞ denotes the log-likelihood function and lθ denotes
the derivative of L with respect to parameter θ. The copula
parameter θ can be obtained by solving this equation
numerically.

3.5. Identification of the best-fitting copula

The goodness-of-fit for the alternative copulas is assessed
with Cramer-von Mises statistics (Genest et al., 2009). The
Cramer-von Mises statistic is based on the empirical process
comparing the empirical copula with a parametric estimate of
the copula derived under the null hypothesis, H0. The Cramer-
von Mises function, defined by Genest et al. (2009), represents
the type of distance between the true and observed copula:

Sn ¼ ∑
n

i ¼ 1
fCnðUi;n

1 ;Ui;n
2 Þ−CθnðUi;n

1 ;Ui;n
2 Þg2 ð12Þ

where Cn is the empirical copula used as the most objective
benchmark and Cθn is an estimator of C under the hypothesis
that H0: C∈fCθg holds. Here, θn is an estimator
of θ computed from the ranked pseudo-observations
ðU1;n

1 ;U1;n
2 Þ;…; ðUn;n

1 ;Un;n
2 Þ and can be estimated via the

inversion of Kendall’s τ. Large values of Sn lead to the
rejection of H0. Approximate pc-values for the test statistic Sn

are obtained by means of a parametric bootstrapping approach
(Kojadinovic and Yan, 2010). The pc-value represents the level
at which the copula is not rejected, meaning that models with
higher pc-values are better in terms of them not being rejected.
The best-fitting copula from among the candidate copulas
can be identified by AIC (Akaike, 1974), which is defined as

AIC¼−2� lnðmaximized likelihood for the modelÞ
þ2� number of fitted parameters ð13Þ

A copula associated with the smallest AIC value is
considered to be the best-fitting copula.

3.6. Numerical implementation

R was used (R Development Core Team, 2008) as a
convenient working environment for carrying out simulations
in the next sections, and the programming language of this
software environment integrates with a large number of
statistical functions, such as AIC and logLik (computes the
logarithm of the likelihood). Two new computing resources (R
packages) specifically developed to help risk assessors in their
projects were utilised. The first package, ‘fitdistrplus’, gathers
tools for choosing and fitting a parametric univariate distribu-
tion to a given dataset (Pouillot and Delignette-Muller, 2010).
The second package, ‘copula’, helps to build and study
multivariate modelling for fitting copulas (Yan, 2007; Yan
and Kojadinovic, 2010). After a ‘mvdc’ class designed to
construct multivariate distributions with given margins and
their dependence using copulas is imposed, the package easily
allows the generation of random variables through ‘rmvdc’
function or ‘rcopula’. The density of multivariate distributions
is defined by ‘dmvdc’. The command ‘gofCopula’, where in
default the approximate pc-values for the test statistics are
obtained using the parametric bootstrap, makes the goodness-
of-test procedure easier to compute. These R packages are
freely available at the Comprehensive R Archive Network
(cran.r-project.org).

4. Modelling observed soil properties through copula
functions

The following two data sets, including the Watarase River
(Matsuo and Kuroda, 1974) and Goodwin Creek Watershed
(Parker et al., 2008), were used to examine the joint behaviours
assembled by the above multivariate copulas among three
quantities characterising soil properties, in particular c, φ, and
γ. The first step of the procedure to define the trivariate joint
distribution is to identify the margins of the three variables.
The second step is to characterise the correlation structure of
available samples, such as Kendall's τ. The third step is to
construct the trivariate normal copula and to estimate the θ11
and θ21 parameters of the FNFC.

4.1. Unsaturated soil from the Watarase River in Japan

A series of soil strength parameters of an unsaturated
homogeneous silty soil layer near the Watarase River in Japan
were investigated by Matsuo and Kuroda (1974), using triaxial
compression tests under the unconsolidated-undrained condi-
tion. The physical properties, such as moist density of those
soil layers, were also tested in the laboratory. The properties of



 0.005  0.05 + + + ++
+

+
+

+
+

+ +

+ +

+ +

+

Unit weight (kN/m3)

Ta
ng

en
t o

f f
ric

tio
n 

an
gl

e

+
o

Observation
Prediction

density contour
95% CR of observation
95% CR of prediction

 5e-04 
 0.003 

x

x
xx

x
xx

x

x

x x

x
x

x

x

x
xxxx

x
x

x
x

x
x

x
x

Unit weight (kN/m3)

C
oh

es
io

n 
(k

P
a)

x
o

Observation
Prediction

density contour
95% CR of observation
95% CR of prediction

5 10 15 20

5 10 15 20

0

20

40

60

80

100

0 20 40 60 80 100

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

 0.02  0.005 # # # ####
#

#
# #

#
#

#

# #

#

#

#

##

#

Cohesion (kPa)

Ta
ng

en
t o

f f
ric

tio
n 

an
gl

e

#
o

Observation
Prediction

density contour
95% CR of observation
95% CR of prediction

Fig. 2. Watarase River data set: scatter plot of observed pairs: (A) (c, tanϕ), (B) (γd, tanϕ) and (C) (γd,c) of unsaturated soil 1 (after Matsuo and Kuroda, 1974)
overlapped onto the synthetic ones (200 samples) through the trivariate normal copula.

Table 3
Summary statistics of the Watarase River and Goodwin Creek data

Case Variable Sample size Mean Standard deviation CoV (%)

Watarase c (kPa) 22 33.67 21.72 64.5
tanϕ 17 0.28 0.25 89.83
γd (kN=m3) 28 10.78 2.42 22.41

Goodwin c (kPa) 17 4.63 3.94 85.08
tanφ 17 0.63 0.14 22.09
γm (kN=m3) 17 18.59 0.43 2.29
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several unsaturated soils as fill materials of an embankment
were investigated in their publication, with soil 1 being used as
an example in this study. Their observed pairs (c, tanϕ),
(γd, tanϕ), and (γd,c) are illustrated in Fig. 2.

Some statistical characteristics, including the mean, standard
deviation, and CoV, of the observations are provided in
Table 3. The values of the CoV for cohesion and friction
angle are 64.5% and 89.83%, respectively. The CoV of the
physical property, i.e., dried unit weight, is 22.41%.

Among the various possible candidate marginal distributions, the
following functions were tested in the fit of these parameters:
normal, log-normal, Gumbel, Weibull, and gamma distributions.
No detailed explanation of these distributions will be given here, as
they are readily available in many standard textbooks
(Montgomery and Runger, 1999). The suitability of distributions
for these experimental data is quantified using the Anderson–
Darling (AD) test (Anderson and Darling, 1954), and the AIC, as
listed in Table 4. The values of the AD statistic and AIC provide
an objective way of determining which model among a set of
models is the most parsimonious. The results of the AD statistic in
Table 4 indicate that most distributions can pass the 5% Anderson–
Darling test, i.e., 0.752 (Montgomery and Runger, 1999), with the
best distribution achieving the lower probability level (best-fitting).
The problems with this method have been well documented
(Akaike, 1974); thus, the decisions concerning best-fitting were
evaluated using the information criteria. The AIC is determined by
log-likelihood, number of parameters, and effective sample size as
formulated in Eq. (13). The best-fitting distribution is highlighted
by its value in Table 4. The gamma distribution was selected as the
best-fitting marginal distributions for c and γd, and the tanϕ was
confirmed to follow the Weibull distribution, as shown in Fig. 3a, b
and c, respectively. The normal distribution and the kernel density
estimation (kde, see Venables and Ripley, 2002) are superimposed
to assist with the interpretation of these density curves. The
estimated parameters of the best-fitting margins are listed in
Table 5.
When the parameters c, ϕ, and γd were jointly analysed, they

were all cross-correlated with each other, as their dependence
measurements demonstrate in Table 6. The friction angle of soils



Table 4
AD statistic and AIC of marginal distributions

Case Type AD statistic AIC

Normal Lognormal Gumbel Weibull Gamma Normal Lognormal Gumbel Weibull Gamma

Watarase c (kPa) 1.32 0.38 0.56 0.65 0.5 200.85 193.07 193.54 194.23 192.94
tanφ 0.72 0.45 0.62 0.37 0.36 6.64 −1.00 3.56 −2.33 −2.29
γd (kN=m3) 0.39 0.52 0.61 0.38 0.46 131.84 131.55 132.45 132.55 131.33

Goodwin c (kPa) 0.46 1.61 0.48 1.17 1.02 97.79 95.09 95.85 89.33 88.42
tanφ 0.46 0.45 0.47 0.5 0.44 −15.85 −15.81 −15.15 −15.63 −16.01
γm (kN=m3) 0.42 0.41 0.41 0.49 0.42 22.22 22.17 22.37 23.66 22.16
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Fig. 3. Watarase River data set: Best-fitted marginal density distributions of observations: (A) c, (B) tanϕ, (C) γd, overlapped with their histograms and
corresponding normal distributions and kernel density estimations (kde)

Table 5
Estimated parameters of marginal distributions of the Watarase River and
Goodwin Creek data

Case Variable Distribution Estimated parameters

Watarase c Gamma Shape¼2.77, rate¼0.08
tanϕ Weibull Shape¼1.07, scale¼0.31
γd Gamma Shape¼52.38, rate¼3.05

Goodwin c Gamma Shape¼0.7, rate¼0.15
tanϕ Gamma Shape¼20.98, rate¼33.55
γm Gamma Shape¼2025.29, rate¼108.93

Table 6
Correlations of the Watarase River and Goodwin Creek data

Case Sample size ρp τ

Watarase c; tanϕ 22 0.29 0.19
γd; tan ϕ 17 0.72 0.65
γd; c 28 0.44 0.35

Goodwin c; tanϕ 17 −0.49 −0.29
γm; tan ϕ 17 −0.14 −0.06
γm; c 17 −0.13 −0.02
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has a strong positive correlation with their dry density γd. The
value for Kendall's τ for the parameters tanϕ and γd is higher
(τ¼0.65). The cohesion c of soils has a positive correlation
(τ¼0.35) with the dry density γd (no correlation was reported by
Matsuo and Kuroda's investigation). A positive correlation between
the cohesion and the friction angle was revisited with a calculation
with τ¼0.19 (no correlation based on initial Matsuo and Kuroda's
analysis). As expected, the absolute values for Kendall's τ are lower
than the ones of ρp, evidently by the expression between them
(Lindskog et al., 2003).

The pairs from this observed triplets can be drawn in a
ranked pseudo space, i.e., distributed uniformly over a unit
square, as shown in Fig. 4. They further provide graphic
evidence of dependence structures.
Based on the above analyses and graphic observations, both
parameter pairs (c, tanϕ) and (γd,c) have similar values of
dependence, and besides pairs ( tanϕ, γd) have a strong
dependence. There is no physical reason for the two parameter
pairs to have the same (or at least similar) rank correlations,
but it is required for the FNFC model (if the rank correlations
are different, a more complex Pairwise Frank copula approach
can be used instead of the FNFC model, refer to Berg and Aas
(2007)). Here, both criteria for the application of the FNFC
model are fulfilled: the pairs ( tanϕ, γd) and (c,γd) have the
same copula (i.e., the same structure of dependence), and the
existent dependency is weaker than that of the pair (c, tanϕ).
Visual scatter plots of realisations from the candidate

trivariate normal copula are shown in Fig. 2. Only 200 random
samples were selected for legibility. The confidence region
(CR) is defined in the original physical space of two random
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Fig. 4. Watarase River data set: scatter plot of pairs: (A) (c, tanϕ), (B) (γd, tanϕ) and (C) (γd,c) of pseudo-observations.

Table 7
Estimated copula parameters, pc-value and AIC of various copulas.

Parameter Normal Frank

Normal/Frank Watarase Goodwin Watarase Goodwin

ρ12p /θ11 0.186 −0.296 1.216 1.036

ρ13p /θ21 0.647 −0.059 2.521 1.417

ρ23p 0.35 −0.015 / /

darea of 95% CR for (c; tanϕ) 70.15 71.97 75.54 123.57
darea of 95% CR for (γd; tan ϕ) 84.55 48.39 76.25 53.83
darea of 95% CR for (γd; c) 21.57 32.05 23.92 101.5
pc-value 0.66 0.768 0.579 0.508
AIC −87.94 −27.645 −42.06 −13.152
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variables to characterise the different spread of the sampled
data in all directions around a point (or mean), which can help
the reader visualise the differences of their coverage. At a 95%
confidence level, the confidence curves for both the observed
(enclosed area IO) and predicted data (enclosed area IP),
determined by a 2D kernel density estimator (‘kde2d’ of
MASS package in R, see Venables and Ripley, 2002) using
300 grid points in each direction, are illustrated in this graph.
To quantify the differences of these confidence regions, the
percentage form of relative change darea between the simulated
and measured regions can be expressed by the ratio of the
absolute change and divided by the measured region, i.e.,
darea ¼ ðabsðIP−IOÞ=IOÞ � 100. Here, the IO associated with
the measured region is taken as a reference value. If the
relative percentage difference darea is large, the predictions are
less valuable than the observations. However, the relative
performance of the model can be related with some other
geometrical characteristics of a confidence region, such as
axial inclination, shape, and consistency with geometric mean,
although this technique is beyond the scope of the study. The
relative percentage difference darea of predictions from the
candidate trivariate normal copula are listed in Table 7 and
ranged between 21.57% and 84.55%. This graphical technique
can provide an alternative tool to understand the performance
of a simulation and to make a pre-selection of appropriate
copulas. The density contours of the joint theoretical distribu-
tion with the best-fitting margins given in Table 5 are over-
lapped (the same below), as produced by the function of
‘dmvdc’ as described earlier. When the sample size of
prediction is large enough, the confidence regions will evolve
and converge to shapes similar to these theoretical density
contours according to the central limit theorem.

The scatter diagrams of the candidate FNFC were fitted, as
shown in Fig. 5, and the superimposed confidence and
percentages of their relative area differences are listed in
Table 7. The differences are not pronounced, and both copula
models can provide a good description of the given experi-
mental data. The estimated θ11 and θ21 parameters of the Frank
asymmetric Archimedean copula are shown in Table 7.

It is difficult to compare the fit of the two copulas directly
because they are non-nested models. However, the AIC results are
−87.94 and −42.06 for the normal and FNFC models, respectively.
The smaller AIC value for the normal model indicates that this
model is preferred. The approximate pc-values given in Table 7
indicate that there is very little evidence against the two copula
models. The pc-value achieved by the normal copula is slightly
larger than that generated by the FNFC.

Fig. 6 illustrates a further comparison of the density
contours for the bivariate pair of (c, tanϕ) through different
models. As is seen from this figure, the level curves of the
empirical density for a bivariate normal model (parameters of
mean and standard deviation are taken from Table 3) are
elliptic, whereas the level curves of the density through
copulas with the best-fitting marginal distributions (listed in
Table 5) have a quite different shape. The observed data were
superimposed on the contour plots. The normal copula with the
best-fitting margins provides a distribution quite similar,
although not identical, to the one by the bivariate Frank
copula, and they are a more reasonable visual representa-
tion of the observed data than the traditional bivariate
normal model.
4.2. Bank material properties along the Goodwin Creek
Experimental Watershed in Mississippi

Parker et al. (2008) demonstrated the variation of soil
properties and discussed the impacts of uncertainty parameters
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Fig. 5. Watarase River data set: scatter plot of pairs: (A) (c, tanϕ), (B) (γd, tanϕ) and (C) (γd,c) of predictions through the FNFC.
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on bank stability. Bank materials along a stretch of the
Goodwin Creek Experimental Watershed (in the Yazoo Basin,
Mississippi, USA) consist of 1–2 m of moderately cohesive
brown clayey-silt of Late Holocene age overlying approxi-
mately 1.5 m of Early Holocene grey, blocky silt of low
cohesion and permeability. A series of in situ shear strength
measurements were taken using an Iowa Borehole Shear Tester
(BST; Luttenegger and Hallberg, 1981) to obtain the values for
apparent cohesion and friction angle. The bulk unit weight was
tested in the laboratory. The Late Holocene layer (approxi-
mately 1.00 m depth, upper layer) and Early Holocene layer
(approximately 2.00 m depth, lower layer) were collected from
cross-sections A through G (total 17 test samples). The upper
layer as an example is adopted here, and the observed pairs
(c, tanϕ), (γd, tanϕ), and (γd,c) are shown in Fig. 7.

As summarised in Table 3, the mean and standard deviation of
effective cohesion are 4.63 kPa and 3.94 kPa, respectively. The
mean and standard deviation of the tangent of friction angle are
0.63 and 0.14, respectively. The mean and standard deviation
of saturated unit weight γs are 18.6 kN/m3 and 0.43 kN/m3.
The best-fitting distributions of these properties are preferred to
the generalised gamma distribution, as shown in Fig. 8a–c,
according to the lowest AIC values in Table 4. The normal
distribution is superimposed to assist with the interpretation of
these density curves. The estimated parameters of these best-
fitting distributions are given in Table 5.
The correlations among the soil properties including Pear-
son's ρp and Kendall's τ are summarised in Table 6. These
dependence structures can be seen clearly via the scatter plot of
pairs in ranked pseudo space, as illustrated in Fig. 9. The
cohesion and the friction angle are more negative correlated
(τ¼−0.29). The friction angle of soils has a weak negative
correlation with the saturated density γs (τ¼−0.06). The
cohesion c of soils has a very weak correlation with the
density γs (τ¼−0.02).
The scatter plot for points from the trivariate normal copula is

provided in Fig. 7. The relative percentages of area difference of
confidence regions quantifying the observed and predicted data
range from 32.05% to 71.97%. The diagrams for the predictions
by the candidate FNFC are not shown due to space limitations,
but the values of darea are slightly larger than with the normal
case. The models are compared using the pc-value and AIC. The
pc-values higher than 0.05 (Kojadinovic and Yan, 2010) indicate
that the null hypothesis cannot be rejected by these two models.
AICs differ as listed in Table 7, which indicates the normal
copula is better suited to this observation. The estimated
parameters of these copulas by the method of maximum like-
lihood are given in Table 7.
Fig. 10 shows a comparison of density contours for the pair

of (c, tanφ) through different models. As is seen from this
figure, the level curves of the empirical density for the
bivariate normal model (parameters are taken from Table 3)
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are elliptic, which indicates that the traditional multivariate
linear model has difficulty providing a reasonable fit to the
observed data (superimposed in this graph). The level curves
of the density through copulas with the best-fitting marginal
distributions have a quite different shape. The normal copula
with the best-fitting margins (as given in Table 5) provides a
distribution similar to the bivariate Frank copula. Both copula
models appear to do a good job of mimicking the true
distributions of these observations when a sufficient sample
size is reached whose confidence regions will follow the shape
of their theoretical density distributions.

It should be noted that boundaries, which 95% of measure-
ments falling along the regression lines of the correlation
amongst assumed normally distributed geotechnical variables,
were imposed by Parker et al. (2008) to maintain the
dependences when random sampling. Unfortunately, no further
evidence was provided in their publications that would help
confirm the influence of parameter correlations on the bank
stability results.

5. Practical application to the bearing capacity of clay and
in slope stability problems

Potentially, the increasing availability of multivariate data
for complex systems will lead to an interest in the joint density
distribution of soil properties, but it becomes numerically
infeasible to evaluate such a high-dimensional integral, espe-
cially when no explicit expression is associated with most
geotechnical stability problems. Based on the former investi-
gations, a series of simulations can be drawn from each input
variable (defined probability distribution or even non-
parametric distribution as presented by Karmakar and
Simonovic (2009)) while maintaining the correlation relation-
ships between variables (defined in a manner similar to those
experimental observations) through a copula. After a number
of simulations, the probability of failure can be defined by

Pf ¼∭
Ω

f ðc;ϕ; γÞdc dϕ dγ ð14Þ

where Ω is the region of failure (Fsðc;ϕ; γÞ≤Fc), Fs is the
factor of safety, Fc is the critical value of Fs. This leads to the
following computational procedure:
[1]
 Establish the number of simulation points to be used.

[2]
 For each point i, generate triplet values c,ϕ,γ from the

distribution f(c,ϕ,γ), including the dependence.

[3]
 Calculate the value of the factor of safety Fs(c,ϕ,γ) and

count the number to be added to a running sum m if
Fsðc;ϕ; γÞ≤Fc and go to the next;
[4]
 After all realisations have been evaluated, the estimate of
Pf is the running sum n, Pf ¼m=n. The reliability index
can be calculated by the ratio βcb ¼ ðμðFsÞ−1Þ=sðFsÞ under
the assumption of Fs(c,ϕ,γ) is normally distributed.
The procedure described herein is similar to a Monte Carlo
simulation, except for the samples generated by the copula model,
called the Copula-based sampling method (CBSM). When the
simulation number is sufficiently large, the standard deviation of
estimation values Fs will be obtained by simulating sample
inverses with the square root of simulation number. Thus, the
accuracy increases with the increase of the simulation number. In
general, when the simulation number is more than n≥100=Pf the
accuracy may be satisfactory (Tobutt, 1982; Husein Malkawi
et al., 2000), and the probability of failure Pf can represent a
deterministic solution. In the following examples, the reliability
index βcb is evaluated by the CBSM for comparison against
results βHL obtained by modified Hasofer and Lind's approach.
Due to space limitations, for further details of this FORM, readers
are asked to refer to Zahn (1989), Nguyen (1985), and Low and
Tang (1997).

5.1. Shallow strip foundation resting on varying clayey soil

In the conventional design of shallow foundations resting on
a cohesive frictional soil, the allowable pressure can be
calculated based on shear failure criterion (ultimate limit state).
Here, a shallow strip foundation of width B resting on a
horizontal ground at a depth Df and loaded with a concentric
vertical loading is considered. It is assumed this foundation
rests on the soil, as in the case of Watarase River data set
sampled by the trivariate normal copula, as given in Tables 5
and 6 for its properties. The influence of these dependent
random variables on the computed reliability index is
studied here.
The ultimate bearing capacity (qu) is usually expressed by

the well-known Terzaghi equation (Terzaghi, 1943)

qu ¼ cNcsc þ γbDfNqsq þ 0:5BγuNγsγ ð15Þ
where Nc, Nq, and Nγ is bearing capacity factors, Df denotes
depth of the footing and B is width of the foundation, γb is the
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Fig. 7. Goodwin Creek data set: scatter plot of observed pairs: (A) (c, tanϕ), (B) (γm, tanϕ) and (C) (γm,c) of Bank material properties (after Parker et al., 2008)
overlapped onto synthetic ones (200 samples) through the trivariate normal copula.
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unit weight of the soil under the foundation base, γu is the unit
weight of the soil over the foundation base, the mean of these
unit weights are set with 17.5 kN/m3 (adjusted from the mean
of γd), and sc, sq, and sγ are shape factors depending on the
shape of foundations, setting their values to 1 for a strip-type
foundation (Cherubini, 2000a). The bearing capacity factors
are given below (Vesic, 1973):

Nc ¼ ðNq−1Þcot ϕ ð16Þ

Nq ¼ eπ tanϕ tan 2ð45þ ϕ=2Þ ð17Þ

Nγ ¼ 2ðNq þ 1Þ tan ϕ ð18Þ

The allowable bearing capacity (qa) is obtained after
applying a factor of safety to the ultimate bearing capacity
(qu), and a value between 2.5 and 3 is usually considered
appropriate in the case of a shallow foundation. Using a
conventional deterministic approach for mean values of input
soil properties, the mean value of ultimate bearing capacity
from shear failure criteria is obtained as 492.83 kPa. Using a
factor of safety of 3.0, the allowable bearing capacity of the
foundation soil is 164.27 kPa. From serviceability require-
ments, an applied pressure is set as 80 kPa.
The reliability index of 1.65 is estimated by the CBSM as
indicated with a horizontal line in Fig. 11 where the observed
correlations given in Table 6 are imposed. To study the
influence of the cross-correlations of soil properties on the
reliability index, one pair of ranked correlations with ranges
varying from −0.91 to 0.91, and the other correlations were set
with independent parameters. The Pearson's ρp, Kendall's τ,
and the bivariate Frank's copula model parameter θ are listed
as labels of the horizontal axial. Fig. 11 shows the variation of
reliability indexes with varying correlation coefficients, and the
reliability indexes increase with the decreasing of τ between
cohesion and friction angle. Similar conclusions were reported
by Cherubini (2000a), Lü and Low (2011) and Soubra and
Mao (2012), although their numerical schemes are different,
and the correlation coefficients are limited to negative values.
Very different βcb values are obtained with very high negative
τðc; tanϕÞ values, especially for τðc; tanϕÞ¼−0.91.
The impact of the correlation coefficient of the pairs

ðγ; tan ϕÞ and (γ,c) on the βcb is not significant, and βcb
slightly increases as correlation decreases.
The values of reliability index βcb obtained by the CBSM were

compared with those obtained by Hasofer and Lind’s method βHL
(indicating with FORM) with varying of the correlation coeffi-
cients between the cohesion and friction angle, as shown in
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Fig. 10. The proposed approach appears to give slightly larger
values, although most of them are matched.
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5.2. Slope of varying cohesive-frictional soil

Another simple example is a slope resistance against sliding
on a single plane, known as the Culmann analysis (Taylor,
1948). The margin of safety is

Ms ¼ cþ 0:5
Hs

sin ψ
sin ðψ−αÞ cos α

� �
tan ϕ− tan α½ �γm ð19Þ

where α is the inclination of the failure plane, ψ is the
inclination of the front of the slope, Hs is the vertical distance
from the crest to the toe of the slope. Slope sliding occurs
when Ms ≤ 0. Suppose that the Watarase River data set as
sampled by the trivariate normal copula is used here. Then, the
mutually dependent uncertain variables are the cohesion, the
tangent of the friction angle, and the unit weight, i.e., (c, tanϕ,
and γm). The other parameters have fixed values (Baecher and
Christian, 2003), i.e., Hs ¼ 10 m, θ¼201, and ψ¼261 . In the
slope stability analysis, the evaluation of probability of failure
is normally required to account for variability and uncertainty
in geotechnical parameters. The slope analysis used for this
example concerns the stability assessment of an embankment
having a potential planar failure mode and considering the
correlation characteristic of these uncertain variables.
The values of the reliability index as evaluated by the CBSM
and the FORM for the range of ranked correlation coefficient from
−0.91 to 0.91 between the soil shear strengths are presented in
Fig. 12. The reliability index as determined by the CBSM is



#

#
#

#
# #

#

# # # #

R
el

ib
ili

ty
 In

de
x

ρ
τ
θ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

-0.91 -0.59 -0.41 -0.26 -0.13 0 0.13 0.26 0.41 0.59 0.91
-42.68 -7.68 -4.3 -2.5 -1.17 0 1.17 2.5 4.3 7.68 42.68

x
x

x
x

x
x x x x x x

& & & & && & && & &
+ + + + ++ + + ++ +

#
x
&
+

FORM (Cohesion,Friction)
CBSM (Cohesion,Friction)
CBSM (Density,Friction)
CBSM (Density,Cohesion)
Real observation

Fig. 11. Reliability index versus correlations of soil properties for the strip
example.

#

#
#

#
# # # # # # #

R
el

ib
ili

ty
 In

de
x

0

1

2

3

4

5

6

7

ρ
τ
θ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.91 -0.59 -0.41 -0.26 -0.13 0 0.13 0.26 0.41 0.59 0.91

-42.68 -7.68 -4.3 -2.5 -1.17 0 1.17 2.5 4.3 7.68 42.68

x

x
x

x
x

x x x x x x
& & & & & & & & & & &
+ + + + + + + + + +

#
x
&
+

FORM (Cohesion,Friction)
CBSM (Cohesion,Friction)
CBSM (Density,Friction)
CBSM (Density,Cohesion)
Real observation

+

Fig. 12. Reliability index versus correlations of soil properties for the slope
example.

X.Z. Wu / Soils and Foundations 53 (2013) 540–556554
consistently validated against the results obtained by the FORM.
The analysis of the results illustrates the importance with respect to
the value of βcb of the ranked correlation coefficient τ between
cohesion and friction angle. The evaluation of effect of cross-
correlation on reliability index by this proposed procedure is in
accordance with the results of some other investigators, such as
Nguyen (1985) using Hasofer and Lind's method (in Fig. 5 of his
publication) and Cho and Park (2010) using random fields
procedures (in Fig. 11 of their publication).

The impact of the correlation coefficient of the pairs
ðγm; tan ϕÞ and ðγm; cÞ on the βcb is not significant, as
illustrated in Fig. 12. The reliability indices based on both
definitions are increased slightly when the correlation coeffi-
cients are changed from negative to positive. Soil strength
parameters, including cohesion c and friction angle ϕ, con-
tribute significantly to the resisting component of the slope
against failure. A small variation of the dependent of cohesion
c and friction angle ϕ has enormous influence on the reliability
index of slope stability, which necessitates additional extensive
research to gather more reliable experimental data to better
explore their dependence structures. A reliability index of 2.01
was obtained for the case with correlated soil properties given
in Table 6, indicated by a horizontal line in Fig. 12.

5.3. Discussion

The results of the CBSM shown in Figs. 11 and 12 , where
the correlation coefficients are zero, can be considered as
Monte Carlo sampling results without consideration of soil
property interdependence. However, the evaluation of the
applicability of the probabilistic assessment method is incom-
plete if the correlation between the geotechnical parameters is
not taken into account.
The random values are generated from the cumulative density

function, which are fed into the performance functions to achieve a
probabilistic prediction of outcomes. The traditional multivariate
probability distribution is mostly limited to the multivariate normal
one or mixtures of it, but arbitrary margins are not allowed. The
proposed copula-based simulation has more flexibility to express
the correlation structures of variables. It proved to provide a
practical and efficient method to facilitate a probabilistic geotech-
nical stability analysis through the CBSM and to measure the
dependence of those random variables if a detailed observation is
available. The method does not make any assumptions relating to
the geometry of the failure surface (or performance function) and
can be applied to any complex clay engineering geometry,
layering, or pore pressure conditions. It is can be extended to the
other geotechnical problems, especially cases involving correlated
soil properties.
The results indicate that there is a real need for further studies,

field or laboratory, on the correlation aspect of geotechnical
parameters, as the reliability index, and hence the probability of
failure, are highly dependent on the value of the correlation
coefficient between variables. Unfortunately, this type of analysis
requires a large amount of data that is often not available in
practice. Nevertheless, this preliminary evidence encourages further
investigation of soil-correlated characteristics.
The limitation of the present trivariate model is that it neglects

the spatial autocorrelation of soils. The inherent spatial soil
variability due to different depositional conditions and different
loading histories should be described within the framework of
random fields (Rungbanaphan et al., 2012; Kim and Sitar, 2013).
Considering this, both cross-correlation and autocorrelation need to
be taken into consideration in further studies.
When faced with a large number of uncertain variables, the

analyst would do well to ask whether all of them are needed
for the analysis. A reduction in the number of active variables
not only makes the computations more tractable but also
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increases the chances that the results can be interpreted
practically. There is an interest in considering only the
correlation between shear strengths in the case of the Goodwin
Creek data set because of the weakness of the other correla-
tions, especially as there is no significant influence of
reliability indices associated with these correlations.
6. Conclusion

A procedure to characterise stochastic dependence in a
multivariate context was implemented with the aid of the
copula theory. The methodology proposes the application of
the cumulative distribution function transformation to each
random variable, leading to the transition to a common
uniform/rank domain. The modelling of stochastic dependence
takes place in this common domain, using specific distributions
with uniform marginals, the copula functions. Copulas are very
flexible and can handle dependent parameters with mixed
marginal distributions. Moreover, it is possible to construct
higher dimensional copula models to incorporate further
important soil parameters. The trivariate fully nested Frank
copula and the trivariate normal copula were applied to
construct a multivariate model incorporating the correlation
of the soil parameters into the numerical modelling.

The presence of correlation has considerable influence on
the performance of the geotechnical systems, as demonstrated
by the bearing capacity of shallow foundation resting on
clayey soil and the slope stability assessment, especially for the
correlation between cohesion and friction angle. This correla-
tion should be well recognised in the calculation of reliability.
By comparing the results obtained from the CBSM with those
calculated by the FORM for the bearing capacity and slope
stability analysis, the proposed method for the correlated
variability modelling of multivariate soil properties has been
demonstrated as effective and helpful in performing a site-
specific probabilistic stability analysis. This contribution sets
the foundations for the modelling of stochastic dependence in
geotechnical system studies. Further work will focus on a
variety of applications and extend the modelling algorithms for
the treatment of problems where the rank correlation matrix is
non-positive definite of multivariate normal copula and the
investigation of the applicability of different copula families to
geotechnical system uncertainty analysis.
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