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Let p ≡ 3 (mod 4) be a prime, and k = (p + 1)/2. In this paper
we prove that two things happen if and only if the class number
h(

√−p) > 1. One is the non-integrality at p of a certain trace
of normalised critical values of symmetric square L-functions,
of cuspidal Hecke eigenforms of level one and weight k. The
other is the existence of such a form g whose Hecke eigenvalues
satisfy “dihedral” congruences modulo a divisor of p (e.g. p =
23, k = 12, g = �). We use the Bloch–Kato conjecture to link
these two phenomena, using the Galois interpretation of the
congruences to produce global torsion elements which contribute
to the denominator of the conjectural formula for an L-value.
When h(

√−p) = 1, the trace turns out always to be a p-adic unit.
© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let Sk(Γ ) be the vector space of cuspidal modular forms of integer weight k with respect to
Γ := SL2(Z). Let ‖ ‖ be the Petersson norm. Let g ∈ Sk(Γ ) be a primitive Hecke eigenform with
Fourier expansion g(τ ) = q + ∑∞

n=2 anqn (q := e2π iτ as usual). The Satake parameters αp, βp are the
roots of the polynomial x2 − ap x + pk−1. Then the symmetric square L-function of g is defined by the
Euler product
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L
(
Sym2(g), s

) :=
∏

p

{(
1 − α2

p p−2s)(1 − αpβp p−2s)(1 − β2
p p−2s)}−1

. (1.1)

The completion of this L-function at infinity is given by

L̂
(
Sym2(g), s

) := ΓR(s − k + 2)ΓC(s)L
(
Sym2(g), s

)
, (1.2)

where ΓR(s) := π−s/2Γ (s/2) and ΓC(s) := 2(2π)−sΓ (s). By a theorem of Shimura [Sh], it has an
analytical continuation to the whole of C, and it follows from a theorem of Rankin [Ra] that it satisfies
a functional equation

L̂
(
Sym2(g),2k − 1 − s

) = L̂
(
Sym2(g), s

)
.

It is well known that s = 2k − 2 is the rightmost critical value in the sense of Deligne [De1]. It is
paired with s = 1 by the functional equation. Then we define

L̂
(
Sym2(g),1

)
alg = L̂

(
Sym2(g),2k − 2

)
alg := L̂(Sym2(g),2k − 2)

π
k
2 −1‖g‖2

, (1.3)

which is known to be a non-zero, totally real algebraic number [Sh,Z1]. If κ := 2−2k+3( k
2 −1)!(2k−3)!,

then

L̂
(
Sym2(g),2k − 2

) = π3−3kκ L
(
Sym2(g),2k − 2

)
.

If p is a prime larger than 2k − 2, then the normalisation factor κ has no influence on the appearance
or disappearance of p in the numerator or denominator of

tracek
(

L̂
(
Sym2,2k − 2

)
alg

) :=
∑

g

L̂
(
Sym2(g),2k − 2

)
alg ∈ Q, (1.4)

where g runs through a primitive Hecke eigenbasis of Sk(Γ ). The functional equation implies that
this is equal to

tracek
(

L̂
(
Sym2,1

)
alg

)
. (1.5)

The traces are interesting arithmetic objects. They can be explicitly calculated. The doubling method
related to Siegel type Eisenstein series [Ga] provides a good way to do this (as in Section 2.3 below).
For example let k = 12,16,18,20,22,24. Then we have for the traces (1.5) the values (see also Table 1
in Section 2.4):

(
224 · 3 · 5 · 7

23 · 691

)
k=12

(
230 · 32 · 5 · 73 · 11

31 · 3617

)
k=16(

237 · 53 · 7 · 11 · 13

43867

)
k=18

(
236 · 33 · 73 · 11 · 712

283 · 617

)
k=20(

242 · 3 · 53 · 72 · 13 · 17 · 61 · 103

11 · 43 · 131 · 593

)
k=22

(
242 · 112 · 59 · 691 · 2294824233197

3 · 13 · 47 · 103 · 2294797

)
k=24

.

Here the 43 indicates that the prime 43 does not occur and hence the numerator and denominator
of the trace in the case k = 22 are coprime to 43. In all the other cases above, whenever 2k − 1 is a
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prime, this prime occurs in the denominator. The other big primes in the denominators are irregular
primes related to the k-th Bernoulli number. Let p be a prime. Then we denote by h(

√−p) the class
number of Q(

√−p) and Z(p) the localisation of Z at p.

Theorem I: Appearance of primes. Let p be a prime (p � 23) and p ≡ 3 (mod 4). Then

trace p+1
2

(
L̂
(
Sym2,1

))
alg ∈ p−1Z×

(p)
(1.6)

if and only if h(
√−p) > 1.

In a way, the p in the denominator has nothing to do with the class number. Ultimately it comes
from a factor ζ(3 − 2k) in the constant term of the un-normalised Eisenstein series of degree 2. But
when h(

√−p) = 1, a subtle cancellation occurs:

Theorem II: Disappearance of primes. Let p be a prime (p � 23), p ≡ 3 (mod 4), and the class number
h(

√−p) = 1. Then

trace p+1
2

(
L̂
(
Sym2,1

))
alg ∈ Z×

(p). (1.7)

Next we turn to congruences of modular forms. Let �(z) = q
∏∞

n=1(1−qn)24 = ∑∞
n=1 τ (n)qn be the

unique normalised cusp form of weight 12 for SL2(Z). Wilton [Wi] proved the following congruences.
Let 
 �= 23 be a prime.

τ (
) ≡

⎧⎪⎨
⎪⎩

0 (mod 23) if ( 

23 ) = −1;

2 (mod 23) if ( 

23 ) = 1 and 
 = u2 + 23v2;

−1 (mod 23) otherwise.

Swinnerton-Dyer [SD] considered more generally a normalised, cuspidal Hecke eigenform g =∑∞
n=1 anqn for SL2(Z), of weight k. For simplicity suppose that the an are rational. This probably

means that k = 12,16,18,20,22 or 26. He showed that if p is a prime, and if for all primes 
 such
that ( 


p ) = −1 we have a
 ≡ 0 (mod p), then necessarily p < 2k. In the case p = 2k −1 (if it is prime),
he observed that such congruences hold for k = 12 (p = 23, i.e. Wilton’s case), and also for k = 16
(p = 31), but not for k = 22 (p = 43). In fact, we shall prove the following.

Theorem III: Dihedral congruences. Let k be an even integer such that p := 2k − 1 is prime. There exist a
normalised, cuspidal Hecke eigenform g = ∑∞

n=1 anqn for SL2(Z), of weight k, and a prime p | p of Q({an})
such that a
 ≡ 0 (mod p) for all primes 
 with ( 


p ) = −1, if and only if h(
√−p) > 1.

Theorems I and III may appear to describe two unrelated consequences of the condition
h(

√−p) > 1. In this paper, aside from proving these theorems, we shall show how they may be
linked using the Bloch–Kato conjecture on special values of L-functions. The Galois representation
behind Theorem III is used to produce a non-zero p-torsion element in some “global torsion” group
whose order appears in the denominator of the conjectural formula for the ratio of L(Sym2(g),1) to
a canonical Deligne period. This may be viewed as explaining the non-integrality in Theorem I.

Section 2 contains the proofs of Theorems I and II. We exploit the appearance of the
L(Sym2(g),1)alg as coefficients in a formula for the pullback to the diagonal of an Eisenstein se-
ries of degree 2. We also use formulas for the Fourier coefficients of this Eisenstein series, in
terms of values of the Riemann zeta function and quadratic Dirichlet L-functions, and a congru-
ence h(

√−p) ≡ −2B(p+1)/2 (mod p). Section 3 contains the proof of Theorem III. The non-triviality
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of the class number enables us to construct, using class field theory, a 2-dimensional, (mod p), dihe-
dral Galois representation, ramified only at p. Known results on Serre’s conjecture then provide the
required cuspidal Hecke eigenform of weight k and level 1. In Section 4 we state the Bloch–Kato con-
jecture in the case of critical values of L(Sym2(g), s), analyse some Tamagawa factors, then produce
the global torsion element mentioned above. The computations in this paper have been performed by
the computational package PARI, which is available at

http://pari.math.u-bordeaux.fr/

The authors’ collaboration on this paper grew out of discussions between them at the workshop
“Automorphic representations, automorphic L-functions and arithmetic” at Kyoto R.I.M.S. in January
2009 (where the first-named author was supported by an E.P.S.R.C. overseas travel grant). They would
like to thank the organiser, Prof. Y. Ishikawa.

2. Proofs of Theorems I and II

To prove the theorems we use the explicit arithmetic of Fourier coefficients of Eisenstein series
and related special values of Dirichlet L-functions.

2.1. Special values of Dirichlet L-functions

Let χ be a Dirichlet character modulo m. We define the generalised Bernoulli numbers Bn,χ by
the generating series

∞∑
n=0

Bn,χ
tn

n! := (
∑m−1

a=1 χ(a)teat)

emt − 1
(2.1)

(see also [Wa, Section 4]). This definition has the advantage that it is easily implemented by a com-
puter program. If χ = 1 (Dirichlet character mod 1) then Bn := Bn,1 (n > 1) are the Bernoulli numbers,
where B0 = 1 and B1 = 1

2 . Usually one finds the following definition in the literature:

∞∑
n=0

Bn
tn

n! := t

et − 1
.

The Dirichlet series L(χ, s) is defined by

L(χ, s) :=
∞∑

n=1

χ(n)n−s, Re(s) > 1. (2.2)

This holomorphic function has a meromorphic continuation to the complex plane, and

L(χ,1 − n) = − Bn,χ

n
(n > 1). (2.3)

Let D < 0 be a fundamental discriminant, i.e., either D ≡ 1 (mod 4), with D square free, or D ≡
0 (mod 4), with D

4 square free and D
4 ≡ 2,3 (mod 4). Then the quadratic Dirichlet characters χ with

χ(−1) = −1 are the χD , where χD is essentially the Legendre symbol ( D ). The first fundamental
discriminants are given by

−3,−4,−7,−8,−11,−15,−19,−20, . . . .
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Let LD(s) := L(χD , s). Since χD is odd we have Bn,χD �= 0 if and only if n is odd. Hence we have for

all even integers k > 2: LD(2 − k) = − Bk−1,χ

k−1 �= 0.

2.2. Fourier coefficients of Eisenstein series

The group Sp(2n)(R) of real points of the symplectic group scheme Sp(2n) acts transitively on the
Siegel upper half-space Hn of degree n by:

(
A B

C D

)
(Z) := (A Z + B)(C Z + D)−1.

Let k be a positive even integer such that k > n + 1. Then we denote by

En
k(Z) :=

∑
g∈Sp(2n)∞\Sp(2n)(Z)

1|k g, (2.4)

the (normalised) Siegel type Eisenstein series of degree n, weight k and level 1. Here |k symbolises
the usual Petersson slash operator and Sp(2n)∞ the stabiliser of 1|k in Sp(2n)(Z). This holomorphic
periodic function has a Fourier expansion:

∑
T �0

An
k(T )e2π itr(T Z), (2.5)

where T runs through the set of all positive semi-definite symmetric half-integral matrices. Note that
An

k(0) = 1. It is well known that Fourier coefficients An
k(T ) for singular matrices T are related to

Fourier coefficients of Eisenstein series of lower degree. The parametrisation T � 0 is given in the
case n = 1 by the set of non-negative integers, and in the case n = 2 by the binary positive semi-

definite quadratic forms T =
(

n r
2

r
2 m

)
. We put T = (n, r,m) to simplify notation. In the case n = 1,

E1
k (z) = 1 − 2k

Bk

∑∞
n=1 σk−1(n)qn .

We recall now a formula for Fourier coefficients of Eisenstein series of degree 2. Let the content
of T = (n, r,m), the greatest common divisor of n, r,m, be one. Then the value of A2

k (T ) (T > 0)

depends only on the discriminant D := r2 − 4nm of T . We put Ak(D) := A2
k (T ). For D a fundamental

discriminant we have

Ak(D) = 2
LD(2 − k)

ζ(1 − k)ζ(3 − 2k)
. (2.6)

See for example [Z2].

2.3. Pullback of Eisenstein series

There are several ways to study special values of the symmetric square L-function [Z1]. Here we
apply the method given by the pullback of Siegel type Eisenstein series of degree 2 (see [Ga] for
details).

Let H × H ↪→ H2 be the diagonal imbedding given by (z, w) 
→
(

z 0
0 w

)
, where H := H1. Let (gi)i

be a primitive Hecke eigenbasis of Sk(Γ ). Then

E2
k

∣∣
H×H

= Ek ⊗ Ek +
dimSk(Γ )∑

αi gi ⊗ gi, (2.7)

i=1
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where the coefficients are totally real algebraic numbers given by:

αi = μ−1
k L̂

(
Sym2(gi),1

)
alg,

μ−1
k = −25−2k k!

( k
2 − 1)!

1

Bk B2k−2
. (2.8)

Recall that p � 23 is a prime, with p ≡ 3 (mod 4), and that k := p+1
2 .

Lemma 2.1. h(
√−p) ≡ −2Bk (mod p).

This remarkable fact appears to be due to Carlitz ((5.2) of [C1]). A proof is also given in [IR],
following Proposition 15.2.3, and it is Exercise 4 in 5.8 of [BS]. It is a consequence of the analytic
class number formula and Kummer’s congruences.

Lemma 2.2. ordp(Bk) = 0.

Proof. This follows from the lemma above, since the possibility that p | h(
√−p) is excluded by the

well-known fact that h(
√−p) <

√
p log p (see for example [Wa, Ex. 5.9]). �

Proof of Theorem I. By comparing Fourier coefficients on both sides of the formula (2.7), we obtain

A2
k (1,0,1) + 2A2

k (1,1,1) + 2A2
k (1,2,1) = (

A1
k (1)

)2 + (μk)
−1

∑
gi

L̂
(
Sym2(gi),1

)
alg.

Let ak(1) := A1
k (1) be the first Fourier coefficient of Ek , i.e. ak(1) = −2k/Bk . Since x2 + 2xy + y2 =

(x + y)2, A2
k (1,2,1) = A2

k (1,0,0), and it follows from the fact that Φ(E2
k ) = E1

k (where Φ is Siegel’s
operator) that A2

k (1,0,0) = A1
k (1) (see also Klingen [Kl, Section 5, proof of Proposition 8]). Hence

A2
k (1,2,1) = ak(1), and we have

tracek
(

L̂
(
Sym2,1

))
alg = μk

(
Ak(−4) + 2Ak(−3) + 2ak(1) − ak(1)2). (2.9)

First we claim that ordp(μk) = −1. Given Lemma 2.2, it suffices to show that ordp(B2k−2) = −1, but
since 2k − 2 = p − 1, this is a direct consequence of the v. Staudt–Clausen theorem.

Next we claim that

μk
(

Ak(−4) + 2Ak(−3)
) ∈ Z(p). (2.10)

Recall from (2.6) that Ak(D) = 2 LD (2−k)
ζ(1−k)ζ(3−2k)

. First, μk cancels with ζ(1 − k)ζ(3 − 2k), up to p-units.
Then, Leopoldt’s generalisation, to generalised Bernoulli numbers, of the v. Staudt–Clausen theorem [L]
shows that L−4(2 − k), L−3(2 − k) ∈ Z(p) (see also [RV] or [C2]).

To prove the theorem, it remains to show that 2ak(1)−ak(1)2, i.e. ak(1)(2−ak(1)), belongs to pZ(p)

if h(
√−p) = 1 but to Z×

(p) if h(
√−p) > 1. By Lemma 2.2, ak(1) ∈ Z×

(p) . In fact, ak(1) = −2k/Bk , but
2k = p + 1 ≡ 1 (mod p), so ak(1) ≡ −1/Bk (mod p). With Lemma 2.1, this gives

2 − ak(1) ≡ 2 − 2 h(
√−p)−1 (mod p)

(note again that h(
√−p) <

√
p log p < p), from which we get what we want. �
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Table 1

p ≡ 3(4) k = p+1
2 tracek L̂(Sym2,1)alg h(

√−p)

3 2 – 1

7 4 – 1

11 6 – 1

19 10 – 1

23 12 224 ·3·5·7
23·691 3

31 16 230 ·32 ·5·73 ·11
31·3617 3

43 22 242 ·3·53 ·72 ·13·17·61·103
11·131·593 1

47 24 242 ·112 ·59·691·2294824233197
3·13·47·103·2294797 5

59 30 255 ·5·7·11·13·173 ·47·673·947·2087·958033842197
34 ·19·59·1721·10012559881

3

67 34 262 ·5·7·11·13·2083·2297·12811671172550037934783691
33 ·17·19·232 ·151628697551

1

71 36 260 ·23·47·353·431·260209·1520443·11314293544039·21560654759317409
35 ·52 ·13·19·71·26315271553053477373

7

79 40 266 ·179·20543·57844169585314072393284932599819687679553675399737
34 ·53 ·23·29·79·137616929·1897170067619

5

83 42 272 ·661·7417·115631553691·406193020940899943·30247154657851042934148779
36 ·7·112 ·23·31·83·1520097643918070802691

3

103 52 ∈ 103−1Z×
(103)

5

107 54 290 ·13·613·23068751315342507·p1
39 ·5·73 ·19·29·31·37·43·107·39409·660183281·1120412849144121779

3

127 64 127−1Z×
(127)

5

131 66 131−1Z×
(131)

5

139 70 139−1Z×
(139)

3

151 76 151−1Z×
(151)

7

163 82 ≡ 20 (mod 163) 1

167 84 167−1Z×
(167)

11

p1 = 272604077981898503203628532273822570762

9174901615890777892164701437945309129

2.4. Proof of Theorem II

We already know, from the proof above, that if h(
√−p) = 1 then

trace p+1
2

(
L̂
(
Sym2,1

))
alg ∈ Z(p).

We can prove that it is a unit simply by inspecting Table 1, since the Heegner–Stark theorem tells
us all the imaginary quadratic fields of class number one. Since p � 23 (otherwise dimS p+1

2
(Γ ) = 0),

only p = 43,67,163 have to be considered. �
Table 1 contains the first cases where 2k − 1 is a prime. One can see that frequently small primes

appear in the denominator. The large primes in denominators are always divisors of the Bk .

3. Dihedral congruences for cusp forms of level one

Our goal in this section is to prove Theorem III. In the following theorem, p is not necessarily
equal to 2k − 1.
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Theorem 3.1 (Deligne [De2]). Let g = ∑∞
n=1 anqn be a normalised newform of weight k � 2 and character

ε , for Γ1(N). Let K = Q({an}), and let p | p be some prime of the ring of integers O K , with completions Kp

and O p . There exists a continuous representation

ρg = ρg,p : Gal(Q/Q) → GL2(Kp),

unramified outside pN, such that if 
 � pN is a prime, and Frob
 is an arithmetic Frobenius element, then

Tr
(
ρg

(
Frob−1




)) = a
, det
(
ρg

(
Frob−1




)) = ε(
)
k−1.

One can conjugate so that ρg takes values in GL2(O p), then reduce (mod p) to get a con-
tinuous representation ρ g = ρ g,p : Gal(Q/Q) → GL2(Fp), which, if it is irreducible, is independent
of the choice of invariant O p-lattice. If c ∈ Gal(Q/Q) is a complex conjugation, then necessarily
det(ρg(c)) = −1, i.e. ρg is odd. Serre ((3.2.3)? of [Se1]) conjectured that, conversely, any odd, ir-
reducible, continuous representation ρ : Gal(Q/Q) → GL2(Fp) is isomorphic to some ρ g as above.
Moreover ((3.2.4)? of [Se1]), he conjectured an optimal level, character and weight. The level is the
(prime-to-p) Artin conductor N(ρ), while the weight depends on the restriction of ρ to an inertia
subgroup I p . Khare [K] has proved Serre’s conjecture in the case N(ρ) = 1.

Proposition 3.2. Let p ≡ 3 (mod 4) be a prime, and let k := (p + 1)/2. Suppose that h(
√−p) > 1. Then

there exist a normalised, cuspidal Hecke eigenform g = ∑∞
n=1 anqn for SL2(Z), of weight k, and a prime p | p

of Q({an}) such that ρ g,p : Gal(Q/Q) → GL2(Fp) has dihedral image, factoring through Gal(E/Q), where E
is any unramified, cyclic extension of Q(

√−p).

Proof. Let E be any (non-trivial) unramified, cyclic extension of F := Q(
√−p), say [E : F ] = r. It

exists by class field theory, since h(
√−p) > 1. Let τ : Gal(E/F ) → F×

p be a character of order r, and

let ρ : Gal(E/Q) → GL2(Fp) be IndQ
F τ . We also denote by ρ the inflation to Gal(Q/Q). This ρ is easily

seen to be continuous, odd and irreducible. Since E/F is unramified, and F/Q is ramified only at p,
the Artin conductor of ρ is equal to 1. By Khare’s theorem, ρ is of the form ρ g,p for some level-one
cuspidal eigenform g . It remains to show that the Serre weight of ρ is k. Bearing in mind that E/F
is unramified, the restriction of ρ to an inertia subgroup I p is tamely ramified, and decomposes as
a sum of the trivial character and the quadratic character χ−p . These are both “level-one” characters
of the tame quotient of I p , and writing them in the form χa,χb , with χ the inverse-cyclotomic
character and 0 � a � b � p − 2, we have a = 0, b = (p − 1)/2. The weight is given by 1 + pa + b (as
in 2(a) of 1.7 of [E]), which is equal to (p + 1)/2 = k. �

Strictly speaking, one does not need the full force of Khare’s theorem. One can produce a complex-
multiplication form f (of weight 1, level p and quadratic character) such that ρ f � ρ . Then one
can use the fact that the weak Serre conjecture implies the strong Serre conjecture to replace f by
something of the correct level and weight. In fact, in the cases k = 12 and k = 16, this f is the linear
combination of binary theta series on the right-hand side of (26) or (27) in [SD]. Note that h(

√−p)

is necessarily odd, so the character τ in the proof above has odd order.

Corollary 3.3. Let k be an even integer such that p := 2k − 1 is prime. Suppose that h(
√−p) > 1. Then there

exist a normalised, cuspidal Hecke eigenform g = ∑∞
n=1 anqn for SL2(Z), of weight k, and a prime p | p of

Q({an}) such that a
 ≡ 0 (mod p) for all primes 
 with ( 

p ) = −1.

One uses a
 ≡ Tr(ρg(Frob−1

 )) (mod p). According to a remark at the end of [Ri], which refers to a

footnote about �2 in [Wi], the case k = 24, p = 47 may be proved using Wilton’s methods.
Wilton and Swinnerton-Dyer also had something to say about primes 
 such that ( 


p ) = 1. Such a

prime splits in O F , say (
) = ll. By class field theory, we may view the character τ in the above proof
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as a character of the ideal class group of O F . Then a consequence of a
 ≡ Tr(ρg(Frob−1

 )) (mod p)

is that a
 ≡ τ ([l]) + τ−1([l]) (mod p). In particular, if l is principal (i.e. if 
 = u2 + pv2, when p ≡
7 (mod 8), or more generally if 
 = u2 + uv + p+1

4 v2), then a
 ≡ 2 (mod p). In the cases k = 12 and
k = 16, where h(

√−p) = 3, there is only one possible non-trivial choice of {τ , τ−1}.
To complete the proof of Theorem III, it suffices to prove the following.

Proposition 3.4. Let k be an even integer such that p := 2k−1 is prime. Suppose that there exist a normalised,
cuspidal Hecke eigenform g = ∑∞

n=1 anqn for SL2(Z), of weight k, and a prime p | p of Q({an}) such that
a
 ≡ 0 (mod p) for all primes 
 with ( 


p ) = −1. Then h(
√−p) > 1.

Proof. Similarly to 3.2 of [Se2], the only possibility compatible with the congruence is that the image
of ρ g(Gal(Q/Q)) in PGL2(Fp) is dihedral. Since g has level one, so that ρ g is unramified away from p,
it must be the case that the image of ρ g(Gal(Q/F )) in PGL2(Fp) is cyclic, where F = Q(

√−p).
We claim that the restriction of ρ g to Gal(Q/F ) must be unramified at (the prime dividing) p.

Suppose that it is not. Then, if I p is an inertia subgroup of Gal(Q/Q), the image of ρ f (I p) in PGL2(Fp)

is dihedral, and certainly the restriction of ρ g to Gal(Qp/Qp) is irreducible (hence semi-simple). But
then ρ g |I p would be a sum of two characters (as on p. 214 of [E]), contrary to ρ g(I p) being non-

abelian. Thus the claim is established. But the restriction of ρ g to Gal(Q/F ) is not trivial, so factors
through the Galois group of a non-trivial extension E/F , which was already unramified away from p,
but, we know now, is also unramified above p. By class field theory, we must have h(

√−p) > 1. �
In principle, the above proposition could be proved by inspection, since there are only finitely

many p to consider.

4. The Bloch–Kato conjecture

4.1. Statement of the conjecture

Let
∑∞

n=1 anqn = g ∈ Sk(Γ ) (necessarily for some even k � 12) be a normalised Hecke eigenform,
K = Q({an}). Attached to g is a “premotivic structure” Mg over Q with coefficients in K . Thus there
are 2-dimensional K -vector spaces Mg,B and Mg,dR (the Betti and de Rham realisations) and, for each
finite prime q of O K , a 2-dimensional Kq-vector space Mg,q , the q-adic realisation. These come with
various structures and comparison isomorphisms, such as Mg,B ⊗K Kq � Mg,q . See 1.1.1 of [DFG] for
the precise definition of a premotivic structure, and 1.6.2 of [DFG] for the construction of M g . The
q-adic realisation Mg,q realises the representation ρg,q of Gal(Q/Q). For each prime number 
, the
restriction to Gal(Q
/Q
) may be used to define a local L-factor, and the Euler product is precisely
L(g, s). Let M ′

g := Sym2Mg . Then similarly from M ′
g one obtains L(Sym2(g), s).

On Mg,B there is an action of Gal(C/R), and the eigenspaces M±
g,B are 1-dimensional. On Mg,dR

there is a decreasing filtration, with F j a 1-dimensional space precisely for 1 � j � k−1. The de Rham
isomorphism Mg,B ⊗K C � Mg,dR ⊗K C induces isomorphisms between M±

g,B ⊗ C and (Mg,dR/F ) ⊗ C,

where F := F 1 = · · · = F k−1. Define Ω± to be the determinants of these isomorphisms. These de-
pend on the choice of K -bases for M±

g,B and Mg,dR/F , so should be viewed as elements of C×/K × .

Note that if we consider the twist Mg( j) (with 1 � j � k − 1), then (Mg( j))B = (2π i) j Mg , so

(Mg( j))+B = (2π i) j M(−1) j

g,B and the Deligne period of Mg( j), as the determinant of the isomorphism

from (Mg( j))+B ⊗K C to (Mg( j)dR/F 0Mg( j)dR) ⊗K C = (Mg,dR/F j Mg,dR) ⊗K C, is (2π i) jΩ(−1) j
.

The eigenspace M ′−
g,B is 1-dimensional. On M ′

g,dR there is a decreasing filtration, with F t a 2-
dimensional space precisely for 1 � t � k − 1. The de Rham isomorphism M ′

g,B ⊗K C � M ′
g,dR ⊗K C

induces an isomorphism between M ′−
g,B ⊗ C and (M ′

g,dR/F ′) ⊗ C, where F ′ := F 1 = · · · = F k−1. De-

fine Ω ∈ C×/K × to be the determinant of this isomorphism. Note that t as above is critical only
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when it is odd, since this is when the dimension of (M ′
g(t))

+
B = (2π i)t M ′

g,B
(−1)t

matches that of

(M ′
g(t))dR/F 0(M ′

g(t))dR = M ′
g,dR/F t M ′

g,dR. In this case, the Deligne period of M ′
g(t) is (2π i)tΩ . Note

that the remaining critical points, paired with these by the functional equation, are the even t such
that k � t � 2k − 2.

We shall choose an O K -submodule Mg,B , generating Mg,B over K , but not necessarily free, and
likewise an O K [1/S]-submodule Mg,dR, generating Mg,dR over K , where S is the set of primes less
than or equal to k. We take these as in 1.6.2 of [DFG]. They are part of the “S-integral premotivic
structure” Mg associated to g . Actually, it will be convenient to enlarge S so that O K [1/S] is a
principal ideal domain, then replace Mg,B and Mg,dR by their tensor products with the new O K [1/S].
These will now be free, as will be any submodules and quotients. Choosing bases, and using these to
calculate the above determinants, we pin down the values of Ω± (up to S-units). Setting M′

g,B :=
Sym2Mg,B and M′

g,dR := Sym2Mg,dR, similarly we pin down Ω (up to S-units). We just have to
imagine not including in S any prime we care about (specifically p = 2k − 1 if it is prime).

Lemma 4.1. Ω = Ω+Ω−.

Proof. Let e+ and e− be generators of M
+
g,B and M

−
g,B respectively. Let {x, y} be an O K [1/S]-basis

for Mg,dR, with y generating the submodule F . Under the isomorphism Mg,B ⊗K C � Mg,dR ⊗K C we
have

e+ 
→ Ω+x + η+ y, e− 
→ Ω−x + η− y,

for some η+, η− , so under the isomorphism between M ′−
g,B ⊗ C and (M ′

g,dR/F ′) ⊗ C we have

e+e− 
→ Ω+Ω−x2.

Hence Ω = Ω+Ω− , as required. �
We shall need the elements Mg,q of the S-integral premotivic structure, for each prime q of O K .

These are as in 1.6.2 of [DFG]. For each q, Mg,q is a Gal(Q/Q)-stable O q-lattice in Mg,q . Taking
symmetric squares, we get M′

g,q , a Gal(Q/Q)-stable O q-lattice in M ′
g,q .

Let Ag,q = Aq := Mg,q/Mg,q , and A[q] := Aq[q], the q-torsion subgroup. Similarly, let A′
g,q = A′

q :=
M ′

g,q/M′
g,q , and A′[q] = A′

q[q]. Let Ǎ′
q := M̌ ′

g,q/M̌′
g,q , where M̌ ′

g,q and M̌′
g,q are the Kq-vector

space and O q-lattice dual to M ′
g,q and M′

g,q respectively, with the natural Gal(Q/Q)-action. Let A′ :=⊕
q A′

q , etc.
Following [BK, Section 3], for 
 �= q (including 
 = ∞) let

H1
f

(
Q
, M ′

g,q(t)
) := ker

(
H1(D
, M ′

g,q(t)
) → H1(I
, M ′

g,q(t)
))

.

Here D
 is a decomposition subgroup at a prime above 
, I
 is the inertia subgroup, and M ′
g,q(t) is a

Tate twist of M ′
g,q , etc. The cohomology is for continuous cocycles and coboundaries. For 
 = q let

H1
f

(
Qq, M ′

f ,q(t)
) := ker

(
H1(Dq, M ′

f ,q(t)
) → H1(Dq, M ′

f ,q(t) ⊗Qq Bcrys
))

.

(See Section 1 of [BK], or Section 2 of [Fo], for the definition of Fontaine’s ring Bcrys.) Let
H1

f (Q, M ′
g,q(t)) be the subspace of those elements of H1(Q, M ′

g,q(t)) which, for all primes 
, have

local restriction lying in H1
f (Q
, M ′

g,q(t)). There is a natural exact sequence
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0 M′
g,q(t) M ′

g,q(t)
π

A′
q(t) 0.

Let H1
f (Q
, A′

q(t)) = π∗H1
f (Q
, M ′

g,q(t)). Define the q-Selmer group H1
f (Q, A′

q(t)) to be the subgroup

of elements of H1(Q, A′
q(t)) whose local restrictions lie in H1

f (Q
, A′
q(t)) for all primes 
. Note that

the condition at 
 = ∞ is superfluous unless q = 2. Define the Shafarevich–Tate group

Ш(t) =
⊕

q

H1
f (Q, A′

q(t))

π∗H1
f (Q, M ′

g,q(t))
.

Conjecture 4.2 (Case of Bloch–Kato). Suppose that 1 � t � k − 1 is odd. Then we have the following equality
of fractional ideals of O K [1/S]:

L(Sym2(g), t)

(2π i)tΩ
=

∏

�∞ c
(t) #Ш(t)

#H0(Q, A′(t))#H0(Q, Ǎ′(1 − t))
. (4.1)

The Tamagawa factors c
(t) will be defined in the next subsection. It is more convenient to use
‖g‖2 than Ω , so we consider the relation between the two. Calculating as in (5.18) of [Hi], using
Lemma 5.1.6 of [De1] and the latter part of 1.5.1 of [DFG], one recovers the well-known fact that, up
to S-units,

‖g‖2 = ik−1Ω+Ω−c(g), (4.2)

where c(g), the “cohomology congruence ideal”, is, as the cup-product of basis elements for Mg,B , an
integral ideal. (It is certainly trivial in those cases for which dim(Sk) = 1.) Recall that by Lemma 4.1
above,

Ω = Ω+Ω−.

Via the duality Mg × Mg → K (1 −k), Ǎ′
g,q � A′

g,q(2k − 2). (Recall that K = Q({an}), and here K (1 −k)

is a twist of the trivial premotivic structure over Q with coefficients in K .) Therefore (4.1) becomes,
for 1 � t � k − 1 odd, the conjecture that

L(Sym2(g), t)

(2π i)t i1−k‖g‖2
=

∏

�∞ c
(t) #Ш(t)

#H0(Q, A′(t))#H0(Q, A′(2k − 1 − t))c(g)
. (4.3)

4.2. Tamagawa factors

The goal of this subsection is to show that if p = 2k − 1 is prime, and p | p, then the factor∏

�∞ c
(t) contributes nothing to the p-part of the right-hand side of (4.3) in the case t = 1.
Let t be an integer with 1 � t < k − 1. (It is really the case t = 1 with which we are con-

cerned, so for convenience we exclude the slightly awkward case t = k − 1 at this point.) For
a finite prime 
, let H1

f (Q
,M
′
g,q(t)) be the inverse image of H1

f (Q
, M ′
g,q(t)) under the nat-

ural map. Suppose now that 
 �= q. If H0(Q
, M ′
g,q(t)) is trivial (which is certainly the case

if t < k − 1, since the eigenvalues of Frob−1

 acting on Mg,q are algebraic integers with ab-

solute value 
(k−1)/2) then, by inflation–restriction, we find that H1
f (Q
, M ′

g,q(t)) � (M ′
g,q(t)I
 )/

(1 − Frob
)(M ′
g,q(t)I
 ) is trivial, so H1

f (Q
,M
′
g,q(t)) is the torsion part of H1(Q
,M

′
g,q(t)). Again

using the triviality of H0(Q
, M ′
g,q(t)), we identify H1

f (Q
,M
′
g,q(t)) with H0(Q
, A′

q(t)). This has a

subgroup that is given by (M ′
g,q(t)I
/M′

g,q(t)I
 )Frob
=id, whose order is the q-part of P
(

−t), where
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P
(

−s) = det(1 − Frob−1


 
−s | M ′
g,q

I
 ) is the Euler factor at 
 in L(Sym2(g), s) (strictly speaking, its

reciprocal). When 
 is a prime of “good reduction”, so that M ′
g,q(t)I
 = M ′

g,q(t) maps surjectively

to A′
q(t), the subgroup is the whole of H0(Q
, A′

q(t)), but in general we define the q-part of the Tam-
agawa factor c
(t) to be the index of the subgroup. For us, every 
 is a prime of good reduction (i.e.
M ′

g,q is unramified at 
), because g has level one, so we get the following straight from the definition.

Lemma 4.3. If 
 is a finite prime, and q divides q �= 
, and 1 � t < k − 1, then the q part of c
(t) is trivial.

The Tamagawa factor c∞(t) is, by definition, the order of the group

(M ′
g,q(t)/M′

g,q(t))±

M ′
g,q(t)±/M′

g,q(t)±
,

where ± = (−1)t . This is at worst a power of 2, so need not concern us.
It remains to consider the q-part of c
(t) in the case that q = 
. It is known that M ′

g,q is a crys-

talline representation of Gal(Qq/Qq), as long as q > k. (Recall that the level N = 1 for us.) For a
careful discussion, referring to [Fa], see 1.2.5 of [DFG]. Furthermore, V(M′

g,dR ⊗ O q) = M′
g,q . (Note that

M′
g,dR ⊗ O q is really the crystalline realisation M′

g,crys.) For the definitions of the modified Fontaine–
Lafaille functor V and the categories O q–MFa of filtered Dieudonné modules, see 1.1.2 of [DFG]. It
now follows from Theorem 4.1(ii) of [BK] that the Bloch–Kato exponential map gives an isomorphism

(
M ′

g,dR ⊗ Kq

)/
F t(M ′

g,dR ⊗ Kq

) � H1
f

(
Qq, M ′

g,q(t)
)
.

The norm of the q-part of the Tamagawa factor cq(t) is

μ
(

H1
f

(
Qq,M

′
g,q(t)

))/∣∣Pq
(
q−t)∣∣−1

q ,

where μ is the Haar measure of H1
f (Qq, M ′

g,q(t)) induced via the exponential map from that measure

on (M ′
g,dR ⊗ Kq)/F t(M ′

g,dR ⊗ Kq) giving (M′
g,dR ⊗ O q)/F t(M′

g,dR ⊗ O q) volume 1. The following is a
direct consequence of Theorem 4.1(iii) of [BK].

Lemma 4.4. If q > 2k − 1, q | q and 1 � t � 2k − 2, with t �= k − 1, then the q-part of cq(t) is trivial.

(This 2k − 1 is the length of the Hodge filtration.) Since we are especially interested in the choice
q = p := 2k − 1 (when it is prime), this is just not quite good enough for our purposes. However,
using the fact that M ′

g(k − 1) ⊕ K � Hom(Mg , Mg), a sufficiently good improvement is possible. The
proposition below is a direct application of the proof of Proposition 2.16 of [DFG] (that part before
the statement of Lemma 2.17), making the choices (in their notation) D1 = Mg,crys[k − 1 − t], D2 =
Mg,crys. In [DFG] the case t = k − 1 (for which they require q > k) is considered, but they also look
at the choice D1 = Mg,crys, D2 = Mg,crys[1], for which they require q > k + 1. (Their more careful
definition of the Tamagawa factor allows the case t = k − 1.) The proof of the following proposition is
a simple generalisation of these cases.

Proposition 4.5. For 1 � t < k − 1, the q-part of cq(t) is trivial as long as q > 2k − 1 − t.

In [Du], one of us made do with Lemma 4.4, thus missing the significance of primes of the form
2k − 1, which was impressed upon him by the other author. The stated goal of this subsection has
now been achieved.
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4.3. Global torsion

Let p ≡ 3 (mod 4) be a prime, and let k := (p + 1)/2. Suppose that h(
√−p) > 1. According to

Theorem I,

tracek
(

L̂
(
Sym2,1

))
alg ∈ p−1Z×

(p).

Hence there must exist a normalised, cuspidal Hecke eigenform g = ∑∞
n=1 anqn for SL2(Z), of

weight k, and a prime p | p of Q({an}) such that L(Sym2(g),1)

2π‖g‖2 is not integral at p. For t = 1, one of the

terms appearing in the denominator of (4.3) has p-part H0(Q, A′
g,p(2k − 2)). So the following propo-

sition is consistent with the Bloch–Kato conjecture, and seems to provide a link between Theorem I
and Theorem III. Not knowing the p-part of Ш(1), it is not possible to strengthen this statement.

Proposition 4.6. Let p ≡ 3 (mod 4) be a prime, and let k := (p + 1)/2. Suppose that h(
√−p) > 1. Then

there exist a normalised, cuspidal Hecke eigenform g = ∑∞
n=1 anqn for SL2(Z), of weight k, and a prime p | p

of Q({an}) such that H0(Q, A′
g,p(2k − 2)) is non-trivial.

Proof. By Proposition 3.2, there is a g such that ρ g,p : Gal(Q/Q) → GL2(Fp) has dihedral image,
factoring through Gal(E/Q), where E is some unramified, cyclic extension of F := Q(

√−p). The rep-
resentation ρ g,p is induced from a character of Gal(E/F ), of order r, say, and is realised on the
space Ag[p]. Since 2k − 2 = p − 1, and the (p − 1)-power of the (mod p) cyclotomic character is
trivial, A′

g[p] is isomorphic to A′
g[p](2k − 2). Hence it suffices to produce a non-zero Gal(Q/Q)-fixed

element of A′
g[p] = Sym2 Ag[p].

The restriction of ρ g,p to the cyclic subgroup Gal(E/F ) is a sum of characters τ and τ−1. Let
{x, y} be a basis of Ag[p] such that Gal(E/F ) acts on x and y by τ and τ−1 respectively. Then xy is
the Gal(E/Q)-invariant element we seek. (In the non-trivial coset of Gal(E/F ) in Gal(E/Q), there is a
representative that switches x and y.) �

We consider the other possible contributions to global torsion terms.

Proposition 4.7. Suppose that 1 � t � k − 1 is odd, and that the q-part of #H0(Q, A′(t))#H0(Q, A′(2k −
1 − t)) is non-trivial. Then either t = 1 and q = p = 2k − 1, with h(

√−p) > 1, or q � k + 1, or ordq(Bk) > 0.
In the case ordq(Bk) > 0, if q > 2k then t = 1 or k − 1.

Proof. It is equivalent to consider non-triviality of #H0(Q, A′[q](t))#H0(Q, A′[q](2k − 1 − t)).
Now H0(Q, A′[q](t)) ⊂ HomGal(Q/Q)(A[q](k − 1 − t), A[q]) and H0(Q, A′[q](2k − 1 − t)) ⊂
HomGal(Q/Q)(A[q], A[q](k − t)). Recall that the twist is here multiplication by a power of the (mod q)

cyclotomic character.
If A[q] is irreducible then, in order to get a non-zero element of H0(Q, A′[q](t)) or

H0(Q, A′[q](2k − 1 − t)), we require A[q] to be isomorphic to a twist (by k − 1 − t or k − t) of
itself. Considering the determinant, that twist must be by either the trivial character or a quadratic
character (necessarily χ−q , the q−1

2 -power of the cyclotomic character). In the first case, we are
looking at HomGal(Q/Q)(A[q], A[q]), which consists of scalars, by Schur’s lemma, but we need en-
domorphisms of trace zero, so we get nothing non-zero. In the latter case a
 ≡ 0 (mod q) for all
primes 
 with ( 


q ) = −1, since a
 ≡ χ−q(
)a
 (mod q). As we have seen, this implies that the rep-

resentation of Gal(Q/Q) on A[q] factors through a dihedral extension. As before, the Serre weight
is 1 + q(0) + (q − 1)/2 = (q + 1)/2, so unless q < k we get k = (q + 1)/2, i.e. q = 2k − 1. Since the
twist (q − 1)/2 = k − 1, we must have t = 1. Also, by Proposition 3.4, this case only happens when
h(

√−p) > 1.
If A[q] is reducible then its semi-simplification must be the sum of two powers of the inverse-

cyclotomic character, χa and χb , with 0 � a < b � q − 2 and a +b ≡ k − 1 (mod q − 1). It follows from



N. Dummigan, B. Heim / Journal of Number Theory 130 (2010) 2078–2091 2091
a theorem of Swinnerton-Dyer [SD] (see also 3.2 of [Se2]) that either q � k + 1 or ordq(Bk) > 0. (The
generalisation to coefficients in a finite extension of Fq is completely straightforward.) Furthermore,
in the latter case, if we assume q > k then a = 0 and b = k − 1. In that case the composition factors of
A′[q] are Fq , Fq(1 − k) and Fq(2 − 2k). If q > 2k then the only r such that 1 � r � 2k − 2 and A′[q](r)
has a trivial composition factor are r = k − 1 and r = 2k − 2. �

In each of the cases for which h(
√−p) = 1, one may check, using Stein’s table [Ste], that p does

not divide the discriminant of the characteristic polynomial of T2 on Sk(Γ ). (When p = 163, one of
the prime divisors of the discriminant has 133 digits.) It follows from this that the congruence ideal
c(g) is coprime to p. The previous proposition shows that the other terms in the denominator of the
right-hand side of (4.3) are also coprime to p in these cases. This then accounts for the integrality at
p of tracek (̂L(Sym2,1)alg).
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