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Myasthenia gravis (MG)with antibodies against the acetylcholine receptor (AChR) is characterized by a chronic,
fatigable weakness of voluntary muscles. The production of autoantibodies involves the dysregulation of T cells
which provide the environment for the development of autoreactive B cells. The symptoms are caused by de-
struction of the postsynaptic membrane and degradation of the AChR by IgG autoantibodies, predominantly of
the G1 and G3 subclasses. Active immunization of animals with AChR from mammalian muscles, AChR from
Torpedo or Electrophorus electric organs, and recombinant or synthetic AChR fragments generates a chronic
model of MG, termed experimental autoimmune myasthenia gravis (EAMG). This model covers cellular mecha-
nisms involved in the immune response against the AChR, e.g. antigen presentation, T cell-help and regulation, B
cell selection and differentiation into plasma cells. Our aim is to define standard operation procedures and recom-
mendations for the rat EAMG model using purified AChR from the Torpedo californica electric organ, in order to
facilitatemore rapid translation of preclinical proof of concept or efficacy studies into clinical trials and, ultimate-
ly, clinical practice.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The serendipitous observation that immunization of rabbits with
purified acetylcholine receptors (AChRs) led to MG-like symptoms has
provided the basis for understanding the cause of myasthenia gravis
(MG) and the mechanisms involved in its pathology (Patrick and
Lindstrom, 1973). In this seminal work, experimental autoimmune MG
(EAMG) was induced in rabbits by immunization with AChR from the
electric organ of electric eels (Electrophorus electricus) in complete
Freund's adjuvant (Patrick and Lindstrom, 1973). The immunization
resulted in the production of antibodies to the Electrophorus AChR, bind-
ing of cross-reactive antibodies to the muscle AChR, and the subsequent
paralysis and eventual death of the animals. EAMG has contributed to
pre-clinical assessment and therapeutic discovery. Many variations of
osen).
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this animal model have been used since the 1970s. These later experi-
ments included different amounts and sources of AChR, recipient species
(see Table 1), sites for antigen injection (foot pads, base of the tail, hip
and shoulder regions), and adjuvants [e.g. Titermax, incomplete Freund's
adjuvant (IFA, based on mineral oil/water), complete Freund's adjuvant
(CFA, IFA with additional heat killed Mycobacterium tuberculosis) or
CFA with additional Bordetella pertussis toxin]. In each case, the animals
mount an active immune response against the injected antigen; however
only a small subset of the produced antibodies (~1%) cross-reacts with
the animals' ownmuscle AChR (see Fig. 1) and this subset is responsible
for the disease. Typically, muscle weakness occurs within 30–50 days
after immunization. The EAMGmodel has been used extensively to ana-
lyze various aspects ofMG pathology, and also experimental therapies to
ameliorate MG (see Table 2). The chosen experimental parameters and
procedures affect the disease time course, incidence and severity.
EAMG scores can be increased using a susceptible strain, young animals,
high amounts of AChR, a potent adjuvant andmultiple injection sites for
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
AChR sources and species for EAMG induction.

Source of AChR Recipient animal Reference

Torpedo californica (electric organ) Rat (Rattus norvegicus) Lennon et al. (1978)
Mouse (Mus musculus) Berman and Patrick (1980)
Pig (Sus scrofa domesticus) De Haes et al. (2003)
Rhesus monkey (Macaca mulatta) Tarrab-Hazdai et al. (1975)
Frog (Rana ripiens) Nastuk et al. (1979)
Guinea pig (Cavia porcellus) Lennon et al. (1975)

Torpedo marmorata (electric organ) Rat (Rattus norvegicus) Elfman et al. (1983)
Rabbit (Oryctolagus cuniculus) Barkas and Simpson (1982)

Electrophorus electricus (electric organ) Rabbit (Oryctolagus cuniculus) Patrick and Lindstrom (1973)
Rat (Rattus norvegicus) Lennon et al. (1975)
Guinea pig (Cavia porcellus) Lennon et al. (1975)

Rat AChR (syngeneic muscle) Rat (Rattus norvegicus) Lindstrom et al. (1976)
Cat (denervated muscle) Rabbit (Oryctolagus cuniculus) Dolly et al. (1983)
Chicken (denervated muscle) Rabbit (Oryctolagus cuniculus) Dolly et al. (1983)
Human AChR (denervated muscle) Rat (Rattus norvegicus) Lennon et al. (1991)
1–210 sequence of the human AChR-α1 subunit (Escherichia coli) Rat (Rattus norvegicus) Lennon et al. (1991)
97–116 sequence of the rat AChR-α1 subunit (synthetic) Lewis Rat (Rattus norvegicus) Baggi et al. (2004)
Chimeric Aplysia ACh-binding protein (AChBP)/human muscle AChR Lewis Rat (Rattus norvegicus) Luo and Lindstrom (2012)
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immunization. However, the disadvantages of a severe EAMGmodel are
increased animal suffering, animal deaths, and an unrealistically strin-
gent assessment of a therapeutic intervention. A mild EAMG model
would be ineffective to demonstrate a beneficial effect of an experimen-
tal therapy, since little room exists for improvement of neuromuscular
transmission. Below, the influence of various experimental parameters
on the EAMG model is summarized and recommendations are offered
for obtaining a robust and well-balanced EAMG model.

Animal care, safety and regulatory aspects

The use of the EAMGmodel is limited by ethical, environmental and
safety regulations. The myasthenic muscle weakness itself constitutes
an intrinsic discomfort and therefore the use of the EAMGmodel implies
some degree of animal suffering that is unavoidable. Additional discom-
fort arises from stress while handling, anesthesia and injections. These
aspects must be balanced against the expected benefit of new insights
into the function of the neuromuscular junction, disease pathology or
treatment efficacy of experimental drugs. We recommend that re-
searchers planning to use the EAMG model seek advice from groups
that have expertise in using it in order to reduce animal numbers and
suffering to aminimum. Such an external review can be used for the ap-
plication to institutional ethical boards which is in most countries re-
quired by law and also a prerequisite for publication in most journals.
To minimize stress, the animals must be handled by experienced per-
sonnel. Lower stress was observed in rats that were caged with enrich-
ment, such as, nestling, variety of objects and tunnels (Moncek et al.,
2004).

Many reagents that interact with the proteins of the neuromuscular
junction, and in particular with the AChR or the acetylcholine esterase
(AChE) are highly toxic; e.g. alpha bungarotoxin, alpha cobratoxin,
benzoquinonium, curare, sarin and neostigmine. Additionally, alpha
bungarotoxin is frequently used in a 125I radiolabeled form and
any accidental physical contact might result in accumulation of 125I
in the thyroid gland. Careful planning of experiments, personal
protection and working in dedicated laboratories reduce the risk to an
acceptable level. Some of the reagents that are needed for realizing
the EAMG model or for analyzing outcome measures involve wild
living animals. These include the alpha toxin from the Indian cobra
(Naja naja), the alpha bungarotoxin of the Taiwan banded krait
(Bungarus multicinctus) and the AChR of the pacific electric ray
(Torpedo californica). Import and export of these species, their tissues
and proteins are in many countries restricted by national laws and/or
need special permits of authorities. In many cases, however, it is possi-
ble to obtain access to the abovementioned purified proteins through
collaborating research groups.
General animal care and housing

All care given to animals should be documented. To limit the stress
and discomfort of the animals the following procedures are recom-
mended. The number of personnel that handle the animals through-
out the experiment should be kept to a minimum. A maximum of 2
researchers should be involved in immunizing the rats and assessing
the clinical feature of EAMG. An inverted day–night cycle is advisable
in order to perform the experimental procedures during the awake
phase of the animals and avoid sleep-deprivation. The time of day that
therapeutic drugs are administered and clinical scoring is performed
should be kept constant. Cage change should take place 2–3 days before
the initiation of experiment. Cages should be equipped with enriched
environment supplies, nesting material, and a housing unit. We recom-
mend social housing of young female Lewis rats (weight b300 g) in the
cageswith a floor area of≥800 cm2 and a height of N17.5 cm,with 3 an-
imals per cage (National Research Council (U.S.) Committee for the
Update of the Guide for the Care and Use of Laboratory Animals. et al.,
2011). If any animal becomes clinically weak (grade 2 or grade 3, see
section ‘Clinical scoring’ below) all the cages should be supplied with
water gel (e.g. HydroGel® or AQUA-JEL®) and soft food should be
placed on the bottom of the cage. The same type of food should be
administered to control animals and EAMG animals. Otherwise, the
diet type should be kept constant throughout the study. Reporting
the food vendor in published studies is recommended. Overgrown
teeth can impair eating, ultimately causing starvation, and thus should
be trimmed. Animals should be housed in specific pathogen free con-
ditions. A health report including tested pathogens, and analytical
methodology should be available (Kunstyr and Nicklas, 2000). When
by accident some infection does occur, but disease symptoms are mild
(e.g. a rotavirus infection resulting in diarrhea or staphylococcus infec-
tion at the immunization site), we suggest that the experiment can be
continued under the following provisions: Animals should be treated
as necessary and all infections, treatments and symptoms of each ani-
mal should be clearly documented in any resulting publication. If a suit-
able alternative exists, anti-inflammatory agents should be avoided due
to potential obstruction with EAMG development (see also immuniza-
tion section below).

Source and amount of AChR

The natural abundance of AChR in the electric organs of different fish
species, such as E. electricus, Torpedo californica or Torpedo marmorata,
confers an important practical advantage for generating sufficient
amounts of purified AChR for the EAMG model. Other sources of AChR
have been used successfully in various rat EAMG models (see Table 1),



Fig. 1. Representative anti-tAChR (A) and anti-rat muscle AChR titers (B) after immuniza-
tion with 40 μg tAChR in CFA (with 1 mg/mL Mycobacterium tuberculosis) on day 0 in 7-
week old female Lewis rats. Anti-tAChR titers were detected approximately 2 weeks be-
fore anti-rat muscle AChR titers were measured. In the period between 35 and 56 days
after immunization, anti-tAChR titers were two orders of magnitude higher compared to
rat muscle AChR antibody titers. The variability of antibody titers seen here is typical of
the EAMG model. The raw data used for the graph are available in Supplemental Table 2.
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including AChRs from mammalian muscle and peptides corresponding
to parts of the (human or rat) muscle AChR. The T. californica AChR
(tAChR) has been used inmost EAMG studies because it provides a reli-
able antigen for the induction of EAMG for which we describe the im-
munization standards. However, some antigen-specific therapies may
depend on the exact amino acid sequence of the human AChR, such as
immunodominant T or B cell epitopes, or on conformational epitopes
that are specific for human MG. Other antigens such as the human
AChRα1/1–210 peptides (Lennon et al., 1991), the recombinant chime-
ric Aplysia ACh-binding protein (AChBP) with human main immuno-
genic region (Luo and Lindstrom, 2012) or ectodomains of human
AChR subunits (Niarchos et al., 2013) have also been used to induce
EAMG. These human antigen models are clearly useful for answering
specific research questions in exploratory studies. Nevertheless, we rec-
ommend the use of the Torpedo AChR for preclinical treatment efficacy
studies wherever the drug mechanism allows this, since therapeutic
testing requires a validated and standardized model for MG which is
easily accessible for various laboratories. Table 2 summarizes various as-
pects ofMG that can be studied in themodel, e.g. proof of principle stud-
ies for immunosuppressive drugs.

Antibody titers, disease severity and disease incidence increase with
higher amounts of tAChR used for immunization.We recommend using
40 μg tAChR for immunization since this dose results in a robust disease
model (see Fig. 1 and Supplemental Tables). A characteristic of the
EAMG model is the variable levels of autoantibodies mounted against
the AChR by different animals, even within a single study.

The AChR from electroplaque tissue is purified by chromatography
on a column containing α-cobratoxin linked to sepharose beads to
which the AChR is bound. A second column is then used to concentrate
the protein during the competitive elution with acetylcholine or
benzoquinonium. The procedure outlined in Box 1 is a modification
from (Wu et al., 2001). The amount and quality of the AChR are mea-
sured by radioimmunoassay using 125I-alpha bungarotoxin. Denatured
tAChR should not be used; important epitopes are conformationally de-
pendent, including the main immunogenic region of the AChR which
loses conformational specificity upon denaturation.

Age, sex and strain determine susceptibility of rats to EAMG

Early studies showed that different rat strains vary in their ability to
generate EAMG. Wistar Furth and Copenhagen strains fail to exhibit
disease symptoms, whereas Wistar Munich and Fischer strain animals
develop severe, fatal disease associated with impaired neuromuscular
transmission (Biesecker and Koffler, 1988). Lewis and Brown Norway
have a milder disease development. Additionally, since the incidence
of MG depends on sex and age (Phillips, 2004), several studies explored
the effect of these parameters in the development of EAMG. In the
Brown Norway and Lewis strains it was observed that 8–10 weeks old
rats are susceptible to EAMG but rats older than 100weeks were clearly
resistant (Hoedemaekers et al., 1997a, 1997b). Differences in antibody
titers, isotype distribution, fine specificity or complement activation
did not account for the observed resistance. The age-related resistance
could be reproduced in the passive transfer MG (PTMG) model (Graus
et al., 1993) and correlated with the density of s-laminin, agrin and
rapsyn at the neuromuscular junction (Hoedemaekers et al., 1998).
Increasing rapsyn-expression in susceptible muscles of 9-week old
female Lewis rats prevented degradation of AChR by subsequent
PTMG (Losen et al., 2005), thus demonstrating that rapsyn protects
the AChR against antigenic modulation. The exact time point when
the age-related resistance of the neuromuscular junction occurs has
not been determined, but it seems likely that it is weight related. The ef-
fect of sex on EAMGhas been studied in aged BrownNorway rats where
muscle AChR-losswasmore prominent in female compared tomale rats
(Hoedemaekers et al., 1997a). Lewis rats have been more commonly
used in EAMG (de Silva et al., 1988; Gomez et al., 2011; Lennon et al.,
1978; Lindstrom et al., 1976; Martinez-Martinez et al., 2007; Okumura
et al., 1994). Since sex, age and strain are clearly major contributing fac-
tors to the severity of EAMG, we recommend standardizing the model
by performing the immunization with tAChR in seven-week-old female
Lewis rats.

Immunological differences of rat strains in the immune response to
the AChR

Both inMG and in EAMG,most of the antibodies are directed toward
conformation-dependent epitopes on the AChR, whereas T cells in con-
trast recognize also the denatured AChR. Immunodominant epitopes
to the tAChR differ significantly between rat strains. In search of T cell

Image of Fig. 1


Table 2
Published studies using the rat EAMGmodel.

Studied disease mechanism or
treatment

Reference

Electrophysiological changes Barone et al. (1980); Engel et al. (1976); Hohlfeld et al. (1981b); Kelly et al. (1978); Lennon et al.
(1975); Molenaar et al. (1979); Olsberg et al. (1987); Plomp et al. (1995); Ruff and Lennon (1998);
Takamori et al. (1984); Thompson et al. (1992); Verschuuren et al. (1990); Zahm et al. (1983)

Reduction in AChR De Baets et al. (1988); Engel et al. (1977); Fumagalli et al. (1982); Lindstrom et al. (1976);
Merlie et al. (1979)

Role of complement/ complement inhibition Lennon et al. (1978); Sahashi et al. (1978); Soltys et al. (2009)
Immune response to AChR Asthana et al. (1993); Brown and Krolick (1988); De Baets et al. (1982); Fujii and Lindstrom (1988);

Hohlfeld et al. (1981a); Li et al. (1998); Noguchi et al. (1980); Wang et al. (1993a); Zhang et al.
(1988, 1996); Zoda and Krolick (1993)

Immunosuppression Barone et al. (1980); Drachman et al. (1985); Duan et al. (2003); Duplan et al. (2002); Gomez et al.
(2011); Ishigaki et al. (1992); Janssen et al. (2008); Kim et al. (1979); Luo and Lindstrom (2014);
Menon et al. (2008); Pestronk et al. (1983); Ubiali et al. (2008); Zhang et al. (1997)

Antigen-specific drug conjugates Killen and Lindstrom (1984); Olsberg et al. (1985)
Neonatal Fc-receptor blockade to decrease autoantibody stability Liu et al. (2007)
Lymphocyte depletion by irradiation de Silva et al. (1988)
Immune modulation Brenner et al. (1984); Karussis et al. (1994); Kong et al. (2009); Yarilin et al. (2002); Zhu et al. (2006)
Targeting of cytokines Aricha et al. (2011); Duan et al. (2002); Im et al. (2001)
Tolerance by administration of AChR (orally) Maiti et al. (2004); Okumura et al. (1994); Wang et al. (1993b, 1994); Yi et al. (2008)
Tolerance by administration of AChR (nasally) Ma et al. (1995)
Tolerance by administration of AChR (dendritic route) Li et al. (2005); Xiao et al. (2003)
Removal of plasma cells (vaccination against surviving) Kusner et al. (2014)
Removal of plasma cells (proteasome inhibition) Gomez et al. (2011)
Inhibition of T cells Araga et al. (2000); Aricha et al. (2008); McIntosh et al. (1995); Wauben et al. (1996); Xu et al. (2001);

Yoshikawa et al. (1997)
Amplification of neuromuscular signaling Brenner et al. (2003); Kim et al. (1980)
Overexpression of the AChR-anchor protein rapsyn Martinez-Martinez et al. (2007)
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epitopes in EAMG, synthetic peptides covering 62% of the tAChR alpha-
subunit sequence were tested in a T cell proliferation assay with lymph
node cells from rats immunizedwith tAChR (Fujii and Lindstrom, 1988).
In Lewis rats, 2 of these peptides, alpha 100–116 and alpha 73–90,
strongly stimulated T cells and, of these, alpha 100–116 was much
more potent. Interestingly, the EAMG could be induced in the Lewis
rats by immunizing with a synthetic peptide corresponding to the rat
AChR-alpha 1 97–116 amino acid sequence (Baggi et al., 2004), but
the time course of the disease was delayed as compared to tAChR im-
munizations. In three other strains of the rats (Brown Norway, Wistar
Furth and Buffalo) completely different sets of peptides stimulated
their T cells (see Table 3). Genetically restricted T cell recognition of
AChR peptides in different rat strains suggested that T cells with differ-
ent major histocompatibility haplotypes may recognize different AChR
peptides (Fujii and Lindstrom, 1988). Also in MG patients, proliferative
T cell responses to peptides of the AChR alpha 1 subunit correlated
with human leukocyte antigen (HLA) types (Brocke et al., 1988). Exper-
imental therapies in the EAMGmodel that are designed tomodulate the
immune response against specific AChR epitopes (such as immuno-
dominant epitopes in human MG) are likely to be affected by the rat
strain and corresponding MHC restriction.

Another immunological parameter that has been studied in
different strains of the rat EAMG model is the Th1/Th2 balance. In
the rat, CD4+ T cells can be subdivided into two major subsets based
on their different lymphokineproduction patterns. Th1 cells,whichpro-
duce IL-2 and IFNγ, can transfer cell-mediated immunity. These cells
also induce preferentially the synthesis of antibodies of the IgG2b
isotype. Conversely, Th2 cells produce IL-4 and cause B cell proliferation
and differentiation, eliciting mainly IgG1 and IgE production (Saoudi
et al., 1999). This balance affects the isotype distribution of AChR anti-
bodies. The rat subclasses IgG1, IgG2a, IgG2b and IgG2c can all activate
rat complement; but their capacity to do so decreases in the following
order IgG2bN IgG2aN IgG2cN IgG1 (Füst et al., 1980; Medgyesi et al.,
1981). The Lewis and Brown Norway rats, differ markedly in their
Th1/Th2 balance: the immune response to the tAChR led to a marked
production of IL-2 and IFNγ in the Lewis rats, while the Brown
Norway rats responded by producing more IL-4 (Saoudi et al., 1999).
Consequently, the Lewis rats produced mostly IgG2b AChR antibodies,
while the Brown Norway rats produced predominantly IgG1 AChR
antibodies. Nevertheless, the EAMG incidence and severity were com-
parable in both strains. In this respect, the rat EAMG model is clearly
different from the mouse EAMG model, where the polarization toward
a Th2 immune response decreases muscle weakness because mouse
IgG1 antibodies do not activate complement (reviewed in Gomez
et al., 2010).

Treatment strategies that would rely on an immunologic property of
a very specific rat strain, such as MHC class and cytokine profile are less
likely to be translatable to a second species (e.g. mice) and eventually to
MG patients. Investigators should be aware of immunological differ-
ences between human and rodent when designing the experiment.
Therefore, we suggest that the Lewis rat is a suitable model for testing
new therapies, including for example strategies to induce immunologi-
cal tolerance to the AChR that hopefully can be used for treatment of
AChR-MG patients in the future.

Adjuvants

When using 40 μg tAChR in CFA, chronic muscle weakness may de-
velop at any time between 4 and 7 weeks after immunization. The use
of either Titermax, or CFA with additional B. pertussis, will result in an
additional acute phase of EAMG, a transient muscle weakness observed
in 7–10 days after injection of tAChR.

A strong adjuvant such as CFA is needed to overcome the tolerance
of the immune system to the muscle AChR. The M. tuberculosis in CFA
enhances the Th1 immune response compared to IFA. CFA has been
widely used for the EAMG model; increasing the concentration of
M. tuberculosis in the CFA leads to higher incidence and average severity
of EAMG. However, the use of CFA is controversial since it causes
granulomas or adjuvant arthritis in some animals. Various alternative
adjuvants are commercially available (e.g. Titermax™), but their propri-
etary composition and their limited use by different research groups
using the EAMG model make them unattractive for a general recom-
mendation at this point. Therefore, we recommend using CFA (contain-
ing 1 mg/mL M. tuberculosis). Higher amounts of M. tuberculosis (e.g.
2 mg/mL) can be used to reach clinical weakness in a larger percentage
of animals, thus allowing a reduction of group sizes in studies that are



Box 1
Method for isolation of Torpedo AChR.

Frozen Torpedo californica electroplaque tissue is crushed in
mortar and pestle and added to cold homogenization buffer
(1 mM sodium phosphate, pH 7.5, 0.1 M NaCl, 10 mM EDTA,
10mMEGTA,10mM iodoacetamide and1mMPMSF). The slurry
is grinded in a homogenizer or blender and the homogenate is then
centrifuged at high speed to collect non-soluble membranes. It
is preferable to spin this homogenate at 100,000 g at 4 °C for
30min. The pellets are resuspended in cold homogenization buffer
containing 1% (v/v) of Triton® X-100. Sample is rotated or agitat-
ed overnight at 4 °C. Homogenate is then centrifuged at high
speed, as described above, and the supernatant containing the
AChR is collected for column chromatography and stored on ice.
Neurotoxin affinity column is prepared by coupling of α-cobratoxin
(Naja naja kauthia) to CNBR-agarose. CNBR-agarose resin is
placed into 250mL Erlenmeyer flask and allowed to settle; the su-
pernatant is then aspirated. The resin iswashedwith 1mMhydro-
chloric acid swirl twice by resuspending resin, allowing resin to
settle, and aspirating supernatant. The resin is then washed once
with a coupling buffer (10 mM sodium carbonate [Na2CO3],
90 mM sodium bicarbonate [NaHCO3], 500 mM NaCl, pH 8.3).
The resin is resuspended in coupling buffer and α-cobratoxin,
dissolved in coupling buffer, is added. The resin and α-cobratoxin
solution is rotated overnight at 4 °C. The resin is then washed
twice in coupling buffer. The resin is resuspended in a blocking
buffer (100 mM Tris–HCl, pH 8.0) for 2 h at 4 °C. The resin is
allowed to settle and the buffer is removed. Acetate buffer
(100 mM Na acetate trihydrate, 500 mM NaCl, pH 4.0) is
added to resuspend the resin and allowed to settle. The buffer
is removed. Resin is washed four times in a column buffer
(100 mM Tris–HCl, pH 8.0, 500 mM NaCl). The resin can be
added to a 1.5 by 20 cm column (35 mL volume) affixed with
a 2-way stopcock on the outlet port placed in the stop flow
position. First, the column buffer is added to column and then
the stopcock is opened. The resin is poured in slowly. Additional
column buffer may be used to resuspend resin in flask and add
to column. The column is allowed to run until all resin is added.
The column stopcock is closed and resin is allowed to settle.
The column is washed five times in NaCl/Triton buffer (500 mM
NaCl, 0.1% (v/v) Triton X-100 in PBS, pH 7.4). The column is
now ready to use.
Microcrystalline hydroxyapatite in cross-linked 4% beaded aga-
rose column is prepared by combining with equal volume 10 mM
sodium phosphate (NaPi) buffer, pH 7.5 in an Erlenmeyer flask.
The resin is washed twice in NaPi buffer. Resin is poured slowly
into a 1.5 by 20 cm column (35 mL volume) affixed with a 2-way
stopcock on the outlet port placed in the stop flow position.
Residual resign in the flask may be resuspended in additional
column buffer. The column is opened and allowed to run until all
resin is added. The column stopcock is closed and resin is allowed
to settle. When resin is completely settled, the stopcock is opened
to let the buffer drain, by gravity, to just below the top of the
column. The column is now ready to use.
To load the T. californica electroplaque tissue supernatant on the
neurotoxin affinity column: the cap from neurotoxin affinity col-
umn is removed and the stopcock is opened to allow the column
buffer to drain out just until it reaches the top of the resin. The
resin is gently overlayed with 10 mM NaPi buffer and the column
is opened until the buffer is drained just to the top of the resin. The
column is gently refilled with a NaPi buffer to the top, filling the
remaining head space of the column. The inlet cap is replaced
and Luer tubing or similar (male luer connector, short silicon tubing

and non-luer Teflon tubing) is attached at the top. The tubing is
connected to a reservoir of NaPi buffer that is placed above to al-
low gravity to fill the column for constant free flow to exchange
the buffer. The flow is stopped, the tubing is removed from the
reservoir and the remaining buffer is removed from the top of the
resin with a Pasteur pipette. The T. californica electroplaque tissue
supernatant is overlayed on top of the column, filling the column
headspace. The column's stopcock is opened and the homoge-
nate is allowed to run into the resin. The addition of more homog-
enate is applied to the top until all the homogenate samples are
contained in the resin of the column. The NaPi buffer is gently
overlayed on top of the resin to completely fill the column. The col-
umn is re-connected with a cap and tubing. The reservoir of the
NaPi buffer that is placed above to allow gravity to fill the column.
The column is washed with 2 column volumes of 10 mM NaPi
buffer to remove non-bound proteins from the neurotoxin affinity
column. The column's stopcock is closed.
The neurotoxin affinity column is attached to the hydroxyapatite
column to begin collection of AChR. A carbachol buffer (1 M
carbamylcholine chloride, 10 mM Tris pH 7.4, 0.1% Triton X-
100) is added to the system by first washing the carbachol buffer
through hydroxyapatite column. The buffer in the space above the
resin in the neurotoxin affinity column is replaced with the carba-
chol buffer. The neurotoxin affinity column's stopcock is connect-
ed to the top of the cap of the hydroxyapatite column by tubing.
The stopcock of the hydroxyapatite column runs to the pump
which will connect back to the top of the neurotoxin affinity col-
umn. The pump is set at the highest speed possible without devel-
oping leaks from high back pressure and run in a refrigerated
chromatography cabinet or cold room for 24 h.
AChR can be eluted from the hydroxyapatite column using a
152 mM NaPi buffer [102 mM Na2HPO4, 50 mM NaH2PO4,
pH 7.4]. Fractions of approximately 1 mL (10–15 mL per run)
are collected and tested for the presence of protein (colorimetric
assay or absorbance reading). All the fractions that contain
protein are pooled. The purified AChR is then dialyzed in dialy-
sis tubing overnight at 4 °C with stirring against PBS. Glycerol
is added to the AChR as 10% (v/v). The final preparation stored
in small aliquots at−80 °C. The protein concentration amount
should be determined. A SDS-PAGE gel stained by Coomassie-
blue should be performed to determine the purity of the AChR
sample.
Regenerating the neurotoxin affinity column and the hydroxyapa-
tite column: the columns are disconnected. The columns can be
regenerated by attaching a reservoir and flushing the columnwith
10 columnvolumes ofNaCl/Triton buffer [1×PBS, pH7.4, 0.5M
NaCl, 0.5% Triton X-100]. When complete, turn off the stop-
cocks and store at 4 °C until next use.

Box 1 (continued)

22 M. Losen et al. / Experimental Neurology 270 (2015) 18–28
powered for decreasing EAMG scores. Supplemental Table 1 (Exp 1. and
Exp 2.), shows the EAMG disease scores using 40 μg tAChR and
0.1 mgM. tuberculosis per animal.

If the acute phase of EAMG in the period of 7/10 days after immuni-
zation is crucial for the experimental design/intervention, Titermax or
CFA with additional B. pertussis may be used instead. The acute phase
of EAMGprovides a useful control showing that the treated and untreat-
ed rats were equally affected prior to therapy.

Keeping all other parameters of the rat EAMG model constant, as
proposed here, might facilitate the identification of a safe and efficient
alternative to CFA. In this respect it is important to remember that
the chosen adjuvant determines the type of immune response; e.g. in
mice it has been shown that using aluminum oxide as adjuvant



Table 3
Immunodominant T cell epitopes in different rat strains based on published results (Fujii and Lindstrom, 1988).

Peptide Position in AChR alpha 1 subunit Lewis Brown Norway Wistar Furth Buffalo

SEHETRLVANY 1–11
YVNQNETNVRLRQQ 45–59 +++
TNVRLRQQWIDVRLRWNGY 52–70 +++
RWNPADYGGIKKIRLPSY 66–83
GGIKKIRLPSDDVWLPGY 73–90 ++
IRLPSDDVWLPDLVLY 78–93
LVLYNNADGDFAIVY 89–104
YAIVHMTKLLLDYTGKI 100–116 +++
YTGKIMWTPPAIFKSY 112–127
YCEIIVTHFPFDQQNCT 127–143
DGTKVSISPESDRPDG 152–167 + +++
SPESDRPDLSTY 159–170
ESGEWVMKDYRGWKHWTCCPDTPYLDITYHF 172–205 +++ + +
KHWYYTCCPDTPYL 185–199
LPTDSGEK 235–242
VELIPSTSSAVPLIGKY 261–277
DRASKEKQENKIFADDIY 330–347
SKEKQEVK 333–340
SDISGKQVTGEVIFQTY 349–365
TGEVIFQTY 357–365
VIFQTPLIKNPDVKSAIEGY 360–379
DVKSAIEGVKYIAEHY 371–386
DEESSNAAEEWKYVAMVIDHY 389–409
YGRLIELSQUEG 427–437
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can ameliorate AChR-EAMG by promoting a Th2 immune response
(Milani et al., 2006).

Immunization

An important aspect in the immunization procedure is the utiliza-
tion of skilled, competent, technical staff experienced in the handling
of animals and in performing the technique. They must be knowledge-
able and capable of recognizing signs of distress in all injected animals,
and be responsible for taking action when necessary. EAMG is induced
by injecting seven-week-old female Lewis rats at the base of the tail
with tAChR. The injection volume is 200 μL consisting of 40 μg tAChR
in 100 μL sterile phosphate buffered saline (PBS) mixed and emulsified
with 100 μL CFA (containing 1 mg/mLM. tuberculosis). Preparations are
emulsified using a blender (e.g. Sorvall). Prepared CFA can be purchased
from well-known manufacturers. The control rats are injected with a
similar volume of PBS and adjuvant without tAChR. For immunization,
the rats are placed in an enclosed chamber with 4% isoflurane in air
(or oxygen) and allowed to reach anesthetic depth. In order to reduce
pain after the immunization, we recommend injecting animals with
0.01–0.05 mg/kg buprenorphine during the induction of anesthesia.
The animal is placed on the surgical table with isoflurane flow (2–3%
isoflurane in air or oxygen). Immunization is performed at the base of
the tail and more proximally and laterally at the flanks. We do not rec-
ommendusing additional or other injection sites, since immunization at
the tail induces clinical EAMG in a large proportion of animals using the
recommended amount of tAChR and CFA in Lewis rats (see Supplemen-
tal Table 1). To ensure proper delivery, the rat is shaved along the base
of the tail. The site of injection is cleaned with 70% ethanol and a 26
gauge needle is insertedwith a bevel side facing the skin. The CFA emul-
sion (200 μL per rat) is injected at 5–10 sites by moving the needle lat-
erally below the skin (i.e. without intermediate removal of the needle
from the injection site). By lifting up the skin, perforation by the needle
tip is avoided. The needle is removed slowly and light pressure is ap-
plied to the injection site. After injection, the animal is allowed to recov-
er on a heated pad or in a recovery cage under an infrared heating lamp.
Once the animal is ambulatory, it is returned to the home cage.

Footpad injections have been used by several groups when inducing
the EAMG model. Due to ethical considerations (animal suffering) we
recommend standardizing themodel using the base of the tail injections.
It is important to mention that EAMG incidence increases when footpad
injections are used, and without footpad injections animal numbers
need to be increased to achieve sufficient power if the EAMG scores
are used for statistical comparison.

The injection site(s) must be observed by the investigators at least
three times per week, for four weeks after the immunization. If an
abscess, ulceration or dermatitis develops at the injection site, it must
receive veterinary attention and treatment. Such lesions should be
inspected at least three times per week until they are healed. Animals
suffering from untreatable prominent dermatitis due to immunizations
must be sacrificed.

Randomization and reduction in bias

The experimental design of the pre-clinical assessment of a thera-
peutic should detail the time and duration of drug delivery in relation
to EAMG induction and observation of clinical signs. Randomization of
animals should also be defined at this time. Grouping of animals should
be reflective of the population, such as, weight (pre-treating) or weak-
ness (post-treatment). Housing of controls and drug treated groups
in separate cages may be necessary due to potential to transfer drug
through normal grooming or eating of feces. The cages should be
marked with letter or number designation to avoid bias during clinical
scoring or strength testing. Blinding the experiment to animal handlers
during assessment of the animals or masking the samples from the
study can eliminate bias.

Clinical scoring

The severity of clinical signs is scored weekly by observational
assessment of muscular weakness. The rats' muscular strength and
fatigability are assessed by their ability to grasp and lift repeatedly a
300-gram rack from the table while suspended manually by the base
of the tail for 30 s (Martinez-Martinez et al., 2007). Clinical scoring is
based on the presence of tremor, hunched posture, muscle strength
and signs of fatigue. Loss of body weight can be an additional indicator
of muscle weakness, since chewing and swallowing is affected by
EAMG; however, body weight loss can also occur as a side effect of
treatment (see for example Gomez et al., 2011). Body weight is mea-
sured weekly. After weight loss or muscle weakness is observed, ani-
mals should be weighted daily since disease can progress rapidly in
individual animals. Signs of EAMG are graded as follows: 0, no clinical



24 M. Losen et al. / Experimental Neurology 270 (2015) 18–28
signs observed; 1, no clinical signs observed before testing, appearance
of weakness after exercise due to fatigue; 2, clinical signs present before
testing, i.e. hunched posture, weak grip, or head down, 3; no ability to
grip, hindlimb paralysis, respiratory distress/apnea, immobility; and 4,
moribund. Clinical scores should be taken every 24 h or less if the ani-
mals demonstrate severe weakness (score 2). It might be possible to re-
fine the disease score with a more detailed behavioral analysis of mild
clinical symptoms and additional exercise challenges. These efforts are
currently ongoing and might lead to a revision/ redefinition of the dis-
ease scores in the future.

Humane endpoints for rats

The rats undergoing induction of EAMG require daily observation to
evaluate health status. An indication that an animal is suffering includes
for instance: porphyrin secretion, hunched posture, lethargy, rough or
ruffled hair coat (demonstrating inability to groom their hair coats), la-
bored breathing, dehydration (evident of rapid weight loss). The rats
are euthanized within 24 h if EAMG score 3 is observed. Any animal
that persistently (over a period of more than 3 days) loses more than
15% ofweight (as consequence of EAMG, treatment side effect, infection
or otherwise) should also be sacrificed. Any animal that losesmore than
20% of its weight over a shorter time frame should be sacrificed within
24 h.Methods of euthanizing animals are institution dependent, and in-
vestigators should be instructed by the IACUC Committee for proper
procedures.

Electromyography

Decrement of compound muscle action potential (CMAP) can be
measured in the tibialis anterior of EAMG animals. The rats are anesthe-
tizedwith 60mg/kg sodiumpentobarbital or with 2.5% isoflurane in air.
The animal must be kept warm (skin temperature between 35 and
37 °C) by means of an infrared heating lamp or a heat pad, but do not
overheat (risk of myasthenic decompensation). For stimulation, two
small monopolar needle electrodes are used. The cathode is inserted
Fig. 2. Schematic representation of the relation between AChR loss andmuscle weakness. Becau
averageAChR loss of up to 60%havenodisease symptoms. Challenge of neuromuscular transmis
therapeutical interventions can thereby be studied much more sensitively.
near the peroneal nerve at the level of the knee and the anode is more
proximal and lateral (at a distance of 3–4 mm). For recording, a third
monopolar needle electrode is inserted subcutaneously over the tibialis
anteriormuscle. A ring electrode distally around the relevant hind leg or
a subcutaneous needle electrode at the distal tendon serves as a refer-
ence, and the animal is grounded by a ring electrode around the tail.
Movement artifacts must be avoided. Stimulation and recording can
be performed with the EMG systems that are also used in clinical prac-
tice. To detect a decrementing response, a series of 8–10 supramaximal
stimuli are given at 3 Hz with a stimulus duration of 0.2 ms. The test is
considered positive for decrement when both the amplitude and the
area of the negative peak of the CMAP show a decrease of at least 10%
(Kimura, 2001). To demonstrate reproducibility, at least three record-
ings are made of all investigated muscles.

In case only subclinical disease is present, the impairment of neuro-
muscular transmission can be quantified accurately by combining dec-
rement measurements with intraperitoneal curare challenge (for rats
of ~200 g: 20 μg/mL at a rate of 0.33 μg curare/minute). In this case,
the elapsed time until decrement is observed (an equivalent of the cu-
mulative curare dose) is a measure for the muscle weakness (Gomez
et al., 2011). Because of the curare infusion and the resulting paralysis,
this measurement can only be performed as a terminal experiment.
Moreover, the infused curare might interfere with other assays such as
RIAs for AChR antibody titers or immunofluorescent staining of tissue
sections using alpha bungarotoxin. If the diaphragm of the animals is
severely affected, curare infusion might result in respiratory failure
before decrement is observed in the tibialis anterior muscles. This can
be avoided by mechanical ventilation of the animal under anesthesia.
The curare challenge strongly complements data from clinical scoring:
because of the safety factor of neuromuscular transmission, disease
scores change drastically over a narrow range of AChR-loss (60%–80%
in the schematic example shown in Fig. 2). This means that disease
scores cannot differentiate groups that have between 0 and 60% of func-
tional AChR loss. Curare challenge can extend this range, but cannot
detect differences over time since it has a too long half-life to allow re-
covery of the animals.
se of the safety factor of neuromuscular transmission (3 in this example), animals with an
sionwith curare can reveal subclinical damage to theneuromuscular junction. The effect of

Image of Fig. 2
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Detection of serum rat muscle AChR and tAChR antibodies

Blood samples of up to 200 μL can be taken weekly from the vena
saphena, but the samples taken every other week are generally suffi-
cient for determining the change in the antibody titer. Antibodies
against rat AChR are detected as described (Lindstrom et al., 1976)
with minor modifications (Martinez-Martinez et al., 2007). Briefly,
150 μL extract of denervated rat muscle extract (containing ~5 nM
AChR) is labeledwith an excess of 125I-α-BT (e.g. NEX126, PerkinElmer)
and incubated with 5 μL of rat serum at 4 °C overnight. Antibodies
against tAChR are detected by labeling 0.05 μg tAChR with 125I-α-BT.
These labeled tAChRs are mixed with 5 μL serum diluted 1:200 in PBS
and with 2.5 μL normal rat serum as a co-precipitant/carrier.

The formed immune-complexes are then precipitated using
100–150 μL of secondary goat anti-rat antibody serum during 4 h and
then centrifuged at N14,000 g for 5 min. Pellets are washed three
times in PBS with 0.5% Triton X-100. Finally, radioactivity is measured
in a γ-counter. Titers are expressed in nmol/L toxin binding sites.

Measurement of total muscle AChR concentration

Total muscle AChR is measured with a radioimmunoassay as
described (Lindstrom et al., 1976). For analysis of dissected muscles,
such as the tibialis anterior or other similarly sized muscles, the follow-
ing modification of the methods can be used (Losen et al., 2005). After
dissection, muscles are weighed and stored at −80 °C (muscles may
lose weight over time due to dehydration but AChR content is pre-
served). Muscles are cut in ~1 mm sections using a scalpel and homog-
enized using a dispersion instrument (e.g. Ultra-Turrax, 3 times for 30 s,
with for 30 s intervals) at 4 °C in 10mL of extraction buffer (PBS, 10mM
NaN3, 10 mM iodoacetamide and 1 mM phenylmethyl sulfonyl
fluoride). The homogenate is centrifuged at 22,000 g (or higher) for
30min and the resulting pellet is resuspended in 2.5mL extraction buff-
er supplemented with 2% Triton X-100. AChR is extracted from the
membrane with the detergent using a reciprocal shaker during 1 h at
4 °C, followed by centrifugation at N22,000 g for 30 min at 4 °C. The
AChR in the supernatant is then incubated with an excess of 125I-α-
bungarotoxin with high specific activity (e.g. NEX126H, PerkinElmer)
and an excess of serum from the EAMG rats. Immune-complexes are
then precipitated using the goat anti rat-antibody serum as described
above. Total muscle membrane AChR concentration is calculated per
gram of fresh muscle and thus expressed in fmol/g.

ELISA for measurement of serum anti-AChR antibody isotypes

The isotype distribution of Torpedo AChR antibodies can be deter-
mined by ELISA using anti-rat Ig isotype specific antibodies, as described
(Saoudi et al., 1999). High binding microtiter plates are coated over-
night at 4 °C with purified tAChR in PBS (50 μL, 5 μg/mL) followed by
washing 3 times with 100 μL ELISA buffer (PBS with 0.5% Tween 20)
and blocking for 15 min with 0.5% bovine serum albumin dissolved in
the ELISA buffer. The tAChR should not be denatured and controlled
by RIA for 125I-α-BT binding. Rat sera diluted in ELISA buffer are added
and incubated for 1 h at room temperature. Each serum is tested in
duplicate and assessed in 4 dilutions (1:317, 1:1000, 1:3170 and
1:10,000). Fifty μL of the monoclonal AChR antibodies mAb 35 (IgG1),
mAb 155 (IgG2a) and mAb 22 (IgG2b) is used as a concentration of
2 μg/mL to prepare standard curves, using the same dilutions as for
the sera (Loutrari et al., 1992; Osborn et al., 1992). Subsequently,
mouse anti-rat γ1, γ2a or γ2b monoclonal antibodies and an anti-
mouse IgG secondary antibody are used for detection.

Immunofluorescence analysis of neuromuscular junctions

The density of AChR, its associated proteins or deposition of com-
plement factors on the postsynaptic membrane can be analyzed by
immunofluorescence. As a reference, a presynaptic marker is used. Iso-
latedmuscles (e.g. tibialis anterior or diaphragm) of the EAMG and con-
trol animals are frozen onmelting isopentane. Cryosections of 10 μmare
dried, fixed and blocked with PBSA (phosphate-buffered saline with 2%
bovine serum albumin). Sections can then be incubated with primary
antibodies against the vesicular acetylcholine transporter (VAChT) or
the synaptic vesicles protein 2 (SV2) to localize the NMJ. To determine
the deposition of complement, antibodies to C3, C9 ormembrane attack
complex (C5b-9) can be used. Subsequently the sections are incubated
with fluorescent-conjugated α-bungarotoxin and the corresponding
secondary antibodies. Since the antibodies are deposited at a high den-
sity at the NMJ in EAMG, it is important that secondary antibodies do
not cross-react with rat immunoglobulins. This can easily be controlled
by performing a staining of EAMGmuscles with the secondary antibod-
ies only (omitting the primary antibodies). An excess of primary and
secondary antibodies, and bungarotoxin should be used so these do
not limit the staining intensity. All the sections are stained and proc-
essed in parallel to avoid inter-assay variations.

For quantitative analysis, pictures of muscle sections are taken using
a fluorescent microscope with a digital camera and analysis software.
The exposure time is set to a constant value for each channel ensuring
that no saturation of the pictures occurs. Also all other microscope
settings are maintained constant. Endplate areas are identified by pre-
synaptic markers and the mean intensity of staining in each channel is
measured in the corresponding area. The presynaptic marker can be
used to normalize the expression of the postsynaptic proteins. Multiple
NMJs should be assessed for staining intensity. All the sections are
stained and processed in parallel to avoid inter-assay variations (Losen
et al., 2005).

Electron microscopy

The EAMG and control rats are anesthetized with ketamine
(100 mg/kg) and xylazine (15 mg/kg) and transcardially perfused
with a Tyrode solution (0.1 M) followed by a fixation buffer (2.5% glu-
taraldehyde in 0.1 M phosphate buffer, pH 7.4). The tibialis anterior
muscles are removed and sectioned on a vibratome at 1 mm. The
sections are postfixed for 1 h with 1% osmium tetroxide in a 0.1 M
phosphate buffer, pH 7.4, dehydrated through a graded ethanol series
and embedded in epoxy resin. Endplates are located in toluidine blue-
stained semi-thin sections from the central region of each muscle.
Ultra-thin sections from selected areas are contrasted with uranyl
acetate and lead citrate and viewed with a transmission electron
microscope. At least five endplate regions are photographed from
each muscle. Pictures are scanned for morphometric analysis using the
ImageJ software. The key parameter to be analyzed for EAMG by
morphometric analysis is the folding index, i.e. the ratio of the length
of the postsynaptic membrane per length of the adjacent presynaptic
membrane in each nerve bouton (Engel et al., 1976; Losen et al., 2005;
Wood and Slater, 1997).

Considerations for experimental designs

Outcome parameters of prevention and treatment studies

InMG patients, a therapeutic drug generallywould be used to treat a
disease. However, prevention of disease relapse is also an important
objective. The design of a preclinical study in the rat EAMG can include
a preventive arm (starting at the time of immunization), a therapeutic
arm (starting after the acute phase of the EAMG or alternatively,
4 weeks after immunization), or both. Treatments that affect early
mechanisms of the immune response (e.g. antigen presentation, clonal
expansion) will only be effective when applied preventively in the
EAMG model; in patients such treatments are also effective, but even
broad-spectrum immune-suppressive drugs might take months, or
even years before their beneficial effect become evident (Gomez et al.,
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2012). Conversely, therapies that act against the later stages of the auto-
immune response (e.g. complement inhibitors) have the potential to act
more rapidly (Soltys et al., 2009). Nevertheless, a significant reduction
of AChR autoantibody titer does not necessarily lead immediately
to an improved EAMG score for two reasons: The NMJ needs consider-
able time to recover completely from autoantibody attack (we observed
a significantly increased susceptibility to curare N2 weeks after a single
injection of the AChR-specific mAb 35 in young female Lewis rats; ML,
PM and PM-M, unpublished observations) and even a very low titer of
AChR antibodies (b1 nM) can impair NMJ transmission in the rat
EAMG model (Janssen et al., 2008). Therefore we suggest that clinical
EAMG scores should be combined with at least one relevant biological
EAMG parameter in order to determine the efficacy of a treatment.
The outcome parameters should be defined before the study.

The markedmuscle weakness that can be observed in the rat EAMG
modelmakes it possible to choose this parameter as a primary outcome
for testing the effect of a disease-modulating intervention. A percent of
survival analysis should not be used as a primary EAMG outcome
parameter and animals that reach EAMG grade 3 need to be sacrificed.
Defining the EAMG score as outcome parameter is useful when the
treatment affects themuscle strength or the neuromuscular junction di-
rectly, independent of autoantibody titers. However, it should be kept in
mind that muscle weakness changes over a rather narrow range of
AChR density at the neuromuscular junction because of the safety factor
(see Fig. 2). If novel immunosuppressive or -modulatory drugs are test-
ed, antibody titers against rat muscle AChR can be used as a relevant
biomarker instead. Since the titer against rat AChR can bemeasured ac-
curately and calculated as an absolute SI unit (nmol/L), we recommend
that this measurement is included in all studies using the EAMG model
in order to allow comparison of experiments. The same is true for the
weight of animals: weight is a crucial parameter of general health of an-
imals and should therefore always be measured. It is reduced in EAMG
animals but can also be affected by therapies (e.g. Gomez et al., 2011).
For this reason it is important to include groups of the untreated and
treated (healthy) control rats in the study.

Measurement of functional AChRs using curare infusions is espe-
cially useful to detect any remaining subclinical damage to the neuro-
muscular junction after treatment. Because of the high amount of
extra-synaptic AChRs in the muscle membrane, curare resistance is
more informative than total muscle AChR content by radioimmu-
noassay which detects extrajunctional AChR as well. However, total
muscle AChR can valuably complement other measurements, espe-
cially when the treatment is expected to affect AChR turnover or
synthesis (e.g. Martinez-Martinez et al., 2007). Similarly, quantitative
immunofluorescence and electron microscopic analysis can optionally
be used to corroborate other outcome measures. These measures
are relatively labor intensive and restricted to the last time point of
the experiment; therefore these parameters are less suitable as primary
outcomemeasurements than EAMG scores or antibody titers. In conclu-
sion, we recommend the measurement of the following outcome
parameters:

Standard primary outcome parameters with multiple testing:

- EAMG score (weekly measurements)
- antibody titers against rat muscle AChR (every other week)
- weight (weekly).

Secondary (optional) outcome parameters:

- decrement measurements with curare (endpoint)
- muscle AChR concentration (endpoint)
- antibody titers against tAChR (every other week)
- tAChR antibody isotype distribution (every other week)
- NMJ folding index (endpoint)
- NMJ quantitative immunofluorescence (endpoint).
Power calculations and statistical analysis of results

Depending on the precise research question any of the aforemen-
tioned outcome parameters can be useful for the determination of sam-
ple size. Animal studies are typically powered at 80% or higher to detect
a statistically significant difference between groups with p b 0.05. The
supplemental data of this manuscript might be useful for power calcu-
lations based on clinical scores, tAChR antibody titers, or rat muscle
AChR antibody titers, since they provide information on the typical var-
iability of the EAMG model. Additional outcome parameters that are
based on the biological mechanism of the tested therapeutic interven-
tion can be used for power calculations instead, provided that data on
effect size are available through proof-of-concept experimental out-
come. The power analysis dictates the minimal number of animals
necessary to register a statistical effect. Careful calculations of the “n” re-
quired in a study will ensure that the outcome result reflects the signif-
icance between the groups and not the lack of power to justify the result
(Steward and Balice-Gordon, 2014).

In outlining the design to determine the statistical significance of
therapeutic efficacy, several factors must be considered; proper con-
trols, number of outcome measurements, distribution of the outcome
measurements, and statistical analysis to be performed. Documentation
of the results should adequately described statisticalmethods, provide a
complete listing of all analyses done even if values did not reach statis-
tical significance.

Concluding remarks

The tAChR induced rat EAMGmodel has a high validity for many as-
pects of human MG, including immunological, neuromuscular and
symptomatic parameters. Therefore, it is ideally suited for development
of new or improved MG therapies. The standardization of various pa-
rameters of themodel will help to make studies comparable and there-
by increase confidence in the results. Effect sizes can then be used as a
basis for deciding about further preclinical or clinical studies. It is impor-
tant tomention that such standardization is a dynamic process and will
likely need future adjustments to meet new insights.
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