amyloid form of PAP248-286 had little effect on either vesicle aggregation or fusion. To further investigate this effect we have solved the structure of PAP248-286 in SDS micelles. A largely z-helical conformation of PAP248-286, lying parallel to the membrane surface, is implicated in promoting bridging interactions between membranes by the screening of the electrostatic repulsion that occurs when two membranes are brought into close contact. This suggests non-specific binding of small oligomeric forms of SEVI in an z-helical conformation to lipid membranes may be an additional mechanism by which SEVI enhances the infectivity of the HIV virus.

Lipids and Signaling on Membrane Surface

484-Po Board B363
The Preferential Reconstitution Of Ampa Receptor Proteins Into Model Lipid Domains With Cholesterol Studied By Atomic Force Microscopy - an Imaging And Force Spectroscopy Study
Chandra Ramanujan1, Nahoko Kasai1, Matthew Suggit1, Jelena Bananovic1, Keiichi Torimitsu1, John F. Ryan1.
1University of Oxford, Oxford, United Kingdom, 2NTTBLR, Atsugi, Japan.
In our research we have conducted an atomic force microscopy (AFM) study of trafficking-like behaviour of neural receptor proteins into lipid raft-like domains. In our initial research we formed artificial rafts by varying a mixture of four phospholipids found in the synapse in order to mimic a synaptic membrane. The most commonly occurring receptor protein in the central nervous system, the AMPA receptor (\(\alpha\)-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) was then reconstituted into these mixtures. The results show a preferential reconstitution of these membrane proteins into lipid rafts of a certain height. AMPA receptors are implicated in long term potentiation, a process thought to underlie learning and memory, with up-regulation of AMPAR numbers in the post-synaptic membrane possibly being a key component of this process. In order to come closer to the mixtures naturally occurring in the synapse we furthered these studies to incorporate cholesterol. The results were a preferential reconstitution of AMPAR proteins but this time into the low domain when cholesterol is present. These surprising results were better understood when we treated this system as a ternary mixture with gel phase lipids, liquid phase lipids and cholesterol acting as an impurity. We studied the phases in terms of the domain heights as well as their mechanical properties. When cholesterol was present, the protein-deficient high domains were stiffer and more viscous.

The lateral extent of the lipid domains is typically ~100nm, so they have structural similarities with the lipid rafts observed to occur in synaptic membranes, albeit with much simpler composition. Dynamic AFM measurements reveal information about the mobility of receptors within and between domains which may shed light on this process.

485-Po Board B364
Piezoelectricity of phospholipids: Are cell membranes also piezoelectric? Antal Jakli.
Kent State University, Kent, OH, USA.
Recently it was found that mechanical deformation of films of L-\(\alpha\)-phosphatidylcholine in the \(\lambda\)_m phase induces an electric polarization. It was suggested that this effect is due to the chiral smectic A (SmA*) type liquid crystal structure of the bilayers, which under molecular tilt becomes a ferroelectric (SmC*) phase, where the electric polarization is normal to the tilt plane. However, no control measurement on the racemic material has been presented to prove this suggestion. Here we demonstrate that indeed the chirality of phospholipids makes fluid lipid bilayers piezoelectric. By periodically shearing and compressing nonaqueous lamellar phases of synthetic right enantiomer 2,3-Dihexadecanoyl-sn-glycero-1-phosphocholine (D-DPPC) the synthetic left enantiomer 1,2-Dihexadecanoyl-sn-glycero-3-phosphocholine (L-DPPC) lipids and their racemic mixture (DL-DPPC) \(\lambda\)_m phase, we induced a tilt of the molecules with respect to the bilayer normal and produced electric current perpendicular to the tilt plane, with the chiral lipids only. Because most of the living cell membranes contain chiral lipids, we hypothesize that piezoelectricity may have a role in the function of cell membranes. For example, this coupling allows for a wide variety of sensory possibilities of cell membranes such as mechano-reception, magneto-sensitivity, and proton membrane transport. Preliminary results on electromechanical couplings in Saccharomyces cerevisiae (Baker’s yeast) and their protoplasts will be also reported and discussed.

Endnotes

486-Po Board B365
Gastrin-Releasing Peptide Adopts An Orientation Parallel To The Membrane Plane As A Preferred Orientation In DMPC Bilayers: Multiple Molecular Dynamics Simulations
Priyanka Prakash Srivastava.
Indian Institute of Technology, Kanpur, Kanpur, India.
Gastrin-releasing peptide (GRP) binds to GRP-receptor (GRPR), a member of GPCR family. GRP is one of the bombesin peptides and they are implicated in obesity and cancer. Understanding the mechanism of GRP-GRPR interactions at molecular level is extremely significant and requires the knowledge of the structure of peptide-receptor complex. Since the complex structure is not available, the structures of ligand and the free receptor could be used to model the complex. GRP is flexible in aqueous medium but it is likely to adopt a stable structure when it binds to membrane according to “Membrane Compartments Theory” [Biopolymers 37, 5-16 (1995)]. The C-terminal decapeptide of GRP is biologically active and is modeled as a helix using a related peptide structure determined in SDS micelles [FEBS Lett. 460, 263-269 (1999)]. Its amino acid sequence is GNHWAVGHL. We carried out multiple independent simulations of GRP peptide in explicit DMPC bilayers which differed in the orientation of GRP inside the bilayers and force-field. At the end of 10 to 20 ns production runs, five out of six simulations resulted in the peptide orientation that is nearly parallel to the membrane plane. This indicates that this orientation is a preferred one and is independent of CHARMM or GROMOS force-fields. In the sixth simulation, the peptide was deeply inserted inside the bilayer. We analyzed the stability of helix, interaction of individual residues with different lipid components and water penetration in both layers. The helix structure is stable in majority of the simulations. Our results indicate that the residues Gly-7 and His-8 are important in maintaining the helical structure and orienting the peptide.

We thank CSIR for financial support [No. 37[1199]/04/EMR-II].

487-Po Board B366
Lipid Composition Modulates the Stability of DNA Acting as Model Membrane-bound Receptors
Paul A. Beales, T. Kyle Vanderlick.
Yale University, New Haven, CT, USA.
Many important signaling processes occur in the interactions between lipid organelles: a multitude of ligands and receptors are localized to the surface of lipid structures and vary in many ways, including their length and the strength of their interactions. DNA stands with hydrophobic modifications anchor to the surface of lipid membranes. These membrane-anchored DNA diffuse within the lipid matrix and can bind specifically to their complement: minimal properties of real membrane receptors. The properties of these DNA “receptors” can be varied systematically to explore the physical advantages of variables such as receptor length, binding strength and repeated sequences in the binding domain.

We show that the binding equilibrium between DNA-functionalized vesicles is dependent upon lipid composition. We develop a model as a framework to understand this phenomenon by extension of the Bell model to the non-constant force-fields between lipid membranes. We find that the inter-membrane interactions can either suppress or favor receptor binding and discuss the possible implications for biological receptor-mediated signaling processes.

488-Po Board B367
Phosphatidylinositol-(4,5)-bisphosphate Acting As A Ligand Of PKCalpha Modulates The Membrane Localization Of This Enzyme In Living Cells
Juan C. Gómez-Fernández, Consuelo Martín-Vicente, Francisco E. Nicolas, Senena Corbalán-García.
Universidad de Murcia, Murcia, Spain.
Rapamycin-triggered heterodimerization strategy is becoming an excellent tool for rapidly modifying phosphatidylinositol(4,5)-bisphosphate [PtdIns(4,5)P2] levels at the plasma membrane and for studying their influence in different processes. In this work, we studied the effect of modulation of the PtdIns(4,5)P2 concentration on protein kinase C (PKC) membrane localization in intact living cells. We showed that an increase in the PtdIns(4,5)P2 concentration enlarges the permanence of PKCz in the plasma membrane when PC12 cells are stimulated with ATP, independently of the diacylglycerol generated. The depletion of this phosphoinositide decreases both the percentage of protein able to translocate to the plasma membrane and its permanence there. Our results demonstrate that the polybasic cluster located in the C2 domain of PKCz is responsible for this phosphoinositide-protein interaction. Furthermore, the C2 domain acts as a dominant interfering module in the neural differentiation process of PC12 cells, a fact that was also supported by the inhibitory effect.
obtained by knocking down PKCα with small interfering RNA duplexes. Taken together, these data demonstrate that PI(4,5)P₂ itself targets PKCα to the plasma membrane through the polybasic cluster located in the C2 domain, with this interaction being critical in the signaling network involved in neural differentiation.

489-Pos Board B368
Probing Phosphoinositide Kinetics With A Voltage-sensitive Phosphatase
Bjoern H. Falkenberg
Jill B. Jensen, Byung-Chang Suh, Bertil Hille
University of Washington, Seattle, WA, USA.
Voltage-sensitive phosphatases (VSPs) have a voltage sensor linked to a phos-
phoinositol (PI) 5-phosphatase, which hydrolyzes plasma membrane PI-
(4,5)-bisphosphate (PIP2) to PI(4)P (Iwasaki, PNAS 105, 7970). We used
PIP2 hydrolysis by VSP from Ciona intestinalis (ci-VSP) and zebrafish (dr-
VSP) to better understand PIP2 binding and resynthesis. PIP2 was monitored
using the PIP2-sensitive M-current (KCNG2/3) and FRET between a pair of
PIP2-binding probes (PH-PLC1-CEP & PH-PLC1-YFP). Depolarizations to
+100 mV lasting >50 ms reduced M-current and PH-probe FRET. PIP2 de-
pletion was saturated by depolarizations lasting 500-1000 ms. Evidently PH-
probe FRET and M-current respond quickly to changes in plasma membrane
PIP2.

After repolarization, PH-probe FRET and M-current relaxed to baseline values
with time constants of ~10 s in a workmann-insensitive manner. This reflects
endogenous PIP 5-kinase converting PI(4)P back to PI(4,5)P₂. Overexpression
of PIP 5-kinase increased the length of depolarization required to deplete PIP2,
and speeded PIP2 recovery after repolarization.

Recovery of PIP2 after VSP activation is ~10x faster than after PLC activation.
However, it only requires PIP 5-kinase, whereas recovery after PLC activation
requires PI 4-kinase and PIP 5-kinase in series. Thus PI 4-kinase must be the
slower enzyme. To estimate the rate of PI 4-kinase, we compared translocation
of a fluorescent probe that reports plasma membrane PI(4)P (PH-OHSH2,
T.Balla) to translocation of the PIP2-binding probe in confocal time-lapse im-
aging. Upon PLC activation through M1 receptors, the plasma membrane
PI(4)P signal decreased 20 s later than the PIP2 signal. Both probes recovered
with similar time courses. FRET photometry between either PIP2-probes or
PI(4)P-probes showed comparable results. The simultaneous recovery of
both probes is consistent with the hypothesis that recovery of PIP2 is governed
by rate-limiting synthesis of PI(4)P by the PI 4-kinase, followed by rapid con-
version of PI(4)P into PI(4,5)P₂ by the PI 5-kinase.

NIH-N008174K/HFSFP

490-Pos Board B369
Interaction Of PTEN121 Peptide With Phosphatidylinositol-4,5-
Bisphosphate: a 31P NMR Relaxation Study.
Edgar E. Kooijman1
Avigdor Lefrin2, Michael F. Brown2, Arne Gericke1
1Kent State University, Kent, OH, USA,2University of Arizona, Tucson, AZ,
USA.
Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P₂) is by far the most abundant
of all phosphoinositides (about 1% of all membrane phospholipids) and is
found only in the phosphoinositide headgroups of the lipid bilayer. PI(4,5)P₂
can be converted by class I PI 3-kinases to PI(3,4,5)P₃, which is a second mes-
senger molecule affecting processes like cell survival and proliferation. PTEN
is an important tumor suppressor protein that converts PI(3,4,5)P₃ back to
PI(4,5)P₂, thereby keeping the basal levels of PI(3,4,5)P₃ low. We have dem-
onstrated recently that PTEN is allosterically activated by PI(4,5)P₂, which in-
interacts with the N-terminal end of PTEN. Here we study the interaction of
the PI(4,5)P₂ binding domain of PTEN (PTEN1-21) with model membranes con-
taining PI(4,5)P₂ using 31P-NMR. Using both magic angle spinning (MAS)
and static solid state NMR we probe the interaction of PTEN1-21 with lipid
phosphates. We determined the intrinsic T₁ and T₂ relaxation times of the
phosphomonoester groups of PI(4,5)P₂ and the phosphodiester group of dioloyl-
phosphatidylcholine, which form the lipid matrix into which PI(4,5)P₂ was dis-
persed. PTEN1-21 is highly basic, containing several Lys and Arg residues
which are thought to give rise to a largely electrostatic PTEN/PI(4,5)P₂ inter-
action. We show here that the binding of PTEN1-21 to PI(4,5)P₂, bilayers dra-
matically affects the membrane structure, indicating that the PTEN1-21/PI-
(4,5)P₂ interaction is likely more than a simple electrostatic interaction.
This is in accordance with our recent findings that PTEN/phosphoinositide in-
teraction is specific for PI(4,5)P₂. Lys13 is crucial for this specific interaction
and this study explores the interaction of the Lys13 of PTEN with the phospho-
phomonoester groups of PI(4,5)P₂.

491-Pos Board B370
Plasma Membrane Order In T Cell Signalling
Jelena Dinic, Jeremy Adler, Ingela Parnayd.
Weinre-Gren Institute, Stockholm University, Stockholm, Sweden.
Plasma membrane nanodomains, referred to as lipid rafts, more ordered than the
bulk membrane play an important role in T cell signalling by forming sig-
nalling platforms in activated T cells. However, the existence of lipid rafts in
resting T cells is contentious. Using laurdan, a membrane probe whose peak
emission wavelength depends on the lipid environment, evidence is presented
for the existence of ordered nanodomains in resting T cells. Upon PLC activa-
tion through M1 receptors, the plasma membrane order linked with reorganiza-
tion of the plasma membrane upon Jurkat T cell activation were followed at 37°C. Fluorescent
images were analyzed for generalised polarisation values - a measure of the rela-
tive abundance of liquid ordered and liquid disordered domains. TCR patching
does not increase the overall membrane order suggesting that membrane do-
mains of high order are brought together in the patches. This supports the ex-
istence of small ordered membrane domains in resting T cells that aggregate
upon activation. Patching of GM1, the GPI-anchored protein CD59 and the
non lipid raft marker CD45 significantly increases the overall membrane order.
So does general crosslinking of membrane components with Concanavalin A.
Remodelling of the actin cytoskeleton is an integral part of TCR signalling and
T cell activation. Disrupting actin polymerization using latrunculin B decreases
membrane order and stabilizing actin filaments with jasplakinolide increases
membrane order. An increase in membrane order appears to be a general effect
of plasma membrane component patching and is likely due to a global induc-
tion of actin polymerisation at the plasma membrane.

492-Pos Board B371
Adsorption Of Bar-domain Proteins To Charged Lipid Membranes
Causes Deformations And Lipid Demixing
George Khelashvili1, Daniel Harries2, Harel Weinstein1.
1Weill Medical College, New York, NY, USA, 2The Hebrew University of
Jerusalem, Jerusalem, Israel.
Many proteins participating in cellular processes contain BAR domains that
have been implicated in membrane shaping and deformation. These BAR do-
mains can either induce significant membrane curvatures or sense high-curva-
ture regions on cell membranes, but the mechanism for this action is still not
well understood. One suggestion is that BAR domains work collectively and
achieve significant bilayer deformations only through a suitable organization
at membrane interfaces. In contrast, evidence from some atomistic simulations
suggests that a single BAR can substantially deform a lipid membrane locally.
Here we present results from a self-consistent mean-field model of BAR do-
mains associated on membranes, suggesting that a single AmphiMyhin BAR
is capable of producing a steady state, where the initially near-planar membrane
curves significantly. However, using our approach we predict that such defor-
mation will occur only for membrane patches that have the propensity to attain
high spontaneous curvature, and that such favorable preconditioning may be
the result of either local lipid demixing, or of a preceding insertion of the
BAR domain’s amphiphatic N-helix. Both events have been predicted to bring
about asymmetry in the two membrane monolayers. To contrast, our simula-
tions also show that local segregation of charged lipids under the influence
of the adsorbing BAR domain alone cannot produce high enough asymmetry
between bilayer leaflets, and that in the absence of additional energetic forces
that favor membrane asymmetry, the membrane will remain near-flat within
fluctuations upon BAR adsorption. Thus, we conclude that N-helix insertions
may have a critical mechanistic role in the function of the BAR domain, and
that the electrostatic interactions between BAR and membrane are essential
for sensing and stabilization of bilayer curvature.

493-Pos Board B372
Inducing and Reversing Anesthesia with Temperature Variation -
Experiments on an Excised Frog Sciatic Nerve
Bineyam Kassahun, Martin Bier, Alexander Murashov.
East Carolina University, Greenville, NC, USA.
The Meyer-Overton Rule and other more recent experimental observations sug-
gest that the fluidity of the lipid membrane is involved in nerve propagation and
in mechanisms behind anesthesia. In other words, Hodgkin-Huxley may not be