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When taking up the gauntlet of studying membrane protein functionality, scientists are provided
with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express
proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane
proteins have exceptional demands regarding their environment to ensure correct functionality.
Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane
protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we
summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-
supported systems. The correct folding and functionality of membrane proteins depend in many
cases on their integration into a lipid bilayer and subsequent posttranslational modification. We
highlight cell-free systems utilizing the advantages of biological membranes.
� 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical
Societies. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/3.0/).
1. Introduction

Membrane proteins (MPs) are of fundamental importance in
signal transduction, energy metabolism, transport processes and
a variety of additional functions vital to the survival of organisms.
Thus, it is not a coincidence that they form the major group of
pharmaceutical targets [1–3]. Nevertheless our knowledge about
MPs, their structure and function is limited although scientists
have developed many sophisticated experimental setups to ana-
lyze them in detail. Individual MP-species are usually of low abun-
dance in their biological environment and bio-physical
characterization of these proteins is often difficult, due to their
hydrophobic nature. Additionally, cells strongly regulate MP
synthesis and control the overall protein balance according to the
crucial requirements to keep their membrane integrity. Thus, a
major challenge in MP studies is the preparation of sufficient
amounts of correctly folded fully functional target protein.
Conventional cell-based methods focus on over-expression strate-
gies and thus often lead to insufficient membrane insertion,
precipitation of de novo synthesized MP or even cytotoxicity due
to the extensive alterations in the host cell’s metabolism. In this
context, the transformation of the biological protein synthesis
machinery into a cell-independent synthesis system seems to be
valuable. However, the function and activity of a given MP is not
simply correlated to its high-yield production in itself, but rather
depends critically on the suitable membrane environment. Impor-
tant parameters regulating the embedded MP’s function are on the
level of the membrane: lipid composition, phase, tension, fluidity
as well as curvature. Furthermore, on the molecular level of the
lipid, parameters as the hydrophobic chain length, head group
geometry, charge, hydrogen bonding potential as well as hydration
strongly affect the bio-physical properties of the system. These
membrane/lipid properties provide the framework for the adjust-
ment of protein structure and function on various scales. For
example, the structure of a lipid head group could determine
locally the structure of the corresponding protein region via hydro-
gen bonding [4]. On a larger scale, the full hydrophobic surface of a
protein will adapt to the hydrophobic core of the membrane and
vice versa. Finally, energetically costly protein–lipid interactions
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can drive protein aggregation to higher order oligomers [5,6].
Effectively, the ability of the environment to promote certain pro-
tein conformations regulates the activity of a protein in a given set-
ting. A large number of reviews documents the growing interest in
protein-lipid interactions [some examples for hydrophobic mis-
match: [7]; channels: [8,9]; G-protein-coupled receptors: [5,10];
membrane lateral pressure and curvature: [11]; membrane elastic-
ity: [12]; cholesterol: [6]. This demonstrates that besides the
appropriate expression system, additionally the MPs’ environment
has to be carefully chosen in order to obtain a correctly folded and
functional protein.

2. Cell-free synthesis of membrane proteins

Cell-free (CF) systems provide the protein translation machin-
ery gained from cell lysates thus enabling the in vitro synthesis
of various target proteins independent of a living cell’s integrity.
Historically, CF systems were initially employed to unravel the
genetic code [13]. Further studies used CF systems to characterize
translocation processes of proteins across membranous boundaries
or alternatively directed proteins into biological membranes
(among others [14–17]). Since that time, a variety of sophisticated
CF systems have emerged as promising alternatives to classical
cell-depended MP over-expression strategies.

Currently several prokaryotic synthesis systems based on Esch-
erichia coli cell-extracts have been reported. The scope ranges from
the ‘‘protein synthesis using recombinant elements’’ (PURE) sys-
tem, a minimal synthesis system using a set of purified elements
required for the translation reaction [18], up to the complex
‘‘Cytomim’’ system. The latter utilizes not only a crude cell extract
but inverted inner membrane vesicles from E. coli to efficiently
activate oxidative phosphorylation and to improve protein folding
[19]. Eukaryotic CF protein synthesis systems are gained from
wheat germ (WG), rabbit reticulocyte (RRL) or Spodoptera
frugiperda (Sf) cell lines. Furthermore, systems based on Chinese
hamster ovary cells [20], mouse embryonic fibroblasts [21] as well
as HeLa cell lines [22] are reported. A general benefit of CF protein
synthesis systems results from their independence of cell viability,
thus enabling the synthesis of difficult-to-express MPs as well as
cytotoxic proteins [23–25]. Open CF synthesis reactions can be eas-
ily supplemented with a variety of additives, so-called compatible
solutes, supporting protein synthesis, stabilization and last but not
least providing a hydrophobic environment for MP embedding. In
this review we briefly summarize various strategies supporting
MP synthesis in the presence of detergents and other chemical
additives. We focus on lipid and biological membrane-assisted
approaches as these methods contribute a fundamental prerequi-
site to target MPs in the more biological environment of a bilayer.

2.1. Chemical additives for cell-free synthesis of membrane proteins in
membrane depleted systems

Systems prepared from E. coli or WGs are lacking significant
amounts of biological membrane structures. They are frequently
used to systematically screen for suitable detergents and other
membrane mimetic components for efficient MP synthesis and sol-
ubilization (among others reviewed in [26]). A typical approach in
this context is the synthesis of target MPs as precipitates in the
absence of solubilizing agents, followed by subsequent protein
purification and re-solubilization using detergents. Thus, additive
mediated negative influences on protein yields are avoided, but
re-solubilization protocols are required. Compared to that proce-
dure, protein synthesis in the presence of an appropriate additive
promoting MP solubility seems to be a more straight forward strat-
egy. Reaction supplementation with a hydrophobic environment
enables the co-translational MP solubilization by the formation
of proteo-micelle complexes. Essential requirements for successful
CF MP synthesis in the presence of membrane mimicking amphi-
philic supplements are, firstly, the compatibility of the applied
reagents with the protein synthesis reaction itself and secondly,
the concentration of these agents needed to form micelles (critical
micelle concentration-CMC) thus enclosing the target protein (see
also [26]). Both factors have to correlate to efficiently generate sol-
uble target MPs suitable for subsequent functional characterization
of the target protein. Frequently used detergents such as variants
from the Brij- or Tween-series, DDM as well as Digitonin and Triton
X-100 are capable of MP synthesis in presence of detergents
(among others screened in: [27–30]). The micelle integrity and
protein incorporation are strongly dependent on the CMC. Thus,
downstream processing and further protein characterization
always requires the maintenance of the adequate additive concen-
tration, detergent replacement or even reconstitution of the target
MP into a lipid bilayer system. For instance the mechano-sensitive
channel MscL was synthesized in presence of detergents and sub-
sequently purified and reconstituted into liposomes for further
studies of its electrophysiological characteristics [27]. This
approach requires the complete removal of the detergent to pre-
vent detergent–lipid interactions and membrane damage.

Besides the classical detergents, other synthetic surfactants like
fluorinated surfactants consisting of fluorinated carbon chains
[31,32], high molecular mass amphiphilic polymers called amphip-
ols [31,33] and lipid-like peptide-detergents [34,35] represent syn-
thesis-compatible supplements facilitating MP production in a
soluble form. Lipid-like peptide-detergents are comparable to the
different Brij variants with respect to effectiveness [34,35].
Amphipols and fluorinated surfactants have been reported to be
compatible with lipid structures, supporting direct MP reconstitu-
tion into membranous structures [36,37].

So far, several publications are available screening for solutes
that are appropriate for co-translational synthesis of MPs in a sol-
uble and best-case functional manner. For more detailed insight in
this topic we recommend the following reviews and the included
references (among others in [26,28,38]). Results presented in this
broad range of publications demonstrate that compatible solutes
represent suitable model systems for MP characterization in an
environment that is much simpler compared to native membranes.
However, having stated the importance of lipids and membrane
structures for MP folding and functionality, it is desirable to
directly integrate target proteins into a lipidic environment. This
is preferable not only in respect to the difficulties occurring while
transferring MPs from micelle complexes into bilayers, but also to
enable co-translational lipid–protein interactions. Another disad-
vantage of membrane-depleted in vitro systems is their inability
to produce proteins that include more complex posttranslational
modifications like signal peptide cleavage, lipid-modifications
and glycosylation. The complementation of exogenous enzymes
to reengineer glycosylation pathways [39] as well as the addition
of biological membrane vesicles [40] might additionally contribute
to CF production of posttranslationally modified proteins.

2.2. Cell-free synthesis of membrane proteins in lipidic environments

Since a lipidic environment is an essential prerequisite for
proper MP folding and functionality, we will now present estab-
lished methods for the combination of lipidic environments with
CF synthesis systems. In this field, different approaches have been
successfully applied to synthesize MPs in presence of biomimetic
lipid–detergent-based systems, nanodiscs, liposomes or even bio-
logical membrane environments, graphically summarized in
Fig. 1.
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Fig. 1. Cell-free synthesis of membrane proteins in presence of different lipid based membrane structures. Pro- and eukaryotic cell extracts supply the entire translational
machinery as well as chaperones. The membrane proteins synthesis can be supported by the supplementation of the reaction mixture with synthetic structures as liposomes,
nanodiscs or bicelles. Alternatively, biological membrane structures as microsomes or inverted vesicles provide endogenous proteins thus enabling the biological process of
co-translational translocation. EF: elongation factor, IF: initiation factor, RF: release factor.
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2.2.1. Cell-free synthesis of membrane proteins supported by lipid–
detergent systems

Bicelles are assemblies of phospholipids and detergents in a
flattened, disc-like shape. The exact morphology depends critically
on the lipid–detergent ratio (summarized by [41]). Usually the
detergents surround the lipids in the center, like a rim and thus
shelter the hydrophobic elements from water. Short-chain phos-
pholipids can be used to replace the detergent rim in order to more
closely mimic structures which resemble membranes. Thus,
bicelles form an intermediate between micelles composed of pure
detergents and lipidic membrane structures. Lyukmanova and
coworkers demonstrated that lipid–detergent bicelles on one hand
reduced the yield of various CF synthesized MPs compared to the
investigated detergent micelles, but on the other hand supported
synthesis of correctly folded proteins in some cases [30]. Moreover,
membrane subunits of a prokaryotic ATP-synthase have been pro-
duced by CF synthesis in the presence of bicelles [42]. In this sys-
tem, subunit a was shown to have a similar folding compared to
the native protein extracted from bacterial cells. Nozawa and
coworkers reported a methodology for the rapid screening of var-
ious structurally divergent MPs for their co-translational insertion
into liposomes formed from phospholipids in presence of deter-
gent in a WG CF system [43]. However, the presence of detergents
in these systems might hamper their compatibility with mem-
brane structures and have an effect on the protein’s functionality.
Consequently, for example the reconstitution of bacteriorhodopsin
gained from lipid–detergent supplemented CF reactions into lipo-
somes required the removal of the initially added detergent to
asses MP function in the lipid bilayer [44].

2.2.2. Cell-free synthesis of membrane proteins in presence of
nanodiscs

Nanodiscs are one of the membrane soluble supplements which
could be added directly to the CF reaction mixture. They are
nanoparticles consisting of a discoidal phospholipid bilayer encir-
cled non-covalently by two copies of a membrane scaffold protein,
which itself constitutes a modified apolipoprotein [45]. Depending
on the length and type of the membrane scaffold protein, the diam-
eters of the nanodiscs vary from 10 to 20 nm [46,47]. The size of
nanodiscs can be measured by dynamic light scattering or trans-
mission electron microscopy [48]. The MP will incorporate into
the nanodiscs in a passive manner during CF synthesis, where
the membrane scaffold protein additionally stabilizes the incorpo-
rated MP. Apart from providing stability to the MP, nanodiscs in
general have several advantages over conventional solubilization
agents [49,50]. Proteins can be extracted from nanodiscs in a native
functional form. They are accessible from both sides which could
help in studying the ligand binding interactions as well as binding
of signaling molecules on the cytoplasmic side. Moreover, the
membrane composition can be defined by a wide range of lipids
which could influence the functionality of the protein [30,51].
Compared to other solubilization agents, protein decorated nano-
discs are monodisperse and homogenous [52]. A crucial advantage
of nanodiscs is that, once formed, they sustain the soluble target
MP in a detergent-free environment. Hence, the following purifica-
tion and functional analysis are not restricted to detergent based
limitations as in the case of bicelles. Furthermore, the protein puri-
fication procedure in this system is simple due to a His-tag intro-
duced by the membrane scaffold protein. Nanodiscs have been
explored for a wide range of applications (among others reviewed
in [50,52]). Using the excellent solubilization properties of nano-
discs, their use as vaccine delivery platforms with increased
immune stimulation was presented recently [53,54]. Due to their
easy-to-handle characteristics, nanodiscs are now used as promis-
ing molecular tools to explore the functionality of G-protein-
coupled receptors [55]. Very recently nanodiscs were doped with
light converting-proteins. They were used for creating the first
synthetic photo-electrochemical complexes capable of converting
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solar energy into electrochemical currents [56]. One approach
across the systems presented in this review is the combination of
nanodisc- and bicell-technology to study MP oligomerization
[57]. Apart from preserving the native configuration of MPs, nano-
discs create a detergent-free environment that is also suitable for
mass spectrometry analysis [58]. Although nanodiscs are promis-
ing structures for the solubilization of MPs, they have their own
limitations. As these particles are accessible from both sides and
due to the orientation-independent statistical incorporation of
the CF-produced MPs into these entities, nanodiscs are not suitable
for applications regarding transporter assays or ion channel char-
acterization. Additionally, they are limited in size and thus do
not allow for the insertion of a complex cluster of MPs into the
same disc.

2.2.3. Cell-free synthesis of membrane proteins in presence of
liposomes

Liposomes are spherical membrane vesicles formed from either
synthetic lipids or biological lipid extracts usually prepared by dis-
integrating biological membranes. After the integration of MPs into
liposomal membranes, they are termed proteo-liposomes. Interest-
ingly, it was already demonstrated in 1985 by Geller and Wickner
that the pro-coat protein from the phage M13, is co-translationally
translocated across the membrane of bare liposomes in absence of
any additional MP [59]. Since that time, many other functionally
and structurally divergent MPs have been synthesized in CF sys-
tems supported by liposomes (see Table 1). In most cases protein
Table 1
Examples for co-translational insertion of membrane proteins into lipid-based vesicular s

Membrane protein (explanation) TMR Cell-fr

a-bENaC (Na+ channel) 2 RRL +
ADP/ATP carrier (mitochondrial) 6 WG +
Apo cytochrome b5-DHFR (dihydrofolate reductase chimera) 1 WG +
Aquaporin Z (pore forming) 6 E. coli
ATP synthase (complex) c E. coli
b2AR (b2-adrenergic receptor) 7 RRL +
Bacteriorhodopsin (proton pump) 7 E. coli
Bak (pro-apoptotic) 1 E. coli

BmOR1 (olfactory receptor) 7 Insect
Connexins (diverse variants - gap junctions) 4 RRL +
Connexin 43 (gap junctions) 4 PURE-

RRL +
CrdS (curdlan synthase) 7 WG +
CXCR4 (chemokine receptor) 7 Insect
Cytochrome b5 (electron transport)
Stearoyl-CoA desaturase (lipid biosynthesis)

1
4

WG +

ETB (endothelin receptor) 7 Insect
FtsQ (cell division) 1 PURE-
GPAT (phospholipid synthesis) n.d. PURE-
LPAAT (phospholipid synthesis) a
Hb-EGF (growth factor) 1 Insect
IP3Rs (inositol trisphosphate receptors) 1/3 RRL +
KcsA (potassium channel) 2 E. coli

Insect
MraY (translocase) 10 E. coli
MscL (mechano-sensitive channel) 2 E. coli
MtlA (mannitol permease) 6 PURE-
nAChR (nicotinic acetylcholine receptor) 4 RRL +
pOmpA (pore forming) 8 PURE-
PulD (outer membrane secretin) n.d. E. coli
Shaker potassium channel 6 WG +

RRL +
TetA tetracycline pump 12 E. coli
VDAC (pro-apoptotic anion channel) 19 E. coli

a: Membrane anchored; c: multimeric protein complex; GUV: giant unilamellar vesicl
synthesis system based on purified translation components from E. coli cell-extracts; Ref.
lysate.
production and co-translational insertion into lipid-based struc-
tures was performed in E. coli and WG-derived synthesis systems.

Even to the point that some MPs display functionality in pres-
ence of detergents and other solutes, there are some proteins that
are well known to require lipids to attain maximum function. For
instance, the mitochondrial ADP/ATP carrier [60] and KcsA [61]
are reported to contain lipid molecules in their crystal structures.
The presence of specific lipids is essential for both proteins to gain
their function ([62,63], respectively). Thus, these lipids act as co-
factors for the proteins. Long and coworkers demonstrated in a
WG system that ADP/ATP carrier integration into a liposome’s
bilayer is based on an obligatory co-translational mechanism, even
in the absence of membrane-embedded translocation complexes.
Moreover, it was found that beyond the functionality of the ADP/
ATP carrier even the efficiency of protein synthesis itself as well
as its membrane insertion are cardiolipin dependent in the utilized
CF system [64]. Another example shows that membrane associa-
tion and tetramerization of KcsA are supported by phosphatidyl-
ethanolamine and phosphatidylglycerol applied to the system in
a ratio similar to the protein’s native prokaryotic membrane envi-
ronment [65]. Moreover, phosphatidylethanolamine acting as a
molecular chaperone is reported to assist for example the proper
protein folding of LacY [66].

The influence of the thickness of the lipid membrane as well as
the effect of the membrane-spanning region of model MPs on the
hydrophobic matching have been studied extensively in a lipo-
some-supported CF system by Ridder and coworkers. It was found
tructures in cell-free systems in the absence of detergents.

ee system + vesicular structure Protein characterization Ref.

microsomes Electrophysiology [83]
liposomes ATP transport + inhibition [64]
giant liposomes Enzymatic activity DHFR [110]
+ liposomes Water permeability [72,111]
+ liposomes Membrane incorporation [102]
microsomes Ligand binding [81]
+ liposomes Photocurrent generation [68]
+ liposomes Apoptosis induction in

cells
[99]

+ microsomes in GUVs Electrophysiology [86]
microsomes Electrophysiology [80]
system + liposomes
liposomes

Membrane permeability [69,97]
[98]

liposomes Enzymatic activity [70]
+ endogenous microsomes Diffusion in hybrid-GUVs [87]
liposomes Enzymatic activity [103]

+ endogenous microsomes Diffusion in hybrid-GUVs [87]
system + inverted vesicles Membrane incorporation [73]
system + liposomes Enzymatic activity [104]

+ endogenous microsomes Diffusion in hybrid-GUVs [87]
microsomes Hetero-oligomerization [84]
+ LUVs
+ endogenous microsomes

Tetramerization
Electrophysiology

[65]
[88]

+ liposomes Enzymatic activity [71]
+ liposomes Electrophysiology [76,77]
system/E. coli + inverted vesicles Membrane incorporation [73,75]
microsomes Electrophysiology [85]
system + inverted vesicles Membrane incorporation [73]
+ liposomes Multimerization [112]
liposomes
microsomes

Electrophysiology [100]
[82]

+ inverted vesicles Substrate transport [75]
+ liposomes Apoptosis induction in

cells
[99]

es; LUV: large unilamellar vesicles; n.d.: not determined; PURE system: minimal
: reference; TMR: transmembrane region; WG: wheat germ; RRL: rabbit reticulocyte
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that the bilayer insertion of a single membrane-spanning region
depends primarily on the membrane thickness, caused by the
hydrophobic chain length. Furthermore, the hydrophobicity of
the relevant amino acids and the overall-length of the transmem-
brane region also regulate this process [67]. For bacteriorhodopsin,
the ramifications of the chain length and the transition tempera-
ture were evaluated and additional parameters like membrane
curvature and lateral membrane tension were discussed [68]. The
effect of different lipids on the protein integration and functional-
ity was also studied by several other groups [69–71].

Even though integration of MP into liposomes is possible and
may under certain conditions result in MP functionality, the entire
biological set of membrane-attached and membrane-spanning
proteins cannot be addressed using a uniform lipid-embedding
technology. Moreover, the lipid complexity in many cases is par-
tially reduced in these synthetic systems. The lack of complex bio-
logical multipliers doubtlessly has considerable impact on a given
MP’s insertion mechanism. Thus, MP integration into bare syn-
thetic membranes is based on passive processes. In terms of com-
bining synthetic membrane structures with CF synthesis,
additional advantages resulting from the remaining complexity
of the membrane-depleted cell lysates can be considered. These
lysates do not only provide the entire translation machinery, but
additionally soluble chaperones, signal recognition particles and
further essential factors are present, depending on the lysate’s
pro- or eukaryotic origin. It is likely that these chaperones for
example bind to the target MPs supporting their passive integra-
tion into liposomes even in the absence of membrane-embedded
translocon complexes. These aspects are discussed in more detail
by Long and coworkers in the context of the ADP/ATP carrier syn-
thesis [64].

Surprisingly, the supplementation of the liposome-supported
Cytomim system with the membrane-associated signal recognition
particle and its receptor, only increased the yield of CF produced
Aquaporin Z and its liposomal association, but did not affect the
protein’s activity [72]. This demonstrates that the insertion of tar-
get proteins into liposomes might in some cases be independent of
the biological co-translational translocation process, as shown in
the case of Aquaporin Z. Yet, these passive insertion processes do
not necessarily trigger the protein’s functionality.

In terms of the E. coli based minimal PURE system, soluble chap-
erones and other factors are depleted, thus enabling one to evalu-
ate their effect on target protein folding and translocation by
supplementation studies [73,74]. It is reported that different chap-
erones are required for the translocation of various MPs into bio-
logical membrane vesicles [73]. These and other results [75,76]
claim the distinct influence of defined soluble chaperones on a
given protein’s translocation across membranes. The impact of
membrane bound translocation components non-attendant in syn-
thetic liposomes, but inherently present in biological membranes,
additionally has to be considered for proper MP targeting
[73,75,77].

2.2.4. Cell-free synthesis of membrane proteins utilizing biological
membranes

Biological membranes are sophisticated entities mainly com-
posed of lipids and proteins. Their structure depends basically on
their pro- or eukaryotic origin as well as their sub-cellular localiza-
tion, in particular in the case of membranes of eukaryotic origin.
The biological process of MP translocation in viable cells is a com-
plex mechanism recruiting a huge set of diverse soluble and mem-
brane-integrated proteins. These mechanisms are highly conserved
and the general procedure of co-translational insertion via a pro-
tein-conducting channel, in general termed translocon, is similar
in pro- and eukaryotes. However, the proteins usually involved in
this process are well known and the detailed translocation
mechanisms are summarized in several reviews (among others in
[78,79]). Taking advantage of these complex mechanisms in CF sys-
tems is an option to provide an optimal environment for the effi-
cient synthesis of functional MPs that is even more biomimetic
than all other systems we have described so far. Examples for suc-
cessful applications have been included in Table 1 [73,75,80–88].

Regarding the PURE system and additional E. coli-based sys-
tems, inverted vesicles gained from E. coli inner membranes served
as useful tools for proper targeting of proteins to their native envi-
ronment due to the implementation of membrane-bound prokary-
otic translocation components [73,75]. The inversion of these E. coli
inner membranes enabled open access of CF systems to the MPs
located at the cytosolic side, facilitating the process of co-transla-
tional translocation.

Microsomes present in eukaryotic CF systems are membranous
vesicular structures derived from a eukaryotic cell’s endoplasmic
reticulum (ER). Common sources for microsomes supplemented
to eukaryotic rabbit reticulocyte or WG CF systems are dog pan-
creas cells [80,84,89,90], oocytes [81,85] or oviduct cells [82]. The
complex luminal and membranous proteome composition of dog
pancreas microsomes has been intensively studied and well char-
acterized [91–93].

In terms of CF systems derived from cultured insect cells,
endogenous microsomes are generated during lysate preparation.
As consequence, they do not have to be added separately [94].
This homogenous eukaryotic system facilitates posttranslational
modifications such as glycosylation [94,95] and lipid modification
[96]. Deploying the electroswelling process, the endogenous
microsomes can be used to integrate the MP of interest into giant
unilamellar vesicles (GUVs) [96]. Furthermore, the acceleration of
this swelling methodology by lipid supplementation enables one
to modify MP harboring microsomes with synthetic lipids
thereby gaining so-called hybrid-GUVs [87]. Additional tech-
niques for further functionalization and immobilization are avail-
able, either to embed GUV-membranes into technical processes,
or to incorporate proteins in synthetically modified microsomal
membranes.

Although microsomes are obtained from sub-cellular mem-
branes, thus carrying endogenous MPs, they conveniently enable
the analysis and functional characterization of the de novo synthe-
sized proteins. For example, using microsomes as micro-contain-
ers, it is possible to introduce de novo synthesized ion channels
into planar bilayers immediately followed by a detailed electro-
physiological characterization on the single molecule level
[80,82,83,85,88]. The presence of endogenous MPs, such as the ino-
sitol trisphosphate receptor, not only demonstrates the micro-
some’s ER-based origin, but further enables the functional
analysis of ER-resident proteins [88]. Additionally, endogenous
channels can serve as internal control proteins to monitor the
fusion of ER-derived microsomes to planar bilayers. Even the com-
bination of endogenous MPs and additional CF-produced target
proteins to build up complex signaling cascades is a challenging
option. Although early approaches in the field of CF protein synthe-
sis utilized biological membranes, only few publications focused
on the application of this combination (among others summarized
in Table 1). One aspect that has to be considered in this context is
the increasing complexity that biological membranes introduce to
a CF system, thereby impeding the potential to run the experi-
ments under extremely defined conditions. Eukaryotic ER-derived
microsomes however offer a window towards much more complex
cellular functionality. Due to their sophisticated structure and
composition they enable one to implement e.g. biological glycosyl-
ation processes into CF-systems and such glycosylations often
determine protein functionality. Some representative examples of
microsome mediated MP glycosylation are the human b-adrener-
gic receptor [81], the Shaker potassium channel [82], different
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variants of connexins [80], inositol trisphosphate receptors [84]
and the nicotinic acetylcholine receptor [85].

3. Conclusion and outlook

CF systems offer a huge variety of different reaction modes and
recent advances have made possible cost-effective micro-scale to
manufacturing-scale synthesis of complex MPs. The open systems
offer a versatile environment for direct manipulation and optimi-
zation of parameters fitting the individual requirements of specific
target MPs. In some cases the origin of the protein had to be con-
sidered to choose for instance the necessary lipids for the model
membrane composition embedding the de novo synthesized MPs
[64,70]. Due to the amazing range of options to control and adjust
CF systems to the protein’s requirements, a remarkable amount of
diverse approaches to build up biomimetic environments for MP
synthesis and analysis have been established. In general, the suc-
cess of the different strategies seems to be strongly dependent
on the individual MP properties. Additionally, the requirements
for the follow-up protein characterization strategies have to be
considered in terms of choosing a compatible CF system.

Here, we presented different strategies to gain the target MP in
a membranous environment without applying any additional
reconstitution steps. Due to their spherical shape, synthetic lipo-
somes and microsomes directly allow to analysis of the transport
activity [69,97,98]. Even the application of liposomes in or on living
cells is reported [98–101]. Liguori and coworkers for example dem-
onstrated the liposomes’ ability to deliver cell-free synthesized
apoptotic MPs to cells thus inducing apoptosis. This system was
proposed to facilitate the delivery of therapeutic MPs for cancer
treatment [99]. These publications demonstrate that the compati-
bility of proteo-liposomes harboring CF-synthesized MPs with cell
culture systems provides a wide scope for interaction and delivery-
studies on viable cells. Moreover, the simultaneous synthesis and
proper assembly of the large heteromeric protein complex ATP-
synthase in CF systems was demonstrated by Matthies and
coworkers [102]. Additionally, the combination of various MPs into
the same set of liposomes or microsomes was demonstrated for
other complex protein combinations as well [87,103,104]. These
developments demonstrate that CF protein synthesis in combina-
tion with membranous vesicles might be a route towards the
building up e.g. entire signal transduction pathways for ligand
detection or protein interaction studies. Utilizing natural mem-
brane structures these systems may put a spin on the fundamental
mechanistic understanding of biological processes connected to
MPs. Compatible solute- or nanodiscs-based systems do not offer
this opportunity, due to their intrinsic limitations.

Another promising application is the encapsulation of CF syn-
thesis systems into phospholipid vesicles (among others reported
by: [86,104–108]. Hence, these studies constitute an important
first step towards the design of a minimal cell. These cell models
even enabled the synthesis of a-hemolysins, their integration into
the provided membrane and consequently the nutrient supply of
the synthesis reaction by the formed pores [107,108]. The encapsu-
lation of the CF reaction mixture further empowered the functional
synthesis of MPs involved in the phospholipid synthesis pathway
[104]. Nevertheless, the combination of the machineries required
for sufficient DNA-replication, transcription and translation is
rather challenging in terms of building up a minimal cell. Notewor-
thy is for instance the fact that these complex mechanisms have
different requirements in terms of optimal reaction conditions or
the coordination of the synthesis of different proteins has to be
engineered (summarized by: [109]). A different approach to con-
vey a cellular function into a cell model is based on the endogenous
microsomes derived from an insect-based CF synthesis system
[87]. The formation of tailored hybrid-GUVs harboring a variety
of MPs may facilitate for instance the reconstitution and character-
ization of selected signal transduction pathways in a well-defined
and cell-sized biomimetic environment.

Choosing the appropriate hydrophobic environment during CF
MP synthesis is a critical point to ensure proper protein folding
and high insertion efficiency. Since each MP of interest usually
requires an individual hydrophobic mixture, detecting the opti-
mum can be time-consuming when several lipids and other solutes
have to be added simultaneously. Hence, eukaryotic synthesis uti-
lizing biological membranes like the insect based endogenous
microsomes or the addition of inverted vesicles to E. coli or WG
systems provide a convenient alternative. They introduce addi-
tional options in terms of MP studies by their natural membrane
elements. Thus, the toolbox of CF protein synthesis is now
expanded by a sophisticated biological component. Given the
exquisite capability to modify and adapt CF systems for high-
throughput, cost-effective and high-level MP synthesis, this
technology should resolve a growing number of applications in
near future.
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